
Performance Model Driven QoS Guarantees and Optimization in Clouds

Jim (Zhanwen) Li, John Chinneck,
Murray Woodside

Dept. of Systems and Computer Engineering
Carleton University, Ottawa Canada

{zwli | chinneck | cmw}@sce.carleton.ca

Marin Litoiu
School of Information

Technology,
York University, Toronto

mlitoiu@yorku.ca

Gabriel Iszlai
IBM CAS Toronto

giszlai@ca.ibm.com

Abstract

This paper presents a method for achieving
optimization in clouds by using performance models in
the development, deployment and operations of the
applications running in the cloud. We show the
architecture of the cloud, the services offered by the
cloud to support optimization and the methodology
used by developers to enable runtime optimization of
the clouds. An optimization algorithm is presented
which accommodates different goals, different scopes
and timescales of optimization actions, and different
control algorithms. The optimization here maximizes
profits in the cloud constrained by QoS and SLAs
across a large variety of workloads.

1. Clouds and Optimization

A public cloud is a collection of computers
providing services at retail, where users pay for
services they use (processing cycles, storage or higher
level services), and do not worry about the
mechanisms for providing these services. A private
cloud, say within a company, may expose more
mechanisms and provide more control to its users.
Cloud management is responsible for all resources
used by all the applications deployed in the cloud, and
the opportunity for global resource optimization is a
major driver for implementation of clouds. Clouds
depend on virtualization of resources to provide
management combined with separation of users [14].

Each application in a cloud sees a virtual
environment dedicated to itself, such as virtual
machines for its deployable processes and virtual disks
for its storage. The cloud management allocates real
resources to this environment by, for instance,
increasing the share of a real processor or memory
taken by a virtual machine, or by deploying additional
virtual machines with replicas of application processes.

The application offers services, and also uses services
offered by other applications. Each service has a price
(Pc for service class c), and we will consider that the
application collects this price whenever its services are
used, and pays this price when it uses other services.
Each real resource also has a price paid by the
application, for instance each second of CPU time has
a price (Ch for host processor h). The profit of the
application provider AP and the cloud provider CP can
thus be calculated. We assume that when the total AP
profits are maximized, the CP can arrange that its
profit is also maximized.

Quality of service is one goal of cloud management;
we will treat it as a constraint on resource
optimization, which seeks the maximum profit out of
the minimum of resources. For simplicity we will
consider only the response time of a service as a
measure of its QoS, specified by AP and maintained by
AP and CP.

The concern of AP is to design an efficient
application, to price its services, and to manage the
virtual resources allocated to it. All of these require
understanding how the application consumes resources
(and external services). The concern of CP is to
maximize its profits from the operation of the cloud,
while meeting its contractual QoS obligations to the
APs.

Figure 1. Layers of services in a Cloud

This paper describes how the approach to resource
management developed in [20][23][24][25] and [9] can
be applied to large systems like clouds, and how the
responsibilities for adequate QoS are divided between
the application developer, application manager and
cloud manager. The approach uses a performance
model to integrate the system concerns and features,
tracks the model to keep it up to date, and optimizes it
to make resource management decisions. Other
approaches are described in [1][12] [17].

2. Cloud Architecture

Figure 2 shows a view of our CERAS[12]
laboratory cloud with a three-level hierarchy for
optimization. Each level observes and tries to improve
the situation. The application developer tunes the code
over time, discovering and improving inefficient
operations (for example, a set of separate database
queries may be replaced by a single query of larger
scope and lower cost). The AP admin tunes the run-
time configuration to make the best use of the existing
resources (for example, a buffer pool may be increased
to improve its hit rate). The CP admin modifies the
resource allocation to a given application to maintain
its QoS and run it a lower cost (for example, deploying
additional replicas of some elements, or increasing the
size of its processor pool).

 Figure 2. The CERAS cloud

2.1 Service Architecture

For management and deployment purposes a high-

level architecture which captures service interfaces and
requests, deployable units of software, and resources is
appropriate. For simplicity we will assume that the
deployable unit is the concurrent process, termed here

a task. A metamodel for such an architecture is shown
in Figure 3.

« Host»

« UserClass»

« Service»

*

* 1

*

1

1
« requests»

« provides»

« executes»

« ServerTask»

« Resource»

Application

*

* 1
« requests»

Figure 3. A simplified metamodel for a

service architecture

For brevity we will illustrate a service architecture

not by a software model exactly, but by a performance
model (LQM) with corresponding entities, which can
be generated from the software (by methods like those
in [20]). Figure 4 shows a LQM for a single small web
application which offers services to its users and
requires services from other applications. The
resources in this case are the host processors. We can
see services on the application boundary, offered to
users and other applications, and there are internal
services (without names) which are private to the
application and are offered by layers internal to the
application.

Task

Deployable Process
(“Task”)

Service
“Entry”

Entry Entry

Internal Task

Internal

DBMS Task

Internal Task

Other
applications

Users

Request to other
applications

Request to external data server

Application

Figure 4. Architecture of an application,

shown by an LQM

The entities in the LQM correspond one-to-one to

software entities and relationships in the high-level
service architecture; the deployment (which is not part
of the software architecture) is also indicated by the
attachments to ovals representing host processors.

The architecture of the collection of services in the
whole cloud is just the union of application models,

plus a matrix of request frequencies from one service
to another, through which the applications interact.
This includes infrastructure services such as
directories.

2.2 Performance model

The role of a performance model is to predict the
effect of simultaneous changes to many decision
variables, and to assist in making optimal decisions
over many variables. Without a model the complex
interactions among these decisions cannot be
predicted. The use of performance models for
optimizing decisions in autonomic control was shown
in [20], and this work is an extension to handle larger
systems.

Any performance model could be used; an LQM
[6][15][19] is a good choice because of its
correspondence to architecture, and its representation
of layered resource behaviour [5]. Tasks and
processors are the resources shown in Figure 4, but
other resources such as IO devices and buffers can be
included. The performance parameters of the LQM
include CPU demands of entries and mean requests
from one entry to another, including external services.
The LQM is a kind of extended queueing network
model and can be solved to predict throughputs, mean
queueing delays and mean service delays at entries,
and resource utilizations. For more detail see
[5][6][15][19].

2.3 Workload and QoS Requirement

The workload describes the intensity of the streams

of user requests for service, in terms either of a
throughput fc for user class c, or the number Nc of users
that are interacting and their think time Zc. In this work
we assume that each service that is requested by users
has its own request class c, with Nc users and think
time Zc sec. Zc represents the user’s mean delay
between receiving a response, and issuing its next
request. If there workload is specified as throughput, it
can be easily converted in number of users and think
time.

Each class has either a required throughput fc,min or a
required user response time Rc,max. Rc,max can be re-
expressed as a minimum user throughput requirement
using Little’s well-known result:

fc ≥ fc,min = Nc /(Rc,max + Zc) (1)

In this way the original delay requirements are
translated into equivalent throughput requirements, and
the optimization deals only with throughputs.

2.4 Optimization loops and models

In CERAS the three feedback loops shown in

Figure 2 can all be regarded as having the structure
shown in Figure 5, with differences in what is
controlled and in the model used to make decisions.
The developer modifies the code using intuitive mental
models for performance tuning, perhaps guided by
principles such as given in [17]. It is also possible for
the developer to use a performance model created from
design documents (e.g. see [20]) and to derive design
decisions from it [20][22].

The models used by the application administrator
may be simple feedback loops such as load balancing,
or may take advantage of a performance model as
described in [13] [20], with decisions limited in scope
to the one application and the resources provided to it.
By itself this level may not have sufficient capability to
assure QoS. Optimization activities performed by
application and cloud Administrators can implemented
through Autonomic Managers based on models.

The cloud administrator uses a global LQM and
makes decisions about what resources to allocate to
each application. In this work the decisions suggest the
deployment of each task, including task replication.

While optimization approaches for the developer
and the application administrator have been considered
in previous work, the large-scale techniques necessary
for the cloud level have not been examined before.
Section 4 will indicate a promising approach for the
cloud level which has been prototyped for the CERAS
cloud.

 Optimize
(Analyze, Plan)

Monitor

Sensor

Resources

Effector

Performance
models

Execute

(observation) y u (control)

QoS Goals

Figure 5. Feedback control for QoS and

optimization

3. Engineering for QoS and Optimization

The design requirements can be summarized:
• The application software should be efficient and

adaptable to different run-time situations,
• The cloud must provide infrastructure for

deploying and monitoring application elements and
user QoS,

• The cloud feedback loop must be able to track the
performance model and to optimize the
management decisions.

3.1 Developer responsibilities

Mostly the cloud hides resource management from

the developer, so that he can focus on implementing
functions. For QoS, efficient execution is the
developer’s responsibility. Application management
may also require the software to include interfaces for
modifying internal resources such as caches and
control paths such as prefetching of data

A subtle goal for the developer is to provide
flexibility in the concurrency architecture (the
allocation of functions to tasks) to support adaptable
deployment at runtime. More concurrency creates
flexibility, but also introduces overhead costs for
interprocess communication. Event based architectures
may help address this issue [4], as they provide
asynchrony and concurrency at the level of the service.

Another goal for the developer is to provide the
structure of the performance model. This can consists
of the component interactions diagrams, where
components are the software artifacts (services) that
are deployed form the “tasks” depicted in Figure 4.
The structure of the model can be passed to the
network administrator and cloud as a deployment
descriptor.

3.2 QoS and Optimization in the life cycle of
the application on the cloud

The performance model of the managed component,

application, and cloud is completed with runtime data
provided by the sensors. It supports Application tuning
at all times and is relatively fast and inexpensive, so it
is the preferred way to achieve QoS goals. However it
may not be capable by itself of maintaining a SLA, and
it cannot set its own QoS targets.

3.3 Architecture Implications

The cloud incorporates several elements in order to

provide the feedback control shown in Figure 5; the

resulting architecture is sketched in Figure 6.
Monitoring of resources provides utilization
information at the level of physical processor, virtual
machine, and other logical resources. Monitoring of
user requests gives measures of throughput and
response time. The performance model tool stores a
model of each application and its deployment, and
includes estimation tools for updating the model
parameters periodically from the monitoring (the
ModelTracker). When a new application is loaded an
initial performance model is provided by AP, derived
either from the application design (as described in
[20]) or by tracing its behaviour (as described in [25]).
Finally some deployment effector tools must be
included to load and initialize VM images on host
processors, as indicated by the optimization.

The management entities on the right can be
implemented within autonomic managers.

Users

UInterface

Service

UServMon

App

VMMon

CloudAdmin

VM

AppMon

ServTask

Host HostMon

ServiceMon

AppGoals CloudGoals

CloudModel

Net Flow
Model

Deployment
Effector

AppModel

Optimizer

CloudMgr AppMgr

App. Tuning
Effector

ModelTracker

ModelSolver

*

*

*

*

*

*
*

*

*

*

(missing connection
multiplicities are 1)

AppAdmin

*

*

*

Cloud

Figure 6. Sketch of model-based

optimization architecture

3.4 Optimization technique

The optimization technique uses an auxiliary

network flow model (NFM [7]) showing the flow of
execution demands at the processors and how they
combine to produce flows at the tasks, services and

user-responses. The NFM consists of nodes
representing entities and arcs representing flows of
execution demand, in CPU-sec of execution per sec.
• nodes for processors have a flow equal to the
processor utilization.
• nodes for tasks (each of which may represent
multiple replicas) have flows from all processors on
which the task is deployed.
• nodes for services (or entries in the LQN) have
flows from the task which implements the service.
• nodes for user classes are a special type called a
processing node [7], with flows from all services used
by the class, and output flows to the user representing
the class throughput.

The processing node converts the request rate into a
demand rate, using fixed parameters which capture the
workload of each service and the use of services by the
class requests. A fragment of a NFM graph is shown in
Figure 7 . More details are given in [9], where the
model is applied only to minimize cost subject to
constraints, and profit is not included.

An iterative approach is used, which can only be
sketched here. The NFM gives an optimal deployment,
allocating host reservations to tasks. This is used in the
LQN to predict the effect of contention, which will
reduce throughputs. The NFM is adjusted by
introducing pseudo-flows at the services, which
account for the lost capacity due to contention, and the
NFM is re-solved. Experience with convergence of the
iteration has been excellent.

.

.

.

h

.

.

s

.

.

.

.

.

Hosts

Services Classes
of Users

c

t

.

.

. Server
Tasks

.

.

.

.

.
.
.

[0 , Ωh , Ch]
αht

d sc

γsc

βts

1

[fc ,SLA , ∞, Pc]
fc

(processing
node
parameters)

Figure 7. A network flow model

Note that the NFM reserves a fraction of a host for
a task, which is implemented in practice by creating a
virtual machine VM that takes a fraction of its host
cycles (for simplicity, each task is assumed to have its
own virtual machine, a constraint which can eventually
be removed). The LQN models each VM as a separate
processor running at a slower rate reflecting the
fraction of capacity allocated to it.

3.5 Objective function

An objective function for cloud optimization which

respects the individual applications will be described.
It is linear in throughput, which is well matched to the
NFM optimization.
• Each service class c offered to users has a price per
response of Pc,
• Each host h has a price of cpu execution of Ch per
CPU-sec, including unused CPU-sec allocated in order
to reduce contention delays,
• In the NFM results, each task t has a reservation αht
in CPU-sec per sec, on some host h.

Then an application App has a profit

PROFITApp = Σc in CApp Pcfc − Σh,t in TApp Chαht

where CApp and TApp are the sets of user classes and
tasks involved with App. The cloud optimization is to
maximize the total profits

 TOTAL = ΣApp PROFITApp (2)

subject to constraints. When the total profit to the APs
is maximized, presumably the CP share of this is also
maximized, although the mechanism for this is not
considered here.

We envision two kinds of constraints:
• a maximum user response time Rc,max. for each class
c, or a minimum class throughput fc,min corresponding
to it
• a minimum profit PROFITApp,min for each
application.

(Other services are
indicated by a dashed
outline)

eBrowse

InventoryDB {7}

eRead eUpdate

ShoppingCart {10}

StoreApp {90}

eCustUp

CustomerDB {1}

eShipService

ShippingServer

eAuthorize

PaymentServer

eStoreAccess

WebServer {90}
[2]

[25]

[2,1]

[2]

[30]

[5][1, 10]

FileServer {10}

eFRead eFWrite
[3] [1, 3]

pHTTPServer {1}

pStore {3}

pDBServers

pFileServer

eUser1Behav

UserClass1 {250}
[1000]

eUser2Behav

UserClass2 {100}
[10000

]
pUsers {inf}

(1)

(0.9)

(7.3) (6.3)

(1)

(0.04)

(1)

(1)

(1)

(1)

(2.5) (1) (1.8)

eReadImage

ImageDisk {1}
[1]

pImgDisk {1}

(15)

eLogin eOrder

(0.01) (0.09)

[100][15]

eBuy eCart

(3)

eCustRd
[3] [1500]

[230]

Figure 8. A web-based application to be deployed in the cloud

4. Case Study

We consider a cloud with 1000 VMs and from one
to 50 applications. Each application has the same
architecture and the LQN shown in Figure 8, but
different (randomly generated) parameters and
requirements. The “incremental” deployment places
each application on a sufficient number of processors
to meet its profit and QoS constraints, disjoint from
already allocated processors. The “full” deployment
optimizes the overall profit in Eq. (2) for a deployment
on the hosts required by the “incremental” scenario, up
to 350 for the 50 applications. Since some hosts are
specifically assigned to some kinds of tasks (e.g. the
data hosts are only available to the database), the
maximum profit is achieved when certain profitable
hosts are exhausted, though some other types of hosts
have capacity remaining.

Table 1 shows the optimal TOTAL profit as the
scale increases from 1 to 50, and the number of hosts
and VMs used. It compares the incremental allocation
approach to a full optimization for every N. The
disadvantage of full optimization is the effort required
to redeploy the existing applications at each step.

However its advantage is that it can maximize profit.
In the present formulation, this is done by increasing
the deployment of the most profitable application.
Other policies can be implemented, involving for
instance additional constraints per class. The last row
shows the running time (in seconds) taken by the full
optimization corresponding to the size of the cloud, on
a state-of-the-art PC.

Table 1 PROFIT as scale increases

N Applic.
Instances 1 10 20 30 40 50

Incremental:
TOTAL profit 38.5 276 488 760 1042 1278

hosts used 8 83 161 244 324 408
VMs 10 100 200 300 400 500
full

optimization
TOTAL profit

38.5 336 637 861 1270 1649

hosts used 8 70 139 199 267 321
VMs 10 135 360 604 807 958

Running time
(sec) 0.36 23.7 106.2 128.6 207.7 295.4

We can see that the full optimization provides
substantially greater profit, using substantially less
resources, at every N>1. An effective part of the
optimization strategy is to create additional VMs and
use the flexibility to allocate multiple VMs to a single
processor, nearly 3 to 1 at N=50.

5. Conclusions

This paper has summarized a new optimization
approach, and shown how it can feasibly be applied to
profit maximization across a cloud. It has shown the
requirements to support the approach, and an
architecture for the necessary management tools.

The approach is effective and scalable to meet the
new challenges of cloud computing. A prototype of the
optimization tool, integrated in a loop based on Figure
5, has been implemented and demonstrated on running
laboratory-scale services, although for different
optimization goals.

Cloud computing gives a new business service
model and requires advanced autonomic management
solutions. Clouds can be very large, and at some scale
the performance model calculations will need to be
partitioned into subsets of processors. The results here
indicate that the subsets can be quite large, large
enough to accommodate many applications
automatically.

Further development to take into account memory
allocation, communications delays, VM overhead
costs, and licensing costs of software replicas appears
to be feasible and is the subject of this ongoing project.

Acknowledgements

This research was supported by OCE, the Ontario
Centres of Excellence, and by the IBM Toronto Centre
for Advanced Studies, as part of the program of the
Centre for Research in Adaptive Systems (CERAS).

References

[1] N. Bobroff, A. Kochut, and K. Beatty. "Dynamic
placement of virtual machines for managing SLA
violations”. In Proc. Integrated Management 2007, pp 119-
128, Munich, May 2007.
[2] CERAS (Centre of Excellence for Research in
Adaptive Systems)
https://www.cs.uwaterloo.ca/twiki/view/CERAS
[3] M. Chang, J. He, E. Castro-Leon. "Service-Orientation
in the Computing Infrastructure ", Proc. 2nd IEEE Int. Symp.
on Service-Oriented System Engineering (SOSE'06)

[4] Distributed event-based systems, Proc 2nd int. conf. on
distributed event-based systems, Rome, 2008.
[5] G. Franks, D. Petriu, M. Woodside, J. Xu, P. Tregunno,
"Layered bottlenecks and their mitigation," Proc 3rd Int.
Conf. on Quantitative Evaluation of Systems QEST'2006,
Riverside, CA, Sept 2006, pp. 103-114.
[6] G. Franks, T. Al-Omari, M. Woodside, O. Das, S.
Derisavi, “Enhanced Modeling and Solution of Layered
Queueing Networks”, IEEE Trans. on Software Eng. Aug.
2008.
[7] J.W. Chinneck, "Processing Network Models of Energy/
Environment Systems", Computers and Industrial
Engineering, vol. 28, no. 1, pp. 179-189. 1995
[8] IBM, "From Cloud Computing to the New Enterprise
Data Center",
http://download.boulder.ibm.com/ibmdl/pub/software/
dw/wes/hipods/CloudComputingNEDC_wp_28May.pdf,
2008.
[9] Z. Li, J.W. Chinneck, M. Woodside, M. Litoiu “Fast
Scalable Optimization to Configure Service Systems having
Cost and Quality of Service Constraints”, submitted for
publication, available to reviewers from the authors.
[10] M. Litoiu, J. Rolia, G. Serazzi, "Designing Process
Replication and Activation: A Quantitative Approach ",
IEEE Trans. Software Eng., v.26 n.12, p.1168-1178, Dec
2000
[11] M. Litoiu, APERA (Application Performance Evaluator
and Resource Allocation Tool)
http://www.alphaworks.ibm.com/tech/apera
[12] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M.
Steinder, M. Sviridenko, and A. Tantawi, "Dynamic
placement for clustered web applications", Proc. 15th Int.
Conf. on the World Wide Web May 2006. ACM, New York.
[13] D. Menascé, H. Ruan, H. Gomaa: "A framework for
QoS-aware software components ", Proc 3rd ACM Int.
Workshop on Software and Performance (WOSP 2004), pp
186-196, Jan 2004.
[14] M. Steinder, I. Whalley, D. Carrera, I. Gaweda D.
Chess, "Server virtualization in autonomic management of
heterogeneous workloads ". Proc. Integrated Management
(IM 2007), Munich, May 2007.
[15] J. Rolia, K. Sevcik, "The Method of Layers ". IEEE
Trans. Softw. Eng. 21, 8 (Aug. 1995), pp 689-700.
[16] J. Rolia, R. Friedrich, C. Patel, “Service Centric
Computing - Next Generation Internet Computing”. In
Performance 2002, Tutorial Lectures eds M. Calzarossa, S.
Tucci, LNCS, vol. 2459. Springer, pp 463-479.
[17] CU. Smith, LG. Williams, Performance Solutions,
Addison-Wesley, 2002.
[18] Tang, C., Steinder, M., Spreitzer, M., and Pacifici, G.
"A scalable application placement controller for enterprise
data centers ". In Proc. 16th Int. Conf. on the World Wide
Web, Banff, May 2007, WWW '07. ACM, New York, pp
331-340.
[19] C.M. Woodside, J.E. Neilson, D.C. Petriu and S.
Majumdar, "The Stochastic Rendezvous Network Model for
Performance of Synchronous Client-Server-Like Distributed
Software ", IEEE Trans Computers, Vol. 44, No. 1, January
1995, pp. 20-34

[20] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T.
Israr, J. Merseguer, “Performance by Unified Model
Analysis (PUMA)”, Proc. ACM Int. Workshop on Software
and Performance (WOSP 2005) June 2005.
[21] M. Woodside, T. Zheng, M. Litoiu, “Service System
Resource Management Based on a Tracked Layered
Performance Model”, Proc. Autonomic Computing 2006
(ICAC 06), pp 175- 184, Dublin, June 2006.
[22] Xu, Jing, “Rule-based Automatic Software Performance
Diagnosis and Improvement”, Proc 7th ACM Int. Workshop
on Software and Performance, Princeton, NJ, June 2008, pp
1 – 12.

[23] T. Zheng, M. Woodside, M. Litoiu, "Performance
Model Estimation and Tracking using Optimal Filters", IEEE
Trans. Software Engineering, V 34 , no. 3 (May 2008) pp
391-406.
[24] T. Zheng, J. Yang, M. Woodside, M. Litoiu, G. Iszlai,
"Tracking Time-Varying Parameters in Software Systems
with Extended Kalman Filters", Proc CASCON 2005,
Toronto, Oct. 2005
[25] T. Zheng, Model-based Dynamic Resource
Management for Multi Tier Information Systems, PhD.
thesis, Carleton University, Aug. 22, 2007

