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Abstract —Layered queues are a canonical form of extended queueing network for systems with nested multiple resource possession,
in which successive depths of nesting define the layers. The model has been applied to most modern distributed systems, which use
different kinds of client-server and master-slave relationships, and scales up well. The Layered Queueing Network (LQN) model is
described here in a unified fashion, including its many more extensions to match the semantics of sophisticated practical distributed
and parallel systems. These include efficient representation of replicated services, parallel and quorum execution, and dependability
analysis under failure and reconfiguration. The full LQN model is defined here and its solver is described. A substantial case study to
an air traffic control system shows errors (compared to simulation) of a few percent. The LQN model is compared to other models and
solutions, and is shown to cover all their features.
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1 INTRODUCTION

M ANY distributed computing systems can be modeled
compactly using a canonical form of extended queuing
network (EQN) calledayered queueindLQ). When a soft-
ware server calls another server and waits (blocked) for the
return from the call, that is an example of layered queueing.
The pattern can be repeated to any depth, and includes tsques
to processor servers. Layered queueing occurs in all kinds
of information and e-commerce systems (e.g. Client-Server
Service Oriented Architecture, etc.), in grid systems, and Fig. 1. A multi-tier client-server system from [2]. Tasks
real-time systems such as telecom switches [1]. An examplee represented by parallelograms. The customers are

LQ model is shown in FigurEl 1 and explained below. Efficienepresented by the tasks Groupl and Group2. Pure
analytical solutions can be computed for complex systerasrvers, such as devices and think times for customers,
(tens of layers, hundreds of servers, thousands or millansare represented by circles.

replicas).

The layered queueing model was first introduced as “Active .
Servers” [3], [4], describing the key property that a servé¥0rk (LQN) model was created and evolved by adding fea-
may, during its service, stop for a nested request to anotfigfeS found in important application systems [7]-{12]. &th
server. This was extended by Stochastic Rendezvous NetwdfgS€arch on layered queueing includes:

(SRVN) [5], which treated waiting for each server sepayatel * @ model for a single (open) server with one layered
and the Method of Layers (MOL) [2] (a development of the ~ Service [13]

‘Lazy Boss’ algorithm [6]), which introduced the important * an improved solver based on Markov Chain aggregation,
concept of grouping the servers in “layer submodels”, at the for SRVN models with multi-class servers [14],

cost of using a different model for software and hardware » & Solver using a stronger approximation for non-

servers. From MOL and SRVN the Layered Queueing Net- €Xxponential service times [15], and handling asyn-
chronous messages,

_ , « the Method Of Decompostion (MOD), developed to an-
e G. Franks and M. Woodside are with the Department of Systemds a | | d soft d ibed in the UML [16
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and implemented in the Layered Queueing Network Solver sd Layered Queueing/
(LQNS). The extensions include common features of dis-
tributed systems, such as

o FULL-ACCESS: a server can issue requests to any server
in a lower layer, rather than just to the layer below it. This
is frequently the case in practice, a simple example is an
application which makes requests to a database server,
where they both use the same file server.

o MULTI: multithreaded and multiprocessor servers,

« ASYNC/OPEN: asynchronous messages, and open as ‘
well as closed models, Y TQ‘[‘%”JY%,,% ,,,,,,,,, ‘

Groupl

o ACTIVITY: a detailed execution graph for provision of a - !

service, showing parallelism but also sequence, branching

and loops. Fig. 2. A sequence diagram showing how service re-
« VAR: arbitrary variance of CPU demands guests nest from Groupl to Disk1 in Figure [l A request
« SERV-PATTERN: both stochastic and deterministic pais blocked until its reply is received.

terns of requests for lower-layer service

and common performance optimizations such as o )
) . . . The example in Figur€ll (taken from [2]) is used here
o PH2: servers with early replies and autonomous contlnLka- ! . !
0 describe the basic features of a layered queueing network

tions, called a second phase. This reduces client blOCk'rq%deI. The primary entities of the model consist of software

delays.
) L - . servers calledasksshown as parallelograms, and hardware
o PAR: parallelism in providing a service, used to repre- : .
ﬂ;rvers shown as circles. Tasks are used to represent atyy ent

sent prefetching, asynchronous remote procedure calls .
. . o at can make requests to any other entity. For example, they
and speculative computing, as well as parallelization g

algorithms. This uses ACTIVITY. can represent operating system processes, customers to the
. QC: consensus-based parallelism, requitiigut of N system and hardware devices such as disks. In I_:ure 1, the
branches to complete ' topmost task$Groupl and Group2 are sources which make
’ requests to serverAl, A2 and COM, which in turn make

Scalability of models and solutions is increased by requests to lower servers and processors. Each service is a

o REPL: explicit replicas of servers, sequential process, and multiple requests are made sequen-

« REPL-BR: replicas of parallel branches, tially. Servers which make no requests are called the haalwa
and solver features have been introduced to improve tp@rvers and behave like servers in a conventional queueing
extended queueing network approximations: network. These servers can also supply pure delay, as shown

« FAST: a fast-coupling correction for multi-class FIFOby the infinite serveihink which provides the thinking time
) for the users. Figuld 2 shows one possible sequence of tsques

servers with different service times, . . . .
o INTERLOCK: a correction for correlated requests due tgom Groupl to Disk1 illustrating the nesting of calls and the
uniform treatment of hardware and software servers.

shared resources in generating arrivals.

Alone among the various LQ approaches [2], [5], [15], [17]-
[20], the LQN solution algorithm handles all combinatiorfs 02-1 The Method of Layers (MOL)
the above. The approach of MOL [2] will be used to describe the solution
This paper gives a unified account of the LQN model and it Basic LQs. The service relationships are decomposed into
solution technigues, emphasizing how the solver extessio® a set of ordinary queueing networks, which are two-layer sub
related. For example, servers with multiple services (desd models showing clients in the upper layer requesting servic
asentries below) require a multiclass solver, while multiplefrom the lower layer, as shown in Figue 3 for the model of
threads use a multiserver solver, and both of these mustHigure[l. Each task appears as a server in one submodel, and
adapted for second phases and replicas. again as a client in the next lower submodel. As a server,
it is modified to include a surrogate delay (labeled Delay)
representing the nested services in even lower layers. As a
2 LAYERED QUEUES client, it has a surrogate delay to capture the delays betwee
The central idea of the layered queueing (LQ) model is dhe requests it makes. The surrogate delays are calculsted b
Extended Queueing Network in which a service may haweset ofimport relationshipsvhich are the core of the method
within it a nested service by another server, with nestingnyp (see [2]). The bottom layer submodel is constructed to thelu
depth. This nested simultaneous resource possessiontperall the hardware servers.
an elegant compact representation. Further, the repeggent MOL solves the separate submodels using the Linearizer
is designed to model directly the client-server type irtBoms approximate MVA algorithm [21]. Each submodel is a conven-
commonly found in distributed systems, thus reducing th®nal separable queueing network in which the servers form
semantic gap between the model and the system being studikd. service centers and the clients form the customers. The
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Fig. 3. Submodels generated by the Method of Layers for the model in Figure [l

solver iterates between submodels by updating the sugogat
delays with the import relationships.

In MOL, requests between tasks are strictly layered (i.e.
they can only be made to the next layer down, except for
processors; additional pseudo-tasks can be introducedkets o oo
come this). This and other limitations are overcome by the
LQN model.

Controller <3>

2.2 The Layered Queueing Network (LQN) Model

The LQN model has gradually evolved to add features found in
real systems, as listed in the Introduction [7]-[12], antest
described in the User Guide [22]. Some of the added features 1
are illustrated in the example shown in Figlke 4, based oh [23
It represents tasks and services in an Air Traffic Control@QAT |
center in the US National Air Space infrastructure [24] for
the airspace away from airports where aircraft normally fly
at high altitudes. For example, the task labeM (data !

A0 U AN

?M?géglf}thgMdiSF\ayF/’/DN[IS%r;]J]Im//DM['fTJ].%T]WD/ijmOdifyF%

management) services the user consbleand makes requests
to CR (conflict detection) which makes requests in turrs®
(signal processing) andadars (operations of the radar sets).
The notation will be introduced below with the features that
are described.

modify2
[0.002]

readl read2
[0.002] [0.002]

display confirm
[0.008] [0.008]
|

modifyl
[0.002]

2.2.1 Multiple classes of service at a server (MULT]I)

Hardware and software servers are treated uniformly in LQN. A =} r:@*PCff\if%i{%Ef ’(I),lo’:i,’lz’s ) 022, 1=3 (1), 0=2, 1=
Some software servers in Figdte 4 offer more than one kind of M Teomsod T | [eonioa Fomradl | [ rowaes *P*MZ;;dI* "
service, indicated by small parallelograms nested insitdesla b 1 / / [o,o.oonf B / [002] f ooz |} | / [0.02] /E 002 ||
(in LQN these are calle@éntrie. For example the=PM1 | [ Jpmea] Iy [ewee] |
application has entriefPMi1get and FPM1modify, which / e dy & G b &
can have in general different CPU demands and different- .y~ i A o
requests to lower servers. Since software servers usually® | 5[2’22%?]5% o / 0001 / 1 E/FPB%lz’fafP“fSéé?d ! E/FP[B%ZZTE‘#P?SSZ?“ !
FIFO discipline, this requires solving a multiclass FIFGega. s S / FPDBL <2 / / FPDB2 <2 /

In Figure [3, the stacked parallelograms indicate mult — ——;

note that the processors are indicated by the dashed boxe [ T cradars
Figure[@). MOL also supports these multiservers, but onty fq [0.0011
a single class of service. ‘

Radars <2>

2.2.2 Asynchronous Messages and Open Arrivals Fig. 4. A Layered Queueing Network (a model of an Air

(OPEN/ASYNC) - Traffic Control System studied in Section B)
All of the requests between tasks shown in Fiddre 4 are syn-

chronous, or blocking. The model also supports asynchmnou
requests, which do not block the caller and do not return
information. Entries can also acceppen arrivals with a
Poisson arrival process.
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2.2.3 Second Phases (PH2) Solution effort becomes independent of the number of repli-

An entry can send aearly reply to its requester, and thencas [12]. Replication of an entity is a deeper form of muipl
continue to execute (called a second phase) [9]. In this c&gVers, in which replicas execute independently of eaoérot

the requester and server execute in parallel for a timeréfgu A replication notation, illustrated by the example in Fig-
shows timing detail for the execution of te€Rdetect entry Ure[d, was developed in [11], [12] to exploit the symmetry
of task CR. On a diagram it is indicated by making the CPUN an LON model. The interactions betwe&M and CR
demands and service requests a pair of numbers, as sh@ifexpanded in Figuid 6 to show the replicas explicitly. The
for theeCRdetect entry. Early replies are often useful in reanotation adds three new elements:

systems to improve performance, provided the server is not each replicated task and processor is represented once

saturated [9]. Early replies also provide a modeling carcstr with a replication count- given in angle brackets, as
for shared buffers, for example in a file system [10]. <r >,
« each arc representing an interaction has a fanout count
sd Second Phase O, giving the number of target replicas for each source
replica, and
dm:Task cr.Task « a fan-in count/ giving the number of separate source
DMConflict eCRdetect replicas there are for each target replica.
4 ] These_elements have default values of one. _ _
areplys | |q TPV In Figure[d all tasks are replicated as well as being multi-
. N threaded, shown by the integer in angle brackets (e.§.>).
PHCOnT - eCRdetect In LQN the interpretation of a request to a replicated seiser
that one request is sent to one replica, chosen randomly. For
areply> | | TPV a replicated server there is a subset that forms a pool used by

each client replica, of size Gan-out numberand similarly
Fig. 5. First and second phases at a serving task. In the set of cIiept replicgs that may make requests to eachrserv
this figure, the client, DM, sends a second request to the  '€Plica has size fan-in number An example is the request
server, CR, before the server finishes processing the first from entry DMconflict to entry eCRdetect, where all three

request. This request will be queued if the server cannot DM replicas fan in to the twé-PM1 replicas).
start a second thread. The fan-in/fan-out values in Figuig 4 are artificially intro

duced here to illustrate the notation and the use of the solve
In an actual ATC system the replicas are used differently, fo

2.2.4 Parallel Activities (PAR) and Activity Detail fault tolerance, as described in Sectldn 6.
The largeDM task has five entries, two of which are executed ommem---

in parallel, as indicated by a smaittivity graphdrawn inside || om<e>

the task. For instance entiMmodifyFP invokes activity | pConole <3> |

prep2, which then forks two parallel sub-threads for activities S o=2. =8
modifyl andmodify2 which update different databaseBM1 ' cr<z> ]

andFPM2. The following join labeled & indicates that both
paths must complete (fork-join parallelism). The dashedvar
back to the entry indicates the point at which the reply to the e
original request is generated (if there are subsequenitagi 1/

they are part of a second phase). 1

The parallel branches for entMdisplayFP end in a
join labeled 1’, which indicates that only one of the two / CR_1 / / CR_2 /
must terminate; it takes the first result. This is an example o ! b
Quorum Consensus, described further below.

Even without parallelism an activity graph can be used to
build up an entry behaviour from a more detailed descriptioRig. 6. Subset of the model in Figure B showing how
providing an execution graph for the entry [25]. At the levethe compact “replicated” notation is used to represent the
of an LQN model, an activity is the basic unit of behaviour. Itonflict resolution subsystem consisting of three display
includes CPU processing and nested service requests. An entanagers and two conflict resolution tasks.
without explicit activity detail has by default one activifor
two, if there is a second phase).

3

(b) Expanded Model

2.2.6 Quorum Consensus (QC)
2.2.5 Replication of Servers (REPL) In some systems with parallel execution, it is not neceskary
Many large systems have identical or nearly identical subH branches to complete. This is particularly true for mgti
systems, which can be exploited for scalable representatmr Quorum Consensus systems, in whighidentical requests
and analytic solution with each replica represented onlyeon are made in parallel buk” out of N replies (with values that
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agree) are sufficient to proceed. The LQN notation for QC is 2)
to label the parallel join node with the siZé of the quorum,

as in the node preceding tltisplay activity in task DM in
Figure[d. The analytic solution is discussed below.

2.3 LQN Meta-Model

The meta-model for a Layered Queueing Network, shown in
FigurelT, is the formal model used to describe the infornmatio
that goes into a LQN. An LQN model consists of a set
of processorswhich containtasks Processors are used to 3)
consume “time”, and often represent the actual CPUs in a
distributed system. A processor igare serverin that it can
only receive requests for service from the tasks that itaiost

A processor may haveraultiplicity in which case it is a multi-
server. If the multiplicity isinfinity, then the server becomes

make requests to other tasks throlRgquestsRequests

are made to entries on other task and can be either
Synchronousor Asynchronous The mean number of
requests per entry execution is shown in parentheses
attached to the request arcs. By default the number of
request is geometrically distributed with the specified
mean [5]. The number can also be deterministic, though
the order of requests is not defined (they can be invoked
by separate activities if the order is significant).

reply to synchronous requests, shown using the dotted
line within a task from the activity to the entry. The entry
can either reply to the originating task, Borward the
request with some priority to one or more other entries.

a pure delay. A processor can be shown as a dashed rectangle .
sd Slices J

enclosing its tasks, as in Figuk® 4, or as a circle with arcs
attaching it to its tasks, as in Figutk 3.

Taskscan represent different kinds of objects, i.e.:

« clients to the network,

« actual processes or threads in a system,

« non-processor devices such as disks,

« critical sections, and

« resources such as buffers.
The same task can act both aglaént that makes requests
and as aserver that accepts requests. Tasks which do not
accept any requests represent load-sources or users and are
called pure clientsor “reference tasks’ They correspond to

4) invoke other activities througRrecedence
sProcess:Activity eRadars:Entry Radar:Pr r
N
@
\
< |
! N N
| @
AR R Pomeomemeoeoes : v

customers in closed chains of conventional queueing n&swor

Tasks and processors have a multiplicity, which for a refeee F19- 8- Slices of CPU time between requests

task gives the number of sources or customers, and for other

tasks represents the resource multiplicity (e.g. the nurobe

The remaining tasks in FiguE& 4 use an abbreviated notation

homogenous threads of control, or the number of buffers). Afiere_one or two activities are invoked implicitly by an

infinite multiplicity makes a task or processor a delay serveentry. The first activity implicitly replies for the entrye8vice
Tasks receive requests in a single FIFO queue. Claséiegnands for this case are shown as a list of one or two items

of service identified byentries For consistency, referenceWithin square brackets, e.g. [0, 0.001] in ene@Rdetect.

tasks also have entries even though they do not accept re-

quests. Once an entry accepts a request, actual procesgng ANALYTIC SOLUTION OF LQNS

is performed byactivities the lowest level of detail in the

performance model. Activities are combined Bye and Post

precedence connectors expressing sequence,‘@rid and

“And” forking and joining. Or-forks have probabilities, an

Post-nodes can invoke a subset of the graph a random numpb!

Algorithm[ shows the overall algorithm used to solve lagere
gueueing networks. The overall model is represented by a
et of related submodels, each of which is solved using the
qsbinearizer algorithm [21] of Mean Value Analysis (MVA) [26]

h modifications to handle any two-phase servers [9], [10]

of times with a given mean — the equivalent of a subrouti . .
9 q ”ﬁﬁe sections that follow describe how the submodels are

call — to define looping. Activities: :
. . canstructed, how they are solved, and finally, how the pmces
1) consume time by making requests to the processgr e S
iS_modified if replication is involved.

associated with the task. Service time demands are
s_hown on Flgu.r(El4. Wlth Ia}belg in square brackets. Th}flgorithm TLONS Algorithm
time demand is divided intslices between requests, — I Model

as shown by the UML Sequence Diagram in Figtre 8.1: Iéoa (';I/I?\)/I ed |

It gives the details of the phase-1 activity of the entryz' xtend Mode

SProcess in Figure[3), which alternates between slices® Topological Sort

of processing by theRadar processor, and requests to 4: Layerize (create and initialize layer submodels)

entry eRadars. The mean number of slices is always
1 + (total Requests).
By default, the demand of alice is assumed to be

5: repeat
6
7:

. Solve the layer submodels using Linearizer MVA
until convergence or iteration limit

Save results

exponentially distributed [5], but a variance may be®
specified.
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LayeredQueueing

Network
Node
1.* ﬁ
1.x
Processor [ @— Task Qi Refgglrgce Precedence
1 ‘ executes /
1.* 1.%] 1.*
_ Entry |8v2kels Activity 1.* 0.1 Pre 1 0.1 Post
forwards ‘ * ‘ ) calls ! ‘ ‘ 1.* ﬁ K
,’/ Request \\ AndJoin OrJoin AndFork OrFork
/! \ Loop

Forward Rendezvous | [SendNoReply

Fig. 7. Meta-model for Layered Queueing Networks
. 1l —
3.1 Submodel Construction . —
Controller
. . . ) 3 i Controller
The topological sort identified in step 3 of Algoritiiih 1 assg
a nesting depth or layes to each of the nodes in the input
model. The layerizing step uses the nesting depth to generat | | 1 2
submodels consisting of a set of servers and a set of clients. Y Y f ¥
Submodels are created by layer. Submodé created with " ul
all of the tasks and processors at layer 1 as the servers, contal
C Il ontroller

and all of the tasks that make requests to these servers as the peontroller P

clients. FiguréP shows the submodels that arise from Fdure (a) Without Replication (b) With Replication

Notice that the processors shown as boxes in Figlre 4 belong o

to the layer next below the lowest task in the box. Othdrd- 10- MVA model for submodel 1 in Figure 3

layering strategies are possible. For example, the Sttchas

Rendezvous Network (SRVN) Solver forms a submodel for L

each server in the model [5], whereas the Method of Laye$52 Submodel Parameterization

(MOL) solver is similar to LQNS except that all of theService demands and think time parameters for each submodel
processors in the model are grouped together in the lowase found from the results obtained in other submodels. The
layer [2]. service time for eclient in a submodel is found by summing

The routing chains created for MVA submodels depe Lﬁathe waiting times (queueing time plus service time) tohll

on whether replication is present or not. When a submo F tasks and processors it calls, that are outside thenturre
. piic P o Sbmodel. The service time for serverin a submodel is
contains no replicated components, a chain is created

[md by summing up the waiting times to all of the tasks and
each client in the model. The number of customers in ea y gup g

hain is the | £ th ltivlicity of the task th ocessors it calls, including calls to entities in the therent
chain 1S the lesser of the mulliplictly of the task, or ubmodel. For example, consider the taskin Figure[3. In

number of clients of the task when it is acting as a servet, O o e
Figure [TD(a) shows the queueing network for SubmOdeglubmodel 1UIl acts as a server; its service time is found by

L ) ; summing up the waiting time for the requests it makes to the
shown in Figur 9T8) assuming that there are no replicas. task DM, and to its processopConsole. In submodel 2UI

When a submodel contains replicated components, a chaiaiss as a client to taskM. Its service time is the waiting
created for each server in the submodel. Splitting the custo time to its processopConsole. Finally, in submodel 3JI is
chains, according to the server they visit, is necessaryaifclient to processqConsole. Here, its service time is found
different fanout values can be applied to different serask$ by taking the sum of the waiting times to taBi. Note that
in the LQN, since there is one server center in the layar submodel 3, tasoM is also acting as a client.
submodel for each server task in the LQN. Fidurke 10(b) showsThe other parameter that must be calculated from the
the queueing model for this case, with the flows labelled tsplution of other submodels is the think time for each chain
their chain identifiers. representing a client task. This value is derived from the
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Ul <3> ’
DM <3> ’

(b) Submodel 2 (c) Submodel 3

CR <2> / FPM1 <2>/] / FPM2 <2>[]
/ sp<2> H / ™ <2> ﬁ / FPDBl<2>/] / FPDB2 <z>[] ,
Planl %PlanZ pRars <2>
)

(d) Submodel 4 (e) Submodel 5 () Submodel 6

' !

/ SP <2> []/ ™ <2> []/ FPDBl<2>ﬁ/ FPDBZ<2ﬁ

Fig. 9. Submodels for the model in shown in Figure Bl The objects in the bottom row of each submodel form the
servers in the corresponding MVA queueing model. All the other objects form the clients.

throughput and utilization of the task when it is behaving as fan-in of the interaction. It includes a special delay term
a server in a submodel, using Little’s result. For examghie, t for visits to other replicas of the same server and class,

utilization and throughput for taslidl found from the solution equal to(fan-out— 1) x (response time
to submodel 1 is used to set the think time for this task in The |atter change means that some service times in a layer
submodels 2 and 3. submodel depend on results of the same submodel, which was

Using this approach, service times for submodels are foupdsoyed by iteration. An approximate multivariate Newton
starting from the bottom layer and working up, and think BmeRaphson iteration was used [27] for these variables.
are found top down. Deeper models require more iterations of

the outer loop to solve than shallow models because of the
need to propagate results from one layer to another in bafhy  servers With Variance

directions. ) ) )
Fixed-rate queueing stations for the MVA submodels are

Algorithm 2 Solve Layer Submodel solved using servers which allow for variance using the

1: for all Clientsdo approximation from [28].

2:  Calculate imported service and think times.

3: end for 3.4.1 Random Phases

4: for all Serversdo ) 5 L . _

5. Calculate imported mean and variance of service time&1€ Varianceo; at activity i with geometrically distributed

6 end for requests to other servejds the sum of a random number of

7: solve submodel using mixed-model MVA. random variables and is given by:

o} =0f + Z (W(U?j +af) + oy, (C+ Tj)) @)
j

3.3 Submodels with Replication

_ ) _ o
The semantics of replication are illustrated Bgtteninga WNerec ?ndag are the mean and variance of the service time
small part of the ATCS model (Figuf 4) in Figule 6, to showf one s[lge,qij is the vgrlaan_e of the W_a|t|ng _for the request
each replica separately. When a client with replicas and [fom activity i to entry j, o, is the variance in the number
fanoutO requests an interaction with a server with repli- Of requests from to j, andzj is the mean service time at
cas, the flattening allocates the x O flattened interactions €Nty J-
sequentially to the server replicas, moduto In passing, we
note the constraint thatc x O = rs x I. 3.4.2 Deterministic Phases

The LQN solution algorithm represents each rephcateﬂqe variancer? at activity i with deterministically distributed

server (task or processor) by ? single server. The layer Sl?le)c_quests to other servers is the sum of variances of all of the
models are adapted as follows:

) requests to other servers and is given by:
« each surrogate delay in any layer submodel, representing

the response time of a visit to a server, is replaced by 2 _ vy 2 2
(fan-oup x (response time This applies to surrogate oi = Yiog +Z (vis7) @
delays in source chains, and in service times.

« each class of service in a submodel has a source chainere the terms of the equation are the same as those ol Eq. 1
for each replicated client, with population equal to thandY; =1 + Zj Yij-

J
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3.5 Servers with Two Phases customer created by the phase-two service.

Special approximations are needed to solve queueing models K
Smk + Z 5mjQmj(N —ey)

which contain a two-phase server, shown earlier in Fi@lire 5, Wnie(N) =

because the second phase effectively creates a new customer j=1

in the queueing network, violating the conditions of praduc K

form queueing. Two new effects must be accounted for. First, + Zrijmj(N —ex)

a request from a client may find a server busy processing j=1

an earlier request made by that very client. This event is K

calledovertakingand is shown in Figurl 5 by the overlapping + Z Smj2l'm;i (N — ex)

execution occurrence for TaskR. Second, the second phase J=1

makes the server work longer; this demand must be accounted K

for. + D (1-Tpj(N—ex))
j=1

. - 2
3.5.1 Overtaking Probability x| smj + Sm_ﬂ Upj (N — e3) (5)
The overtaking probability’;; is the probability that a request mi

made by a client to a serverj finds the server busy servicing )

the previous request made by cliena simple approximation, 5-2-3 Delay at Load-Dependent (muilti-) Servers

used in [2], [5], approximates this probability as a rack [2], a very simple expression was derived for finding the
between two exponentially distributed random variables: twaiting time at a multi-server which did not involve the
“return time” between requests to servefrom client4, of computation of the marginal probabilities. This expressi@s
meanr;, and the mean time servgis second phase takes tomodified for LQNS by extending it to multiple classes, and
finish, s;2. Thus: second phases [10]:

S92
Ly = —2— 3 (N = ep)M
T Ti+ s Wink(N) = Smp1 + Un (N o) 7 %)
This expression works well provided that the client makes K
requests from only one phase, to one and only one server. X Smj [Lmj (N — eg) + Ugja(IN — e)]
If this restriction is violated, then the return time is not j=1
exponentially distributed and large errors can occur [9]. Lok
. . . - + — - Smk2 (6)
A more robust approximation for the overtaking probabijlity Im

described in [9] is used by LQNS. A transient Markov chain
is analyzed starting at state at the moment of the returleccal4 MODELS WITH INTERNAL PARALLELISM

;sr:ateST. tltkglves fthe all?so_rp_tlonhprobabﬂnEIr(QtTp|S,‘) for Models with internal parallelism arise when a task has irder
e overtaking of a client in phasep, while Its SErverj  qities which fork into separate threads which join ainso

s executing in' phase while completi_ng an earlier. reéquestier time, illustrated by the TadBM in Figure[d. Two cases
from the clienti in phaser. After considerable manipulation exist, depending on whether some or all of the threads join

one obtains a relatively simple product-form expression f%r not, and are shown in Figukell1. For the case where all of
Pr(OT,|5y) [9.]' The oye_rtaking p_robability for client with the thr'eads join (Figufe TT{a)), the solution algorithm trhes

P phases calling serveris then given by: augmented to account for thein delay and to account for
the additional customers in the underlying queueing networ

Ly = Z Z AiYigr Pr(OT,|S,) (4) caused by the threads. For the QC join, where only a subset
s p .. . . :
p=lr=0 ‘4 of the threads join, further approximations are required.
where: ]
4.1 MVA Solution
A; = Total throughput at client The underlying strategy for solving a queueing network sub-
Ai; = Throughput from client to server; model containing parallel sections (including QC sectjdas
yij = Mean requests fromin phaser to j the complementary delays technique [29], with the accuracy

3.5.2 Delay at Fixed-rate Servers

The usual MVA expression for the waiting timéy,,, at

improvements of [30]. The parameters for stations acting as
servers and those acting as clients are calculated diffgren
described next.

4.1.1 Servers with Heterogeneous Threads

a FIFO serverm in class k with non-exponential service The service time for a task with internal parallelism actasy
times [28] (i.e. the first three terms in HJ. 5) is modified by server in a submodel is computed by aggregating the service
adding two additional terms [9]. The fourth term accounts fdimes and variances of all of the internal activities intear
overtaking while the final term accounts for the effect of thevo phases, depending on the location of the reply. Firgt, th
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Fig. 11. Task behaviour at joins

reduction finds all subgraphs of activities without any fork heavily on the distribution tails; théaree-pointapproximation
join and reduces these to a single composite activity withdescribed in [31] was found to be highly effective [8]. Howev
mean and a variance. Second, the overall delay over the iseta QC join where onlyK out of N branches need to
of composite activities between a fork and its correspagpdicomplete, the details of the distributions are more imptrta
join is calculated using the method described below. Rmalland a better approximation to the branch delay is essential.
the fork, the join, and the corresponding branches are estuc

to a single composite activity. This process is repeated ur{ 3 QC Delay

all of the forks and joins are removed. Most performance studies of QC delay use simulation [33],

[34], however a rapid analytic approximation has advardage

4.1.2 Clients with Het Thread . .

) ents wi : © erogene_ous _rea S _ for exploring alternatives. The QC delay for H-out-ofN
A different reduction process is applied to a task with he&uorum is the " out of N order statistic[32], X, _
erogeneous threads acting as a client. For this case, e » Quorum

N
branch of a fork is represented as a distinct routing chain K, {XBranChz}lzl)'. I . .
: ) . . - The branch delay distribution was approximated in two
in the underlying queueing network and these routing chains
ways. Where the number of requests to lower-level servers

are distinct from the routing chain of the parent. The servic L L ) .
. . . deterministic, a Gamma distribution using the first two
time for each branch of a fork is found by aggregating al

of the activities between the fork and its corresponding jo{noments OXpranch; is used. When the number of requests
into a single composite activity. Similarly, all of the adties
corresponding to the parent thread of the task are aggikg
into a single composite activity for the parent’s routingich
In [30], the probabilities of routing chains contending hwit
each other (name@verlap probabilitie} are used to modify
the MVA waiting time expression to remove contention when *
routing chains cannot interfere with each other. For exampl
since a parent thread is blocked while the threads assdciate ;
with each of the branches of its fork execute, a customer® the QC task waits for the delayed branches (called the
in the parent’s routing chain cannot contend with any of the overhang) before becoming free.
customers in the routing chains corresponding to the besich Figure[I2(d) shows the execution of an applicatipp
of the fork. The number of customers in the routing chain¥ith a QC section shown by parallel branches terminating
of the branches of a fork is inherited from the number it the node labeled(3). The QC section is preceded by a
customers in their parent. While it is not possible for &et of operations represented by an aggregate acawtg,
customer in a branch chain to interfere with its correspogdiand followed by operations represented by actiaiost. The
customer in the parent, it can interfere with other custeame®C section spawns (forksy = 5 branches with activities
in the parents chain, so the overlap probability is adjusted aBranchi for i =1,...,5, and requiress = 3 responses.

(N —1)/N, an extension of the approach in [30]. The branch completion delaySganch, for i = 1,...,5,
are illustrated in Figurg IZ2{p), showing the time at which th

qguorum of three responses is satisfied. Branches left otneof t

4.2 Estimating Join Delays ; Co ;
- ) ~ quorum are said toverhang The overall application service
The join delay depends of the entire probability distribati tjme, Xppp is:

of the delays on the branches. FAND-joins the delay is
the maximum of the branch values and the mean depen¥ispp = Xpre+ XQuorum* max(Xpgst XOverhan@- (7)

o lower-level servers is distributed geometrically, aseid-
e{f)rm expression is used NEEDS REF TARIQ PAPER.

he QC behavior studied here is illustrated in Fighre 12.
We assume:

« a maximum of one QC section per software process
that the QC section follows the pattern shown in Fig-
ure [I2(a), but the activitiesPre and aPost may be
replaced by arbitrary activity subgraphs
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< Task service time,ggp >
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- | S OSESIE OO IR0
! aBranch] !

3 aOHRemote
aBranch‘ aPost|—=|
T | Fig. 13. Model M’: the transformed activity graph for the

aBranch? 1 model in Figure M2a). M’ is constructed in this way to
account for contention of branches for resources.

aBranchN

— aPre

‘ X Branch,i

External Service Network

N5 D \ =
sSae o088 2
=~ >0 -2 !
2238 gEE: .
() 88_:& noc®an S
SaS§ 8 >
o033 w
| | |
Xpre I 1 Xpost } . ;
" Xgranch1 T | Fig. 14. Demands and response times of a Branch. There
| | | .
" Xgranch.2 ! ! are k blocking delays.
L J |
! XBranch,3 | |
1 XBranch,4 : : L. . i
— ' ; ; serialized into the overall delayoH| gcgt It is also assumed
| “Branch,5 ! ! that requests to any other resources can run in paralles Thi
— % fork= Xy~ ime time is combined into combinedoRremote Because the
overhanging branches are logically parallel, and the local
(b) delays are sequential, the surrogate delays are treatexiths p

parallel and partly sequential when they are combined.

A different solution strategy would be tdecomposeach
guorum construct o/ for all possible combinations of active
branches and then combine the results. This method is costly

The branch delay distributions from [35] are used to capecause the number of models’ grows combinatorially with
culate the QC delay and to approximate the overhang effelée number of quorum branches in each QC section and also
which can have an unbounded effect on the predicted perfkponentially with the number of QC sections .
mance measures. It is important because the applicAfn
cannot accept another request until the overhang is coethblets RESULTS AND ANALYSIS

Fig. 12. Behavior of an application with a quorum con-
sensus section.

. ) In [35], the quorum delay approximation was evaluated using

4.4 Solution Strategy for Models with Quorum 110 tests covering parameter variations within six majeesa
The solution strategy is to convert a modél with the QC  with sufficient accuracy in the vast majority of tests. Thet te
section to an approximate mod&!” without one, and apply parameters were chosen to stress the algorithm, rathetdhan
existing mean-value solution techniques that include-foik  favour it. Based on our experience with the analytic sohutio
parallelism. technique, the highest errors in almost all cases occuthfer t

The activity graph of a task with a QC section (such as tasist order statistic, i.e., whed = 1. Two conditions may
App in Figure[T2(a)) is replaced in modal” with another affect the accuracy of the approximate distributions:
activity graph as shown in Figuie]l3. The behavior of the 1) The individual external service delays may not be expo-
QC_ sec_tlon is changed to a full parallel section (der_loted by nentially distributed, homogeneous or independent.
‘&’ in Figure [3J), followed by a second parallel section for 2) Queueing delay on the processor that runs the quorum

the overhanging period. It has activigPost and surrogate is assumed to be insignificant which will be satisfied if
activities aOHLocal and aOHRemote for the overhanging the load on the processor is light.

branches. The modél/’ is constructed in this way to account
for contention of branches for resources using the existing - ) ] .
LON constructs described earlier. 5.1 Scalability of Analytic Solution Time

The delay for a branch is broken down idtecal delays at The scalability of analytic solutions versus simulation is
the host processor &pp, andremotedelays due to blocking illustrated in Figurdl5 which shows run-times (in seconds)
for services at other servers, shown in Fidure 14. It is assunfor solving a replicated database model [35]. The applcati
that all of the branches involved in the quorum join run on system with its two databases was replicatetimes, with
common processor, so all of the requests to the processor @rstomers proportional toand customer requests split equally



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 6, NO. 1, JANUARY 2007

1400 T T T T . . T

1200

1000

800

600

Solution time (sec)

400

200

0

Number of replicas (r)

Fig. 15.
solutions.

Run time for simulation and LQNS analytic

Case 2

among the applications. The simulation run-time was adjlist
to be sufficient to give @5% confidence interval of-5%.

The simulation is one to two orders of magnitude slower. At Case 3

larger numbers of replicas, LQNS runs out of memory due to
inefficient coding for large numbers of chains, giving a spac
complexity of chains times entries. The algorithm should be
linear in replicas.

6 RESULTS: AIR TRAFFIC CONTROL SYSTEM
(ATCS)

This section reports results for a model of a moderatelyelarg
system, and extends a method for analyzing dependabdity, t
cover all LON features. The ATCS model shown in Figlire 4
approximately represents an en route controller for a sefto
airspace between airports. Each such system receiveafaircr
surveillance and weather data from radars and communicates
with other external subsystems including other en-routé-fa
ities. Inside each ATCS, there are [23]:

1) A Display ManageDM which shows aircraft position

11

The read quorum fobMdisplayFP also took different values
K = 2 (parallelism, with both branches executed) dfid= 1
(quorum of 1). Analytic results were compared against simu-
lations of the same model. Models with replication (shown
as REP) were alsdlattenedto the expanded form shown
in Figure[® as the simulator cannot solve replicated models
directly. For these cases, results for the replicated attefiad
analytic models were compared to the flattened simuation.
For systems without fault-tolerance, Talklle 1 compares the
analytic solution for replication to simulation results three
cases:
Case 1 K = 2, NOREP. The example was solved with

one replica of each task (that is, the replication
values in the Figure were all set to 1), and the
quorum value for the entrypMdisplayFP (the
parallel graph on the left irDM) was changed
from 1 to K = 2. This gives ordinary fork-join
parallelism for reading from the two databases.

K = 1, NOREP. The quorum value was set to
K =1, soDM only waits for the first result to be
returned.

K = 1, REP. The replication and fanin/fanout
values shown in the Figure were used. Because
fanout> 1 implies additional blocking for requests
to replicas, the performance is reduced (this case
however is meant to evaluate accuracy).

TABLE 1

Results for Response Time of the ATCS Without

Reconfiguration for Fault Tolerance

Case Simulation Analytic | Diff.
+ 95% Result (%)

1 Parallel 2.6701+0.0344 2.629] 1.5

(K = 2, NOREP)

2 Quorum 2.583+0.0700 2.524 2.3

(K =1, NOREP)

3 Quorum and replica] 1.887+0.0059 1.574| 16.6

(K =1, REP)

These results show that for the parallel and quorum cases

information, takes inputs from air traffic controllers, andyithout replication the difference between the simulatiord

requests updates fro®P andCR.

analytic results is just one or two percent, and is less than t

2) Surveillance Processin§P which receives radar datagiatistical error at the level of 95% confidence. In the third

and identifies the aircraft tracks.
3) A Central subsystem including Trajectory Management
(TM) and Conflict ResolutionGR) (on pCentral).

case with replication the errors are higher, but still usabl

6.1 Model with Reconfiguration for Failures, and

4) Flight Plan Management provided by two independemependable-LQN Analysis

servers and databasePM1/2 and FPDB1/2.

The ATCS requires high reliability, which can be analyzed

To illustrate the accuracy of the LQN algorithm, thregy an LQN extension calledependable-LQN[23], [36].

versions of ATCS were analyzed:
NOREP:

Dependable-LQN has been extended here to deal with activi-
the replication parameters were all set to 1. THies to define execution of an entry, and quorum computations

gives just one Controller and DisplayManagerwith K < N (which affect system failures). To improve relia-

REP:
with fan-out and fan-in.
RECONF:

the replication parameters in Figlre 4 were usédlity, server and processor replicas were used to recorgigu
the system when an element fails (the RECONF cases). In

the same replicas were used to provide fauRd'CS, replicas were configured as follows:

tolerance, and were reconfigured according to « the threeDM replicas were load balancing, that is the

failure states of components; this is described
below.

controller requests were distributed across the set of non-
failed DM tasks,
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« primary-standby replication was used for the Central arekample. For instance, the left branch and right branches of
FPM subsystems, so each request went to one replica ahd QC for DMdisplayFP in Figure[4 are symmetrical. On
the other was used only if the primary failed. the left, activity readl is failed if there is an unrecovered

« the SP andRadar servers used LQN replication semansoftware or hardware failure iRPM1 or FPDB1, on which
tics (eachSP server requests the raw radar data front depends. For each operational configuration with agtivit
both radars). readl operational and activityead? failed, there is a corre-

To reconfigure when a processor fails or a task crashé®onding configuration with the failures reversed, and with
requests going to it are diverted either to its partnersq@aut same performance. These configurations are combined to give
balancing replication) or to the standby element. a smaller number ohggregated operational configurations

Dependable-LQN modeling [23], [36] describes the failurand thus to reduce the number of LQN solutions. We can

and repair of tasks and processors by failure and repais, ratéustrate this with four cases:
assuming independent failures. Dependent failures (due taCase 4 (QC, K = 2 NOREP) In this simple case (which

servers which depend on other servers and on their proces- does not require the extension to Dependable-LQN
sors) are captured automatically, and additional depegiden described here) the replication of all tasks and
can be modeled explicitly. For ATCS, the tasksntroller, processors is set to 1. Any failure causes a system
Radars and their associated processors are assumed to be failure. This is the same as Case 1 but with failures,
fully reliable. The other failure and repair parameters sge and has one aggregated configuration.
arbitrarily as in [23] to be: Case 5 (QC, K = 1, NOREP) This is still a simple
« processor mean time to failure (MTTF) is a year, case. Dependable-LQN finds 3 operational con-
« processor mean time to repair (MTTR) is 2 days, figurations for the three failure states of the QC
« software process MTTF = 30 days, activities (none failed, left branch failed, right
« software process MTTR = 1 hour. branch failed) and two aggregated configurations
Markov chain analysis of separate elements gives steadly-st (no branch failed, one branch failed).
failure probabilities to be 0.00545 for processors and 1690 ~ Case 6 (QC, K = 2, RECONF) The replication of tasks
processes. Thiailure stateof the system includes the failure and processors is as given in Figlile 4, and tasks
status of every task and processor. are reconfigured for fault tolerance. There are three
Many failure states are equivalent, in the sense that they aggregated configurations.
determine the same set of usable elements (taking into atcou Case 7 (QC, K = 1, RECONF) Replicas are reconfigured.
service dependencies) and give the same performance model. Twelve aggregated configurations were found.

Each of these equivalence classes of states haparmational The overall throughput and response time results for these
configurationwhich defines its performance model, and aoases are summarized in Tablés 2 ddd 3 respectively.
aggregate steady-state probability. The operational gonfi

ration probabilities are found by generating and solving a TABLE 2

non-coherent fault tree [37] (non-coherent because thane dresults for Throughput of the ATCS with QC and Failures

be a mixture of available and unavailable components in an

operational configuration) using the Relex tool [38]. TheNLQ Case Thruput | Failure | Aggreg. | Total
for each configuration is solved to determine its perforneang (All cases Capacity | Prob. Configs | Operat'l
and an overall average performance. The average throughpyt __include QC) fsec | (x10~%) Configs

: . . . . 4T K =2, NOREP 1.1422 443 I i
capacity now includes periods with reduced capacity due tg; | x — 1 NOREP 1.1977 417 9 9
failed servers. 6 | K =2, RECONF | 1.7647 0.251 3 168

Results in [23] show the analysis is both accurate amd | % =1 RECONF| 1.8238 0.249 12 1512
fast and that the aggregation of operational configurations
in the Dependable-LQN technique reduces the number of
performance models that must be solved by up to two orders TABLE 3
of magnitude in many cases. Results for Response Time with QC and Failures
6.2 Extension of Dependable-LQN Analysis for Quo-
rum Consensus Case sim flat replicated

% diff % diff

This work introduces parallel and quorum execution into thea T K = 2, NOREP | 2.346 | 2.401 2.37 - =
analysis. Parallel branches with K = N can be evaluated Willtﬁ K =1,NOREP | 1.795 | 1.808 | 0.72

: 6 | K =2 RECONF| 1.951 | 1.639 | 16.01 | 1.701 | 12.82
out change, but when K N some extensions are necessary.; | ;- _ 7' ReCONF | 1.916 | 1.504 | 16.83 | 1.659 | 13.45

The improvement of reliability due to the quorum section

(since only K responses are needed) must be determined, Also

it increases the number of configurations, and this can beThe results show how replication with reconfiguration im-

countered by aggregation. proves both performance and reliability, and the use of a
The Dependable-LQN analysis is extended here to accoquorum with K = 1 provides small additional improvements

modate symmetrical parallel or QC branches, as in the ATG@& both. The reduction in effort due to aggregating the oper-
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TABLE 4

. . ) . . however that the quorum join made only small improvements
Solution Run Times for Cases with Reconfiguration

to the performance and the failure probability.

Case | Aggr simulation flat replicated
cfgs mean o mean g mean o ACKNOWLEDGM ENT
6 3 | 176.67 | 9.39 | 4.33 | 2.05 | 4 2.16
7 12 [ 4205 [ 49.25 | 13.89 | 10.53 | 24.84 [ 1826 | This research was supported by the Natural Sciences and Engi

neering Research Council of Canada and by Communications

and Information Technology Ontario (CITO).
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