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Abstract —Layered queues are a canonical form of extended queueing network for systems with nested multiple resource possession,
in which successive depths of nesting define the layers. The model has been applied to most modern distributed systems, which use
different kinds of client-server and master-slave relationships, and scales up well. The Layered Queueing Network (LQN) model is
described here in a unified fashion, including its many more extensions to match the semantics of sophisticated practical distributed
and parallel systems. These include efficient representation of replicated services, parallel and quorum execution, and dependability
analysis under failure and reconfiguration. The full LQN model is defined here and its solver is described. A substantial case study to
an air traffic control system shows errors (compared to simulation) of a few percent. The LQN model is compared to other models and
solutions, and is shown to cover all their features.

Index Terms —Modeling and Performance Prediction, Queueing Theory

✦

1 INTRODUCTION

M ANY distributed computing systems can be modeled
compactly using a canonical form of extended queuing

network (EQN) calledlayered queueing(LQ). When a soft-
ware server calls another server and waits (blocked) for the
return from the call, that is an example of layered queueing.
The pattern can be repeated to any depth, and includes requests
to processor servers. Layered queueing occurs in all kinds
of information and e-commerce systems (e.g. Client-Server,
Service Oriented Architecture, etc.), in grid systems, andin
real-time systems such as telecom switches [1]. An example
LQ model is shown in Figure 1 and explained below. Efficient
analytical solutions can be computed for complex systems
(tens of layers, hundreds of servers, thousands or millionsof
replicas).

The layered queueing model was first introduced as “Active
Servers” [3], [4], describing the key property that a server
may, during its service, stop for a nested request to another
server. This was extended by Stochastic Rendezvous Networks
(SRVN) [5], which treated waiting for each server separately,
and the Method of Layers (MOL) [2] (a development of the
‘Lazy Boss’ algorithm [6]), which introduced the important
concept of grouping the servers in “layer submodels”, at the
cost of using a different model for software and hardware
servers. From MOL and SRVN the Layered Queueing Net-
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Fig. 1. A multi-tier client-server system from [2]. Tasks
are represented by parallelograms. The customers are
represented by the tasks Group1 and Group2. Pure
servers, such as devices and think times for customers,
are represented by circles.

work (LQN) model was created and evolved by adding fea-
tures found in important application systems [7]–[12]. Other
research on layered queueing includes:

• a model for a single (open) server with one layered
service [13]

• an improved solver based on Markov Chain aggregation,
for SRVN models with multi-class servers [14],

• a solver using a stronger approximation for non-
exponential service times [15], and handling asyn-
chronous messages,

• the Method Of Decompostion (MOD), developed to an-
alyze layered software described in the UML [16]

• two different EQN solvers restricted to two-layer systems
with software resources such as critical sections [17] or
thread pools [18].

The modeling semantics and solution techniques of all of
these models are subsumed and extended by LQN as described
here, while retaining the solution efficiency and accuracy of
the simpler forms. This paper describes the extensions in
a unified way, and a solution technique adapted to them,
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and implemented in the Layered Queueing Network Solver
(LQNS). The extensions include common features of dis-
tributed systems, such as

• FULL-ACCESS: a server can issue requests to any server
in a lower layer, rather than just to the layer below it. This
is frequently the case in practice, a simple example is an
application which makes requests to a database server,
where they both use the same file server.

• MULTI: multithreaded and multiprocessor servers,
• ASYNC/OPEN: asynchronous messages, and open as

well as closed models,
• ACTIVITY: a detailed execution graph for provision of a

service, showing parallelism but also sequence, branching
and loops.

• VAR: arbitrary variance of CPU demands
• SERV-PATTERN: both stochastic and deterministic pat-

terns of requests for lower-layer service

and common performance optimizations such as

• PH2: servers with early replies and autonomous continua-
tions, called a second phase. This reduces client blocking
delays.

• PAR: parallelism in providing a service, used to repre-
sent prefetching, asynchronous remote procedure calls,
and speculative computing, as well as parallelization of
algorithms. This uses ACTIVITY.

• QC: consensus-based parallelism, requiringK out of N
branches to complete,

Scalability of models and solutions is increased by

• REPL: explicit replicas of servers,
• REPL-BR: replicas of parallel branches,

and solver features have been introduced to improve the
extended queueing network approximations:

• FAST: a fast-coupling correction for multi-class FIFO
servers with different service times,

• INTERLOCK: a correction for correlated requests due to
shared resources in generating arrivals.

Alone among the various LQ approaches [2], [5], [15], [17]–
[20], the LQN solution algorithm handles all combinations of
the above.

This paper gives a unified account of the LQN model and its
solution techniques, emphasizing how the solver extensions are
related. For example, servers with multiple services (described
as entries, below) require a multiclass solver, while multiple
threads use a multiserver solver, and both of these must be
adapted for second phases and replicas.

2 LAYERED QUEUES

The central idea of the layered queueing (LQ) model is an
Extended Queueing Network in which a service may have
within it a nested service by another server, with nesting toany
depth. This nested simultaneous resource possession permits
an elegant compact representation. Further, the representation
is designed to model directly the client-server type interactions
commonly found in distributed systems, thus reducing the
semantic gap between the model and the system being studied.

«reply»

«reply» «reply»

«reply»

«reply»

«reply»

«reply»

Group1 A1 DP1 CPU2 Disk1

Layered Queueingsd

Fig. 2. A sequence diagram showing how service re-
quests nest from Group1 to Disk1 in Figure 1. A request
is blocked until its reply is received.

The example in Figure 1 (taken from [2]) is used here
to describe the basic features of a layered queueing network
model. The primary entities of the model consist of software
servers calledtasksshown as parallelograms, and hardware
servers shown as circles. Tasks are used to represent any entity
that can make requests to any other entity. For example, they
can represent operating system processes, customers to the
system and hardware devices such as disks. In Figure 1, the
topmost tasksGroup1 and Group2 are sources which make
requests to serversA1, A2 and COM, which in turn make
requests to lower servers and processors. Each service is a
sequential process, and multiple requests are made sequen-
tially. Servers which make no requests are called the hardware
servers and behave like servers in a conventional queueing
network. These servers can also supply pure delay, as shown
by the infinite serverThink which provides the thinking time
for the users. Figure 2 shows one possible sequence of requests
from Group1 to Disk1 illustrating the nesting of calls and the
uniform treatment of hardware and software servers.

2.1 The Method of Layers (MOL)

The approach of MOL [2] will be used to describe the solution
of Basic LQs. The service relationships are decomposed into
a set of ordinary queueing networks, which are two-layer sub-
models showing clients in the upper layer requesting service
from the lower layer, as shown in Figure 3 for the model of
Figure 1. Each task appears as a server in one submodel, and
again as a client in the next lower submodel. As a server,
it is modified to include a surrogate delay (labeled Delay)
representing the nested services in even lower layers. As a
client, it has a surrogate delay to capture the delays between
the requests it makes. The surrogate delays are calculated by
a set ofimport relationshipswhich are the core of the method
(see [2]). The bottom layer submodel is constructed to include
all the hardware servers.

MOL solves the separate submodels using the Linearizer
approximate MVA algorithm [21]. Each submodel is a conven-
tional separable queueing network in which the servers form
the service centers and the clients form the customers. The



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 6, NO. 1, JANUARY 2007 3

Group1 Group2

COM A2A1 delay delay

(a) Submodel 1

A1 COM

CPU1DP1

A2

DP2Delay Delay

(b) Submodel 2

Group1

ThinkDelay

Group2

DelayCPU1

A1

Delay

COM

Delay

A2

Delay CPU2

DP1

DelayDisk1

DP2

DelayDisk2

(c) Submodel 3

Fig. 3. Submodels generated by the Method of Layers for the model in Figure 1.

solver iterates between submodels by updating the surrogate
delays with the import relationships.

In MOL, requests between tasks are strictly layered (i.e.
they can only be made to the next layer down, except for
processors; additional pseudo-tasks can be introduced to over-
come this). This and other limitations are overcome by the
LQN model.

2.2 The Layered Queueing Network (LQN) Model

The LQN model has gradually evolved to add features found in
real systems, as listed in the Introduction [7]–[12], and isbest
described in the User Guide [22]. Some of the added features
are illustrated in the example shown in Figure 4, based on [23].
It represents tasks and services in an Air Traffic Control (ATC)
center in the US National Air Space infrastructure [24] for
the airspace away from airports where aircraft normally fly
at high altitudes. For example, the task labeledDM (data
management) services the user consolesUI and makes requests
to CR (conflict detection) which makes requests in turn toSP
(signal processing) andRadars (operations of the radar sets).
The notation will be introduced below with the features that
are described.

2.2.1 Multiple classes of service at a server (MULTI)
Hardware and software servers are treated uniformly in LQN.
Some software servers in Figure 4 offer more than one kind of
service, indicated by small parallelograms nested inside atask
(in LQN these are calledentries). For example theFPM1
application has entriesFPM1get and FPM1modify, which
can have in general different CPU demands and different
requests to lower servers. Since software servers usually have a
FIFO discipline, this requires solving a multiclass FIFO queue.

In Figure 4, the stacked parallelograms indicate multi-
threaded software servers, (which may run on multiprocessors,
note that the processors are indicated by the dashed boxes in
Figure 4). MOL also supports these multiservers, but only for
a single class of service.

2.2.2 Asynchronous Messages and Open Arrivals
(OPEN/ASYNC)
All of the requests between tasks shown in Figure 4 are syn-
chronous, or blocking. The model also supports asynchronous
requests, which do not block the caller and do not return
information. Entries can also acceptopen arrivals with a
Poisson arrival process.
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Fig. 4. A Layered Queueing Network (a model of an Air
Traffic Control System studied in Section 6)
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2.2.3 Second Phases (PH2)

An entry can send anearly reply to its requester, and then
continue to execute (called a second phase) [9]. In this case
the requester and server execute in parallel for a time. Figure 5
shows timing detail for the execution of theeCRdetect entry
of taskCR. On a diagram it is indicated by making the CPU
demands and service requests a pair of numbers, as shown
for theeCRdetect entry. Early replies are often useful in real
systems to improve performance, provided the server is not
saturated [9]. Early replies also provide a modeling construct
for shared buffers, for example in a file system [10].

Phase 1

Phase 2

cr:Taskdm:Task

Second Phasesd

DMConflict eCRdetect

«reply»«reply»

DMConflict eCRdetect

«reply» «reply»

Fig. 5. First and second phases at a serving task. In
this figure, the client, DM, sends a second request to the
server, CR, before the server finishes processing the first
request. This request will be queued if the server cannot
start a second thread.

2.2.4 Parallel Activities (PAR) and Activity Detail

The largeDM task has five entries, two of which are executed
in parallel, as indicated by a smallactivity graphdrawn inside
the task. For instance entryDMmodifyFP invokes activity
prep2, which then forks two parallel sub-threads for activities
modify1 andmodify2 which update different databasesFPM1
andFPM2. The following join labeled ‘&’ indicates that both
paths must complete (fork-join parallelism). The dashed arrow
back to the entry indicates the point at which the reply to the
original request is generated (if there are subsequent activities
they are part of a second phase).

The parallel branches for entryDMdisplayFP end in a
join labeled ‘1’, which indicates that only one of the two
must terminate; it takes the first result. This is an example of
Quorum Consensus, described further below.

Even without parallelism an activity graph can be used to
build up an entry behaviour from a more detailed description,
providing an execution graph for the entry [25]. At the level
of an LQN model, an activity is the basic unit of behaviour. It
includes CPU processing and nested service requests. An entry
without explicit activity detail has by default one activity (or
two, if there is a second phase).

2.2.5 Replication of Servers (REPL)

Many large systems have identical or nearly identical sub-
systems, which can be exploited for scalable representation
and analytic solution with each replica represented only once.

Solution effort becomes independent of the number of repli-
cas [12]. Replication of an entity is a deeper form of multiple
servers, in which replicas execute independently of each other.

A replication notation, illustrated by the example in Fig-
ure 4, was developed in [11], [12] to exploit the symmetry
in an LQN model. The interactions betweenDM and CR
are expanded in Figure 6 to show the replicas explicitly. The
notation adds three new elements:

• each replicated task and processor is represented once
with a replication countr given in angle brackets, as
< r >,

• each arc representing an interaction has a fanout count
O, giving the number of target replicas for each source
replica, and

• a fan-in countI giving the number of separate source
replicas there are for each target replica.

These elements have default values of one.
In Figure 4 all tasks are replicated as well as being multi-

threaded, shown by the integer in angle brackets (e.g.< 3 >).
In LQN the interpretation of a request to a replicated serveris
that one request is sent to one replica, chosen randomly. For
a replicated server there is a subset that forms a pool used by
each client replica, of size O=fan-out number, and similarly
the set of client replicas that may make requests to each server
replica has size I=fan-in number. An example is the request
from entry DMconflict to entry eCRdetect, where all three
DM replicas fan in to the twoFPM1 replicas).

The fan-in/fan-out values in Figure 4 are artificially intro-
duced here to illustrate the notation and the use of the solver.
In an actual ATC system the replicas are used differently, for
fault tolerance, as described in Section 6.

pConsole <3>

DM <3>

pCentral <2>

CR <2>

O=2, I=3

(a) Replicated Model

pConsole_1 pConsole_2 pConsole_3

DM_1 DM_2 DM_3

pCentral_1

CR_1

pCentral_2

CR_2

(b) Expanded Model

Fig. 6. Subset of the model in Figure 4 showing how
the compact “replicated” notation is used to represent the
conflict resolution subsystem consisting of three display
managers and two conflict resolution tasks.

2.2.6 Quorum Consensus (QC)
In some systems with parallel execution, it is not necessaryfor
all branches to complete. This is particularly true for voting
or Quorum Consensus systems, in whichN identical requests
are made in parallel butK out of N replies (with values that
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agree) are sufficient to proceed. The LQN notation for QC is
to label the parallel join node with the sizeK of the quorum,
as in the node preceding thedisplay activity in taskDM in
Figure 4. The analytic solution is discussed below.

2.3 LQN Meta-Model
The meta-model for a Layered Queueing Network, shown in
Figure 7, is the formal model used to describe the information
that goes into a LQN. An LQN model consists of a set
of processorswhich contain tasks. Processors are used to
consume “time”, and often represent the actual CPUs in a
distributed system. A processor is apure serverin that it can
only receive requests for service from the tasks that it contains.
A processor may have amultiplicity in which case it is a multi-
server. If the multiplicity isinfinity, then the server becomes
a pure delay. A processor can be shown as a dashed rectangle
enclosing its tasks, as in Figure 4, or as a circle with arcs
attaching it to its tasks, as in Figure 3.

Taskscan represent different kinds of objects, i.e.:
• clients to the network,
• actual processes or threads in a system,
• non-processor devices such as disks,
• critical sections, and
• resources such as buffers.

The same task can act both as aclient that makes requests
and as aserver that accepts requests. Tasks which do not
accept any requests represent load-sources or users and are
called pure clientsor “reference tasks”. They correspond to
customers in closed chains of conventional queueing networks.
Tasks and processors have a multiplicity, which for a reference
task gives the number of sources or customers, and for other
tasks represents the resource multiplicity (e.g. the number of
homogenous threads of control, or the number of buffers). An
infinite multiplicity makes a task or processor a delay server.

Tasks receive requests in a single FIFO queue. Classes
of service identified byentries. For consistency, reference
tasks also have entries even though they do not accept re-
quests. Once an entry accepts a request, actual processing
is performed byactivities, the lowest level of detail in the
performance model. Activities are combined byPre andPost
precedence connectors expressing sequence, and“Or” and
“And” forking and joining. Or-forks have probabilities, and
Post-nodes can invoke a subset of the graph a random number
of times with a given mean – the equivalent of a subroutine
call – to define looping. Activities:

1) consume time by making requests to the processor
associated with the task. Service time demands are
shown on Figure 4 with labels in square brackets. This
time demand is divided intoslices between requests,
as shown by the UML Sequence Diagram in Figure 8.
It gives the details of the phase-1 activity of the entry
SProcess in Figure 4), which alternates between slices
of processing by thepRadar processor, and requests to
entry eRadars. The mean number of slices is always
1 + (total Requests).
By default, the demand of aslice is assumed to be
exponentially distributed [5], but a variance may be
specified.

2) make requests to other tasks throughRequests. Requests
are made to entries on other task and can be either
Synchronousor Asynchronous. The mean number of
requests per entry execution is shown in parentheses
attached to the request arcs. By default the number of
request is geometrically distributed with the specified
mean [5]. The number can also be deterministic, though
the order of requests is not defined (they can be invoked
by separate activities if the order is significant).

3) reply to synchronous requests, shown using the dotted
line within a task from the activity to the entry. The entry
can either reply to the originating task, orForward the
request with some priority to one or more other entries.

4) invoke other activities throughPrecedence.

Slice

eRadars:Entry pRadar:ProcessorsProcess:Activity

Slicessd

eRadar

«reply»

{ζ}

{ζ}

loop

[y=3]

Fig. 8. Slices of CPU time between requests

The remaining tasks in Figure 4 use an abbreviated notation
where one or two activities are invoked implicitly by an
entry. The first activity implicitly replies for the entry. Service
demands for this case are shown as a list of one or two items
within square brackets, e.g. [0, 0.001] in entryeCRdetect.

3 ANALYTIC SOLUTION OF LQNS

Algorithm 1 shows the overall algorithm used to solve layered
queueing networks. The overall model is represented by a
set of related submodels, each of which is solved using the
Linearizer algorithm [21] of Mean Value Analysis (MVA) [26]
with modifications to handle any two-phase servers [9], [10].
The sections that follow describe how the submodels are
constructed, how they are solved, and finally, how the process
is modified if replication is involved.

Algorithm 1 LQNS Algorithm
1: Load Model
2: Extend Model
3: Topological Sort
4: Layerize (create and initialize layer submodels)
5: repeat
6: Solve the layer submodels using Linearizer MVA
7: until convergence or iteration limit
8: Save results
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Fig. 7. Meta-model for Layered Queueing Networks

3.1 Submodel Construction

The topological sort identified in step 3 of Algorithm 1 assigns
a nesting depth or layers to each of the nodes in the input
model. The layerizing step uses the nesting depth to generate
submodels consisting of a set of servers and a set of clients.
Submodels are created by layer. Submodels is created with
all of the tasks and processors at layers + 1 as the servers,
and all of the tasks that make requests to these servers as the
clients. Figure 9 shows the submodels that arise from Figure4.
Notice that the processors shown as boxes in Figure 4 belong
to the layer next below the lowest task in the box. Other
layering strategies are possible. For example, the Stochastic
Rendezvous Network (SRVN) Solver forms a submodel for
each server in the model [5], whereas the Method of Layers
(MOL) solver is similar to LQNS except that all of the
processors in the model are grouped together in the lowest
layer [2].

The routing chains created for MVA submodels depend
on whether replication is present or not. When a submodel
contains no replicated components, a chain is created for
each client in the model. The number of customers in each
chain is the lesser of the multiplicity of the task, or the
number of clients of the task when it is acting as a server.
Figure 10(a) shows the queueing network for Submodel 1
shown in Figure 9(a) assuming that there are no replicas.

When a submodel contains replicated components, a chain is
created for each server in the submodel. Splitting the customer
chains, according to the server they visit, is necessary if
different fanout values can be applied to different server tasks
in the LQN, since there is one server center in the layer
submodel for each server task in the LQN. Figure 10(b) shows
the queueing model for this case, with the flows labelled by
their chain identifiers.

1

1 1

UI

pController

Controller

(a) Without Replication

1

1

2

2

Controller

UI

pController

(b) With Replication

Fig. 10. MVA model for submodel 1 in Figure 9.

3.2 Submodel Parameterization

Service demands and think time parameters for each submodel
are found from the results obtained in other submodels. The
service time for aclient in a submodel is found by summing
up the waiting times (queueing time plus service time) to allof
the tasks and processors it calls, that are outside the current
submodel. The service time for aserver in a submodel is
found by summing up the waiting times to all of the tasks and
processors it calls, including calls to entities in the the current
submodel. For example, consider the taskUI in Figure 4. In
Submodel 1,UI acts as a server; its service time is found by
summing up the waiting time for the requests it makes to the
task DM, and to its processor,pConsole. In submodel 2,UI
acts as a client to taskDM. Its service time is the waiting
time to its processorpConsole. Finally, in submodel 3UI is
a client to processorpConsole. Here, its service time is found
by taking the sum of the waiting times to taskDM. Note that
in submodel 3, taskDM is also acting as a client.

The other parameter that must be calculated from the
solution of other submodels is the think time for each chain
representing a client task. This value is derived from the
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Fig. 9. Submodels for the model in shown in Figure 4. The objects in the bottom row of each submodel form the
servers in the corresponding MVA queueing model. All the other objects form the clients.

throughput and utilization of the task when it is behaving as
a server in a submodel, using Little’s result. For example, the
utilization and throughput for taskUI found from the solution
to submodel 1 is used to set the think time for this task in
submodels 2 and 3.

Using this approach, service times for submodels are found
starting from the bottom layer and working up, and think times
are found top down. Deeper models require more iterations of
the outer loop to solve than shallow models because of the
need to propagate results from one layer to another in both
directions.

Algorithm 2 Solve Layer Submodel
1: for all Clientsdo
2: Calculate imported service and think times.
3: end for
4: for all Serversdo
5: Calculate imported mean and variance of service times.
6: end for
7: solve submodel using mixed-model MVA.

3.3 Submodels with Replication

The semantics of replication are illustrated byflattening a
small part of the ATCS model (Figure 4) in Figure 6, to show
each replica separately. When a client withrc replicas and
fanoutO requests an interaction with a server withrs repli-
cas, the flattening allocates therc × O flattened interactions
sequentially to the server replicas, modulorc. In passing, we
note the constraint thatrc × O = rs × I.

The LQN solution algorithm represents each replicated
server (task or processor) by a single server. The layer sub-
models are adapted as follows:

• each surrogate delay in any layer submodel, representing
the response time of a visit to a server, is replaced by
(fan-out) × (response time). This applies to surrogate
delays in source chains, and in service times.

• each class of service in a submodel has a source chain
for each replicated client, with population equal to the

fan-in of the interaction. It includes a special delay term
for visits to other replicas of the same server and class,
equal to(fan-out− 1) × (response time).

The latter change means that some service times in a layer
submodel depend on results of the same submodel, which was
resolved by iteration. An approximate multivariate Newton-
Raphson iteration was used [27] for these variables.

3.4 Servers With Variance

Fixed-rate queueing stations for the MVA submodels are
solved using servers which allow for variance using the
approximation from [28].

3.4.1 Random Phases

The varianceσ2
i at activity i with geometrically distributed

requests to other serversj is the sum of a random number of
random variables and is given by:

σ2
i = σ2

ζ +
∑

j

(

yij(σ
2
ij + σ2

ζ ) + σ2
yij

(ζ + xj)
)

(1)

whereζ andσ2
ζ are the mean and variance of the service time

of one slice,σ2
ij is the variance of the waiting for the request

from activity i to entry j, σ2
yij

is the variance in the number
of requests fromi to j, and xj is the mean service time at
entry j.

3.4.2 Deterministic Phases

The varianceσ2
i at activity i with deterministically distributed

requests to other servers is the sum of variances of all of the
requests to other servers and is given by:

σ2
i = Yiσ

2
ζ +

∑

j

(

yijσ
2
ij

)

(2)

where the terms of the equation are the same as those for Eq. 1
andYi = 1 +

∑

j yij .
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3.5 Servers with Two Phases

Special approximations are needed to solve queueing models
which contain a two-phase server, shown earlier in Figure 5,
because the second phase effectively creates a new customer
in the queueing network, violating the conditions of product
form queueing. Two new effects must be accounted for. First,
a request from a client may find a server busy processing
an earlier request made by that very client. This event is
calledovertakingand is shown in Figure 5 by the overlapping
execution occurrence for TaskCR. Second, the second phase
makes the server work longer; this demand must be accounted
for.

3.5.1 Overtaking Probability

The overtaking probabilityΓij is the probability that a request
made by a clienti to a serverj finds the server busy servicing
the previous request made by clienti. A simple approximation,
used in [2], [5], approximates this probability as a race
between two exponentially distributed random variables: the
“return time” between requests to serverj from client i, of
meanτi, and the mean time serverj’s second phase takes to
finish, sj2. Thus:

Γij =
sj2

τi + sj2
(3)

This expression works well provided that the client makes
requests from only one phase, to one and only one server.
If this restriction is violated, then the return time is not
exponentially distributed and large errors can occur [9].

A more robust approximation for the overtaking probability,
described in [9] is used by LQNS. A transient Markov chain
is analyzed starting at state at the moment of the return, called
stateSr. It gives the absorption probabilityPr(OTp|Sr) for
the overtaking of a clienti in phasep, while its serverj
is executing in phases while completing an earlier request
from the clienti in phaser. After considerable manipulation
one obtains a relatively simple product-form expression for
Pr(OTp|Sr) [9]. The overtaking probability for clienti with
P phases calling serverj is then given by:

Γij =

P
∑

p=1

P
∑

r=0

λiyijr

λij

Pr(OTp|Sr) (4)

where:

λi = Total throughput at clienti

λij = Throughput from clienti to serverj

yijp = Mean requests fromi in phaser to j

3.5.2 Delay at Fixed-rate Servers

The usual MVA expression for the waiting time,Wmk at
a FIFO serverm in class k with non-exponential service
times [28] (i.e. the first three terms in Eq. 5) is modified by
adding two additional terms [9]. The fourth term accounts for
overtaking while the final term accounts for the effect of the

customer created by the phase-two service.

Wmk(N) = smk +

K
∑

j=1

smjQmj(N − ek)

+
K

∑

j=1

rmjUmj(N− ek)

+

K
∑

j=1

smj2Γmj(N − ek)

+

K
∑

j=1

(1 − Γmj(N− ek))

×

[

smj1 +
s2

mj2

smj

]

Umj(N − ek) (5)

3.5.3 Delay at Load-Dependent (multi-) Servers

In [2], a very simple expression was derived for finding the
waiting time at a multi-server which did not involve the
computation of the marginal probabilities. This expression was
modified for LQNS by extending it to multiple classes, and
second phases [10]:

Wmk(N) = smk1 +
U

(1)
m (N − ek)M

Jm

×

K
∑

j=1

smj [Lmj(N − ek) + Ucj2(N − ek)]

+
Γmk

Jm

· smk2 (6)

4 MODELS WITH INTERNAL PARALLELISM

Models with internal parallelism arise when a task has internal
activities which fork into separate threads which join at some
later time, illustrated by the TaskDM in Figure 4. Two cases
exist, depending on whether some or all of the threads join
or not, and are shown in Figure 11. For the case where all of
the threads join (Figure 11(a)), the solution algorithm must be
augmented to account for thejoin delay and to account for
the additional customers in the underlying queueing network
caused by the threads. For the QC join, where only a subset
of the threads join, further approximations are required.

4.1 MVA Solution

The underlying strategy for solving a queueing network sub-
model containing parallel sections (including QC sections) is
the complementary delays technique [29], with the accuracy
improvements of [30]. The parameters for stations acting as
servers and those acting as clients are calculated differently,
described next.

4.1.1 Servers with Heterogeneous Threads

The service time for a task with internal parallelism actingas
a server in a submodel is computed by aggregating the service
times and variances of all of the internal activities into one or
two phases, depending on the location of the reply. First, the
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Fig. 11. Task behaviour at joins

reduction finds all subgraphs of activities without any forkor
join and reduces these to a single composite activity with a
mean and a variance. Second, the overall delay over the set
of composite activities between a fork and its corresponding
join is calculated using the method described below. Finally,
the fork, the join, and the corresponding branches are reduced
to a single composite activity. This process is repeated until
all of the forks and joins are removed.

4.1.2 Clients with Heterogeneous Threads
A different reduction process is applied to a task with het-
erogeneous threads acting as a client. For this case, each
branch of a fork is represented as a distinct routing chain
in the underlying queueing network and these routing chains
are distinct from the routing chain of the parent. The service
time for each branch of a fork is found by aggregating all
of the activities between the fork and its corresponding join
into a single composite activity. Similarly, all of the activities
corresponding to the parent thread of the task are aggregated
into a single composite activity for the parent’s routing chain.

In [30], the probabilities of routing chains contending with
each other (namedOverlap probabilities) are used to modify
the MVA waiting time expression to remove contention when
routing chains cannot interfere with each other. For example,
since a parent thread is blocked while the threads associated
with each of the branches of its fork execute, a customer
in the parent’s routing chain cannot contend with any of the
customers in the routing chains corresponding to the branches
of the fork. The number of customers in the routing chains
of the branches of a fork is inherited from the number of
customers in their parent. While it is not possible for a
customer in a branch chain to interfere with its corresponding
customer in the parent, it can interfere with other customers
in the parents chain, so the overlap probability is adjustedby
(N − 1)/N , an extension of the approach in [30].

4.2 Estimating Join Delays

The join delay depends of the entire probability distribution
of the delays on the branches. ForAND-joins the delay is
the maximum of the branch values and the mean depends

heavily on the distribution tails; thethree-pointapproximation
described in [31] was found to be highly effective [8]. However
in a QC join where onlyK out of N branches need to
complete, the details of the distributions are more important,
and a better approximation to the branch delay is essential.

4.3 QC Delay

Most performance studies of QC delay use simulation [33],
[34], however a rapid analytic approximation has advantages
for exploring alternatives. The QC delay for aK-out-ofN
quorum is theKth out of N order statistic[32], XQuorum=

OS(K, {XBranch,i}
N
i=1).

The branch delay distribution was approximated in two
ways. Where the number of requests to lower-level servers
is deterministic, a Gamma distribution using the first two
moments ofXBranch,i is used. When the number of requests
to lower-level servers is distributed geometrically, a closed-
form expression is used NEEDS REF TARIQ PAPER.

The QC behavior studied here is illustrated in Figure 12.
We assume:

• a maximum of one QC section per software process
• that the QC section follows the pattern shown in Fig-

ure 12(a), but the activitiesaPre and aPost may be
replaced by arbitrary activity subgraphs

• the QC task waits for the delayed branches (called the
overhang) before becoming free.

Figure 12(a) shows the execution of an applicationApp
with a QC section shown by parallel branches terminating
at the node labeledq(3). The QC section is preceded by a
set of operations represented by an aggregate activityaPre,
and followed by operations represented by activityaPost. The
QC section spawns (forks)N = 5 branches with activities
aBranchi for i = 1, ..., 5, and requiresK = 3 responses.

The branch completion delaysXBranch,i, for i = 1, ..., 5,
are illustrated in Figure 12(b), showing the time at which the
quorum of three responses is satisfied. Branches left out of the
quorum are said tooverhang. The overall application service
time, XApp is:

XApp = XPre+ XQuorum+ max(XPost, XOverhang). (7)
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Fig. 12. Behavior of an application with a quorum con-
sensus section.

The branch delay distributions from [35] are used to cal-
culate the QC delay and to approximate the overhang effect,
which can have an unbounded effect on the predicted perfor-
mance measures. It is important because the applicationApp
cannot accept another request until the overhang is completed.

4.4 Solution Strategy for Models with Quorum

The solution strategy is to convert a modelM with the QC
section to an approximate modelM ′ without one, and apply
existing mean-value solution techniques that include fork-join
parallelism.

The activity graph of a task with a QC section (such as task
App in Figure 12(a)) is replaced in modelM ′ with another
activity graph as shown in Figure 13. The behavior of the
QC section is changed to a full parallel section (denoted by
‘&’ in Figure 13), followed by a second parallel section for
the overhanging period. It has activityaPost and surrogate
activities aOHLocal and aOHRemote for the overhanging
branches. The modelM ′ is constructed in this way to account
for contention of branches for resources using the existing
LQN constructs described earlier.

The delay for a branch is broken down intolocal delays at
the host processor ofApp, andremotedelays due to blocking
for services at other servers, shown in Figure 14. It is assumed
that all of the branches involved in the quorum join run on a
common processor, so all of the requests to the processor are

...

App

& &

aBranch1

aBranch2

aBranchN

& &

aPost

aOHLocal

aOHRemote

aPre

Fig. 13. Model M ′: the transformed activity graph for the
model in Figure 12(a). M ′ is constructed in this way to
account for contention of branches for resources.

Q
uo

ru
m

 J
oi

n
E

ve
nt

X

P
ro

ce
ss

or
re

sp
on

se
 ti

m
e

(w
ai

t p
lu

s 
ho

st
de

m
an

d)

B
lo

ck
in

g
de

la
y 

fo
r

re
m

ot
e

se
rv

ic
e

Branch,i

Fig. 14. Demands and response times of a Branch. There
are k blocking delays.

serialized into the overall delaySOHLocal. It is also assumed
that requests to any other resources can run in parallel. This
time is combined into combinedSOHRemote. Because the
overhanging branches are logically parallel, and the local
delays are sequential, the surrogate delays are treated as partly
parallel and partly sequential when they are combined.

A different solution strategy would be todecomposeeach
quorum construct ofM for all possible combinations of active
branches and then combine the results. This method is costly,
because the number of modelsM ′ grows combinatorially with
the number of quorum branches in each QC section and also
exponentially with the number of QC sections inM .

5 RESULTS AND ANALYSIS

In [35], the quorum delay approximation was evaluated using
110 tests covering parameter variations within six major cases,
with sufficient accuracy in the vast majority of tests. The test
parameters were chosen to stress the algorithm, rather thanto
favour it. Based on our experience with the analytic solution
technique, the highest errors in almost all cases occur for the
first order statistic, i.e., whenK = 1. Two conditions may
affect the accuracy of the approximate distributions:

1) The individual external service delays may not be expo-
nentially distributed, homogeneous or independent.

2) Queueing delay on the processor that runs the quorum
is assumed to be insignificant which will be satisfied if
the load on the processor is light.

5.1 Scalability of Analytic Solution Time

The scalability of analytic solutions versus simulation is
illustrated in Figure 15 which shows run-times (in seconds)
for solving a replicated database model [35]. The application
system with its two databases was replicatedr times, with
customers proportional tor and customer requests split equally
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among the applications. The simulation run-time was adjusted
to be sufficient to give a95% confidence interval of±5%.
The simulation is one to two orders of magnitude slower. At
larger numbers of replicas, LQNS runs out of memory due to
inefficient coding for large numbers of chains, giving a space
complexity of chains times entries. The algorithm should be
linear in replicas.

6 RESULTS: A IR TRAFFIC CONTROL SYSTEM
(ATCS)
This section reports results for a model of a moderately large
system, and extends a method for analyzing dependability, to
cover all LQN features. The ATCS model shown in Figure 4
approximately represents an en route controller for a sector of
airspace between airports. Each such system receives aircraft
surveillance and weather data from radars and communicates
with other external subsystems including other en-route facil-
ities. Inside each ATCS, there are [23]:

1) A Display ManagerDM which shows aircraft position
information, takes inputs from air traffic controllers, and
requests updates fromSP andCR.

2) Surveillance ProcessingSP which receives radar data
and identifies the aircraft tracks.

3) A Central subsystem including Trajectory Management
(TM) and Conflict Resolution (CR) (on pCentral).

4) Flight Plan Management provided by two independent
servers and databasesFPM1/2 andFPDB1/2.

To illustrate the accuracy of the LQN algorithm, three
versions of ATCS were analyzed:

NOREP: the replication parameters were all set to 1. This
gives just one Controller and DisplayManager.

REP: the replication parameters in Figure 4 were used
with fan-out and fan-in.

RECONF: the same replicas were used to provide fault-
tolerance, and were reconfigured according to
failure states of components; this is described
below.

The read quorum forDMdisplayFP also took different values
K = 2 (parallelism, with both branches executed) andK = 1
(quorum of 1). Analytic results were compared against simu-
lations of the same model. Models with replication (shown
as REP) were alsoflattened to the expanded form shown
in Figure 6 as the simulator cannot solve replicated models
directly. For these cases, results for the replicated and flattened
analytic models were compared to the flattened simuation.

For systems without fault-tolerance, Table 1 compares the
analytic solution for replication to simulation results for three
cases:

Case 1: K = 2, NOREP. The example was solved with
one replica of each task (that is, the replication
values in the Figure were all set to 1), and the
quorum value for the entryDMdisplayFP (the
parallel graph on the left inDM) was changed
from 1 to K = 2. This gives ordinary fork-join
parallelism for reading from the two databases.

Case 2: K = 1, NOREP. The quorum value was set to
K = 1, soDM only waits for the first result to be
returned.

Case 3: K = 1, REP. The replication and fanin/fanout
values shown in the Figure were used. Because
fanout> 1 implies additional blocking for requests
to replicas, the performance is reduced (this case
however is meant to evaluate accuracy).

TABLE 1
Results for Response Time of the ATCS Without

Reconfiguration for Fault Tolerance

Case Simulation Analytic Diff.
± 95% Result (%)

1 Parallel 2.670±0.0344 2.629 1.5
(K = 2, NOREP)
2 Quorum 2.583±0.0700 2.524 2.3
(K = 1, NOREP)
3 Quorum and replica 1.887±0.0059 1.574 16.6
(K = 1, REP)

These results show that for the parallel and quorum cases
without replication the difference between the simulationand
analytic results is just one or two percent, and is less than the
statistical error at the level of 95% confidence. In the third
case with replication the errors are higher, but still usable.

6.1 Model with Reconfiguration for Failures, and
Dependable-LQN Analysis
The ATCS requires high reliability, which can be analyzed
by an LQN extension calledDependable-LQN[23], [36].
Dependable-LQN has been extended here to deal with activi-
ties to define execution of an entry, and quorum computations
with K < N (which affect system failures). To improve relia-
bility, server and processor replicas were used to reconfigure
the system when an element fails (the RECONF cases). In
ATCS, replicas were configured as follows:

• the threeDM replicas were load balancing, that is the
controller requests were distributed across the set of non-
failed DM tasks,
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• primary-standby replication was used for the Central and
FPM subsystems, so each request went to one replica and
the other was used only if the primary failed.

• the SP andRadar servers used LQN replication seman-
tics (eachSP server requests the raw radar data from
both radars).

To reconfigure when a processor fails or a task crashes,
requests going to it are diverted either to its partners (in load-
balancing replication) or to the standby element.

Dependable-LQN modeling [23], [36] describes the failure
and repair of tasks and processors by failure and repair rates,
assuming independent failures. Dependent failures (due to
servers which depend on other servers and on their proces-
sors) are captured automatically, and additional dependencies
can be modeled explicitly. For ATCS, the tasksController,
Radars and their associated processors are assumed to be
fully reliable. The other failure and repair parameters areset
arbitrarily as in [23] to be:

• processor mean time to failure (MTTF) is a year,
• processor mean time to repair (MTTR) is 2 days,
• software process MTTF = 30 days,
• software process MTTR = 1 hour.

Markov chain analysis of separate elements gives steady-state
failure probabilities to be 0.00545 for processors and 0.00139
processes. Thefailure stateof the system includes the failure
status of every task and processor.

Many failure states are equivalent, in the sense that they
determine the same set of usable elements (taking into account
service dependencies) and give the same performance model.
Each of these equivalence classes of states has anoperational
configurationwhich defines its performance model, and an
aggregate steady-state probability. The operational configu-
ration probabilities are found by generating and solving a
non-coherent fault tree [37] (non-coherent because there can
be a mixture of available and unavailable components in an
operational configuration) using the Relex tool [38]. The LQN
for each configuration is solved to determine its performance,
and an overall average performance. The average throughput
capacity now includes periods with reduced capacity due to
failed servers.

Results in [23] show the analysis is both accurate and
fast and that the aggregation of operational configurations
in the Dependable-LQN technique reduces the number of
performance models that must be solved by up to two orders
of magnitude in many cases.

6.2 Extension of Dependable-LQN Analysis for Quo-
rum Consensus

This work introduces parallel and quorum execution into the
analysis. Parallel branches with K = N can be evaluated with-
out change, but when K< N some extensions are necessary.
The improvement of reliability due to the quorum section
(since only K responses are needed) must be determined, Also
it increases the number of configurations, and this can be
countered by aggregation.

The Dependable-LQN analysis is extended here to accom-
modate symmetrical parallel or QC branches, as in the ATCS

example. For instance, the left branch and right branches of
the QC for DMdisplayFP in Figure 4 are symmetrical. On
the left, activity read1 is failed if there is an unrecovered
software or hardware failure inFPM1 or FPDB1, on which
it depends. For each operational configuration with activity
read1 operational and activityread2 failed, there is a corre-
sponding configuration with the failures reversed, and withthe
same performance. These configurations are combined to give
a smaller number ofaggregated operational configurations,
and thus to reduce the number of LQN solutions. We can
illustrate this with four cases:

Case 4: (QC, K = 2 NOREP) In this simple case (which
does not require the extension to Dependable-LQN
described here) the replication of all tasks and
processors is set to 1. Any failure causes a system
failure. This is the same as Case 1 but with failures,
and has one aggregated configuration.

Case 5: (QC, K = 1, NOREP) This is still a simple
case. Dependable-LQN finds 3 operational con-
figurations for the three failure states of the QC
activities (none failed, left branch failed, right
branch failed) and two aggregated configurations
(no branch failed, one branch failed).

Case 6: (QC, K = 2, RECONF) The replication of tasks
and processors is as given in Figure 4, and tasks
are reconfigured for fault tolerance. There are three
aggregated configurations.

Case 7: (QC,K = 1, RECONF) Replicas are reconfigured.
Twelve aggregated configurations were found.

The overall throughput and response time results for these
cases are summarized in Tables 2 and 3 respectively.

TABLE 2
Results for Throughput of the ATCS with QC and Failures

Case Thruput Failure Aggreg. Total
(All cases Capacity Prob. Configs Operat’l

include QC) /sec (×10−3) Configs
4 K = 2, NOREP 1.1422 44.3 1 1
5 K = 1, NOREP 1.1977 41.7 2 2
6 K = 2, RECONF 1.7647 0.251 3 168
7 K = 1, RECONF 1.8238 0.249 12 1512

TABLE 3
Results for Response Time with QC and Failures

Case sim flat replicated
% diff % diff

4 K = 2, NOREP 2.346 2.401 2.37 – –
5 K = 1, NOREP 1.795 1.808 0.72 – –
6 K = 2, RECONF 1.951 1.639 16.01 1.701 12.82
7 K = 1, RECONF 1.916 1.594 16.83 1.659 13.45

The results show how replication with reconfiguration im-
proves both performance and reliability, and the use of a
quorum with K = 1 provides small additional improvements
to both. The reduction in effort due to aggregating the oper-
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TABLE 4
Solution Run Times for Cases with Reconfiguration

Case Aggr simulation flat replicated
cfgs mean σ mean σ mean σ

6 3 176.67 9.39 4.33 2.05 4 2.16
7 12 420.5 49.25 13.89 10.53 24.84 18.26

ational configurations into Aggregated Configurations is very
worthwhile (from 1512, down to 12, in Case 7).

The use of replication for reconfiguration cannot however be
compared directly with the basic replicated structure in Case
3 (with fanout) because the fanout implies multiple sequential
requests, which reduce performance.

The value of the analytic solver is faster solutions. Table 4
shows the mean run times for the RECONF results shown in
Table 2. The analytic solution is from 15 to 40 times faster
than the simulation of the same model, when simulations are
run to provide 95% confidence intervals no greater than±5%.

7 CONCLUSIONS

The assembly of approximations in LQNS covers more system
features than any other attempt to solve layered queueing
systems, as summarized in Table 5. The solution accuracy
of individual LQNS features (as reported in the references
where each feature was introduced), and also for the other
LQ algorithms referenced in Table 5, is generally less than
10% error (and mostly less than 2% error). Two particularly
accurate solvers are TDA [39] and [15]. However both these
algorithms solve systems with a limited range of features
compared to the LQNS algorithm.

The solution accuracy for a single model combining many
features was investigated by comparing to simulations, in the
ATCS case study of Section 6. Errors were less than 2%
except where the replication feature, combined with a quorum,
gives larger (about 15%) errors. However for the preliminary
evaluation of high-level system descriptions, this accuracy is
sufficient.

The algorithms are highly scalable. Our experience, not all
reported here, has been that systems up to 100 tasks are solved
in a few seconds in most cases. Occasionally, as in other
extended queuing techniques requiring iteration, the iteration
of Algorithm 1 fails to converge even when under-relaxation
is applied to the iteration. The replication feature gives a
computational complexity which is completely insensitiveto
the number of replicas of any task, making it feasible to model
very large systems which combine replicas of a modest number
of different tasks.

Quorum joins (which take the firstK out of N parallel
responses from lower level servers) are a recent addition to
the feature set of LQN, and they have been included in the
ATCS study. Quorum joins improve both performance and
reliability. The Dependable-LQNtechnique was extended to
analyze performance and failure probability in systems with
symmetrical quorum joins. The scalability of the technique
was improved by a new aggregation of operational configura-
tions, reducing the number of analytic models which needed
to be solved by two orders of magnitude. The results showed

however that the quorum join made only small improvements
to the performance and the failure probability.
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