A Lightweight Technique for Extracting
Softwar e Ar chitecture and
Performance M odels from Traces.

by

Tauseef A. lsrar

A thesis submitted to the Faculty of Graduate Studies
in partial fufillment of the requirements

for the degree of

Master of Engineering

OttawaCarleton Institute for Electrical Engineering
Department of Systems and Computer Engineering
Faculty of Engineering
Carleton University

Ottawa, Ontario, Canada, K1S 5B6

April 12, 2001

[J Copyright 2001, Tauseef A. Israr

The undersigned recommend to the Faculty of Graduate Studies and

Research acceptance of the thesis

A Lightweight Technique for Extracting
Softwar e Ar chitecture and

Performance Modelsfrom Traces.

Submitted by Tauseef A. Israr
in partial fulfillment of the requirements

for the degree of Masters of Engineering

Chair, Department of Systemsta@omputer Engineering

Thesis Supervisor

Carleton University
April 12, 2001

Abstract

Performance models of software designs can give early warnings of problems such as
resource saturation or excessive delays. However models are seldbivegsese of the
considerable effort needed to construct them. Software Architecture and Model
Extraction (SAME) is a lightweight model building technique that extracts
communication patterns from executable designs to develop a Layered Queuing Network
model in an automated fashion. It is a formal, traceable model building process. The
transformation follows a series of wetlefined transformation steps, from input domain,
(an executable software design or the implementation of software itself) to output
domain, a Layered Queuing Network (LQN) Performance model. The SAME technique
Is appropriate for a message passing distributed system where tasks interact bygsoint
point communication. With SAME, the performance analyst can focus on the principles

of software performance analysis rather than model building.

Acknowledgement

At last, | have done it. | must say that the last few years have been sensational.

Firstly, | would like to thank Allah, the Almighty for everything. | am not sure what part
of me He likes for He has given me more than what | deserve. | am certain that this is all

due to the prayers of my grand parents.

To my parents who never ever doubted my abilities, have always given me hope and all
the love in the world and made me vhat | am today, | will always love you. To my
brothers, who are always there for me whenever | need them most, esp. Junaid bhai

whose love, support and guidance is exemplary.

To my beloved wife, Arooj “Oojee”, thank you for making me the luckiest persothe
world. | will always love you and your everlasting support and love in last few years is

second to none.

To my mentor, Prof. Murray Woodside, | remembered stepping into your office a few
years back, a little shaken, scared and lost. At thatitne | needed hope and a lot of
guidance. | must say, if it hasn’t been for you, | would not have been writing this today.
You believed in me and gave me a chance, when even | doubted myself. You are more

than just a good teacher to me; you are thendrehelped me realize my destiny.

And to my dearest friend Khalid, you are the finest example of friendship. Thank you for
everything.

Imran Bhai and Naheed Baji, you suggested me to do the masters in software engineering

and after two years, herarm saying, THANK YOU.

Table of Contents

ADSIFACE ... e e i
ACKNOWIEAGEMENT ...t \Y
Table of CONLENTS........ooii s \Y
TS 0 T U = SR X
LISt Of T@DIES....ceieeeee e Xil
Table of NOatioNS.........cooiii e Xiii
Chapter 1: INtrodUCLION......cc.oiiieeie e 1
1.1 Need for Performance MOEIS............ccuiiiiiiiiicccniee e 1
1.2 Obstacles to Developing a Performance Model............cccoovviiieecvinviiiiiinnnnn. 2
IR B = = od (o | {0 U o o PP 2
1.4 Introduction t0 SAME........oi e 3
1.5 The model building strategy of SAME.............coovvriiiiii e 4
1.5.1 Obtaining EXECULION TraCES.........uuuuuuiiiiiiisieereitiiiise s s ee e e e e e e e s emannaea e e e eas 6
1.5.2Extraction of Communication Patterns............cccccovvirimemiiieee e 6.
1.5.3 Generation of LOQN model StrUCtUIE...........cviiiiiiiiiieeeeci e 7
1.5.4 Generation of complete LQN model............ccoooiiiiiiieee e 7

1.6 CONTIIDULIONSeetiieiiiieie it iee et eemmme e e e e s amme e e e 7
1.7 DiSSErtation OVEIVIEM.uuveeeeeeiiiiieeesieeeeeee e s e e e e s simeesnnr e e e e s s annneeeees 8.
Chapter 2: SPE and MOGEIS........cccviiieiieeie e 9
2.1 Different Approaches t0 SPE.............uuiiiiiiiiire s errnr 9
pZ0 Nt T = (1 1 T PP 9
2.12 Performance MeasUIrEMENTS.cccuurriiieeiiceenaiieeee e eeme e 10

2.1.3 Performance Modeling............cooooiiiiimemn e 10

2.2 Layered Queuing Network Model..............ueiiiiiiiiieeciiieee 12
2.3 Different approaches to building performance madels................ccooeeeneee. 16
2.4 Trace Based Approach to Generate LQN Models............ccccviviieemniiininnnee. 17
2.4.1 ANQIGLIACESciiiieee i eeee et eneea bbb e e e e e e e e e e e e ennes 18
2.4.2 Tracebased Load Characterization Technigue..............cccccvimmmriiiiinnns 20

(O gF=To] (= G A @0 g or = o £ TSR 22
3.1 TASKS @NU ACIOIS. ...ttt eeeas 22

I T2 I - Tt L S PP SRRPPPPPPPPP 22
3.3 ComMMUNICALION PAIEIMIS........uuiiiiiiiiiiii ittt 24
3.3.1 Synchronous communication pattern..............ccccuvvimmmreiniiiiiiiiiieieeeeee 24
3.3.2 Asynchronous Communication Pattern...............ooooeveccce e 26
3.3.3 Forwarding Communication Pattern............cccceeeiiiieeniiiiiieeeeeeeees 27

3.4 INLErACHION TIEES. ... ittt re ettt e eeenr bbb r e e e e e e e e e e e e e e e emmme s 29
Chapter 4: Tree Transformation Technique...........ccccooeiiiiiiiinciee 32
4.1 Concept of an INtEraCtioN trBL..........cvvviiiiii e 32
4.2 MURIPIE trEES....eeeeeeeeeeeeee e e eeeee e 33
4.3 Compéte AlQOrthm........ooooiiii e 34
4.3.1 Function CleanUBIteX V)cooeriiiiiiiiiiiteeee e eeer e 41
4.3.2 Tree transformation after detection of a synchronous message........... 44
4.3.3 Tree transformation after the detection of a forwarding message........45

4.4 The 29 Pass of SAME teChNIQUE.............cvvrereeeeeeeeeeeeeeeeieeesees e e s eenee e, A7
4.4.1 The AlGOTtRm........oeeiiiiiiii e 48

4.5 IMPIEMENTALIONL.eeiiiiiiiiiiii e 51
Chapter 5: Validation..........cocviieiieeie e 52

Vi

5.1 Test 1: Synchronous Communication Pattern............cccoovveveeeecvvnnnniinnnneenn. 52

5.2 Test 2: Asynchronous Communication Pattern............cccevvvvimemeeeivieeeeeennnnns 54
5.3 Test 3: Forwarding Communication Pattern................o.uvvvuemeeeeiiieeeeeeeeinnnnnns 56
5.4 Test 4: Synchronous pattern with nested interaction................ccoeeeeeeeeeennn. 59
5.5 Test 5: Two step forwarding PattermL...........ccuvueviiirieeeiiiiiiiieiieeee e 62
5.6 Test 6: Two concurrent threads...........ccoccoeveeieeeiicnie e 66
Chapter 6: Case Study- the ATM-GSM network mode......................... 72
6.1 OVEIVIEW......eiiieiie ettt e et eeer et e e e e e s e e e e e e s e nnssn e e e e e eens 72
6.1.1 The Cellular PRONES..........cooiiiiiiiiii e 75
6.1.2 PRONEGUVIOAUIE...........eiieiieeei e 76
6.1.3 GSM5551111 & GSM5552222 ModULES.........cevvviiiiiiiiiiieeiiiieiiiieeeeee 7
6.1.4 GSMBasel & GSMBase2 MOdUIES............cccooriirimemiiiiiee e 17
6.1.5 GSMMSSC1 and GSMMSSC2 ModUules..........ccoocvvvrrimmmnnnniiiieenee 78
6.1.6 GSMRegistry MOdUIE...........cccoriiiiiiiiiieeee e D
6.1.7 ATMAccessDeviceProxy Modulg.............ccoooviiiiiiieeei e 80
6.1.8 ATMAccessDeVvice MOUIES.............cooiiiiiiiiieeee e 81
6.1.9 AIMNEtWOrk MOUIE.............eiiiiieiii e 82
6.2 TNE SCENAIIOS.cceiiiiiiiiiie e eee ettt e e rmme et e e e s e e e e 84
6.2.1 Switching POWEr t0 ON........cvvviiiiiiiiiie i e e s emrnn e 85
6.2.2 Requesting a Phone Call..............cooorriiiieeer e 85
6.2.3 Accepting a Phone Call.............ouuiiiiiiic e 87
6.2.4 Termination of a Phone Call.............cccooiiiiiiemiii e 87
6.2.5 SWItChiNg POWETr Off.......ooviiiiiiiii e eeeeie e 87
6.3 CONCIUSION. ...ttt e e s e e e s amn e 88
Chapter 7: CONCIUSIONooiiieceecee e 89

vii

7.1 CONEIDULIONS ...ceieeeeeee e e e e e e e e e e eeemeeeeees 89
7.1.1. A complete algorithm for the detection and extraction of the communication
O E2 L] 0 PP 89

7.1.2 An algorithm for development of LQN parhance model from

COMMUNICALION PAEINS. ...t reee bbb eeese e e e e e eeeeas 89
7.1.3 The validation of the algoritNm.................oeeiiiiiieciiii 90
7.1.4 The development of general trdi@sed model building technique........... 90
7.1.5 The analysis of substantial telephone case study................ccvueeeiinnnes 90
7.1.6 The implementation of the SAMB@rithms............cccoooviiiiiiiiienn. 91

7.2 LIMIEATIONS....c e e bbbt eeer e 91
REFEI BNCES.....coee et srneas 92
APPENDIX Al- PowerOn: seqUeNCEe TracCe......cccocevereeernieeesneenesieee e 96
APPENDIX A2- Power Onsequence: Communication Patterns............. 98
APPENDI X A3- Power Onsequence: LQN Performance Modd 99

APPENDIX A4- Power Onsequence: Graphical LQN Performance

1Y 0o [SRR 101
APPENDIX B2- SendingRequest: Communication Patterns............... 107
APPENDIX B3- SendingRequest: LQN Performance Modd 110

APPENDIX B4- SendingRequest: Graphical L QN Performance M odel

... 115
APPENDIX C1- AcceptingRequest: Sequence Trace.........cccccceeeeveenenn 117
APPENDIX C2- AcceptingRequest: Communication Patterns............ 121
APPENDIX C3- AcceptingRequest: LQN Performance Modedl........... 124

viii

APPENDIX C4- AcceptingRequest: Graphical L QN Performance

1Y, Koo [R RRERRRRPTRRRRERRRRI 128
APPENDI X D2- CallTermination: Communication Patterns.............. 137
APPENDI X D3- CallTermination: LQN Performance Moddl 141

Appendix D4- CallTermination: Graphical LQN Performance M odel

... 146
Appendix E1- Power Down: Sequence Trace.......cccoeveeneeneeieesne s 149
Appendix E2- Power Down: Communication Patterns............ccccceenee. 150
Appendix E3- Power Down: LQN Performance Modd 151
Appendix E4- Power Down: LQN Performance Graphical Modd!....... 152

List of Figures

Figure 1.1 Steps involved in Software Architecture and Model Extraction Technidhie

Figure 2.1: Interaction Patterns.............ovvvviiiiiiire et 14
Figure 2.2: An example of an LQN model.......cccooviiiiiiiiiiiceeei e 16
Figure 2.3: Saiple angiotraCe OULPUL............oooviveviiiiiiemmeeeeee e e enenees 19
Figure 2.4: Steps involved in Trabased Load Characterization Technigue.......... 21
Figure 3.1: An example @ trace............coovvvviiiiiiiiie e 24
Figure 3.2: lllustration of complete synchronous communication pattern............ 26
Figure 3.3: lllustration of an asynchimrs communication pattern......................... 27
Figure 3.4: lllustration of a simple forwarding communication pattern................. 28
Figure 3.5: lllustratiorf a typical tree, H.........cooooooiiiiiieieeee e 29
Figure 3.6: Notation of inert vertex D iN tre€.G..........ceeiiiiiii s ceeeiiiee e 30
Figure 4.1: Dynamics of developing atree..........ccoovvvviiiiiiieeee e 32
Figure 4.2: Multiple trees with active and inert vertices.............cccvvvvvieeeee e, 34
Figure 4.3: Tree transformation using function cleanup..........cccocooviiiiieeciinnnnnnn 43

Figure 4.4: The transformation of a tree H after a synchronous message is detected
between processes proc(A) and ProC(B).........uueeeeeiiiiiiceciiiiiiiie e 45

Figure 4.5: Theransformation of a tree H after a forwarding message is detected

between processes proc(A), proc(B), proc(C) and prac(E)...........ccceeeveeveeanees a7
Figure 5.1: Example containing a simple synchronous communiqateern............. 53
Figure 5.2: The output of SAMEL Programl..........ccccvvviiiiiiimmmieeeeeeeeeeeeeeeeesevnnnmnnee 54
Figure 5.3: The graphical representation of LQN performance model.................. 54

Figure 5.4: Example containing a simple asynchronous communication pattern.55

Figure 5.5: The output of SAMEL Programl..........cccovvvieiiiiimmmeeeeeeeeeeeeeeeeeeenennnnmnnees 56

Figure 5.6: The graphical representation of LQN performance model.................. 56

Figure 5.7: Example of a Forwarding Pattern.............oooooiiiicce e 58
Figure 5.8: The output of SAMEL Programl..........coooiiiiiiiiimmnee e eneeees 59
Figure 5.9: The graphical representation of LQN performance model.................. 59
Figure 5.10: A nested asynChronous MESSAGE..........oovveiiiiiiccmeeeee e 60
Figure 5.11: The output of SAMEL Program.........cceeiiiiiieiiiieameeeeeeeee e e eeees 62
Figure 5.12The graphical representation of LQN performance madel................. 62
Figure 5.13: A nested forwarding communication patterm.............ccvveeeieemeevvnnnnne. 65
Figure 5.14The output Of SAMEL PrOgram........ccciiiiiiiiiieiiiiaaeeeeeeeee e e eeees 66
Figure 5.15: The graphical representation of LQN performance model............... 66
Figure 5.16: An example @ CONCUITeNt SYSIEM........cuvviiiiiiiiiiiiieemieeeeeeeeeeeeeeeeenn 63
Figure 5.17: The output of SAMEL Programm.........ccceiiiiieeiiiieameieeeeeee e e eeeeees 70
Figure 6.1: The tofevel diagram of ATMGSM network model..................ccccvvvnee. 73
Figure 6.1b: The internal structure of ATN6ESM network module..........................7T4
Figure 6.2 The cellular phones in AFBISM network system..........ccccoeeveeeviiiiieeenn. 75
Figure 6.3: Internal Structure of phoneGui ACLOF.............ccoveiiiiiimmniiiieee e 76
Figure 6.4: Internal Structure of GSM mobile Station module...............cccvvieeennns 77
Figure 6.5: Internal Structure of GSM Base Station module...............ccccevveeeevennn. 78
Figure 6.6: Internal Structure of GSmMMSSC1 module...........cccovvvvvieeceeeiiicneenn 9
Figure 6.7: Internal Structure of gsmRegitries module.............c.eeviivieemiiiiiiiiennne. 80
Figure 6.8: Internal Structure of atmAccessDeviceProxy madule......................... 80
Figure 6.9: Internal Structure of atmAccessDevice module................cc.evveeerinnnes 82
Figure 6.10: Internal Structure of atmNetwork module...............oocvvvieenieeeennnne, 84
Figure 6.11: The message sequence chart of powerUp scenario..................eeee.. 86

Xi

List of Tables

Table3.1: Definitions and notations for tree components...................... 31
Table4.1: Initial 9 cases where active vertices A or B are either in no trees or in different
L ST 37

Table 4.2: @Gses 1013, where active verticesA>BorA<>Bintree G.... 38

Xii

Table of Notations

Designation | Definition

R(H) Root of tree H.

Proc(A) Process, whose activation is represented by vertex A.

A>B Vertex A is predeessor of vertex B. Vertex A can be of higher level
than P(B), as long as there is a direct path from A to B.

B<A Vertex B is a descendant of vertex A.

A<>B Vertex A is either a sibling of B, or A is neither a predecessor nor a
descendant of vertex Bnd vice versa.

P(X) Parent of vertex X.

C{X} A set of children vertices of Vertex X.

L{H} A set of leaf nodes for tree H.

PA{A} Set of previous activations of processNote that all activations of
process, have the same label, A.

AA(A) An active activation for process There is only one active activation
allowed in this study.

Inert{H} A set of inert vertices for tree H.

A An inert vertex for process

NIC{A} A set of Nonlmmediate Candidate vertices of proc(A). An activation of
a proces, which may no longer be a replying server to client proc(A) in
a synchronous message.

IC(A) An Immediate Candidate vertex. An activation of a process, which may

be a replying server to client proc(A) in a synchronous message.

Xiii

Chapter 1: Introduction

1.1 Need for Performance Models

The development of software systems around the globe is plagued by tight deadlines and
aggressive schedules. In performance critical systems, it is desirable to predict
performance problems well in advance, when they aasy to fix and dealt with. The
traditional methodology of software development has a great impact on such systems as it
has relegated the performance aspects of design towards the end of the software cycle,
after the system is operational. Too ofteretlevelopment decisions are made relatively
blind to their performance impact. As the project matures, performance problems
sometime snowball and result in degenerating of development into an “interactive fire

drill” between waiting customers, systems eng ineers and development groups
[Strosnider96]. Early evaluation of performance problems points to some kind of a

performance model of a system, since software does not yet exists.

Performance models provide data for the quantitative assessment of the pamhance
characteristics of software systems as they are developed. Performance modeling of
early design can reduce the risk of performamekated failures by giving early warnings

of problems. Performance models provide performance predictions under varying
environmental conditions or design alternatives and these conditions can be used to detect
problems. Performance models contains the specification of activities together with their
cost in terms of execution times and frequency of their executiosyetem’s responses.
Solving the performance models yields the total execution time for each system’s
responses together with the utilization of the processors in the system. If the design does
not meet requirements it is changed, and the performance maal is regenerated and
resolved. This cycle continues until the requirements are met. Through creating
performance models of a system, designers build performance into the system rather than
(try to) add it later after the system is developed.

1.2 Obstacles to Developing a Performance Model

Performance models have many uses; however creating a correct model with important
specifications is not everyone’s cup of tea. Analysts while creating a model have to
review software descriptions, such as CASE moels, design documents, source code
design description or implementation source code. Important end -to-end system
behavior, the involved software components, device usage by each component, the
interaction between components are identified and this infatiorais converted into an
appropriate model format such as a simulation model, a queuing network model, or a
petrinet model. This large quantity of information becomes unwieldy even for a
moderate sized system. Introduction of object oriented (OO) nielibgy has even more
complicated the process by polymorphism, inheritance and class structures. Consequently
models become expensive to develop and valid&early some sort of automation is

needed to develop better and accurate models efficientlyasiigl e

1.3 Background

Curtis Hrischuk proposed the technique called T+aased Load Characterization
(TLC) [Hrischuk99]. This technique is based on traces thus the name “Tradmsed”.
Traces have low cost because they can be automatically generatadrfstrumentation.
Traces reveal the dynamic details of design, which are sometimes difficult to determine
through design documentation or code inspection but are valuable to performance
analysis. The dynamic details include tasks (or processes) involve in dynamically
bound interactions, data dependant branching and the involvement of polymorphism and
inheritance hierarchy of object oriented (OO) systems.

Although TLC does automate the process of developing models through traces, it has its
own shortcanings. The technique is based on matching templates to event graphs to
recognize event patterns. This is not an efficient way of detecting and creating models
due to processing involved and the templates are limited to the imagination of the author.
TLC uses a special kind of a trace called aftcaoe [Hrischuk95]. It is based on the idea

of a dye to capture forks, joins and multiple concurrent threads and thus it requires more

information than a simple event trace.

El-Sayed in [El -Sayed99] invented atechnique he called Model Builder to
develop performance models through traces out of SDL design tool. These traces have
very limited information regarding the message passed in component interactions, e.g. the
information regarding the sender of a messge is not clearly defined and dyes were
missing, which were reconstructed. Some assumptions are made to simplify the problem.
For example, it is assumed that the queues are FIFO with no priorities and thus this limits

the ability of this technique to @ models beyond this criterion.

Both of these previous techniques have drawbacks. TLC is specifically based on
the concept of angietrace, which is not widely understood and Model Builder in E}
Sayed’s research is based on assumptions which sigrificerrows the type of systems
analyzed.

The goal of this research is to develop a technique that uses generic traces. It
should cover almost all types of systems without narrowing the type of systems to be
analyzed as in [EISyed99] and also at the saime does not rely just on angioaces to
create performance models. Thus it can be used for analyzing systems not only in early

design stage, but also systems already in existence.

1.4 Introduction to SAME

The technique presented in this research iscalled Systems Architecture and Model
Extraction (SAME) technique. SAME can be applied anywhere in software development
cycle, to any abstraction. It is based on execution traces, which can be obtained from a
variety of sources, as early as an execueafdrm of any CASE tool such as ObjecTime
Developer Toolset to an actual execution log of a system.

SAME is flexible enough to handle both nedistributed systems and as well as loosely
coupled distributed systems. A distributed system is composed of g eographically
dispersed, heterogeneous hardware with scheduled, concurrent software objects. The
components communicate solely by messages each of which are recorded in a trace in
chronological order. The execution of a distributed operation recordedtiace will be
called a scenario. SAME assumes that a finite set of scenarios can capture all the
important behavioral aspect of the software system.

1.5 The model building strategy of SAME

The goal of this study is to develop automation to build nedei order to do so,
several guiding principles have to be followed, as listed below:

1. The actual design implementation in CASE tool or the operational software are
the sources of information to ensure that the input data is reliable.

2. Each transformatiostep in the model building process must be deterministic and
preserve the necessary properties of the input data.

3. To avoid manual intervention transformation process must be sufficiently formal.

SAME is a formal, traceable model building process. Taesfiormation follows a series

of well -defined transformation steps, from input domain, (in this case an executable
software design or the implementation of software itself) to output domain, a Layered
Queuing Network (LQN) Performance model. Figure 1.1udtrates the model building
process with formal transformations. SAME consists of four steps, which are illustrated
in Figure 1.1:

Execution traces

Tree Transformation
Technigur

Communication
patterns

Generation of LQN Mdel

LQN Model
Structure

Performance parameters

LQN performanc
model

@ Formal Transformation

Figure 1.1 Stepsinvolved in Softwar e Architecture and Model Extraction Technique

1.5.1 Obtaining Execution Traces

An execution trace records every operation during execution of a scenario in
chronological order. Contrary to the case of previous research, there is no need for
angictracing. In order for SAME to produce a completerfmance model, it requires
that a set of traces covers all scenarios of the distributed function. A timestamp is
attached to every event recorded in a trace to maintain its chronological order. To obtain
the complete behavior of system, the traces anerged together while still maintaining
the chronological order of events. This gives the complete behavior of the system in one
trace. In case of distributed systems, correct chronological ordering is achieved through
the synchronization of clocks. the clocks get skewed, corrective measures are taken to

correct the problem.

1.5.2 Extraction of Communication Patterns

Processes, tasks or actors interact with each other using three interaction protocols
(also known as communication patterns). In this study, communication patterns are

behavioral patterns rather than the design patterns. They are as follows:

1. Asynchronous Communication Pattern
2. Synchronous Communication Pattern

3. Forwarding Communication Pattern

These patterns are fully explained iaddions 3.3.1, 3.3.2 and 3.3.3. The heart of SAME
model building technique is the detection of these communication patterns in a given
trace. Communication patterns are detected through a tree transformation technique,
which is fully explained in Chapté.

Communication patterns give the precedence relationship between processes, which gives
enough information to obtain the hierarchical structure of a system. This information is
extremely valuable as it validates the implementation of design.

1.5.3 Generation of LQN model structure

Communication patterns extracted from a trace serves as input for generating the
Layered Queuing Network (LQN) model structure. LQN model is an extended form of
gueuing network model, which designates the processes (dasks) in a hierarchical
layered order and is explained in more detail in section 2.2. LQN models structures are
incomplete version of complete LQN models as they lack information regarding resource

consumptions.

1.5.4 Generation of complete LQN model

In this step resource functions are added to LQN model structure. For each
operation, a resource consumption value (for CPU consumption, storage operations, and
any other operations of the process to carry out the execution step) must be made
availabk from a repository of resource functions. Addition of resource functions is not
part of this thesis and was previously achieved by Stefan Bayarov in [Bayarov99].

By solving this model, performance measures such as process service times, throughput
of jobs, contention delays and response times are obtained which are compared against

system requirements.

1.6 Contributions

There are several contributions of this research, which are as follows:

1. A complete algorithm for finding the communication pattein a trace, described
in chapter 4.

2. A complete algorithm for the development of LQN performance model from
communication patterns, in chapter 4.

3. The validation of the algorithm, in chapter 5.

4. The analysis of substantial telephone case study, in cl@apter

5. The development of a general trdissed model building technique.

6. The implementation of both algorithms in Java programming language

1.7 Dissertation Overview

This thesis is organized as follows. Chapter 2.0 gives background in performance
engineeing and related work. Chapter 3.0 presents the perspective and serves as
motivation to chapter 4, which is the explanation of tree transformation algorithm.
Chapter 5 proves the validity of the tree transformation algorithm. Chapter 6 is a case

study ancchapter 7 is the conclusion.

Chapter 2: SPE and Models

This chapter gives an overall view of Software Performance Enginee&mRE), the role
of performance modeling as one of the approaches to SPE, and the problem of building

performance models.

Sdtware Performance Engineering (SPE) is defined as a set of methods for constructing
software systems in such a way that they meet some defined performance objectives
[Smith90]. Performance refers to throughput or response time as seen by the end user of
a software system. Software performance engineering is used to enhance performance or
address performance issues throughout the lifetime of a computer system. However
performance engineering done in early design stages avoids developers wasting
significant time in the implementation of a software system. Different approaches to SPE
applied over the span of software development cycle are briefly mentioned in the next

section, leading towards software performance modeling.

2.1 Different Approaches to SPE

Software performance engineering may use a combination of three techniques;

1. Finetuning
2. Performance measurement

3. Performance models.

The use of these techniques is heavily dependant on the architecture of the computer

system being analyzed

2.1.1 Fine-tuning

Fine-tuning is applied to already existing systems and is performed by someone, who is
knowledgeable of the design and the implementation of the system. Finetuning is
relatively faster than the other SPE techniques, but is only good for smathmount of
performance enhancement and can only be successfully applied to tightly coupled non

distributed systems. Smith refers to this technique as the “fix it later” approach

[Smith90]. The obvious drawback to this approach is that it is extremely dificult to
change any major components or redesign the system, once it is implemented and

performance difference is almost unsubstantial.

2.1.2 Performance Measurements

A second approach in solving performance -related problems is by measuring
performancemetrics [Fenton97]. Metrics are obtained through experiments or normal
use of a system. One of the advantages of this approach is that it gives the testing
engineer exact, accurate and reliable measures of the system. It may also reveal the

bottleneck dthe system.

However, this approach has its own drawbacks. As in thatfibater approach, a system
under test must be operational in order to make any measurements and corrections. This
may prove to be highly unfeasible as it takes considerable tira in human hours and
corrective measures may include redesigning of the system or changing its one or more
major components. Also, there may be a problem in choosing a live or synthetic
workload and to be sure that either one proves to be representat®typical operating

condition [Jain91].

2.1.3 Performance Modeling

The third approach to SPE is by constructing performance models. A model should
emphasize key aspects of a system by combining behavioral and structural aspects of
workload elementsn terms of resource usage. Using this information, performance
predictions can be developed which can be analyzed for problems for several system

configurations and workloads.
There are several advantages of doing SPE through performance modelbeongethat

performance models can be used in early stages of a system design, to pinpoint and
rectify key problem areas. This illuminates the need of redesigning the software system

10

after it is operational. This is especially important in hardeal time systems where all

operations should meet strict performance requirements.

A modeling technique called Rate Monotonic Analysis (RMA) was introduced as a

simple way to assert the schedulability of a set of tasks [Liu73]. Though limited to the
simplest case of multiprogramming (strictly non -periodic activities), RMA allows

analysts to predict with mathematical certitude that each task in a set would or would not
meet its timing requirements. In RMA priorities of the tasks are assigned monotonically
in the order of their rate, with the highest rate having the highest priority. This technique
would eventually become the foundation of later schedulability assessment techniques, in

realtime systems.

Another modeling technique is Queuing Network Models (QNMs) as mentioned in
[Jane91]. QNM captures the most important features of actual systems, for example
many independent devices with queues and jobs moving from one device to the next.
Experience shows that performance issues are much more sensitivenefgasasuch as
mean service time per job at device, or mean number of visits per job to a device, than to
many of the details of policies and mechanisms throughout the operating system (which
are difficult to represent concisely). In QNMs, the assumptionsof the analysis are
realistic. General service time distribution can be handled at many devices; load-

dependant devices can be modeled; multiple classes of jobs can be accommodated.

There are two ways of solving queuing network models, analytical and si mulation.
Analytical solving produces performance results through solving a model logically and
produces accurate results given the correct input. The models solved through simulations
give simulated results, however simulation is versatile and solvesi@® which cannot

be solved easily analytically.

Although QNM is a powerful technique to solve performance problems, there are certain
things that QNMs cannot do quickly and easily [Smith90]. There are limits in the ability
of QNMs to represent execution behavior that can be solved with efficient, exact
analytical methods. In computer systems, though, jobs may have simultaneous resource
possession. For example, a job may be executing on the CPU, issue a requéstdb pre

data from disk, and then cdmue its CPU execution while the disk request executed in

11

parallel. Additionally special measures are needed for passive resources: resources
required for processing but do not actively provide service. Memory is the classic
example. Programs require nemory to execute on the CPU, but memory does not

process jobs. Other passive resources include locks for exclusive access to data or files,
message passed between processes, and so forth. Other computer system characteristics

that present problems for Qi¢ are as follows:

* Routing to queue servers that depends on data characteristics or the state of

the computer system.
* Job execution that varies over the life cycle of the job (called job phases),
* Jobs that fork into multiple processes, then later joincamtinue processing,

* Certain combinations of queue-scheduling disciplines and service time

distributions.

These drawbacks of queuing network models are some what overcome by an extended
version of queuing network model, the Layered Queuing Network (In@@g!.

2.2 Layered Queuing Network Model

Layered queuing modeling is a new adaptation of extended queuing models for software
systems proposed by Woodside et al. [Rolia95, Woodside89 and Woodside95]. It is
capable of modeling most of the features thateaimportant from performance point of
view such as multithreaded processes, devices, locks, communication and so on. LQN

model is the target performance model for this research.

LQN models represents software resources in a natural way so that they agart of
framework and thus approximations do not have to be developed for every system. The
model is closely linked to software descriptions and provides a transparent representation
of software architecture, which makes models easy to develop andtandefihe model

is well suited for systems with parallel processes running on a multiprocessor or on a

network, such as a clieserver system.

Software and hardware objects are represented as tasks in LQN models, which may

execute concurrently. They dheee categories of tasks in LQN models.

12

a. Client Task: Only sends requests, and are used to model input sources such as
users and so on.

b. Active Server Tasks: These tasks can receive requests and as well as make their
own requests to other tasks.

c. PureServer Tasks: These tasks are used to model hardware devices such as
processors or disks. They receive requests from other task but cannot make their

own requests.

A task accepts a service request at an entry. Requests for service are characterized as
enty-to-entry interactions using a communication protocol. An entry may correspond to
an actual task communication port or a message type that identifies a particular service by

a task. LOQN represents three communication protocol types mentioned asfpllowi

1. Asynchronous: A task that requests a service does not wait for the reply of the
request. No reply message is needed. An example of this interaction is illustrated
in Figure 2.1a.

2. Synchronous, RPC or Rendezvous: A task that requests a servicéavaiteply

to its request and becomes ready to run after it has received its reply. This is

illustrated in figure 2.b.

13

Task A

Task B

Task C

Figure 2.1a: Asynchronous interactions

Task B
Task A executing in executing in
Phase 1 Phase

Task A

Request R1

Reply to R/

Figure 2.1b: A synchronous interaction

Task B

Task B Task B
executing in/ execting in
Phase Phase

Task A

Request R1
Task B

Forwarding F1 Reply to R1

Task C

Figure 2.1c: A forwarding interaction

Figure 2.1: Interaction Patterns

14

3. Forwarding: A fowarding request is a special case of an asynchronous request. It
is illustrated in Figure 2-t. It occurs when the responding task of a RPC request
asynchronously sends the request to another responding process; not to the
initiating blocked task. Each responding process can continue to forward the
request further to other responding processes until the last responding process in
the series sends a reply directly to the blocked thread. This type of behavior
occurs when a task acts as a manager by sgnéiquests to a set of worker tasks
[Gentleman81].

There may be two phases of execution in the synchronous protocol type. The first phase
consists of the activities between the acceptance of a synchronous message and its
consequent reply (or forwardingpll activities that occur after the reply (or forwarding),

but before the acceptance of a new request, are labeled as a second phase. The second
phase identifies resource contention between the initiating task and the continuing
responding task [Woods:@9].

An example of an LQN model is shown in Figure 2.2. Tasks are shown as
parallelograms and requests from one task to another are made from and to service
entries, which are ports or addresses of particular services offered by a task. An entry
executs activities with precedence relationships, and activities have resource demands
and can make requests to other tasks. For each activity, a resource consumption value
(for CPU consumption, storage operations, and any other operations of the process to
cary out the execution step) must be made available from a repository of resource

functions. Resource functions will not be discussed in this thesis.

15

~——-Activities

Task! Taskz

Entryl ¢’ Entryz
|
=

L’ Entry4
Taske /’/
Processor3 -

’

Processor4

———= An Asynchronous Request
—— A Synchronous Request

—————— » A Forwarding Request
RY A Replying Task

Figure 2.2; An example of an LQN model

2.3 Different approaches to building performance models

There are several different ways to construct a performance model, depending on the

information provided about the system,

Connie Smith proposed a systematic way to use quantitative methods to asses
requirements, design and hardware altatives, starting early in the lifecycle while a

wide range of options exists, and continuing through the life -cycle [Smith90]. The
method derives a model of software execution patterns (called an execution graph) from
the design, constructs a second mddedolve for performance predictions, and then uses

the predictions to guide the modification of the design.

16

C. Scratchley [Scratchley99] described an approach called PERFECT, which evaluates
the feasibility of proposed software concurrency architectimea set of scenarios and a
set of quality -of-service requirements. The method first specifies and captures the
scenarios using Use Case Maps [Buhr96], which represent paths of execution against a
background of the software components that execute trerd,annotates the qualiyf-
service requirements on the scenarios. Then the method allocates suipaths in the
specification to processes and decides whether each process will be single or multi
threaded. Finally, constructing and simulating a virtual impmentation of the system,
which conforms to the specified behavior and the specified concurrency architecture,

performs an evaluation.

D. Menasce and H. Gomaa proposed a methodology based on a software performance
engineering language, CLISSPE [Menasce989]. Use Cases were developed and
mapped to a performance modeling specification using the language. A compiler for
CLISSPE generates an analytic performance model for the system. The compiler from
the system specification derives Service demand parametatr servers, storage boxes,

and networks. Detailed models of DBMS query optimizers allow the compiler to estimate
the number of 1/0s and CPU time for SQL statements.

2.4 Trace Based Approach to Generate LQN Models

This section will discuss earlier wodone on automated generation of LQN models from

system design prototypes.

Distributed systems are composed of graphically dispersed, heterogeneous hardware with
scheduled, concurrent software components. These systems differ somewhat from the
classical @rallel or concurrent system models such as described in [schwarz94]. First
tasks are resources because simultaneous distributed operations share them. Secondly, a
task’s lifetime can extend beyond that of a distributed operation. The set of tasksois al
dynamic where tasks may be added or removed. Thirdly, task execution follows a cycle,
beginning when a service request is accepted and ending when the service request is

satisfied.

17

Software performance models of distributed operations describe tasks and their
interactions because they affect queuing delays, parallelism, and resource contention. For
example, a heavily used task can queue arriving requests and can even become a
bottleneck [Neilson95]. To characterize the involved tasks, their indivichl activities,

and their interactions with each other, the concept of an angidrace is introduced in
[Hrischuk95a].

2.4.1 Angio-traces
An angio-trace characterizes a distributed operation independent of other simultaneous

distributed operations. The mae angietrace is derived by analogy from an angiogram.

An angiogram is a visualization of individual's blood flow that is produced by injecting a
radio opaquedye into the blood stream and taking the x -ray of the dye dispersion.
Similarly an angioetraceassigns a dye to each distributed operation so that they can be
distinguished. Also, angitrace uses a new type of logical clock to characterize potential
and operation causality, independent of environmental factor such as scheduling. Since it
does na require a global system clock or clock synchronization mechanisms, it is quite
suitable for monitoring a distributed system. Angtoace allows events to interleave so

that multiple angietraces can be recorded simultaneously. The atigioe event fanat

also records information with each user defined and communication event that captures

their cause and affect relationships.

There are three generations of angirace. The first generation angietrace (AT1) is
introduced in [Hrischuk95]. It is furth er evolved in its second generation (AT2) in
[Hrischuk99] and third generation angiotrace (AT3) is mentioned in [El -Sayed99].
Angio-trace used in this thesis is AT1 since it is a part of Simulation RTS mechanism of
ObjecTime Developer Toolset. A sampl®f an angiotrace obtained from ObjecTime

Developer Toolset is illustrated in Figure 2.3.

18

thread Sendingrequest.1.1 {

174863 Client send %Snd;

174864Serverl state Powerldle/CollectDigits;
174864 Serverl receive %Snd;

174868 Serverl send %Snd;

174868 Serverl spawn SendingCallrequest.1.1.1;
174871 Serverl send %Display;

174871 Serverl spawn SendingCallrequest.1.1.2;
174874 Serverl state Powerldle/Settipg

I3

thread SendingCallrequest.1.1.1 {

174869 Server2 receive %Snd;

174876 Server2 send %Snd;

174878 Server2 state Initialized;

174876 Server3 state S1;

174876 Server3 receive %Snd;

174885 Server3 send %Snd;

174885 Server4 state S1,

174885 Server4 rece\LoSnd;

174899 Server4 send %CallSetup;

174913 Server5 state Ready;

174913 Server5 receive %CallSetup;

174917 Server5 send %SetupReq;

174917 Server6 state NullO;

174917 Server6 receive %SetupReq;

}

thread SendingCallrequest.1.1.2 {
174871 Client receive Bisplay;

|8

Figure 2.3: Sample angio-trace output

19

2.4.2 Trace-based Load Characterization Technique
This section will discuss the process to generate LQN model from angio-traces, as

defined in the technique Trabased Load Characterization (TLC) in [Hrischuk99a].

TLC generates a layered queuing network performance model that is well suited to
modeling a message passing distributed system beteces reveal the dynamic details
of a design that are difficult to determine from a source code or documentation
information but are important to performance analysis. A distributed operation is a set of
coordinated interactions between shared systemwesdasks and user specific tasks. An
execution of a distributed operation recorded in a trace is calledseenario. To apply

TLC it must be assumed that a finite set of scenarios can capture all the important
behavioral characteristics of the distribeid operations and a prerequisite for TLC is
some executable form of the design, which corresponds to the final design. It can be a
very abstract executable CASE tool model or a code prototype. At a minimum, the
executable design must represent some safrtask architecture and include the coarse
behavior of each task. Figure 2.4 illustrates the steps involved in generating a LQN

performance model from an angrace.

In the first step of TLC, the angio -trace records the causal flow of a distributed
operation’s execution by recording a timestamp with each event and then ordering the

events by the time stamps.

The event ordering forms a graph called TOEG (Task and Operation Event Graph). The
TOEG is a nodelabeled, directed, binary, acyclic graph wdestructure is based on the
causal relationships between the events in the same distributed operation. Each trace
event produces a labeled node in the TOEG. The arcs in the TOEG, which represent

cause and effect relationships, are deduced from the tawnesstamp information.

The core of the automated workload characterization and model development is the
algorithm for reducing a TOEG to an LQN sub-model, by transforming one graph to
another. It uses a rule based graph analysis approach [FHRg#&§. The rules have a
predecessor part and a consequent part. The predecessor part of the rule is a graph

20

fragment that completely matches an interaction pattern in the TOEG, called interaction
template. The consequent component is a sequence of modelggations to develop
parts of LQN submodel. The order of matching of templates is governed by a control
algorithm.

angictrace

Event Ordering

Task and Operation
Event Graph

Interaction Pattern Matching

LQN subModel

Model Generation

LQN performanc
model

@ Formal Transformation

Figure 2.4; Stepsinvolved in Trace-based L oad Characterization Technique

21

Chapter 3: Concepts

The Software Architecture and Model Extraction (SAME) Technique can be used to
analyze a wide range of systems. It is flexible to handle both homogenous non -
distributed and as well as loosely coupled heterogeneous distributed systems. However
there are ertain assumptions, which must be made in order for SAME to be applicable.
This chapter will explain the notion of task, trace, interaction patterns and assumptions
that surrounds them. In the last section, the notion of interaction trees is introduced

which are basic to detecting communication patterns.

3.1 Tasks and Actors

A task or an actor is a unit of software program. Each task has a host device, which is
utilized when a request is processed. Host devices are not limited to just processors; they
can be printers, disk devices or logical devices such as mutual exclusion locks and so on.
Two or more tasks can share the same host device for example different processes
utilizing a processor. In case of Object Oriented (OO) software programs, a taskrt

simply be a static or dynamic object. Tasks communicate with each other by sending and

receiving signals called messages.

In the context of this study, a task must have a unique id; such as processes running on
Unix platform have unique process idefi¢tation so that a tracing tool should be able to
identify these tasks. If there are different threads of execution of the same task, each
thread should be identified uniquely. A task has a single queue for messages asking for
services; however replies synchronous requests do not go to the queue, as there can be

a second mailbox for the reply.

3.2 Traces

A trace is a record of sequence of events. Tracing a program is used to understand how
the program executes. An event is described as a signditt occurrence or happening
within a system [Narain96].

In the context of this study, events recorded in a trace should have the following fields:

22

1. Taskid:
In order for SAME technique to be applicable, it requires that events should be
recorded with tdss with unique ids.

2. Timestamp:

In case of non-distributed concurrent systems, events are recorded in interleaved
fashion, in chronological order. SAME requires that in case if events are not recorded in
a chronological order, they should have a timestanattached to them. This becomes
extremely important in case of distributed systems. To overcome such a problem, the
author suggests that all clocks on distributed nodes should be closely synchronized hence
introducing a notion of a global clock in a dig¢ributed system. The synchronization of
clocks can be monitored regularly. This can be achieved by each node sending messages
to each other with their send times embedded in the message and the receiving node
checking to see if the receive event does @adl occur after the send event. If there is a
little discrepancy, event ordering can be adjusted after the trace is recorded.

3. Message id:
An event should contain a message identification for the purpose of determining
which task sends what message ifdsend receive events are recorded separately.

4. Event type:
It is important that an event should be recorded with a type of event. There are 3
basic types of events considered in this thesis.
1. Send event,
2. Receive event, and

3. Default: noninteraction event

The assumptions of tracing used in this study are:
1. A trace must captures all necessary fields mentioned above.
2. Events are recorded by a data collection system that does not miss any events
(e.g., an instrumentation system [Waheed95])
3. Message communicatias reliable but messages can be delivered in an arbitrary

order.

23

4. Monitoring does not change the order of events of the distributed operation.

A typical example of a trace is given in Figure 3.1.

Tracel {
0 User send %start
1 Servl receive %start

200 Servl send %etch

201 DiskHandler receive %fetch
400 DiskHandler send %complete
401 Servl receive %complete
1000 Servl send %complete

1001 User receive %complete

}

Figure3.1: An example of atrace

3.3 Communication Patterns

Tasks communicate with each other through messages using different interaction
protocols, also known as communication patterns. Extraction of these patterns from an
execution trace is extremely important in performance analysis of softwsystems, as
they provide clues for determining resource contention and blocking delays. As

described in section 2.2, the following three communication patterns are considered:
1. Synchronous communication pattern.
2. Asynchronous communication pattern

3. Forwading communication pattern

Following sections describe these patterns in detail.

3.3.1 Synchronous communication pattern

24

Synchronous communication pattern is found in client -server systems and in
implementation environments such as Ada, V, Remote Procedte Call Systems, in

Transputer systems, and in specification technique such as CSP, CCS and LOTOS.

In a synchronous communication, task that initiates a request is called a “client”
and it is said to request a rendezvous. It gets blocked in the “rendeswdelay” until it
gets the reply. The receiving or “server” task is said to accept the request, and executes
two or more phases. The first phase is a service phase, which starts at the acceptance of
the request and ends at its reply. The second phss@iautonomous phase in which the
server task acts completely on its own, after being launched by the first phase. Figure 3.2

illustrates a complete synchronous communication pattern between two tasks.

There are certain advantages and disadvantagggthh®onous message communication.
One of the advantages being that the attention of both client and server must be
maintained for the duration of message exchange. This attention is required to preserve
message integrity [Narain96]. The major disadvgataom a performance point of view

is when a client requests a service and the server is busy, the request has to be queued
until the server is available, and the client remains blocked until it gets the reply back.
This sort of blocking is a major perfemance concern and thus it is necessary to detect

such a pattern in an execution log.

For messages to be called “synchronous”, certain conditions and assumptions are used to
define them more accurately and to facilitate their detection in a trace. They & as

follows:

1. A client will remain blocked and will not perform any activities until it receives a

reply from the server for its request.

2. Any message passing between any two tasks, in which the client seems inactive
during the time it receives a messag(supposedly a reply) will be considered a
synchronous message, and not two separate unrelated messages, given that
following conditions are met.

a. Client task may not perform any operation before it receives the “reply” of

the message.

25

b. The replying task isot reactivated (launched) by some other task and the
reply is in the continuation of the “request” it received early from the

client task.

Rendezvous Delay

TaskA:client -~ > ~

R

Request Reply

Phase 1 service
TaskB:server A
?ffffffffffffh’f-

~_—

Period of included service

Autonomous phase 2

A
-)

PR

€«——— TaskCycle—

Figure3.2: lllustration of complete synchronous communication pattern

3. The server can autonomously work in phase 2 after sending the reply.
4. A synchronous pattern may have multiple nested synchronous, asynchronous or

forwarding patterns.

3.3.2 Asynchronous Communication Pattern

An asynchronous communication occurs when a tatikrit’ sends a message to another
task, “server”, and there is no reply. There is no blocking or synchronization required
between tasks.

When communication between tasks is asynchronous, it is possible and entirely
acceptable that the server not badg to accept messages when the transmission occurs.
The message is queued, and will be serviced when the server is ready. It is however
extremely important that message communication is reliable so the service request does
not gets lost. Figure 3.3 ill ustrates an example of an asynchronous message
communication. Here TaskA does not wait for the reply from TaskB and after sending a
message. Although asynchronous communication is not as reliable as synchronous

communication, it has quite a few perforroarbenefits. One of the obvious performance

26

plus is that the client is never blocked. This gives the program the ability to perform
concurrently. Asynchronous message communication is a foundation for constructing
concurrent computing environments” [Nan96]. For an interaction to be recognized as
an asynchronous communication pattern, the following conditions should be met.
1. A client should not be blocked waiting for the reply from the server. It can
autonomously carrgn and perform other operations.

2. There is no phase 2 for the server task.

No waiting for reply

TaskA:client -~ "~ ™~

B

Request

TaskB:server

P B

Figure 3.3: Illustration of an asynchronous communication pattern

3.3.3 Forwarding Communication Pattern

A forwarding communication pattern occurs when a client sends a request to aaselver
waits for the reply. The server, instead of replying to the client “forwards” the message
to another server, which may itself either reply to the client or again forwards the request
to a different server. The server, which forwards a request, is caled a “forwarding
server”. In a forwarding communication pattern, there may be two or more forwarding

servers involved. The server which replies to the client is called a “replying server”.

For a forwarding communication pattern to be called as such, it should have the

following properties:

1. The client remains blocked until it receives a reply from a forwarding server.

2. There can be more than one, but a finite number of forwarding servers.

27

3. The replying server may have phase 2 of service after replyihg tdient.

4. A forwarding server after it has forwarded is independent and can perform any
unrelated operations.

5. In a forwarding pattern, a service may not be requested twice of the same server.

6. Like a synchronous communication pattern, a forwarding pattem may have

multiple nested synchronous, asynchronous and forwarding patterns.

Figure 3.4 illustrates a simple-8erver forwarding communication pattern. Here a client
TaskA sends a request to server TaskB. TaskA is blocked until it receives a reply.
TaskB did some processing on the request and forwards the request to TaskC, a lower
level server. TaskC processed the request and sent a reply to client, TaskA. Itis
interesting to note that after forwarding a message to TaskC, TaskB is no longer part of
this forwarding communication pattern and was free to perform an autonomous unrelated
operation. Also, according to one of the properties mentioned above, TaskB may not be
asked for service twice with in the same forwarding pattern. The replying taslski

may perform some autonomous operation in phase 2 of its service after sending a reply
back to TaskA.

Rendezvous Delay

TaskA:client -~ > ~

P e

Request
An autonomous

unrelated operation

TaskB:server - - ~
P ot
Reply

Forwarding

Autonomous phase 2

A
s I

e R

TaskC:server

B i e

Figure3.4: lllustration of a simple forwarding communication pattern

28

3.4 Interaction Trees

In this thesis, communication patterns are detected through Interaction Tree
Transformation (ITT) technique. This section introduces the notion of interaction trees

and gives definitions of their components. These definitions are summarized in Table 3.1

Generally speakg, a treeis defined as a data structure accessed beginning at the root
vertex. A root vertex is a distinguished initial or fundamental item of the tree. The root is
an only vertex, which has no parent. Each vertex is either a leaf or an interior rule.
interior node has one or more child nodes and is called the parent of its child nodes.
Contrary to a physical tree, the root is usually depicted at the top of the structure, and the

leaves are depicted at the bottom. Figure 3.5 illustrates an exdraplgaal tree.

Figure 3.5: Illustration of atypical tree, H.

In the context of this study, an interaction tree represents a part of a scenario, a sub
scenario. Itis created and transformed as events unfold in adce. Vertices in a tree
represent activations of processes. The arcs in trees represents the messages passed
between these processes. Since each tree representseesalnio, which is started with

a single message, root vertex will always have ouegetyr

Vertex A, in tree H, in Figure 3.5, represents the activation of process proc(A) and

similarly, vertices B, C, D, E and F represents the activation of processes proc(B),

29

proc(C), proc(D), proc(E) and proc(F) respectively. We will express orderingrtices

as follows: vertex A > B, B> D and D > E. Vertices C and D are on the same level and
are therefore called siblings. C is neither greater than nor less than D. The relationship
between them is denoted by C<>D.

The root of a tre&ree_id, isdenoted by Rfee id). In Figure 3.5, A =R(H). Since a tree
may have one or more leaves, they combined, form a set of leatres, ild}. In tree H,
vertices C, E and E L{H}. In any given tree, since there can be only one parent to a
child vertex, tis represented by éhld_id), however, a parent can have multiple
children vertices, which belong to a setp&@&ent_id}. In tree H, vertex D = P(C),

whereas, vertex B C{D}.

In any given trace, a process may have one or more activations. Ativaivogicoccurs

when a process receives a request from another process, or when it invokes some other
process, which is not a cause effect of a previous request, it received earlier. In case of a
new activation, all the Previous Activations, R#tjvation_id}, of the process become

inert and only the new activation will laetive. Therefore, there can be only one Active

Activation, AA(activation_id), of a process at any given time.

A node of a tree may be active or inert. An inert node representsvatiaa, which has
been superceded by a latest activation of the same process. There can only be one active

node for each process representing the latest activation.

>

Figure 3.6: Notation of inert vertex DintreeG

30

Graphically, a d& circle, as illustrated in Figure 3.6, represents an inert vertex.
An inert vertex is written in bold, D, where DO PA{D} and also D O inert{G}. The
active vertices are shown as natark regular circles. Vertices A, B, D and E in tree G

are active verties.

Designation Definition

R(H) Root of tree H.

Proc(A) Process, whose activation is represented by vertex A.

A>B Vertex A is predecessor of vertex B. Vertex A can be of
higher level than P(B), as long as there is a direct path from
Ato B.

B<A Vertex B is a descendant of vertex A.

A<>B Vertex A is either a sibling of B, or A is neither a
predecessor nor a descendant of vertex B, and vice versa.

P(X) Parent of vertex X.

C{X} A set of children vertices of Vertex X.

L{H} A set of leaf nodefor tree H.

PA{A} Set of previous activations of processNote that all
activations of process have the same label, A.

AA(A) An active activation for process There is only one active
activation allowed in this study.

Inert{H} A set of inert vetices for tree H.

A An inert vertex for process

Table3.1: Definitions and notations for tree components.

31

Chapter 4: Tree Transformation Technique

SAME extracts communication patterns through interaction tree transformations. This
chapter explainsi detail the algorithm of transforming interaction trees in order to detect
communication patterns. It also explains the processing involved in the extraction of a

performance model from communication patterns.

4.1 Concept of an interaction tree

A rooted tree represents a communication sequence between processes. The root of the
tree represents an activation of a process, which starts a non -causal spontaneous
interaction. Other vertices of the tree represent activation of processes, which are
involved in this sequence. The hierarchy of a tree maintains the relationship of the

processes in sequence.

A tree is developed step by step as each event in the trace is processed. For example
trees in Figure 4.1 represent the dynamics of creating a tree froomanwnication trace

given below.

First, Procesé sends a message to Prod&ss
then, ProcesB sends a message to Prodéss

then, ProcesB sends a message to Prodess

4.1a 4.1-b

Figure4.1: Dynamics of developing atree.

32

In Figure 4.1, verticed,, B, C and D represent the activation of proce#se, C andD.

A is the root of the tree and is denoted by R(H). Since each tree is initiated by a single
message, the degree of the root is always one. Vertices C and D belong to a set of leaf
vertices L(H). Here vertices A>B > C and A>B > D. Since vertices C and D are
siblings, they are neither less than or greater than each other, C <> D. Vertex B is a child

of vertex A, B[] C{A} and vertex A is a parent of vertex B, A = P{B}.

When a child vetex is added to a parent vertex, the child vertex is called an Immediate
Candidate (IC). The reason why it is called an IC is because the process whose activation
it represents has a potential of replying to the request it received earlier from thesproce

whose activation is represented by its parent vertex.

If a vertex has multiple children, the child added last is an IC and the remaining are Non
Immediate Candidate. The reason why they are called NICs is because according to
assumptions in sectioB.3.1, the processes, whose activation they represent may not be a
part of a synchronous pattern with the process whose activation is represented by its

parent vertex.

In Figure 4.%c, vertex C is a NIC and is represented by the dashed circle. On eoptr
vertex D is an IC, an Immediate Candidate. ProcBssiay send a reply to processto
complete a synchronous pattern, whereas ProceSsnay not do so. However, both
processes can take part in the completion of a forwarding pattern.

4.2 Multiple trees

In section 4.1, a trace is studied which represents only one communication sequence.
When there are more than one communication sequences, multiple trees are required.
Following is a trace that involves two communication sequences. The eventsearénlis

chronological order.

1. Proces# sends a message to Prod®ss
2. Proces8 sends a message to Prodéss
3. Proces8 sends a message to Prodess

4. Procesg& sends a message to Prod@ss

33

Till event 3 where ProcessB sends a message to proced, the trace is the same as
discussed in section 4.1. The corresponding tree “G” can be seen in figure 482 In
event 4 where procegssends a message to procBsa new communication sequence is
started. This is because there was no activationrotpssE represented in any available
trees.

To represent this new communication sequence, a new tree “H” is created with E =R(H)
and BO C{E}, please refer to Figure 4-B. Since the activation of proceBsan tree “G”

has been superseded by a neuvation in tree “H”, it is labeled inert.

.-
4

1
\»

RN
\
]
SN

R4

4.2a: Tree G 4.2-b: Tree H

Figure4.2; Multipletreeswith active and inert vertices

4.3 Complete Algorithm

This section provides a complete algorithm of SAME technique for the detection of
communication patterns. Sincegach event is processed individually, it is matched
against a set of comprehensive cases. There are 19 cases in total and trees are
transformed differently in each case.

For an interaction event where any process proc(B) receives a message from any other

process proc(A) at time t =, the location of active vertices B and A in interaction trees

34

determine the fate of thproduction of communication patterns. The first 16 of 19 cases
illustrate tree transformation and production of communication patterns based on the
locations of vertices A and B in interaction trees. Cases 17 and 18 covers non interaction
patterns. Thelast case deals with the situation when a trace simply ends and there are
still candidate trees existing. Three communication patterns are produced in the

following format.

1. Synchronous Communication Pattern
For a synchronous communication pattern betweemo processes, procf) and

prox(y), the format is:

Sync[prock), proc§)], ti, t

Where,
t = initial time. Time, at which the communication pattern started.
tr = final time. Time, at which the communication pattern is completed.

2. Asynchronous Communication Pattern

For an asynchronous communication pattern between two processesxpaoc(

procfy), the format is:

Async[prock), procf)], ti

Where,

ti = time the asynchronous interaction took place.
3. Forwarding Communication Pattern

For a forwarding ¢ ommunication initiating from proc(x) and terminating at

procfy), the format is:

Fwd n [prock), proc@s), proc@y),.., procén2),procl)l, ti, tr, tra,..,tena.ts

Where,

35

n = number of processes involved in a forwarding communication chain.
The value bn should always be greater than or equal to 3.
proc(al)..proc(a,.1) = processes which forwards the request
t = initial time. Time, at which the communication pattern started.
T = j™ Forwarding time. It is the time where the request is forwardettfie |
time.
tr = final time. Time, at which the communication pattern is completed.

Following is the complete algorithm for the SAME technique for detection of
communication patterns. Tree 4.1 contains the algorithm for caSesnlwhich vertices
A and B are located in no or different interaction trees. The function “Cledertg(x)”

mentioned in the algorithm below is fully explained in section 4.3.1.

36

else if BO L{G},

x = P(B), remove B from treg
G with a production 1.

2. Create a new tree H.

A= R(H) & B=IC(A), taciap) = tn
Production:

1. Async[proc(x),proc(B)],atcxs)

4. If B OL{G}, make B inert.
else if BU L{G},

y = P(B), remove B from tree (
with a production 2.

5. Create a new tree H. A= R(H)
B = |C(A)): tarc(A,B) =t

Production:
1. Async[proc(A),proc(x)], dceax
2. Async[proc(y),proc(B)],atc.)

Cases & A Cany tree For sometreed, For sometreeJd,
actions A =R(J) A <R(J)
B Oany tree|Casel Case2 Case3
Action: Action: Action:
1. Create a new tree H. 1. x =IC(A) 1. Add new vertex B to vertex A.
A = R(H) & B=IC(A), tuas = |2. Remove A from tree Jwith |~ ICA): beas =t
t, production 1. Production:
Production: 3. Cleanup(x) None
None 4. Create a new tree H. A= R(H
B =I1C(A), ticap) =t
Production:
1. Async[proc(A),proc(x)], dceax
For some |Case4 Case5 Case 6
tree G, Action: Action: Action:
1. x=1C(B 1. x=I1C(B), y = IC(A) 1. x=1C(B)
B=R(G) 2. Remove B from tree G with €. Remove B from tree G with a [2. Remove B from tree Gith a
production 1. production 1. production 1.
3. Cleanup(x) 3. Remove A from tree J with 3. Cleanup(x)
4. Create a new tree H. production 2. 4. Add new vertex B to vertex A.
A= R(H) & B= IC(A), tucas) = b 3. Cleanup(x) and Cleanup(y) [B =IC(A), ticar) =t
Production: g:CIr(e:?;\e; a new tree H. A = R(H)Production:
1. Async[proc(B),proc(X)]ake(s.ofpr oguction: 1. Asynclproc(B),proc(x)].akee.
1. Async[proc(B). proc(x)].dee.
2. Asynclproc(A),proc(y)].deay
For some |Case? Case 8 Case9
tree G, Action: Action: Action
B <R(G) 1. If B OL{G}, make B inert. (1, 2 and 3 same as Case2 1. If B OL{ G}, make B inert.

else if BO L{G},
x = P(B),

remove B from tree G with a
production 1.}

N

D

& Add new vertex B to vertex A.
B= IC(A)a t’:er(A,B) = tn

Production:
1. Async[proc(x),proc(B)],atcx.g)

Tabled.1: Initial 9 caseswhere active vertices A or B are either in notreesor in different trees.

37

Cases 19 in table 4.1 deals with the transformation of trees when active vertices A and B
are in different trees or in no trees. When vertices A and B are in the same tree, say tree
G,A>B,orA<B,or A <>B. Cases, where vertex A> B or A<> B are described in
Table 4.2.

Cases & A =R(G) L{G} <A <R(G)
actions

Casel0 Casell

Action: Action:

1. x=P(B), 1. x=P(B),

2. Remove B from tree G with a 2. Remove B from tree G with a

production 1. production 1.

3.y =1C(A) 3. Add new veex B to vertex A.

B OL{G} 4. Remove A from tree G with a B = IC(A), tacap) =t

producton 2. Production:

5. Cleanup(y) 1. Async[proc(x),proc(B)],atcx.g)

6. Create anewtree H. A=R(H) & B
= IC(A): tarc(A,B) = tn
Production:

1. Async[proc(x),proc(B)],atx.s)
2. Async[proc(A),proc(y)],dceay)

Casel12 Case13

Action: Action:

1. Make B inert. 1. Make B inert.

2.y =1C(A) 3. Add new vertex B to vertex A. B =
BOL(G) 3. Remove A from tree G with a IC(A), ta_’C(A"B) =t

production 2. Production:

4. Cleanup(y) none

5. Create anew tree H. A=R(H) & B

= IC(A), tacaps =t

Production:

2. Async[proc(A),proc(y)]deay)

Table 4.2: Cases 10-13, where activeverticesA >Bor A<>BintreeG

-38-

Synchronous and forwarding patterns are detected when the vertex representing the
activation of a receiving process, in this case vertex B > the vertex representing the
activation of a sending process, vertex A, in same interaction tree. In cad@&s Htex

B is either < A or <> A, therefore there is no production of synchronous and forwarding
patterns. Following cases 14, 15 and 16 which deals with the situation where vertex A <
B.

Case 14: A 0 1C{B}

In this case, vertex A is an immediate candidate & vertex B and now since proc(B)

receives a message from proc(A) at timet, a synchronous communication pattern is
detected between proc(B) and proc(A). Here proc(B) is the client which requested for the
service from proc(A) and waited for the reply. @time span of the synchronous pattern

is betweengcg,a and k.

Action:

1. Graph G is transformed as described in section 4.3.2.

Production:
1. Sync[proc(B),proc(A)], e Ay th

Case 15: A [0 NIC{B}

In this case vertex A is not an immediate candidate of vertex B. There is no synchronous

pattern produced because proc(B) did not wait for the reply from proc(A).
Action:
1. Vertex B is made inert.

2. Add new vertex B to vertex A. B = IC(Aldag) = t

Production:

None

-39-

Case 16: A < C{B}

Here vertex A is located below the level of the children of vertex B, which results in the

detection of a forwarding communication pattern. The vertices in the path from vertex B
to A represents the activatiohfgrocesses involved in the forwarding chain.

Action:

1. Graph G is transformed as described in section 4.3.3

Production:
1. Fwd j [proc(B), procds), proc@y),.., proc@j-z),proc(A)],

tar(:(B,al) tarc(B,al) reey tarc(a}l,A)ytn

Where,
j = number of process@svolved in a forwarding communication chain.

proc(al)..proc(aj.1) = processes which forwards the request

All cases above deal with situations where tree transformation occurs when a process
interacts with another process. Case 17 and 18 deals wisitaation where a tree H is
transformed containing any vertex A, when process proc(A) does not interact with

another process but performs a fiaieraction operation.

Casel7: A =R(H)
Since proc(A) does not wait for the reply, an asynchronous messagedisced between

proc(A) and proc(y), where y = IC(A).

Action:
1. Production 1
2. Remove vertex A from tree H.
3. cleanup(y)

Production:

1. Async[proc(A),proc(y)].akcay)

-40-

Case18: A <R(H)
Action:
1. IC(A) becomes the member of NIC{A}.

Production:

None

Case 19: Trace Termination

When an execution trace terminates, it is possible that there are still some unsolved trees
remaining. Since there are no more events to process, it means that no more synchronous
and forwarding patterns can be detected. SAME assuen that remaining interactions

which could not be a part of a synchronous or a forwarding pattern are asynchronous
messages. Therefore SAME processes the remaining trees by producing all asynchronous
messages between the processes, whose activationpegserged by vertices remaining

in the trees.

4.3.1 Function Cleanup(vertex y)

Function Cleanup is used when the root vertex of trace R(tree_id) is removed and
IC(R(tree_id)), becomes the new R{ree id) . The input parameter to the function is

IC(R(tree_id)) vertex. The function is as follows:

Function Cleanup(vertex y)
{
Case 1.0: vy s an inert vertex
{ for (1= 0, i <size of c{y}, i++)
{produce asynchronous message between proc(y) and;fypc(c
remove gy} fromy

cleanup(dy})
Y/ end of for statement

-41-

remove y from tree H.
}lend of Case 1.0
Case 2.0: y is an active vertex
{ for (1= 0, i <size of NICs{y}, i ++)
{ produce asynchronous message between proc(y) and

procNICi{y})
remove NIGy} fromy

cleanup(NIGy})
}lend of for statement

Case 2.1: IC{y} exists
{ y = R(hew tree G)
}lend of Case 2.1

Case 2.2: IC{y} does not exist
{ removey from tree H
}lend of Case 2.2
}lend of Case 2.0
Hlend of function cleanup

An example:
Figure 4.3 illustrates tred with the root vertex A. Vertex A represents the activation of

a process proc(A). If proc(A) does not wait for the reply and sends a message to proc(X)
at time , the tree H is transformed in the following way.

Action:

1. yOIC{x}

2. Production 1

3. cleanugy)

4. Create a new tree G, A = R(G) and X = IC(A)
Production:

Asynch[proc(A), proc(y)].akeay)

~42-

According to the method stated above, the vertex A will be removed from tree H and an
asynchronous message is produced between process proc(A) and proe¢BexIB has
degree >= 1, it becomes new R(H), otherwise it is also removed. All the NIC children of
B are removed from vertex B, since the root vertex should only have degree 1.
Asynchronous messages are produced between process proc(B) and processes

proc(NICs(B)). Only the IC child, if any, remains as the child of vertex B.

ORo
=
OO

Productions:

1. Asynchronous message between
procesA andB.

2. Asynchronous message between
processeB andC.

3. Asynchronous messages between
processeB andD.

Tree “H”

Figure 4.3; Treetransformation using function cleanup.

-43-

4.3.2 Tree transformation after detection of a synchronous message

Figure 4.4 illustrates tree H before a@r(B) sends a message to proc(A) at time t+=t
Since Vertex B = IC{A}, it is a completion of a synchronous message between processes
proc(A) and proc(B). The method by which, tree H is transformed is as follows:

Prerequisites:
1. A=IC{B}
2. Both A andB are active vertices

Method:
Produce a synchronous message between proc(B) and proc(A)
for (i=0,i< size of C{B},i++)

{ Produce an asynchronous message between processes proc(B) anfBproc(C
Remove @B} from B
cleanup(@B})
}

Remove vertex B frontree H. In case where A = R(H), tree H is no longer required is is

removed..

Since both vertices A and B are active vertices and B = IC{A}, a synchronous message is
produced between processes proc(A) and proc(B) after process proc(B) sends a message
to process proc(A). Vertices which are < B are separated with a production of
asynchronous messages between processes proc(B) and proc(C{B}), and under goes
function cleanup. Vertex B is removed from tree H. Since Vertex A is R(H), it too is

removed.

-44-

tarc(A, B) tarc(C, E + tarc(F,G)

—>

tarc(B,F)

Productions:

1. SynC[A,B], Brc(A,B); tn
2. Async[B,Cl],tarc.c)
3. Async[B,D], twce.)
4. Async[B,F], tre@e r

tarc(C,E) arc(F,G)

Tree “H” before proc(B) sends Trees created after
message to process(A). transformation of tree H

Figure4.4: Thetransformation of atree H after a synchronous message is detected between
processes proc(A) and proc(B)

4.3.3 Tree transformation after the detection of a forwarding message

Figure 4.5 illustrates thetransformation of tree H after the detection of a forwarding
message. Here, instead of process proc(B) sending a message to proc(A), proc(E) sends a

message to proc(A) at time tThe method by which the tree is transformed is as follows:

Letx=A,y=E,=B,z=C
Zo ... 71 are vertices that are in path between vertices A to E.
Prerequisites:
1. y<x,
2. x z p{y}, vertex x is not a direct parent of vertex y because that may result in a
synchronous message instead of a forwarding message.
3. Both x and y ee active vertices.
Method:

Produce a forwarding message between processes proc(xXppmue(@(z) and proc(y).

-45-

For (i = 0, i < number of vertices between x and y, i++)
{ Remove zfrom p{z}

for (n=0, n <number of c{ n++)

{ if cn{zi} is not in path between x and y
{ produce an asynchronous message between pragz
proc(G{zi})
remove g(z)

cleanup(g(z)
}
}/lend of nested for statement

}lend of for statement

Remove y from p{y}
for (i=0,i< size of c{y},i++)
{ Produce an asynchronomgssage between processes proc(y) and {dsd(c

Remove dy} fromy

cleanup(dy})
}
if x = R(H)
{ Remove x from tree H.
}

-46-

arc(A.B) tareF,)

Productions:
Fwd 4 [proc(A), proc(B), proc(C), proc(E)],

tarc(A,B)u tarc(B,C) tarc(C,E) tn
Async[proc(B,D)], tarce,0)
Async[proc(B,F)]. fce.r

tarc(C, E) arc(F,G)

Tree “H” before process proc(E) sends a
message to process proc(A).

Figure4.5: Thetransformation of atree H after a forwarding message is detected between processes
proc(A), proc(B), proc(C) and proc(E).

4.4 The 2" Pass of SAME technique

This section explains in detail the processing involved in the extraction of a LQN

performance model from communication patterns.

The 2" Pass technique takes a list of communication patteas its input. From this it
extracts all processes involved in a system and generates corresponding the tasks in the
LQN model.

Tasks in LQN performance model make and accept service requests at entries. Requests
for services are characterized as entry-to-entry interaction using one of the three
communication protocols. A new entry is always added to task when it accepts a service
requests, whether it is a synchronous, an asynchronous or a forwarding request. In the

context of LQN performance model, aesvice request is referred to as a call. The task

-47-

services the request and if the call is synchronous or forwarding, it either replies back or
forwards it to another task. Before replying or forwarding, a task may decide to send
calls to other tasks. Thse are called nested calls. Also, after replying or forwarding, a

task may spontaneously perform operations, which starts its second phase of execution.

In the context of this study, where there are disjoint sets of interactions, it is imperative to
know when a task accepts, replies back or forwards a request in LQN model domain, so
that calls can be added to entries, in appropriate phases. To achieve this, an extended

notion of LQN model entry is used. It contains two new fields:

t[E1] = time at wich task receives a new request and an entiy &eated and
t([E1] = time at which entry & replies to the request, or forwards it to other entryE1]

indicates the end of its phase 1 of execution.

The communication pattern list is processed ie #scending order of their starting time.
Following is the algorithm for generating LQN performance model from a list of sorted

communication patterns.

4.4.1 The Algorithm

This section gives detail algorithm of generating a performance model from
comrmunication patterns. The algorithm is divided into three cases, one for each

communication protocol.

Case 1. Synchronous | nter action between times [t1,t5]

Let,
T
T

task that initiate a request and

replying task

Casel1l.1: Noentriesintask T; or t; <tjfor all Ein T;

1. Create and add a new entryitask T, where {E1] = t;

-48-

2. Create and add a new entryiittask T, where {E2] = t;

3. Add a synchronous call from entry 6 E, where {E;] = t..

Case 1.2: Entriesexistsin task T;

Get &, sud that fE1] = max{ t | § < ti}

Create and add a new entryikttask T, where {E;] = 13
If t1 < §[E4], add a synchronous call in phase 1 gfté &
If t1 > 4[E4], add a synchronous call in phase 2 gfté &
t[E2] = t2

AR < A

Case 2: Asynchronousinteraction at timet;
Let,

T; = task that initiate a request and

T, = receiving task

Case2.1: Noentriesintask T;or ty <tjfor all Ein T;
1. Create and add a new entryitask T, where {E1] = t;
2. Create and add a new entryiittask T, where {E2] = t;

3. Add an asynchronous call from entrytg E,, where {E;] = o,

Case 2.2: Entriesexist in task T;

1. Get g, such thatifEi] = max{t | § <t}
Create and add a new entryiietask T, where {E;] = t3
If t; < t[E4], add an asynchronous k@l phase 1 of E to B,
t[E2] =
If t; > t[E4], add an asynchronous call in phase 20t&E
t[E2] = oo,

2 T o

Case 3: Forwarding interaction at times [ti, tii,te,...ten,tr]
Let,

T; = task that initiate a request and

Ty = | forwarding task withie total of n forwarding tasks.

-49-

T, = replying task

n = Number of forwarding tasks.

Case3.1Noentriesintask T, or t; <tjfor all Ein T;

|_\

. Add a new entry Ein task T,

t[Ed =t

3. foreachjin (0, fl):

a. Add a new entry fin task T

N

b. ti[Efj] = tfj-]_
Add a new entry Ein task T,
ti[E2] = tin

Add a synchronous call from entry & &

t[En] = tn

for each jin (O, fl):
a. Add a forwarding call from entry;Eo Ej+1
b. t[Eq] =t5

9. Add a forwarding call from entrysf£to E

10.t%[Efm] = tin

11.4[E] =t

© N o 0 &

Case 3.2: Entriesexistsin task T;
1. Get g, such thatifEl] = max{t | § <t}
2. foreachjin (0, fl):
a. Add a new entry fin task T

b. ti[Efj] = tfj-]_
Add a new entry Ein task T
ti[E2] = tin

If t; < t[E4], add a synchronous call in phasef Eg to B
t[En] = tn

If t; > t[E4], add a synchronous call in phase 2 gftg G-
t[En] = tn

for each jin (O, f1):

© N o o 0 b~ w

-50-

a. Add a forwarding call from entry;Eo Ej+1
b. t[Egq] =t
9. Add a forwarding call from entry;Eo E
10.t[Efn] = tin
11.4[E] =t

4.5 Implementation

Both the tree transformation and® pass of SAME technique is implemented in Java

programming language.

Application SAMEL1 is the implementation of tree transformation technique. The input of
SAMEL is an execution trace in A3l file format. It outputs synchronous, asynchronous

and forwarding interactions in a format similar to one found in section 4.3.
Application SAME2 is the implementation of an 2% Pass aspect of SAME technique.

The input of SAMEZ2 program is an ASCII i containing the interactions. It outputs an
LQN performance model.

-51-

Chapter 5: Validation

This chapter demonstrates that the algorithms described in chapter 4 do indeed cover all
the interaction cases as claimed. It describes test scenarios in tmaaliagrams, and a
stepby-step walk through is done at every event to help broaden the understanding of the
tree transformation technique. Also programs SAME 1 and SAME?2 are applied to
corresponding traces to demonstrate automated extraction of conanomipatterns and

performance models.

There are a total of 6 tests, which are divided in three categories. Tests 1, 2 and 3 contain
examples of simple synchronous, asynchronous and forwarding patterns. Tests 4 and 5
contain examples of nested commuetion patterns and Test 6 contains an example of a
scenario representing concurrent systems. It is assumed that all processes are inactive
prior to the start of a scenario and any vertex represents an active vertex unless stated

otherwise.

5.1 Test 1: Synchronous Communication Pattern

The timeline diagram in Figure 5.1 shows two processes, proc(A) and proc(B) with two
interactions between them, one at time t = 10 and the second at time t = 100. The

generation and transformation of interaction tree isa@xgd as follows:

At timet = 10:

Event description:

proc(B) receives a message from proc(A).

SAME action:

There are no trees containing active vertices A or B and under the case 1 in chapter 4, a
new tree H is generated, where A = R(H) and B = IC(Ahe arc between the vertices is
labeled with the time, t = 10.

At timet = 100:

-52-

Event description:
proc(A) receives a message from proc(B). Since between time t = 10 and t = 100,

proc(A) did not perform any activity, it was assumed blocked.

SAME action:

Since B = IC(A), under the case 14, a synchronous message is detected between proc(A)
and proc(B). The dashed arc between vertices B and A, labeled t = 100, is not really a
part of a tree but rather illustrates that a pattern is detected. The Treeisino longer

required after the detection of a pattern and is removed.

p ro CA ” R

procB

P R

Attime t =10 Attime t=10
Q e T=100
=10 - 10\\‘\' — Sync[proc(A),proc(B)];i£10, =100
(B) (B) g initial time
TreeH TreeH t; = final time.

Figure5.1: Example containing a simple synchronous communication pattern.

Programs SAME1 and SAME?2 are applied to corresponding execution ivacebglow.
The output of SAMEL program, which extracts communication patterns, is shown in
Figure 5.2. The graphical representation of the output of SAME2 program, which

generates the LQN performance model, is shown in Figure 5.3.

Tracel{
10 procA sendbrequestl
10 procB receive %requestl

-53-

100 procB send %complete
100 procA receive %complete

}

S procA procB 10 100

Figure5.2; The output of SAMEL program

ED proch

E1l proch

Figure5.3; The graphical representation of LQN performance model

5.2 Test 2: Asynchronous Communication Pattern

The time-line diagram in Figure 5.4 illustrates two processes, proc(A) and proc(B).
There is only one interaction between them at time t = 10, proc(A) sends a message to
proc(B). The scenario ends at time t = 100 and since there is no reply to theesgof
proc(A), the interaction is considered asynchronous. The asynchronous pattern is

detected as follows:
At timet =10
Event Description:

Proc(B) receives a request from proc(A) and it services it.

SAME Action:

-54-

A tree H is created with vertices AR(H) and B = IC(A) under case 1 in chapter 4. The
arc joining vertices A and B is labeled with t = 10, time the message is received by

process proc(B).

At timet =100

Event Description:

The scenario ends and Proc(A) did not receive any reply tad¢heest it had sent earlier
at time t = 10.

SAME Action:
Under case 19 in chapter 4, the interaction between processes proc(A) and proc(B) is

considered an asynchronous interaction.

p ro CA o e e
t=10 t=10C
p roc B e I A A
Atimet=10 Atimet=100
e Async[proc(A),proc(B)]; =10
T1= 10
e ti = initial time

Figure 5.4;: Example containing a smple asynchronous communication pattern.

Below is the corresponding trace for the scenario described in Figure 5.4. It is processed
by SAME1 program and output of which is processed by SAME2 program to generate a

-B55-

performance model. The output of SAME1 program is shown in kgure 5.5 and the

graphical representation of the output of SAME2 program is shown in Figure 5.6.

Trace2{
10 procA send %requestl
10 procB receive %requestl

}

A procA procB 10

Figure5.5; The output of SAMEL program

EDQ proc

E1 proch

Figure5.6: Thegraphical representation of L QN performance model

5.3 Test 3: Forwarding Communication Pattern
The timeline diagram in Figure 5.7 shows an example of a simple forwarding pattern

between processes proc(A), proc(B) and proc(C). The pattern is detected as follows:

At timet = 10:
Event Description:

proc(B) receives a message from proc(A).

SAME Action:
A tree H is created with A= R(H) and B = IC(A) as under the case 1 in chapter 4.

-56-

At timet = 100:

Event Description:

proc(C) receives a message from proc(B).

SAME Action:
Sincethere exists a tree with active vertex B, vertex C is attached adjacent to vertex B,

such that C = IC(B). The arc between vertices B and C is labeled with time t = 100.

At timet = 150

Event Description:

proc(A) receives a message from proc(C).

SAME Action:

In tree H, vertex A > C and as under case 16 in chapter 4, a forwarding communication
pattern is detected between processes proc(A), proc(B) and proc(C) as shown in Figure
5.7

-57-

.-".-".-"ffffffffffffffffffffff_

t=15C

R

proc C B P P P s R

At time t = 10 Attimet =100 Attime t = 150

t=10

TreeH

TreeH

=Fwd[proc(A),proc(B),proc(C)];
=10, $,=100, t=150

t; = initial time
te = 1% forwarding time
t; = final time

Figure5.7: Example of a Forwarding Pattern

Thetrace corresponding the scenario is given below. SAMEL program is applied to it
and the output is shown in Figure 5.8. The communication patterns are processed with
SAME?2 program and the graphical representation of the output, the LQN model is shown
in Figure 5.9.

Trace3{

10 procA send %requestl

10 procB receive %requestl
100 procB send %request2
100 procC receive %request2

- 58 -

150 procC send %complete
150 procA receive %complete

}

F 3 procA procB procC 10 100 150

Figure5.8: The output of SAMEL program

0 [orow |

1 Jorom

Figure5.9: The graphical representation of LQN performance model

5.4 Test 4: Synchronous pattern with nested interaction

The timeline diagram in Figure 5.10 illustrates three processes, proc(A), proc(B) and
proc(C) interacting with each other as follows:

-59-

p roc (A -) R P

Pl P R

t=10(

p roc (C.-).-".-"XXXXXXXXXXXXXXXXXXXXX P

Attimet=10 Attimet=100 Attimet=200

t= 10 t=10 Sync[proc(A),proc(B)];
e e =10, =200
et t=100 async[proc(B),proc(C)];100
(© t = initial time
Tree H tr = final time

Figure5.10: A nested asynchronous message
At timet =10
Event Description:

proc(B) receives a message from proc(A).

SAME Action:
A corresponding tree, tree H is created where vertices A = R(H) and®&A&)l The arc

is labeled with time t = 10.

At timet =100

Event Description:

Proc(C) receives message from proc(B).

-60-

SAME Action:
Vertex C is attached adjacent to vertex B, such that C = IC(B). The arc joining vertices B
and C is labeled with time=t 100.

At timet = 200
Event Description:

Proc(A) receives a message from proc(B). Since proc(A) did not perform any activities

between times t = 10 and t = 200, it is assumed blocked waiting for the reply.

SAME Action:
When proc(A) receives a messdgem proc(B), it is considered a reply, represented as a
dashed arc connecting vertices B and A, to proc(A)’s request sent earlier at time = 10. A

synchronous communication pattern between proc(A) and proc(B) is produced.

Since proc(B) did not wait fothe reply from proc(C) of the request sent at time t = 100,
under the case 2 in chapter 4, an asynchronous message from proc(B) to proc(C) at time t

=100 is produced.

The trace corresponding to the scenario above is given below. The result of SAME1
program is shown in Figure 5.11 and the graphical representation of the LQN network

model, which is the output of SAME2 program, is shown in Figure 5.12.

Trace4{

10 procA send %requestl

10 procB receive %requestl
100 procB send %request2
100 procC receive fequest2
200 procB send %complete
200 procA receive %complete

}

-61-

S procA procB 10 200
A procB procC 100

Figure5.11: The output of SAMEL program

Ed proch
r

E1 proch

EZ procic

Figure5.12: The graphical representation of LQN performance model

5.5 Test 5: Two step forwarding pattern

Timeline diagram irFigure 5.13 illustrates four processes, proc(A), proc(B), proc(C), and

proc(D) interacting with each other as follows:

At timet =10
Event Description:
proc(B) receives a message from proc(A).

SAME Action:
Correspondingly, a tree H is created with trees A = R(H) and B = IC(A) as illustrated

in Figure 5.2.2.

At timet =100

-62-

Event Description:

proc(C) receives a message from proc(B).

SAME Action:
Since there exists a tree with active vertex B, a vertex C, representing a new activation of

procesgroc(C), is attached adjacent to it, such that C = IC(B).

At timet = 150

Event Description:

proc(D) receives a message from proc(C).

SAME Action:

Similar to above, vertex D is attached adjacent to vertex C such that D = IC(C).

At timet = 200
Event Description:

proc(B) receives a message from proc(D). Since proc(B) did not perform any activities
between times t = 100 and t = 200, it is considered blocked, waiting for the reply of the

message sent earlier at time t = 100 to proc(C).

SAME Action:

Under case 16, a forwarding pattern between processes proc(B), proc(C) and proc(D) is
produced. Tree H is transformed such that vertices involved in the forwarding pattern, C
and D are removed, except for vertex B. The reason why vertex B is not removesd i
because it can still play a role in the detection of a communication pattern involving its

parent, vertex A.

At timet = 210

Event Description:

proc(A) receives a message from proc(B). Since proc(A) did not perform any operations
between time t = 10 aht = 210, it is presumed blocked for a reply to the message it had
sent earlier at time t = 10.

-63-

SAME Action:
In tree H, B = IC(A) and under case 14, a synchronous message is produced between
processes proc(A) and proc(B) as illustrated in Figure 5.13. Tree H is no longer

beneficial and thus is removed.

The trace corresponding to the scenario is given below. The result of SAME1 program is
shown in Figure 5.14 and the graphical representation of the LQN network model, which

is the output of SAME2 progm, is shown in Figure 5.15.

Trace5 {

10 procA send %requestl

10 procB receive %requestl
100 procB send %request?2
100 procC receive %request2
150 procC send %request3
150 procD receive %request3
200 procD send %request4
200 procB receive %request4
210 pocB send %complete

210 procA receive %complete

}

-64-

procA

- B e

t=10

procB
A A R

procC

B)

procD

B e

=210

P

P

Attimet=10 Attimet=100 Attimet=150 Attimet=200

t=10 t=10 t=10
® ® 6
t=100 t=100
Tree H
© ©
Tree H t=150
Tree H
Attime t = 210

ti=initial time
tr; =1% forwaring Tree H
time

t=10

Tree H
+

Fwd[proc(B),proc(C),proc(D)];
ti:].OO, ":1:150, t=200

Sync[proc(A),proc(B)];i£10, t=210

Figure5.13: A nested forwarding communication pattern

F 3 procB procC procD 100 150 200
S procA procB 10 210

Figure5.14: The output of SAMEL program

EQ Ao
¥
E1l proch
¥
EZ Aoz
I
I
I
¥
E3 proch

Figure5.15: The graphical representation of LQN perfor mance model

5.6 Test 6: Two concurrent threads

This section provides an example of a concurrent system and illustrates how SAME
technique is applied to concurrent systems. SAME technique processes concurrent
systems the same way it processes regular rooncurrent systems, the only difference
being that in concurrent system, multiple trees are generated, each for a concurrent
behavior. Figure 5.16 illustrates a concurrent system with 5 processes, proc(AB)proc

proc(C), proc(D) and proc(E). proc(A) and proc(C) starts two simultaneous execution

- 66-

threads, interacting with different processes. SAME technique is applied in the following

manner:

At timet =10
Event Description:

proc(B) receives a message frpmc(A).

SAME Action:
A new tree, tree H is generated with vertices A = R(H) and B = IC(A). The arc between

them is labeled with time t = 10.

At timet =20
Event Description:

proc(D) receives a message to proc(C).

SAME Action:
The only tree that eists at this time is tree H and since there is no vertex C in tree H, a
new tree, tree G is generated with C = R(G) and D = IC(C). The arc between the vertices

is labeled with time t = 20.

At timet =100

Event Description:

Proc(E) receives a messdgem proc(D).

SAME Action:

In tree G, there exists a vertex D and according to case 3 in chapter 4, an activation of
proc(E), vertex E is added adjacent to vertex D. The arc between the vertices is labeled
with time t = 100.

-67-

procA -,

.-".-".-".-".-".-".-".-".-".-".-".-"XXXXXXXXXXXXXXXXXXFXXXXJ

t=1C

PIOCB st A

ProcC e A A .-".-".-".:'.-"_.-".-".-".-".-'

procD A

procE o b b A A A A

At t=10 At t=20 At t=100 At t=110
t=10 t=10 t=20 t=10 t=20 t=10 t=20
Tree F t=100 t=110 t=100
Tree + Tree C Tree k
Tree C Tree F Tree C
At t=160
At t=150
(®) - () (A)e.
t=10 t=20 \ t=10 t=10 \
\
\ \ Fwd[proc(A),
&) ! ®) (B) | _ proc®)proc(o));
1 — — —_ —_
t= 110 L= 100 /: t=110 =110 /l t=10, £,=110, =160
© ® D)
_TS: 150 Tree t T t=160
+
Treet Tree C
Fwd[proc(C),

proc(D),proc(E)];
=20, =100, =150

Figure5.16: An example of a concurrent system

-68-

At timet =110

Event Description:

proc(D) receives a message from proc(B).

SAME Action:

Vertex B is available in tree H where as vertex D is in tree G. According to case 9 in
chapter 4, since verted® # R(G) nor D L{G}, vertex D is made inert. The reason why

it is made inert is because, proc(E) may reply to proc(C) completing a forwarding pattern
and there should be a way to determine what processes forwarded the request. Keeping
an inert vertexD in tree G serves that purpose. Vertex D also becomes a member of

PA{proc(D)}. A new active vertex, vertex D is added adjacent to vertex B in tree H.

At time =150
Event Description:

Proc(C) receives a message from proc(E).

SAME Action:

Intree G C =R(G) and E <D < C. According to case 16 in chapter 4, it is a forwarding
pattern. Here keeping an inert vertex D serves the purpose of determining what process
has forwarded a message and when. Therefore, a forwarding pattern is produced between
proc(C), proc(D) and proc(E), starting at time t = 20, forwarding time t = 100 and the
replying time t = 150. Tree G is no longer required and is removed.

At timet = 160

Event Description:

Proc(A) receives a message from proc(D).

SAME Action:

Intree H, vertex A = R(H) and D < B < A. According to case 16 in chapter 4, a
forwarding pattern is produced between processes proc(A), proc(B) and proc(D), starting
at time t = 10, forwarding time t = 110 and the replying time t = 160. Tree H is no longer

required and thus is removed.

-69-

The trace corresponding to the scenario is given below. The result of SAME1 program is
shown in Figure 5.17 and the graphical representation of the LQN network model, which
IS the output of SAMEZ2 program, is shown in Fighres.

Trace6{

10 procA send %requestl

10 procB receive %requestl
20 procC send %requestcl

20 procD receive %requestcl
100 procD send %requestc2
100 procE receive %requestc2
110 procB send %request2
110 procD receive %request2
150 procE send %completecl
150 procC receive %completecl
160 procD send %completel

160 procA receive %completel

}

F 3 procC procD procE 20 100 150
F 3 procA procB procD 10 110 160

Figure5.17: The output of SAME1L program

-70-

ED procd

E1 proch E3 procic

[

I

I

¥
EZ E< proch
Iy
Iy
s
s

=

ES procE

Figure5.18: The graphical representation of LQN performance model

-71-

Chapter 6: Case Study- the ATM-GSM network model

This chapter presents a case study of an ATM5SM network system. The system is
designed using ObjecTime Developer Tool and is provided by ObjecTime Ltd. (now
Rational Software Inc.). The ATM-GSM network is chosen for this case study as a
typicd distributed real-time application in which the driving scenarios are inherently

concurrent, and the events initiating use cases come from multiple sources

This chapter first presents the overview of the ATA@ SM network system, after which

SAME is appliel on it to extract communication patterns and performance models.

6.1 Overview

The chosen ATMGSM network system model was created by ObjecTime Ltd. (now
Rational Software Inc.) as a demonstration of ObjecTime Developer Tool capabilities. It
contains far distributed modules, which describe of two cellular phones, an ATM access
device and an ATM-GSM network model. The Cellular phone and the ATM access
device modules communicate with the ATM-GSM network module through proxies
located with in the ATMGSM network module itself.

The cellular phones are represented through Hyalet GUIs (Graphical User Interface)
and have the functionality of basic cellular phones. They can register/un -register
themselves with the ATMGSM network through power on/oftition, make calls to each

other by dialing each others’ distinct phone numbers and wait for incoming calls.

The ATM-GSM network module is the brain of the system. Figure 6.1-a shows an
overview diagram of the ATM5SM network module with tefevel modués as designed
in ObjecTime Developer Tool and Figure élshows the internal structures of modules.
The network model has a complicated design with 11 té@vel modules or actors, and

well over 100 contained actors. Due to the complexity and size of t he design, the

-72-

behavioral aspect of the actors will not be described fully. The 11 top -level actors
represent the following:

1. One phone GUI (which is divided into two proxies, one for each cellular phone).
Two GSM mobile stations, one for each cellulaomd
Two GSM base stations, one for each cellular phone.
Two GSM services switching center, one for each cellular phone.

An ATM access device

o 0k wDN

An ATM access device proxy (which communicates with the ATM access device
on a different node),

7. An ATM network nmodule

8. A GSM registry module.

control

i361 ss7

Figure6.1: Thetop-level diagram of ATM-GSM network model

-73-

- .vN -
3|Npow Y JoMBU NSO- N 1Y J0an1onuis feusoiulayl :q-1'99.4nbi4

cL,_:wmmcm_\,_mwoSommw_o_Umw_Emm

juswabeueNAljIqoNwsH

NjuswabeueuondsuuoHwWsH

swdinb3a|qo\wsh

BINpoAnuapliaquasgnswish

2222565 Wsb

eswe

—

$AIDSIOUOII0BUUOD

JOUBAUODINDND

aoeuau|IND

EADIUNISGUISANSSIGOIN

Axo1dINb6 m__
u

—

BHAIDSQOUOIIOBUUO0D

BLBAUODINDND

aoeau|INg

VAONUNISQUISANSS|IqOIN

Inosuoyd

AI0MBN NSO-INLV

Jreswie
[EINE] = EENEE]
@oInosayolpeywsH depssgqush
TONETSITOATISUBIT abessaNTSSp sadowie Bl 1 £9¢€!
aseguwisbh Juswabeue) JopesaHToE!
nJa]jonuo|ed H alopuwie p———
dessgwsb Niuswabeue H
Jpjjouopuonelsasegush uonosuuopwsh NIASIUNWIe [ees lunwye glee
Zosegquisb 20SS INwsb 159 1901/8(SS800 YWY
_mm%
3PEaHTIEl 3peaHTIEl
BoyUONEI0TSIONSIA 8l0owie sioouwire
clunuie Tiunwie
_@wm\c:cmvzcwEQSUm _ BayuonesojawoH E
osNAemares Ja)uauoneanuayINy E
AisiBoyuwsh Zlees
NJ8jjouod|ed NJ8jjouoD|ed
NTE62ObUleUbIS NTE6ZOBUIRUBIS
abessaNTSSp abessaNTSSp
NOASIUNWIY TNIASIUNWIY
juswabeuey CNIAS M JOMBNWIY
._cm@mcm_\‘moo_:omow_o_cmm&mm geainosayoipeywsh
wswabeueAijigoNwsb uofelsiani@dsuel |
aseguwsh deinssgwish
NuswabeueuogouuoHwWshH TR
juswdinb3ajiqoNwisH Auiqonuisb
depssgwish
BINPONAUSpPLIaGLIISGNSWSH Niuswabeue
InPoNAuSPLRGUASGNS J3||onuopuonelsasegush uonoauuoDwsh
TTTISSSWSH Tesegush TOSS Wwsb AX0 1RO 1N0 OSSO0 YWY

6.1.1 The Cellular Phones

The cellular phones are implemented by Javapplets as graphical user interface, as
shown in Figure 6.2. Each of the cellular phones has a private phone number. They are
5551111 and 555-2222. Cellular phones in this study are basic POTs (plain old
telephones) and do not have extra features asatall waiting, callerd and so on. Their
basic functions include the following:

Power up

Dialing a number
Sending a call request
Accepting a call request

Clear display screen.

S T o

Power down

The cellular phones are connected to the “phoneGui” module iIATM-GSM network

model via communication port 2711 .

Figure 6.2 The cellular phonesin ATM-GSM network system.

-75-

6.1.2 PhoneGui Module

The PhoneGui actor is connected to cellular phones implemented in Java applet GUI.
PhoneGui acts as a proxy for comomnication between cellular phones and ATIGSM
network module. PhoneGui Module has threemsaldules as follows:
1. GUIProxy
2. MobileSubscriberUnitGtAA
a. GUinterface
b. GtfGuiConverter
c. ConnectionObserver
3. MobileSubscriberUnitGtFB
a. GUinterface
b. GtfGuiConverter
c. ConnectimObserver

GUInterface, GtfGuiConverter and Connection Observer are sub -modules of
MobileSubscriberUnitGtfA and MobileSubscriberUnitGtfB. Figure 6.3 shows the
internal structure of phoneGui actor with three contained actors.

guiStatus

guiStatus

Figure 6.3; Internal Structure of phoneGui Actor

-76-

6.1.3 GSM5551111 & GSM5552222 Modules

Actors “GSM5551111” and “GSM5552222” represents GSM mobile stations, one for
each cellular phone. They are the freahds of the ATMGSM network system. These
modules are identical in struceuand behavior. They are responsible for managing GSM
connection, mobility, radio resources and identifying subscriber. Each contains two sub
modules as follows:
1. GSMSubscriberldentifyModule
2. GSMMobileEquipment
a. GSMConnectionManagementU
b. GSMMobilityManagemen

c. GSMRadioResourcesManagement

Figure 6.4 shows the internal structure of GSM mobile stations (GSM5551111 and
GSM5552222).

umlinterface

Figure 6.4; Internal Structure of GSM mobile Station module

6.1.4 GSMBasel & GSMBase2 Modules

GSMBasel and GSMBase?2 represent th GSM base stations, and are identical in
behavior and structure. Their responsibilities are to act as GSM base station controllers
and GSM transceiver stations. They have the following sub modules.

1. GSMBaseStationController

-77 -

a. GSMBssMap
2. GSMBaseTransceiver&ton

a. GSMRadioResources Management

Figure 6.5 shows the internal structure of GSMBasel module.

hssmapUser rrmUser

alnterface

. |uminterface

Figure 6.5: Internal Structure of GSM Base Station module

6.1.5 GSMMSSC1 and GSMMSSC2 modules
GSMMSSC1 and GSMMSSC2 modules are identical in behavior asttucture. They

represent GSM mobility services switching centers and have the followingailides.

1. GSMConnectionManagementN
2. GSMMobilityManagement
3. GSMBaseMap

Figure 6.6 shows the internal structure of the GSMMSSC1 which is also the same for
GSMMSSC2.

-78-

bssmaplUser

alnterface

Figure6.6: Internal Structure of GsmM SSC1 module

6.1.6 GSMRegistry Module

GSMRegistry module represents a registration center for the GSM cellular phones. It
serves as a central station with responsibilities of authenticating, identifying and

registering local and visitor cellular phones. It has the followingrsabules.

AuthenticationCenter
GateWayMsc

HomeLocationReg

P W Dbdp PR

VisitorsLocationReg

Figure 6.7 shows the internal structure of GSMRegistry module.

-79-

queryAuC

ss7
queryAuC

Figure 6.7: Internal Structure of gsmRegitries module

6.1.7 ATMAccessDeviceProxy Module

ATMAccessDeviceProxy Module is located on the GSM5551111 side of the model as
shown in Figure 6.1. It serves as a proxy for ATMAccessDeive module located on a

different node. Figure 6.8 shows the intermalcture of ATMAccessDeviceProxy.

control

iI361X cn

i361

Figure 6.8: Internal Structure of atmAccessDeviceProxy module

-80-

6.1.8 ATMAccessDevice Modules

There are two AtmAccessDevice modules in this AB%M model. One is located on a
different node, which is accessed throught®AccessDeviceProxy and the other in the
same model on GSM5552222 side of the model. They are identical in structure and
behavior and serves as a front end to ATM network. Following are the sumodules
located in AtmAccessDevice modules and Figure 6.9ows the internal structure of
AtmAccessDevice module.

1. aal5
a. nullSscs
b. atmCpcs
I. i363Trailer
ii. atmSar
2. atmuUni
a. atmCore
b. i361Header
3. saal
a. sscf
b. sscop
c. atmCpcs
I. 1363Trailer
d. atmSar
4. atmUniSvcU
a. callControllerU
b. signallingQ2931U

c. dsslMessage

-81-

callControlProf

dss1 Protoc;:nl

aalUser dss1Protocol

atmUser
atmUser

i361Protocol

Figure 6.9: Internal Structure of atmAccessDevice module

6.1.9 AtmNetwork Module

AtmNetwork module acts as a central switching station for the ATM network. To
represents modules or actors involved for each cellular phone, it is designed
symmetrically. Figure 6.10 shows the internal sructure of the AtmNetwork module.
Following are subnodules of AtmNetwork module.

1. AtmUniScvN1
a. DsslMessage
b. SignallingQ2931N
c. CallControllerN
2. Saall

-82-

a. Sscf
b. Sscop
c. AtmCpcs
I. 1363Trailer
d. AtmSar

. atmUnil

a. atmCore
i. i361Header

. AtmUniScvN2

a. DsslMessage
b. SignallingQ2931N
c. CallControllerN

. Saal2?

a. Sscf
b. Sscop
c. AtmCpcs
i. 1363Trailer
d. AtmSar

. atmuUni2

a. atmCore
i. i361Header

-83-

allControlProtocol callControlProtogol

dss1Prdtocol dss1Prdtocol
dss1Protocol dss1Protocol

atmSig atmUser atmUser atmSig
atmSig atmSig

i361Projocol i361Projocol

| |
iI361A i361B

Figure 6.10: Internal Structure of atmNetwork module

6.2 The Scenarios

This section describes the extraction of communication patterns and performance models
usingSAME technique with ATMGSM network model. The scenarios are derived from
use cases based on functionality of cellular phones. In this study five scenarios are
chosen as follows:

1. Phone 558222 turns on through power on/off button.

2. Phone 558222 makes aall to phone 558111

3. Phone 558222 accepts an incoming call from 56511

4. Phone 558222 terminates the call.

5. Phone 558222 turns off through power on/off button.
Each scenario is processed separately with SAME technique to extract communication

pattens and performance models.

-84-

6.2.1 Switching Power to ON

In this scenario, cellular phone 555-2222 switches its power on. GtfGuiConverter
informs this action to GSMMobileStation, which informs GSMBaseStation.
GsmBaseStation further informs to GSMMobilit$erviceSwitchingcenter. From there

the signal goes to GSMRegistry, which registers the phone. Figure 6.11 illustrates a
message sequence chart of the scenario. The trace of the scenario can be found in
Appendix A1l. SAME technique is applied to the tracand communication patterns are
obtained, which are shown in Appendix A2. The communication patterns are processed
with 2" Pass technique to generate a LQN performance model. The LQN performance
model in text form is in Appendix A3, and graphical versn is displayed in Appendix

Ad.

6.2.2 Requesting a Phone Call

In this scenario, cellular phone 558222 makes a phone call to phone 58311. The
scenario is up to the point where phone 5%%11 is informed of an incoming call but it

has not yet picke up so the phone is ringing. This scenario contains over 53 actors and
due to the complexity and size of the scenario and distributed modules involved,
ObjecTime Developer tool is unable to create a message sequence chart. However an
execution trace isncluded in Appendix B1. The trace is processed with the SAME
technique and the communication patterns are extracted, as shown in Appendix B2. The
communication patterns are processed witll Pass technique and a LQN performance
model is extracted. The model in textual form is in Appendix B3 and graphically

displayed in Appendix B4.

-85-

ol.reusds dnsemod Jo 11eyd aouanbas abessaw ay | :TT'994nbiH

Iowl

— — p— — — — — — — — —
ERIGE
o
JLUBYINY
PEABOBGAIBID:
ET T
BRI
BRI
UIELUBYINY >
uopeIUAyIny
)
L)
FAC0T)
£4BND
dniamod
Tviomnog
dndamog
Tniamog ‘Am,mw_o._mﬂoﬂ
drrefiog
apnpay y
i}
dramhid
BRI B0
druaog
PE——
U0
Foea frea {freay A {Aread [} 4 [4 [} 4 (5 { B ¢ Bupuun
e I o 1 S —— N P —" g 7] | | [e T T T —
(1-29) Jatuaguapeapuaany (| -|9) Bayfipuappuawdnby (. -95) Baguopesnicinagss (1-09) Bayuopedetawey (h-L5 1% m L) inh3a) (2-201) (2-101) 22epzuInf (1 -g6] AxoudInd (2-1 1} Janmauodineif (2-001) ai9yuniaguasangalgoul

| "ABinOg 25UN

6.2.3 Accepting a Phone Call

In this scenario, cellular phone 588222 accepts a phone call from pl®b8551111 and

a phone line is connected between them. Again due to the complexity and size of the
scenario and distributed modules involved, ObjecTime Developer tool is unable to create
a message sequence chart. However an execution trace is availableppendix C1.

The trace is processed with SAME technique and the communication patterns are
extracted, as shown in Appendix C2. The communication patterns are processetf with 2
Pass technique and a LQN performance model is extracted. The moddlial ferm is

in Appendix C3 and graphically displayed in Appendix C4.

6.2.4 Termination of a Phone Call

In this scenario, cellular phone 588222 terminates a phone call. An execution trace of
the scenario is available in Appendix D1. The trace i®pessed with SAME technique
and communication patterns are extracted, as shown in Appendix D2. The
communication patterns are processed with Pass technique and a LQN performance
model is extracted. The model in textual form is in Appendix D3 and grap hically

displayed in Appendix D4.

6.2.5 Switching Power Off

In this scenario, cellular phone 555-2222 switches its power off. GtfGuiConverter
informs this action to GSMMobileStation, which informs GSMBaseStation.
GsmBaseStation further informs to GSMMbilityServiceSwitchingcenter. From there

the signal goes to GSMRegistry, which deregisters the phone. The trace of the scenario
can be found in Appendix E1. SAME technique is applied to the trace and
communication patterns are obtained, which are shown in Appendix E2. The
communication patterns are processed with 2 Pass technique to generate a LQN

-87-

performance model. The LQN performance model in text form is in Appendix E3 and

graphically displayed in Appendix E4.

6.3 Conclusion

The SAME tools scaleip to industrialsize traces. The trace analysis algorithm handled

large traces with 600 events and largetsabs upto 250 nodes correctly.

Syntactically and semantically correct LQN models are produced. The models produced
by the five scenarios were successfully parsed and executed by the LQN simulator
(“parasrvn”) and gave performance results. In scenario 3, a trivial addition had to be

made to the model, to add a driver task.

-88-

Chapter 7: Conclusion

This chapter summarizes the work performedthms thesis and presents the main areas,

which would require additional research and work to be done.

7.1 Contributions

There are several contributions of this research, which are as follows:

7.1.1. A complete algorithm for the detection and extraction of the
communication patterns.

SAME technique extracts three different communication patterns, which are extremely
important from the point of view of performance engineering and can be found in almost

all message communication based systems. Thesmpaite as follows:

1. Synchronous communication pattern
2. Asynchronous communication pattern

3. Forwarding communication pattern.

The technique is based on tree transformations to recognize and extract communication
patterns. Tree transformation is a dynamiayof extracting communication patterns; it

processes events as they occur, hence it is fast and efficient.

7.1.2 An algorithm for development of LQN performance model from
communication patterns.

The 29 pass algorithm of the SAME technique genera®@Nl Iperformance models.

-89-

7.1.3 The validation of the algorithm

The algorithms of the SAME technique are verified in chapter 5, through stdyy-step

process.

7.1.4 The development of general trace -based model building
technique

There is some previoussearch done in the automated extraction of performance models
from an execution trace. The closest study is done by Curtis Hrischuk, where

performance models are created through a template matching technique, called TLC. It
was based on a specific kind trace, an angidrace where each thread of execution was

given a specific identification. This is no longer the case in this study. The SAME
technique processes any general trace, as long as tasks have unique identifiers, and events
recorded in tracera in chronological order or have timestamps.

Furthermore, the previous research was limited to extracting performance models from
one scenario at a time. This is also no longer the case. SAME technique can process and
extract communication patternscaperformance models from a trace containing different

scenarios.

7.1.5 The analysis of substantial telephone case study

The SAME technique is applied to a distributed ATM -GSM network model, a
complicated design built in ObjecTime Developer tool. Syrgacally and semantically
correct LQN models are produced. The models produced by the five scenarios were
successfully parsed and executed by the LQN simulator (“parasrvn”) and gave

performance results.

-90-

7.1.6 The implementation of the SAME algorithms

The SAME technique is implemented in Java programming language as two programs,
SAME1 and SAME2. SAMEL1 program extracts communication patterns from a trace
through tree transformation technique and SAME2 program extract LQN performance
model from the trace. The SAME tools scale up to industrial-size traces. The trace
analysis algorithm handled large traces with 600 events and large swbes upto 250

nodes correctly.

7.2 Limitations

There are several main points to highlight in this section:

* SAME technique requires that the events should be in chronological order with
timestamps. This requires the notion of a global clock or similar which may pose
problems in the case of obtaining correct traces in heterogeneous distributed
systems.

* Inthe case wherenessage signals do not have unique identification and it is not
certain which task receives which message, SAME assumes FIFO queue for
messages.

* SAME technique does not tackle the notion of thread join and further research is
required in this area.

-91-

[Buhro6]

[El-Sayed99]

[Fenton97]

[Gentleman81]

[HayesRoth78]

[Hrischuk 993a]

[Hrischuk95]

References

R.J.A Buhr and R.S. Casselman, “Use Case Maps for atjiectted
systems”. Prentice Hall, 1996.

Hesham M. ElSayed, A Framework For Automated Performance
Engineering of Distributed Redime Systems”, PHD Thesis, Dept. of
Systems and computer engineering, Carleton University, 1999.

Fenton, N.E. and S.L. Pfleeger. “Software Metrics: A Rigorous and

Practical Approach”. PWS Publishing Company, 1997.

W.M. Gentleman and H.T. Kung, “Matrix triangulaation by systolic
arrays”, SPIE Reallime Signal Processing IV 298 1981.

F. HayesRoth and D. Waterman. “Principles of pattelirected
inference systems”. In D. Waterman and F. H&@th, editors,
PatternDistributed Inference Systensages 57-601. Academic
Press, 1978.

C. Hrischuk, C.M. Woodside, J. Rolia and R. Iversen, “THzased

load characterization for generaling software performance models”,
IEEE Transactions on Software Engineering, vol. 25, no. 1, January
1999.

C. Hrischuk, J. Rolia, C.M. Woodside, “Automated generation of
software performance model using an obgatnted prototype”,
International Workshop on Modeling and Simulation, Analysis, and
Simulation of Computer and TelecommunioatiSystems
(MASCOTS '95), pp. 399109, Durham, NC, 1995.

-92-

[Hrischuk95a]

[Jain91]

[Liu73]

[Menace98]

[Menace99]

[Narain96]

[Neilson95]

Curtis Hrischukm “The automatic generation of software performance
models using prototypes”. Master’s Thesis, Dept. of Systems and

computer engineering, Carleton University, 1995.

R. Jain. “The Art of Computer Systems Performance Analysis”, John
Wiley & Sons, 1991

C.L.Liu and J.W. Layland. “Scheduling Algorithms for
Multiprogramming in a Hard Redlime Environment” J. ACM, 20,
pp. 4061.

D. Menasce anHl. Gomaa, “On a language based method for
software performance engineering of client/server systems”.
Proceedings of the First International Workshop on Software and
Performance WOSP 98, Santa Fe, New Mexico, Octob&6,12998.

D. Menasce ahH. Gomaa, “A method for design and performance
modeling of client/server systems”. to appear in the IEEE Transactions
on Software Engineering.

R. Narain, D. Rimel and P. Fingar, “Asynchronous message
communication between distributed busmebjects”,

http://www.trcinc.com/

J.E. Neilson, C.M.Woodside, D.C. Petriu, S.Majumdar "Software
Bottlenecking in ClienServer Systems and Rendezvous Networks,"
|EEE Transactions on Software Engineering, Vol. 21, No. 9, pp.776
782, Sept. 1995.

-03-

[Rational97] Rational Software Corporation, “A Rational Approach to Software
Development Using Rational Rose 4.0,

“http://lwww.rational.com/products/whitepapers/293.jsp”

[Rolia95] J. R. Rolia and Kenneth Sekc“The method of layers”, IEEE
Transactions on Software Engineering, Vol. 21, No. 8, pp.7689
1995.

[schwarz94] R. Schwarz and F. Mattern. “Detecting casual relationshrips in

distributed computations: in search of the Holy Grail. Distributed
Computng”, 7(3):149174, 1994.

[Scratchley99] W.C. Scratchley and C.M. Woodside, “Evaluating concurrency
options in software specifications”, Submitted to MASCOTS 99.

[Smith90] C.U. Smith, “Performance Engineering of Software Systems”,
AddisonWesley Publising Co., New York, NY, 1990.

[Strosnider96] Jay K. Strosnider, “Performance Engineering Reaale/Multimedia

Systems”, “http://www.ece.cmu.edu/afs/ece/usr/jks/web/home.html”

[Waheed95] A. Waheed, V. Mehfi, and D.T. Rover. “A model for instrumentation
system management in concurrent systems.” Proceedings of the
Twenty Eigth Hawaii International Conference on Systems Sciences,
January 1995.

[Woodside89] C.M. Woodside, “Throughput calculation for basic stochastic

rendezvous networks”, Performance Ewdlon, Vol. 9, No. 2, pp.
143160, 1989.

-94-

[Woodside95]

C.M. Woodside and G. Ragunath, "General Bypass Architecture for
High-Performance Distributed AlgorithmdProc. 6th IFIP

Conference on Performance of Computer Networks, Istanbul, Oct. 23
26, 1995, in'Data Communications and their Performance”, eds. S.
Fdida and R.U. Onvural, Chapman and Hall, 1996, pp%1

-05-

APPENDIX Al- PowerOn: sequence Trace

thread Power.1 {

760209 & f Cui Converter: phoneGui/ nmobi | eSubscri ber Unit G f B/ gt f Gui Converter(111-2) send
% Pw OnAck;

760209 G f Gui Converter: phoneGui/ nobi | eSubscri berUnit G f B/ gt f Gui Converter(111-2) spawn
Power . 1. 1;

760214 & f Cui Converter: phoneGui/ nmobi | eSubscri ber Unit G f B/ gt f Gui Converter(111-2) send
%Power Up;

760214 & f Gui Converter: phoneGui/ nobi | eSubscri berUnit G f B/ gt f CQui Converter(111-2) spawn
Power . 1. 2;

b

thread Power.1.1 {

760211 GUI Proxy: phoneGui / gUl Proxy(95-1) state running;

760211 GUI Proxy: phoneGui / gUl Proxy(95-1) receive %bPw OnAck;

thread Power.1.2 {

760214 G f QU I nterface: phoneGui/ nobil eSubscri berUnitGfB/ gUl I nterface(101-2) state Idle;
760214 G f QU I nterface: phoneGui/ nobil eSubscri berUnit & fB/gU I nterface(101-2) receive
%Power Up;

760230 G f QU I nterface: phoneGui/ nmobi | eSubscri berUnit & fB/gU I nterface(101-2) send
%Power Up;

760230 G f QU I nterface: phoneGui / nobi | eSubscri berUnit&fB/gU Interface(101-2) spawn
Power . 1. 2. 1,

760234 & fCUl I nterface: phoneGui/ nobil eSubscri berUnit&fB/gU I nterface(101-2) send % r;
760234 G f QU I nterface: phoneGui/ nobil eSubscri berUnit&fB/gU I nterface(101-2) spawn
Power . 1. 2. 2;

760239 G f QU I nterface: phoneCui/ nobi | eSubscriberUnit&fB/ gUl I nterface(101-2) state
Power | dl e/ Activel dl e;

H

thread Power.1.2.1 {

760230 Mobi | eSubscri berUnit G f: phoneGui/ nobi | eSubscri berUnit G fB(100 2) receive %ower Up;
760251 Mobi | eSubscri berUnit Gt f: phoneGui / nmobi | eSubscri ber Uni t & f B(100-2) send %Power Up;
760253 Mobi | eSubscri berUni t G f: phoneGui / nobi | eSubscri berUnit G fB(100 2) state
Initialized;

760251 Gsm\bbi | eSt ati on: gsnb552222(107-2) state Si;

760251 Gsm\bbi | eSt ati on: gsnb552222(107-2) receive %ower Up;

760259 Gsm\bbi | eSt ati on: gsnb552222(107-2) send %Power Up;

760260 Gsmbbi | eEqui pnent : gsnb552222/ gsmivbbi | eEqui pnent (116-2) state Si;

760260 Gsmbbi | eEqui pnent : gsnb552222/ gsmivbbi | eEqui pnent (116-2) recei ve %Power Up;

760272 Gsm\bbi | eEqui pnent : gsnb552222/ gsmvbbi | eEqui pnent (116- 2) send %Power Up;

760272 Gsm\bbi | i t yManagenent : gsnb552222/ gsmivbbi | eEqui pnent / gsmivbbi | i t yManagenent (118 2)
state Sl;

760272 Gsmbbi | i t yManagenent : gsnb552222/ gsnmivbbi | eEqui pnent / gsnivbbi | i t yManagenent (118 2)
recei ve %ower Up;

760276 Gsm\bbi | it yManagenent : gsnb552222/ gsmvbbi | eEqui pnent / gsnivbbi | i t yManagenent (118 2)
send % Power Up;

760276 Gsmbbi | it yManagenent: gsnVSSC2/ gsmivbbi | i t yManagenent (84-1) state Si;

760276 Gsm\bbi | it yManagenent : gsnmVSSC2/ gsmvbbi | i t yManagenent (84-1) recei ve %Power Up;
760280 Gsm\bbi | it yManagemnent : gsmVSSC2/ gsmivbbi | i t yManagenent (84-1) send %Power Up;

760280 GsmNet wor kRegi stry: gsnRegi stry(57-1) state Ready;

760280 GsmNet wor kRegi stry: gsnRegi stry(57-1) receive %ower Up;

760286 GsmNet wor kRegi stry: gsnRegi stry(57-1) send %uery;

760286 GsmNet wor kRegi stry: gsnRegi stry(57-1) spawn Power.1.2.1.1;

760287 GsmNet wor kRegi stry: gsnRegi stry(57-1) send %uery;

760287 GsmNet wor kRegi stry: gsnRegi stry(57-1) spawn Power.1.2.1.2;

760289 GsmNet wor KRegi stry: gsnRegi stry(57-1) send %uery;

760289 GsmNet wor kRegi stry: gsnRegi stry(57-1) spawn Power.1.2.1.3;

h

thread Power.1.2.1.1 {

760286 GsmHoneLocati onRegi st er: gsnRegi stry/ HoneLocat i onReg(60 1) state Ready;

760286 GsmHomelLocat i onRegi ster: gsnmRegi stry/ HomeLocat i onReg(60-1) receive %uery;

760293 GsmHoneLocat i onRegi st er: gsnmRegi st ry/ HomeLocat i onReg(60-1) send %uery;

760293 GsmHoneLocat i onRegi st er: gsnRegi stry/ HoneLocat i onReg(60- 1) spawn Power.1.2.1.1.1;
760296 GsmHoneLocati onRegi ster: gsnRegi stry/ HoneLocat i onReg(60- 1) send %Aut henti cati on;
760296 GsmHomeLocat i onRegi ster: gsnmRegi stry/ HonelLocati onReg(60-1) spawn Power.1.2.1.1.2;
760297 GsmHoneLocat i onRegi st er: gsnmRegi stry/ HoneLocat i onReg(60-1) state Authenticating;
h

-96-

t hr ead
760293
760293
760306
760307

Power.1.2.1.1.1 {

GsmAut henti cati onCent er: gsnRegi stry/ Aut henti cati onCenter (62 1) state Ready;
GsmAut hent i cati onCent er: gsmRegi stry/ Aut henti cati onCenter(62-1) receive %uery;
GsmAut henti cati onCent er: gsnRegi stry/ Aut henti cati onCenter (62 1) send %Response;
GsmAut henti cati onCent er: gsnRegi stry/ Aut henti cati onCenter (62 1) state

Quer yRecei ved;

760306 GsmHonelLocati onRegi st er: gsnRegi stry/ HomeLocati onReg(60-1) recei ve %Response,;
760313 GsmHoneLocat i onRegi st er: gsnmRegi st ry/ HoneLocat i onReg(60- 1) state ResponseRecei ved;
h

thread Power.1.2.1.1.2 {

760296 GsmAut henti cationCenter: gsnmRegi stry/ Aut henticationCenter (62-1) receive

%Aut henti cati on;

760309 GsmAut henti cationCenter: gsnRegi stry/ Aut henticationCenter (62 1) send

%Aut henti cati on;

760310 GsmAut henti cationCenter: gsnRegi stry/ Aut henticationCenter (62 1) state Ready;
760309 GsmHoneLocat i onRegi st er: gsnmRegi st ry/ Honelocati onReg(60-1) receive %Aut henticati on;
760315 GsmHoneLocat i onRegi st er: gsnRegi stry/ HoneLocat i onReg(60- 1) send %Response;

760316 GsmHoneLocati onRegi st er: gsnRegi stry/ HoneLocat i onReg(60 1) state Ready;

760315 GsmNet wor kKRegi stry: gsnRegi stry(57-1) receive %Response;

760317 GsmNet wor KRegi stry: gsnRegi stry(57-1) state Ready;

h

thread Power.1.2.1.2 {

760287 GsnVi sitorsLocationRegi ster: gsnRegi stry/ VisitorsLocati onReg(58 1) state Ready;
760287 GsnVi sitorsLocationRegi ster: gsnRegi stry/ VisitorsLocati onReg(58 1) receive %uery;
760299 GsnVi sitorsLocationRegi ster: gsnRegi stry/ VisitorsLocati onReg(58 1) send %Response;
760299 GsmNet wor kRegi stry: gsnRegi stry(57-1) receive %Response;

760311 GsmNet wor kRegi stry: gsnRegi stry(57-1) state Ready;

b

thread Power.1.2.1.3 {

760289 GsnEqui pnent | dentityRegi ster: gsnmRegi stry/ Equi pnent | dentityReg(61-1) state Ready;
760289 GsnEqui prent | denti t yRegi st er: gsnRegi stry/ Equi pnent | dentityReg(61-1) receive
%ery;

760303 GsnEqui pnent | dent i t yRegi ster: gsnRegi stry/ Equi pnent | dentityReg(61-1) send
%Response;

760303 GsmNet wor kRegi stry: gsnRegi stry(57-1) receive %Response;

760312 GsmNet wor KRegi stry: gsnRegi stry(57-1) state Ready;

b

thread Power.1.2.2 {

760235 G f GQui Converter: phoneGui/ nobi | eSubscri berUnit G f B/ gt f Gui Converter(111-2) receive
9% r;

b

-97-

APPENDIX A2- PowerOnsequence: Communication
Patterns

A

G f Gui Convert er: phoneGui / nobi | eSubscri berUnit G f B/ gt f Gui Converter(111-
2) QU Proxy: phoneGui / gU Proxy(95-1) 760211

S GsnHonelLocat i onRegi st er: gsnRegi stry/ HoneLocat i onReg(60-1)

GsmAut henti cati onCent er: gsnRegi stry/ Aut henti cati onCenter (62-1) 760293
760306

S GsnHonelLocat i onRegi st er: gsnmRegi st ry/ HomeLocat i onReg(60-1)

GsmAut henti cati onCent er: gsnRegi stry/ Aut henti cati onCenter(62-1) 760296
760309

S GsniNet wor kRegi stry: gsmRegi stry(57-1)

GsnHomelLocat i onRegi st er: gsnmRegi stry/ HonelLocat i onReg(60-1) 760286 760315
S GsmNet wor KRegi stry: gsnRegi stry(57-1)

GsnVi si t orsLocati onRegi st er: gsnmRegi stry/ Vi sitorsLocati onReg(58-1)
760287 760299

S GsniNet wor kRegi stry: gsmRegi stry(57-1)

GsnEqui pnent | dent i t yRegi st er: gsnRegi stry/ Equi pment | dentit yReg(61-1)
760289 760303

S

& f Gui Convert er: phoneGui / nobi | eSubscri berUnit G fB/ gtfGui Converter(111-
2) GfQUInterface: phoneGui/ nobil eSubscriberUnit&fB/ gUlInterface(101-
2) 760214 760235

A GfGJ Interface: phoneCui / mobi | eSubscriberUnitGfB/ gUlInterface(101-2)
Mobi | eSubscri ber Uni t & f: phoneCui / nobi | eSubscri berUnit G f B(100-2) 760230
A Root

& f Gui Convert er: phoneGui / nobi | eSubscri berUnit G fB/ gtfGui Converter(111-
2) 760209

A Mobi | eSubscri ber Unit & f: phoneCui / nobi | eSubscri berUni t G f B(100- 2)
Gsmvbbi | eSt at i on: gsnb552222(107-2) 760251

A GsnmiVbbi | eSt ati on: gsnb552222(107-2)

Gsmivbbi | eEqui pnent : gsnb552222/ gsnivbbi | eEqui prment (116-2) 760260

A Gsm\vbbi | eEqui prent : gsnb552222/ gsmivbbi | eEqui pnent (116- 2)

Gsmivbbi | i t yManagenent : gsnb552222/ gsnivbbi | eEqui prent / gsnivbbi | i t yManagene
nt (118-2) 760272

A

Gsnmivbbi | i t yManagenent : gsnb552222/ gsnivbbi | eEqui pnent / gsnivobi | i t yManagene
nt (118-2) GsnivobilityManagenent : gsnVSSC2/ gsnivbbi | i t yManagenent (84-1)
760276

A Gsm\bbi | i t yManagenent : gsmVSSC2/ gsimivbbi | i t yManagenent (84-1)

GsmiNet wor kRegi stry: gsnRegi stry(57-1) 760280

-08-

APPENDIX A3- PowerOnsequence: LOQN Performance
Model

G
0.0
0

0
0.9
-1

P1
p procl f
-1

T13

t GUIProxy_phoneGui_gUIProxy_95 1 f E1 procl

t GsmAuthenticationCenter_gsmRegistry _AuthenticationCenter_62_1 f E121E13
procl

t GsmEquipmentldentiRegister_gsmRegistry_EquipmentidentityReg_61 1 fA11
procl

t GsmHomeLocationRegister_gsmRegistry HomelLocationReg_60_11 p®cl

t GsmMobileEquipment_gsm5552222 gsmMobileEquipment_116 2-fifBocl

t GsmMobileStation_gsm5552222 1@7# E4 -1 procl

t

GsmMobilityManagement_gsm5552222 gsmMobileEquipment_gsmMobilityManageme
nt 118 2 f E6-1 procl

t GsmMobilityManagement_gsmMSSC2_gsmMobilityManagement_84 1-fifprocl
t GsmNetworkRegistry _gsmRegistry 57 1 f H8procl

t GsmVisitorsLocationRegister_gsmRegistry_VisitorsLocationReg_58 1 +Ep@ocl
t GtfGUIInterface_phoneGui_mobileSubscriberUnitGtfB_gUIlInterface_101 2-lE2
procl

t GtfGuiConverter_phoneGui_mobileSubscriberUnitGtfB_gtfGuiConverter 11102 r E
-1 procl

t MobileSubscriberUnitGtf_phoneGui_mobileSubscriberUnitGtfB_100_2 fEBrocl
-1

E 14
sE11.01
sE121.01
sE131.01
sE111.01
SE91.01

y E9 E12 1.61
y E9 E13 1.061

-99.-

sE51.01.01

z E5E6 0.0 1.61
sE41.01.01
zZE4E50.01.61
sE61.01.01
ZE6E70.01.61
SE71.01.01
zZE7E80.01.61
sE81.01.01

y E8 E10 0.0 1.61
y ES E11 0.0 1.61
y E8 E9 0.0 1.61
sE101.01
sE21.01
zZE2E31.01
SE01.01.01
ZEOE11.00.61
y EO E2 0.0 1.61
SE31.01.01
ZE3E40.01.61
-1

- 100-

APPENDIX A4- PowerOnsequence: Graphical LQN
Performance Model

‘ GifGuiConverter_phoneGui_mobileSubscriberUnitGifB_gtfGuiCanverter_111_2

m
=

|E1 ‘GUIPmxy_phuneGuw_gU\Pruxy_%j E; ‘GHGUI\nteﬁace_phuneGuw_muhi\eSubscrmerUniIGNE_gUHnterrace_W01_2
| = ‘ MobileSubscriberUnitG_phoneGui_mobileSubscriberUnitGii_100_2 |
|E4 ‘GsmMub\lestatiun_gsm5552222_107_2
|E5 ‘GsmMub\leEqu\pment_gsm5552222_gsmMub\IeEqummem_116_2
| E6 ‘ GamMobilityManagement_gsma552222_gsmMobileEquipment_gsmMabilitManagement_116_2
| E7 ‘ GamobilityManagement_gsmk35C2_gsmobilityManagement_B4_1
| Ed ‘ GsmMetworkRegistty_gsmRegisty 57_1
+ ¥
|EH ‘GsmEuu\pmentldentWRegister_gstegistry_Equipmemldemmfﬁeg_m_1‘ Ed ‘GsmHnmeLucat\unReg\ster_gsmReg\stnf_HumeLucatmnReg_ﬁD_W‘ E10 |GsmV\s\lnrsLncatinnReg\ster_gsteg\sw_\ﬂswlnrsanatinnReg_SE_W

E13

| E12 GsmAuthenticationCenter_gsmRegistry_AuthenticationCenter_§2_1 |

-101-

APPENDIX B1- SendingRequest: Sequence Trace

thread SendingCall request. 1.1 {

174863 G f Gui Converter: phoneCui / nobi | eSubscri ber Uni t & f B/ gt f Gui Converter (111-2) send
¥snd;

174864 G f QU I nterface: phoneCui/ nobi | eSubscriberUnit&fB/ gUl I nterface(101-2) state
Power 1 dl e/ Col l ectDigits;

174864 G f QU | nterface: phoneCui / nobi | eSubscri berUnit & fB/ gUl I nterface(101-2) receive
¥snd;

174868 G f QU I nterface: phoneCui / nobi | eSubscriberUnit & fB/ gUl I nterface(101-2) send %Snd;
174868 G f GUl I nt erface: phoneCui / nobi | eSubscri berUnit & fB/ gUl I nterface(101-2) spawn
Sendi ngCal | request . 1. 1. 1;

174871 G f QU I nterface: phoneCui / nobi | eSubscri berUnit &G fB/ gUl I nterface(101-2) send

% spl ay;

174871 G f QU I nterface: phoneCui / nobi | eSubscri berUnit & fB/ gUl I nterface(101-2) spawn
Sendi ngCal | request . 1. 1. 2;

174874 G f QU I nterface: phoneCui / nobi | eSubscriberUnit & fB/ gUl I nterface(101-2) state
Power | dl e/ Set ti ngUp;

b

thread SendingCallrequest.1.1.1 {

174869 Mbbi | eSubscri ber Uni t & f: phoneCGui / nobi | eSubscri ber Uni t & f B(100-2) recei ve %8nd;
174876 Mobil eSubscri berUnit G f: phoneGui / nobi | eSubscri ber Uni t & f B(100-2) send %Snd;
174878 Mobi | eSubscri berUnit G f: phoneGui / mobi | eSubscri berUnit & fB(100-2) state
Initialized;

174876 Gsmibbil eStati on: gsnb552222(107-2) state Si;

174876 Gsmibbil eSt ati on: gsnb552222(107-2) recei ve ¥8nd;

174885 Gsmivbbi | eSt ati on: gsnb552222(107-2) send %sSnd;

174885 Gsmivbbi | eEqui prent : gsnb552222/ gsmivbbi | eEqui prent (116-2) state S1;

174885 Gsmivbbi | eEqui prent : gsnb552222/ gsmivbbi | eEqui pnent (116-2) recei ve %8nd;

174899 Gsmivbbi | eEqui prent : gsnb552222/ gsnivbbi | eEqui prent (116-2) send %Cal | Set up;
174900 Gsmivbbi | it yManagenent : gsnb552222/ gsmivbbi | eEqui prent / gsmivbbi | i t yManagenent (118 2)
state SI1,

174900 Gsmivbbi | it yManagenent: gsnb552222/ gsmvbbi | eEqui pnent / gsnivbbi | it yManagenment (118 2)
recei ve %Cal | Set up;

174903 Gsmivbbi | i t yManagenent : gsnb552222/ gsmivbbi | eEqui prent / gsmivbbi | i t yManagenent (118 2)
send %Cal | Set up;

174903 Gsmivbbi | i t yManagenent : gsmVBSC2/ gsnivbbi | i t yManagenent (84-1) state S1;

174903 Gsmivbbi | i t yManagenent : gsmVBSC2/ gsnivbbi | i t yManagenent (84-1) recei ve %Cal | Set up;
174909 Gsmivbbi | it yManagenent : gsmVBSC2/ gsnivbbi | i t yManagenent (84-1) send %Cal | Set up;
174909 GsmiVbbi | eServi cesSwi t chi ngCent er: gsmVSSC2(82-1) state S1;

174909 GsmiVbbil eServi cesSwi t chi ngCent er: gsmVBSC2(82- 1) receive %Cal | Set up;

174913 Gsmivbbi | eServi cesSwi t chi ngCent er: gsnVSSC2(82- 1) send %Cal | Set up;

174913 Cal | Control | er U at mAccessDevi ce/ at mni SvcU cal | Control | er U 66-1) state Ready;
174913 Cal | Control | er U at mMAccessDevi ce/ at mni SveU cal | Control | er Y 66-1) receive

%Cal | Set up;

174917 Cal | Control | er U at mAccessDevi ce/ at mni SvcU cal | Control | er U 66-1) send %Set upReq;
174917 Signal i ngQR931U: at mAccessDevi ce/ at mni SvcU si gnal i ngQ2931U(65 1) state Nul | 0;
174917 Signal i ngQ2931U: at mAccessDevi ce/ at mni SvcUl si gnal i ng@2931U(65-1) receive

%Set upReq;

174920 Signal i ngQR931U: at mAccessDevi ce/ at mni SvcU si gnal i ngQ2931U(65 1) send %Set up;
174920 Signal i ngQR931U: at mAccessDevi ce/ at mni SvcU si gnal i ngQ931Y(65 1) spawn

Sendi ngCal | request . 1. 1. 1. 1;

174922 Signal i ngQ2931U: at mAccessDevi ce/ at mni SvcU si gnal i ngQ2931U(65 1) send % i meout
del ay 20000;

174922 Signal i ngQR931U: at mAccessDevi ce/ at mni SvcU si gnal i ngQ2931Y(65 1) spawn

Sendi ngCal | request . 1. 1. 1. 2;

174923 Signal i ngQ2931U: at mAccessDevi ce/ at mni SveU si gnal i ngQR931U(65-1) state

Call I nitiatedl;

h

thread SendingCallrequest.1.1.1.1 {

174921 DsslMessage: at mMAccessDevi ce/ at mni SveU dss1Message(67-1) state Ready;

174921 DsslMessage: at mMAccessDevi ce/ at mni SveU dss1Message(67-1) receive %Set up;
174926 Dss1Message: at mMAccessDevi ce/ at mni SvcU/ dss1Message(67-1) send %ss1Pdu;

174926 Sscop: at mAccessDevi ce/ saal / sscop(78-1) state Ready;

174926 Sscop: at mAccessDevi ce/ saal / sscop(78-1) receive %Wss1Pdu;

-102-

174929
174929
174929
174933
174934
174934
174938
174938
174942
174942
174942
174946
174946
174948
174948
}s

t hr ead
174946
174946
}s

t hr ead
174948
174953
174953
174953
174957
174957
174959
174961
174959
174959
174963
174963
174963
174967
174967
174970
174971
174971
174975
174975
174975
174978
174978
174978
174982
174982
174984
174984
174984
174987
174987
174987
174991
174991
174991
174995
174997
Cal | I ni
174995
174995
174999
174999

Sscop: at mAccessDevi ce/ saal / sscop(78-1) send %Aal 5Sdu;

At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79-1) state Ready;

At nCpcs: at mMAccessDevi ce/ saal / at mCpcs(79-1) receive %Aal 5Sdu;

At nCpcs: at mMAccessDevi ce/ saal / at mCpcs(79-1) i nvoke %CpcsSdu;

1 363Trai | er: at mAccessDevi ce/ saal / at nCpcs/ i 363Trail er (80 1) state Ready;

1 363Trai | er: at mAccessDevi ce/ saal / at nCpcs/ i 363Trail er (80 1) receive % pcsSdu;
1 363Trai | er: at mAccessDevi ce/ saal / at nCpcs/i 363Trail er(80-1) reply % pcsPdu;
At nCpcs: at mMAccessDevi ce/ saal / at mCpcs(79-1) receive %CpcsPdu;

At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79-1) send %Sar Sdu;

At nBBar : at mAccessDevi ce/ saal / at nBar (81- 1) state Ready;

At nBBar : at mMAccessDevi ce/ saal / at mBar (81-1) recei ve %Sar Sdu;

At nBBar : at mMAccessDevi ce/ saal / at nBar (81-1) send %At mlul;

At nBBar : at mAccessDevi ce/ saal / at nSar (81-1) spawn Sendi ngCal I request.1.1.1.1.1;
At nBBar : at mMAccessDevi ce/ saal / at nBar (81-1) send %At nCel | Sdu;

At nBBar : at mMAccessDevi ce/ saal / at mBar (81-1) spawn Sendi ngCal | request. 1.1.1.1.2;

Sendi ngCal I request. 1.1.1.1.1 {
At nCor e: at mAccessDevi ce/ at muni / at nCor e(69 1) state Ready;
At nCor e: at mAccessDevi ce/ at mni / at mCor e(69-1) recei ve %At nul,

Sendi ngCal I request. 1.1.1.1.2 {

At nCor e: at mAccessDevi ce/ at mni / at nCor e(69 1) recei ve %At nCel | Sdu;

At mCor e: at mAccessDevi ce/ at nmni / at mCor e(69-1) i nvoke %At nCel | Sdu;

| 361Header : at mAccessDevi ce/ at nni / at nCor e/ i 361Header (70-1) state Ready;

| 361Header : at mAccessDevi ce/ at nni / at nCor e/ i 361Header (70-1) receive %At nCel | Sdu;
| 361Header : at mAccessDevi ce/ at mni / at nCor e/ i 361Header (70-1) reply %At nCel | Pdu;
At nCor e: at mAccessDevi ce/ at mni / at nCor e(69 1) recei ve %At nCel | Pdu;

At nCor e: at mAccessDevi ce/ at mni / at mCor e(69-1) send %At nCel | Pdu;

At nCor e: at mAccessDevi ce/ at mni / at nCor e(69- 1) state Ready;

At nCor e: at mNet wor k/ at mni 2/ at nCor e(43- 1) state Ready;

At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) receive %At nCel | Pdu;

At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) invoke %At nCel | Pdu;

| 361Header : at mNet wor k/ at mni 2/ at nCor e/ i 361Header (44- 1) state Ready;

| 361Header : at mNet wor k/ at mni 2/ at nCor e/ i 361Header (44 1) receive %At nCel | Pdu;
| 361Header : at mNet wor k/ at mni 2/ at nCor e/ i 361Header (44 1) reply %At nCel | Sdu;

At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) receive %At nCel | Sdu;

At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) send %At nCel | Sdu;

At nBBar : at nNet wor k/ saal 2/ at nSar (56- 1) st ate Ready;

At nBBar : at nNet wor k/ saal 2/ at nSar (56-1) recei ve %At nCel | Sdu;

At nBBar : at mNet wor k/ saal 2/ at mBar (56-1) send %sar | du;

At mCpcs: at nNet wor k/ saal 2/ at mCpcs(54-1) state Ready;

At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) receive %ar | du;

At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) i nvoke %CpcsPdu;

1 363Tr ai | er: at mNet wor k/ saal 2/ at nCpcs/i 363Trai |l er (55 1) state Ready;

1 363Tr ai | er: at mNet wor k/ saal 2/ at nCpcs/i 363Trai |l er (55 1) receive % pcsPdu;

1 363Tr ai | er: at mNet wor k/ saal 2/ at nCpcs/i 363Trail er (55 1) reply % CpcsSdu;

At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) receive % pcsSdu;

At nCpcs: at mNet wor k/ saal 2/ atmCpcs(54-1) send %Aal 5Sdu;

Sscop: at mNet wor k/ saal 2/ sscop(53-1) state Ready;

Sscop: at mNet wor k/ saal 2/ sscop(53-1) receive %Aal 5Sdu;

Sscop: at mNet wor k/ saal 2/ sscop(53-1) send %ss1Pdu;

Dss1Message: at mNet wor k/ at mni SvcN2/ dss1Message(38 1) state Ready;
Dss1Message: at mNet wor k/ at mni SvcN2/ dss1Message(38 1) receive %sslPdu;
Dss1Message: at mNet wor k/ at mni SvcN2/ dss1Message(38 1) send ¥%Set up;

Si gnal i ngQR931N: at mNet wor k/ at mni SvcN2/ si gnal i ngQR931N(37-1) state Nul | O;

Si gnal i ngQ2931N: at mNet wor k/ at mUni SveN2/ si gnal i ngQR931N(37-1) recei ve ¥Set up;
Si gnal i ngQ2931N: at mNet wor k/ at mni SveN2/ si gnal i ngQR931N(37-1) send %Set upl nd;
Si gnal i ngQ2931N: at mNet wor k/ at mni SveN2/ si gnal i ngQR931N(37-1) state

tiationl;

Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36-1) state Ready;
Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36-1) receive %Set upl nd;
Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36-1) send %Cal | Set up;
Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36-1) spawn

Sendi ngCal I request. 1.1.1.1.2.1;

175001
175001

Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36-1) send %°r oceedi ngReq;
Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36-1) spawn

Sendi ngCal | request. 1.1.1.1.2.2;

}s

t hr ead
174999
174999

SendingCal I request. 1.1.1.1.2. 1 {
Cal | Control | er N: at mNet wor k/ at mni SveN1/ cal | Control | er N(32 1) state Ready;
Cal | Control | er N: at mNet wor k/ at mni SveN1/ cal | Control | er N(32 1) receive %Cal | Setup;

- 103-

175004
175004
175004
175010
175010

Cal | Control | er N: at mNet wor k/ at mJni SveN1/ cal | Control | er N(32 1) send %Set upReq;

Si gnal i ngQR931N: at mNet wor k/ at mni SveN1/ si gnal i ngQR2931N(33- 1) state Null O;

Si gnal i ngQ2931N: at mNet wor k/ at mni SveN1/ si gnal i ngQR931N(33- 1) recei ve %Set upReq;
Si gnal i ngQ2931N: at mNet wor k/ at mni SvcNL/ si gnal i ngQ2931N(33- 1) send %Set up;

Si gnal i ngQR931N: at mNet wor k/ at mni SveN1/ si gnal i ngQR931N(33 1) spawn

Sendi ngCal I request . 1.1.1.1.2.1.1;

175012
20000;
175012

Si gnal i ngQ2931N: at mNet wor k/ at mni SveN1/ si gnal i ngQR2931N(33- 1) send % i nmeout del ay

Si gnal i ngQR931N: at mNet wor k/ at mni SveN1/ si gnal i ngQR931N(33 1) spawn

Sendi ngCal Il request. 1.1.1.1.2.1. 2;

175015
}s

t hr ead
175010
175010
175020
175020
175020
175027
175027
175027
175040
175040
175040
175044
175044
175046
175046
175046
175055
175055
175057
175057
}

t hr ead
175055
175055
}

t hr ead
175057
175076
175076
175076
175080
175080
175082
175085
175083
175083
175098
175222
175228
175233
175229
175229
175238
175238
175238

Si gnal i ngQ2931N: at mNet wor k/ at mni SveN1/ si gnal i ngQ2931N(33- 1) state Cal | Present6;

Sendi ngCal I request. 1.1.1.1.2. 1.1 {

Dss1Message: at mNet wor k/ at mni SvcN1/ dss1Message(34 1) state Ready;
Dss1Message: at mNet wor k/ at mni SvcN1/ dss1Message(34- 1) receive %Set up;
Dss1Message: at mNet wor k/ at mni SvcN1/ dss1Message(34- 1) send %Dssl1Pdu;
Sscop: at mNet wor k/ saal 1/sscop(47-1) state Ready;

Sscop: at mNet wor k/ saal 1/ sscop(47-1) receive %ss1Pdu;

Sscop: at mNet wor k/ saal 1/ sscop(47-1) send %Aal 5Sdu;

At nCpcs: at mNet wor k/ saal 1/ at mCpcs(48-1) state Ready;

At nCpcs: at mNet wor k/ saal 1/ at mCpcs(48- 1) receive %Aal 5Sdu;

At nCpcs: at nNet wor k/ saal 1/ at mCpcs(48-1) i nvoke %CpcsSdu;

1 363Tr ai | er: at mNet wor k/ saal 1/ at nCpcs/i 363Trai |l er (49 1) state Ready;

1 363Tr ai | er: at mNet wor k/ saal 1/ at nCpcs/i 363Trai |l er (49-1) receive % pcsSdu;
1 363Tr ai | er: at mNet wor k/ saal 1/ at nCpcs/i 363Trail er(49-1) reply % pcsPdu;
At nCpcs: at mNet wor k/ saal 1/ at mCpcs(48- 1) recei ve % pcsPdu;

At nCpcs: at mNet wor k/ saal 1/ at mCpcs(48 1) send %Sar Sdu;

At nBBar : at nNet wor k/ saal 1/ at mBSar (50- 1) st ate Ready;

At nBBar : at mNet wor k/ saal 1/ at nSar (50- 1) recei ve %Sar Sdu;

At nBBar : at nNet wor k/ saal 1/ at nSar (50- 1) send %At nul;

At nBBar : at nNet wor k/ saal 1/ at nSar (50- 1) spawn Sendi ngCal I request.1.1.1.1.2.1.1.1;
At nBBar : at mNet wor k/ saal 1/ at nSar (50-1) send %At nCel | Sdu;

At nBBar : at mNet wor k/ saal 1/ at nSar (50-1) spawn Sendi ngCal I request.1.1.1.1.2.1.1.2;

SendingCal Irequest. 1.1.1.1.2.1.1.1 {
At nCor e: at mNet wor k/ at mni 1/ at nCor e(40- 1) st ate Ready;
At nCor e: at mNet wor k/ at mni 1/ at mCor e(40- 1) recei ve %At nul,

Sendi ngCal I request.1.1.1.1.2.1.1.2 {

At nCor e: at mNet wor k/ at mni 1/ at mCor e(40-1) recei ve %At nCel | Sdu;

At nCor e: at mNet wor k/ at mni 1/ at mCor e(40- 1) i nvoke %At nCel | Sdu;

| 361Header : at mNet wor k/ at mni 1/ at nCor e/ i 361Header (41- 1) state Ready;

| 361Header : at nNet wor k/ at mni 1/ at mCor e/ i 361Header (41- 1) recei ve %At nCel | Sdu;

| 361Header : at mNet wor k/ at mni 1/ at nCor e/ i 361Header (41-1) reply %At nCel | Pdu;

At nCor e: at mNet wor k/ at mni 1/ at mCor e(40-1) recei ve %At nCel | Pdu;

At nCor e: at mNet wor k/ at mni 1/ at mCor e(40- 1) send %At nCel | Pdu;

At nCor e: at mNet wor k/ at mni 1/ at nCor e(40- 1) st ate Ready;

At mMAccessDevi ceProxy: at mMAccessDevi ceProxy(2-1) state SI,;

At mMAccessDevi ceProxy: at mAccessDevi ceProxy(2-1) receive %At nCel | Pdu;

At mMAccessDevi ceProxy: at mMAccessDevi ceProxy(2-1) send %At nCel | Pdu;

At mMAccessDevi ceProxy: at mAccessDevi ceProxy(2 1) receive %At nCel | Pdu;

At mAccessDevi ceProxy: at mAccessDevi ceProxy(2 1) send %At nCel | Pdu;

At mMAccessDevi ceProxy: at mMAiccessDevi ceProxy(2-1) state Si;

At mni : at mMAccessDevi ceProxy/ at mMAccessDevi ceTest/atnni (4 1) state 2;

At mUni : at mAccessDevi cePr oxy/ at mMAccessDevi ceTest/at mni (4 1) receive %At nCel | Pdu;
At mUni : at mAccessDevi cePr oxy/ at mMAccessDevi ceTest/at mni (4 1) i nvoke %At nCel | Pdu;
At nCor e: at mAccessDevi cePr oxy/ at mMAccessDevi ceTest/ at nlni / at mCore(5 1) state Ready;
At nCor e: at mAccessDevi ceProxy/ at mMAccessDevi ceTest/ at nni / at mCore(5 1) receive

%At nCel | Pdu;

175245

At nCor e: at mAccessDevi ceProxy/ at mMAccessDevi ceTest/ at nlni / at mCor g 5-1) reply

%At mCel | Sdu;

175245
176238
176243
176239
176239
176247
176247
176285
176289

At mni : at mAccessDevi cePr oxy/ at mMAccessDevi ceTest/at mni (4 1) receive %At nCel | Sdu;
At mAccessDevi ceProxy: at mAccessDevi ceProxy(2 1) send %Cal | Set up;

At mMAccessDevi ceProxy: at mMiccessDevi ceProxy(2- 1) state SI;

Gsmivbbi | eSer vi cesSwi t chi ngCent er : gsmVSSC1(20-1) state S1;

GsmiVbbi | eServi cesSwi t chi ngCent er: gsmVSSC1(20-1) receive %Cal | Set up;

GsmiVbbi | eSer vi cesSwi t chi ngCent er: gsmVSSC1(20- 1) send %Cal | Set up;

(22-1) receive %al | Setup;

(22-1) send %Cal | Set up;

(22-1) state 2;

-104-

176285

Gsmivbbi | i t yManagenent : gsnb551111/ gsnivbbi | eEqui prent / gsmivbbi | i t yManagenent (114 2)

state Sl1;

176285

Gsmivbbi | i t yManagenent : gsnb551111/ gsmivbbi | eEqui prrent / gsmivbbi | i t yManagenent (114 2)

recei ve %Cal | Set up;

176293

Gsmivbbi | i t yManagenent : gsnb551111/ gsnmivbbi | eEqui pent / gsmivobi | i t yManagenent (114 2)

send %Cal | Set up;

176293
176293
176302
176302
176302
176312
176312
176312
176394
176395

Gsmivbbi | eEqui prrent : gsnb551111/ gsmivbbi | eEqui prent (112-2) state S1;

Gsmivbbi | eEqui prent : gsnb551111/ gsnivbbi | eEqui prrent (112-2) receive %Cal | Set up;

Gsnmivbbi | eEqui prent : gsnmb551111/ gsmivbbi | eEqui prent (112-2) send %Al erti ng;

GsmiVbbi | eSt ati on: gsnb551111(104-2) state Si;

GsmiVbbi | eSt ati on: gsnb551111(104-2) receive %A erting;

GsmiVobi | eSt ati on: gsnb551111(104-2) send %Al erting;

Mobi | eSubscri ber Uni t G f: phoneGui / nobi | eSubscriberUnitGfA(96-2) state Initialized;
Mobi | eSubscri ber Uni t G f: phoneCui / nobi | eSubscri berUnit G f A(96-2) receive %Al erting;
Mobi | eSubscri ber Uni t G f: phoneCui / nobi | eSubscri berUnit G f A(96-2) send %Al erting;
G f QU I nterface: phoneGui / nmobi | eSubscriberUnit&fA/ gU Interface(97-2) state

Power | dl e/ Activel dl g;

176395

G f QU I nterface: phoneCui/ nobi | eSubscriberUnit&GfA/ gUl I nterface(972) receive

%Al erting;

176404

G f QU I nterface: phoneCui / nobi | eSubscri berUnit&fA gUl Interface(97-2) send

% spl ay;

176404
top;
176404

G f Gui Convert er: phoneCui / nobi | eSubscri berUnit & f A/ gt f Gui Converter (110 2) state

G f Gui Convert er: phoneCui / nobi | eSubscri berUnit & f A/ gt f Gui Converter (110 2) receive

%i spl ay;

b
t hr ead
175001

Sendi ngCal I request. 1.1.1.1.2.2 {
Si gnal i ngQ2931N: at mNet wor k/ at mni SveN2/ si gnal i ngQR931N(37-1) receive

%°r oceedi ngReq;

175007
175008

Si gnal i ngQ931N: at mNet wor k/ at mni SveN2/ si gnal i ngQR931N(37-1) send %Cal | Proceedi ng;
Si gnal i ngQR931N: at mNet wor k/ at mni SveN2/ si gnal i ngQR931N(37-1) state

CanBeCl ear ed/ Qut goi ngCal | Proceedi ng3;

175007
175017
175018
175017
175024
175025
175024
175031
175031
175034
175034
175034
175036
175038
175036
175049
175049
175051
175051
175053

}s

t hr ead
175049
175061
}s

t hr ead
175051
175064
175064
175067
175067
175067
175069
175072
175070
175089
175089
175092
175092

Dss1Message: at mNet wor k/ at mni SvcN2/ dss1Message(38 1) receive %Cal | Proceedi ng;
Dss1Message: at mNet wor k/ at mni SvcN2/ dss1Message(38 1) send ¥Dss1Pdu;
Dss1Message: at mNet wor k/ at mni SvcN2/ dss1Message(38-1) state Ready;

Sscop: at mNet wor k/ saal 2/ sscop(53-1) receive %Wss1Pdu;

Sscop: at mNet wor k/ saal 2/ sscop(53-1) send %AMal 5Sdu;

Sscop: at mNet wor k/ saal 2/ sscop(53-1) state Ready;

At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) receive %Aal 5Sdu;

At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) invoke %CpcsSdu;

1 363Tr ai | er: at mNet wor k/ saal 2/ at nCpcs/ i 363Trai |l er (55 1) receive % pcsSdu;

1 363Tr ai | er: at mNet wor k/ saal 2/ at nCpcs/i 363Trai |l er (55 1) state Ready;

1 363Tr ai | er: at mNet wor k/ saal 2/ at nCpcs/i 363Trai |l er (55-1) reply %CpcsPdu;

At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) receive %CpcsPdu;

At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) send %Bar Sdu;

At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54- 1) state Ready;

At nBBar : at nNet wor k/ saal 2/ at nSar (56- 1) recei ve %Sar Sdu;

At nBBar : at nNet wor k/ saal 2/ at nBar (56-1) send %At mlul,

At nBBar : at mNet wor k/ saal 2/ at nSar (56-1) spawn Sendi ngCal | request.1.1.1.1.2.2.1;
At nBBar : at mNet wor k/ saal 2/ at nSar (56-1) send %At nCel | Sdu;

At nBBar : at nNet wor k/ saal 2/ at nSar (56- 1) spawn Sendi ngCal I request.1.1.1.1.2.2.2;
At nBBar : at nNet wor k/ saal 2/ at nSar (56- 1) st ate Ready;

SendingCal I request . 1.1.1.1.2.2. 1 {
At nCor e: at nNet wor k/ at mni 2/ at mCor e(43-1) receive %At nlul;
At nCor e: at mNet wor k/ at mni 2/ at nCor e(43- 1) state Ready;

Sendi ngCal I request . 1.1.1.1.2.2.2 {

At nCor e: at nNet wor k/ at mni 2/ at mCor e(43-1) receive %At nCel | Sdu;

At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) i nvoke %At nCel | Sdu;

| 361Header : at mNet wor k/ at mni 2/ at nor e/ i 361Header (44-1) receive %At nCel | Sdu;

| 361Header : at mNet wor k/ at mni 2/ at nCor e/ i 361Header (44 1) state Ready;

| 361Header : at mNet wor k/ at mni 2/ at nCor e/ i 361Header (44 1) reply %At nCel | Pdu;

At nCor e: at mNet wor k/ at mni 2/ at nCor e(43- 1) receive %At nCel | Pdu;

At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) send %At nCel | Pdu;

At nCor e: at mNet wor k/ at mni 2/ at nCor e(43-1) state Ready;

At nCor e: at mAccessDevi ce/ at mni / at nCor e(69 1) recei ve %At nCel | Pdu;

At nCor e: at mAccessDevi ce/ at mni / at nCor (69- 1) i nvoke %At nCel | Pdu;

| 361Header : at mAccessDevi ce/ at nni / at nCor e/ i 361Header (70-1) receive %At nCel | Pdu;
| 361Header : at mAccessDevi ce/ at nni / at nCor e/ i 361Header (70-1) state Ready;

| 361Header : at mAccessDevi ce/ at nni / at nCor e/ i 361Header (70-1) reply %At nCel | Sdu;

- 105-

175092 At nCor e: at mAccessDevi ce/ at nni / at nCore(69 1) recei ve %At nCel | Sdu;

175094 At nCor e: at mAccessDevi ce/ at mni / at nCore(69 1) send %At nCel | Sdu;

175096 At nCore: at mAccessDevi ce/ at nni / at nCore(69-1) state Ready;

175094 At nBar: at mAccessDevi ce/ saal / at nBar (81-1) receive %At mCel | Sdu;

175164 At nSar: at mAccessDevi ce/ saal / at nSar (81-1) send %sar | du;

175169 At nSar: at mAccessDevi ce/ saal / at nSar (81- 1) state Ready;

175164 At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79-1) receive %sarl du;

175175 At nCpcs: at mAccessDevi ce/ saal / at mCpcs(79-1) invoke % CpcsPdu;

175175 1363Trail er: at mMccessDevi ce/ saal / at nCpcs/i 363Trai |l er (80 1) recei ve % pcsPdu;
175227 1363Trail er: at mMccessDevi ce/ saal / at nCpcs/i 363Trai |l er (80 1) state Ready;
175227 1363Trail er: at mMccessDevi ce/ saal / at mCpcs/i1363Trail er(80-1) reply % CpcsSdu;
175227 At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79-1) receive % CpcsSdu;

175232 At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79-1) send %Aal 5Sdu;

175235 At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79-1) state Ready;

175232 Sscop: at mAccessDevi ce/ saal / sscop(78-1) receive %Aal 5Sdu;

175239 Sscop: at mAccessDevi ce/ saal / sscop(78-1) send %ss1Pdu;

175241 Sscop: at mAccessDevi ce/ saal / sscop(78-1) state Ready;

175239 Dss1Message: at mAccessDevi ce/ at mni SvcU dss1Message(67-1) recei ve %ss1Pdu;
175246 DsslMessage: at mAccessDevi ce/ at mni SvcU dss1Message(67-1) send %Cal | Proceedi ng;
175250 Dssl1lMessage: at mAccessDevi ce/ at nni SvcU dss1Message(67-1) state Ready;

175246 Signal i ngQR931U: at mAccessDevi ce/ at mni SveU si gnal i ngQ2931U(65 1) receive
%Cal | Pr oceedi ng;

175257 Signal i ng@2931U: at mAccessDevi ce/ at mni SvcU si gnal i ngQ2931U(65 1) state
CanBeCl ear ed/ Qut goi ngCal | Proceedi ng3;

b

thread SendingCallrequest.1.1.1.2 {

h

thread SendingCal |l request.1.1.2 {

174871 G f Gui Converter: phoneCui/ nobi | eSubscri ber Unit & f B/ gt f Gui Converter(111-2) receive
% spl ay;

- 106-

APPENDIX B2- SendingRequest: Communication
Patterns

S AtmCpcs:atmAccessDevice/saal/atmCpcsi(y9
I363Trailer:atmAccessDevice/saal/atmCpcs/i363Trailel(8074934 174938

A AtmSar:.atmAccessDevice/saal/atmSar(§1
AtmCore:atmAcced3evice/atmUni/atmCore(6Q) 174946

S AtmCore:atmNetwork/atmUni2/atmCore{43
I361Header:atmNetwork/atmUni2/atmCore/i361Headef(d274963 174967

S AtmCpcs:atmNetwork/saal2/atmCpcs{b4

1363 Trailer:atmNetwork/saal2/atmCpcs/i363Trailer§5L 74978 174982

S AtmCpcs:atmNetwork/saall/atmCpcs{#3

1363 Trailer:atmNetwork/saall/atmCpcs/i363Trailer@@A 75040 175044

A AtmSar:atmNetwork/saall/atmSar¢ad AtmCore:atmNetwork/atmUnil/atmCoref40
1) 175055

S AtmCore:atmNetwork/atmUnil/atmCore{4)
I361Header:atmBtwork/atmUnil/atmCore/i361Header{4)1 175076 175080

A AtmCore:atmNetwork/atmUnil/atmCore(49
AtmAccessDeviceProxy:atmAccessDeviceProxi)(275083

S AtmUni:atmAccessDeviceProxy/atmAccessDeviceTest/atmtini(4
AtmCore:atmAccessDeviceProxy/atmAccessDeVest/atmUni/atmCore{b) 175238
175245

A AtmAccessDeviceProxy:atmAccessDeviceProxy)2
AtmUni:atmAccessDeviceProxy/atmAccessDeviceTest/atmu)i75229

S SignalingQ2931N:atmNetwork/atmUniSvcN2/signalingQ2931MN(87
CallControllerN:atmNetwork/atmUniSv callControllerN(361) 174995 175001

A CallControllerN:atmNetwork/atmUniSvcN2/callControllerN¢3%
CallControllerN:atmNetwork/atmUniSvcN1/callControllerN¢32 174999

S Dss1Message:atmNetwork/atmUniSvcN2/dss1Messadg(38
SignalingQ2931N:atmNetwork/atmiBvcN2/signalingQ2931N(3T) 174991 175007
S Sscop:atmNetwork/saal2/sscop@®B3
Dss1Message:atmNetwork/atmUniSvcN2/dss1Message(384987 175017

S AtmCpcs:atmNetwork/saal2/atmCpcs{bASscop:atmNetwork/saal2/sscop(B3
174984 175024

S AtmCpcs:atmNetwérsaal2/atmCpcs(54)

1363 Trailer:atmNetwork/saal2/atmCpcs/i363Trailer@§5L 75031 175034

S AtmSar:atmNetwork/saal2/atmSar{bpAtmCpcs:atmNetwork/saal2/atmCpcs(by
174975 175036

S AtmCore:atmNetwork/atmUni2/atmCore{43 AtmSar:atmNetwork/saal2/atm $&6-
1) 174971 175049

A AtmCore:atmAccessDevice/atmUni/atmCore(H9
AtmCore:atmNetwork/atmUni2/atmCore(@3 174959

S AtmCore:atmNetwork/atmUni2/atmCore{43
I361Header:atmNetwork/atmUni2/atmCore/i361Headefi(3275064 175067

-107-

A AtmSar:atmAccessDevice/dmSar(811)
AtmCore:atmAccessDevice/atmUni/atmCore@©9.74948

S AtmCore:atmAccessDevice/atmUni/atmCorel§9
I361Header:atmAccessDevice/atmUni/atmCore/i361Headd)(105089 175092
A AtmCpcs:atmAccessDevice/saal/atmCpcs{j9
AtmSar:atmAccessDevicaal/atmSar(81) 174942

A Sscop:atmAccessDevice/saal/sscogly8
AtmCpcs:atmAccessDevice/saal/atmCpcs[J274929

S AtmCpcs:atmAccessDevice/saal/atmCpcsi(y9
I363Trailer:atmAccessDevice/saal/atmCpcs/i363Trailef(B075175 175227

A Dss1Message:atmAcc@msvice/atmUniSvcU/dss1Message(b)/
Sscop:atmAccessDevice/saal/sscop(y874926

A SignalingQ2931U:atmAccessDevice/atmUniSvcU/signalingQ293)65
Dss1Message:atmAccessDevice/atmUniSvcU/dss1Messateld4921

A CallControllerU:atmAccessDevice/atmUni&iicallControllerU(661)
SignalingQ2931U:atmAccessDevice/atmUniSvcU/signalingQ293) 854917
S GtfGuiConverter:phoneGui/mobileSubscriberUnitGtfB/gtfGuiConverter@)11
GtfGUIlInterface:phoneGui/mobileSubscriberUnitGtfB/gUlInterface{2p174864
174871

A GtfGUIInterface:phoneGui/mobileSubscriberUnitGtfB/gUlInterface{2D1
MobileSubscriberUnitGtf:phoneGui/mobileSubscriberUnitGtfBR)A 74869

A AtmAccessDeviceProxy:atmAccessDeviceProxy)2
GsmMobileServicesSwitchingCenter:.gsmMSSC1{2076239

A GsmMobleServicesSwitchingCenter.gsmMSSCHPO0
GsmMobilityManagement:gsm5551111/gsmMobileEquipment/gsmMobilityManagement
(114-2) 176285

A
GsmMobilityManagement:gsm5551111/gsmMobileEquipment/gsmMobilityManagement
(114-2) GsmMobileEquipment:gsm5551111/gsmMobileEquamt(1122) 176293
A GsmMobileEquipment:gsm5551111/gsmMobileEquipment{2)12
GsmMobileStation:gsm5551111(124 176302

A GsmMobileStation:gsm5551111(1-@4
MobileSubscriberUnitGtf:phoneGui/mobileSubscriberUnitGtfA@GL 76312

A MobileSubscriberUnitGtf:pheeGui/mobileSubscriberUnitGtfA(98)
GtfGUIlInterface:phoneGui/mobileSubscriberUnitGtfA/gUlInterfaceZ® 176395
A GtfGUIInterface:phoneGui/mobileSubscriberUnitGtfA/gUlInterface?®7
GtfGuiConverter:phoneGui/mobileSubscriberUnitGtfA/gtfGuiConverte{2)1076404
A CallControllerN:atmNetwork/atmUniSvcN1/callControllerN(22
SignalingQ2931N:atmNetwork/atmUniSvcN1/signalingQ2931N(B3 75004

A SignalingQ2931N:atmNetwork/atmUniSvcN1/signalingQ2931 N33
Dss1Message:atmNetwork/atmUniSvcN1/dss1Messagh (345010

A Dss1Message:atmNetwork/atmUniSvcN1/dss1MessagB(34
Sscop:atmNetwork/saall/sscop{#)7175020

A Sscop:atmNetwork/saall/sscop{@)yAtmCpcs:atmNetwork/saall/atmCpcs{¥8
175027

- 108-

A AtmCpcs:atmNetwork/saall/atmCpcs{aBAtmSar:atmNetwork/saall/atm$s0-1)
175046

A AtmSar:atmNetwork/saall/atmSar¢d) AtmCore:atmNetwork/atmUnil/atmCoref40
1) 175057

A AtmSar:atmNetwork/saal2/atmSar¢gp AtmCore:atmNetwork/atmUni2/atmCoref43
1) 175051

A AtmCore:atmNetwork/atmUni2/atmCore(43
AtmCore:atmAccessDeviamUni/atmCore(694) 175070

A AtmCore:atmAccessDevice/atmUni/atmCore(H9
AtmSar:atmAccessDevice/saal/atmSar{(§1175094

A AtmSar:atmAccessDevice/saal/atmSar(§1
AtmCpcs:atmAccessDevice/saal/atmCpcs{y275164

A AtmCpcs:atmAccessDevice/saal/atmCp8s(y
Sscop:atmAccessDevice/saal/sscop(y875232

A Sscop:atmAccessDevice/saal/sscogly8
Dss1Message:atmAccessDevice/atmUniSvcU/dss1Messateld5239

A Dss1Message:atmAccessDevice/atmUniSvcU/dss1Messate(67
SignalingQ2931U:atmAccessDevice/atmUniBigignalingQ2931U(64) 175246

A MobileSubscriberUnitGtf:phoneGui/mobileSubscriberUnitGtfB(zR)0
GsmMobileStation:gsm5552222 (1@ 174876

A GsmMobileStation:gsm5552222 (12§
GsmMobileEquipment:gsm5552222/gsmMobileEquipment2)1574885

A GsmMobileEquipnent:gsm5552222/gsmMobileEquipment(42)6
GsmMobilityManagement:gsm5552222/gsmMobileEquipment/gsmMobilityManagement
(1182) 174900

A
GsmMobilityManagement:gsm5552222/gsmMobileEquipment/gsmMobilityManagement
(118-2) GsmMobilityManagement:gsmMSSC2/gsmMobilitgivagement(84) 174903

A GsmMobilityManagement:gsmMSSC2/gsmMobilityManagemeni(84
GsmMobileServicesSwitchingCenter:.gsmMSSC2{8274909

A GsmMobileServicesSwitchingCenter:gsmMSSC2(§2
CallControllerU:atmAccessDevice/atmUniSvcU/callControllerJ§a. 74913

- 109-

APPENDIX B3- SendingRequest: LON Performance
Model

G
0.0
0

0
0.9
-1

PO
p procl f
-1

TO

t AtmAccessDeviceProxy:atmAccessDeviceProxi) (2 E40 -1 procl

t AtmCore:atmAccessDevice/atmUni/atmCore@9 E15 E16 E38-1 procl

t AtmCore:atmAccesDeviceProxy/atmAccessDeviceTest/atmUni/atmCoelg({BEA47 -
1 procl

t AtmCore:atmNetwork/atmUnil/atmCore) f E35 E36-1 procl

t AtmCore:atmNetwork/atmUni2/atmCore@3 f E17 E34-1 procl

t AtmCpcs:atmAccessDevice/saal/atmCpcs{J9E12 E43-1 procl

t AtmCpcs:atmNetwork/saall/atmCpcs{ZBf E30 -1 procl

t AtmCpcs:atmNetwork/saal2/atmCpcs{byf E20 -1 procl

t AtmSar:atmAccessDevice/saal/atmSar{31 E14 E42-1 procl

t AtmSar:atmNetwork/saall/atmSar(aPf E33 -1 procl

t AtmSar:atmNetworldaal2/atmSar(56) f E19 -1 procl

t AtmUni:atmAccessDeviceProxy/atmAccessDeviceTest/atmt)if4E45 -1 procl

t CallControllerN:atmNetwork/atmUniSvcN1/callControllerN¢32f E26 -1 procl

t CallControllerN:atmNetwork/atmUniSvcN2/callControllerN¢3pf E25 -1 procl

t CallControllerU:atmAccessDevice/atmUniSvcU/callControllerd{§é E8 -1 procl
t Dss1Message:atmAccessDevice/atmUniSvcU/dss1Messabe{&10 E48-1 procl
t Dss1Message:atmNetwork/atmUniSvcN1/dss1Messadg(BE28 -1 procl

t Dss1Mesage:atmNetwork/atmUniSvcN2/dss1Messagd(38E23 -1 procl

t GsmMobileEquipment:gsm5551111/gsmMobileEquipment@1PE52 -1 procl

t GsmMobileEquipment:gsm5552222/gsmMobileEquipment@6E4 -1 procl

t GsmMobileServicesSwitchingCenter:gsmMSSC1{20 E50 -1 procl

t GsmMobileServicesSwitchingCenter:gsmMSSC2(82E7 -1 procl

t GsmMobileStation:gsm5551111(3@4f E53 -1 procl

t GsmMobileStation:gsm5552222(2QY f E3 -1 procl

t
GsmMobilityManagement:gsm5551111/gsmMobileEquipment/gsmMobilihdgament
(114-2) f E51 -1 procl

-110-

t
GsmMobilityManagement:gsm5552222/gsmMobileEquipment/gsmMobilityManagement
(1182) f E5 -1 procl

t GsmMobilityManagement:gsmMSSC2/gsmMobilityManagemeni(84E6 -1 procl
t GtfGUlInterface:phoneGui/mobileSubscriberUnit@gUIInterface(972) f E55 -1
procl

t GtfGUlInterface:phoneGui/mobileSubscriberUnitGtfB/gUIInterface{20LE1 -1
procl

t GtfGuiConverter:phoneGui/mobileSubscriberUnitGtfA/gtfGuiConverteHa)10E56 -
1 procl

t GtfGuiConverter:phoneGui/mobileSubs@arbnitGtfB/gtfGuiConverter(112) r EO -1
procl

t I361Header:atmAccessDevice/atmUni/atmCore/i361Headd)(7&41 -1 procl

t I361Header:atmNetwork/atmUnil/atmCore/i361Headel(4flIE39 -1 procl

t I361Header:atmNetwork/atmUni2/atmCore/i361Headel(44E18 E37 -1 procl

t I363Trailer:atmAccessDevice/saal/atmCpcs/i363Trailet(80E13 E44-1 procl

t 1363Trailer:atmNetwork/saall/atmCpcs/i363Trailerdd E32 -1 procl

t I363Trailer:atmNetwork/saal2/atmCpcs/i363Trailer(35 E21 E31-1 procl

t MobileSubscriberUnitGtf:phoneGui/mobileSubscriberUnitGtfA@6F E54 -1 procl
t MobileSubscriberUnitGtf:phoneGui/mobileSubscriberUnitGtfB(2)@ E2 -1 procl
t SignalingQ2931N:atmNetwork/atmUniSvcN1/signalingQ2931N(BBE27 -1 procl
t SignalingQ2931NatmNetwork/atmUniSvcN2/signalingQ2931N¢3Y f E24 -1 procl
t SignalingQ2931U:atmAccessDevice/atmUniSvcU/signalingQ2931W)6%&9 E49-1
procl

t Sscop:atmAccessDevice/saal/sscopY8E11 E46-1 procl

t Sscop:atmNetwork/saall/sscop®/f E29 -1 procl

t Sscop:atmNetwork/saal2/sscop(B3f E22 -1 procl

-1

EO

sE01.01
yEOE11.01
sE11.01
zE1E21.01
sE101.01.61
zE10E110.01.1
sE111.01.61
zE11 E120.01.1
sE121.01.61
yE12E130.01.00
zE12E140.01.a
sE131.0-1
sE141.01.61
zE14E150.01.a1
zE14E16 0.0 1.a1
sE151.01

-111-

SE161.01.61
zE16 E17 0.0 1.1
SE171.01.61

y E17 E18 0.0 1.61
y E17 E19 0.0 1.61
sE181.01
SE191.01.61

y E19 E20 1.0 0.61
ZE19E340.0 1.01
SE21.01.01
zE2E30.01.61

s E20 1.01

y E20 E21 1.61

y E20 E22 1.61

y E20 E31 1.01
sE211.01
sE221.01

y E22 E231.01
SE231.01

y E23 E24 1.61
sSE241.01

y E24 E25 1.61
SE251.01

z E25 E26 1.01
SE261.01.61

z E26 E27.0 1.0-1
sSE271.01.61

z E27 E280.0 1.6
SE281.01.61

z E28 E29 0.0 1.61
SE291.01.61

z E29 E30 0.0 1.61
sE31.01.01
zE3E40.01.61
SE301.01.61

y E30 E32 0.0 1.61
z E30 E33 0.0 1.601
sE311.01
sE321.01
SE331.0D-1

z E33E350.0 1.01
z E33 E36 0.0 1.6
SE341.01.61

y E34 E37 0.0 1.61
z E34E380.0 1.01
sE351.01

-112-

sE361.01.601

y E36 E39 0.0 1.61
zE36 E400.01.a1
sE371.01
sE381.01.601

y E38E410.01.61
zE38E420.01.a
s E391.0-1
sE41.01.01
zE4E50.01.01
sE401.01.601
zE40E450.01.a
zE40E500.01.a1
sE411.01
sE421.01.601
zE42E430.01.a
sE431.01.601

y E43 E44 0.0 1.61
zE4A3E460.01.a1
sE441.01
sE451.01.601

y E45 E470..0-1
sE461.01.601
zE46 E480.01.a
SE471.01
sE481.01.61
zE48E490.01.a
sE491.01
sE51.01.01
zE5E60.01.01
sE501.01.601
zES50E510.01.a
sE511.01.61
zE51E520.01.a
sE521.01.601
zE52E530.01.a
sE531.01.601
zE53E540.01.a
sE541.01.61
zE54 E550.01.a
sE551.01.601
zE55E560.01.a
s E561.01
sE61.01.01
zE6E70.01.61
sE71.01.01

-113-

zE7E80.01.61
sE81.01.01
zE8E9O0.01.601
sE91.01.01
zE9EHO00.01.01
-1

-114-

APPENDIX B4- SendingRequest: Graphical LQN
Performance Model

|ED |G||Gu|CDnveder phoneGui_mobileSubscriberUnitGHB _gGuiConverter 111 2 |

| E1 | GtiGUIInterface_phoneGui_mobileSubscriberUnitGiiB_gUlinterface_101_2 |

| E2 | iberUnitGti_phoneGui_mobile! iberUnitGtiB_100_2 |

|E3 |_1 r i ion_gsr 107_2

|E4 |\: r sipment_gsr _gsr sipment_116_2

|E5 |q " il agement_gsr >_gsr iipment_gsr il agement_118_2

| E6 | GsmMobilityManagement_gsmMSSC2_gsmMobilityManagement_84_1

|E7 |u " i i itchingGenter_gsmMSSC2_82_1

| Es | GallGontrollerU_atmAccessDevice_atmUniSveU_callControllerU_66_1

| E9 | E4 |Signa|in902931 U_atmAccessDevice_atmUniSveU_signalingQ2931U_65_1 |

| E10 | E4 | Dss1Message_atmAccessDevice_atmUniSveU_dss1Message 67_1 |

| E11 | E4 |SscapﬁathccessDeviceﬁsaalﬁsscapﬁ7ﬁi1d |

| E12 | E4] |AthpcsiathccessDevlceﬁsaalﬁathpcsﬁ7971 |

| E14 | E4] |AthariathccessDeviceﬁsaalﬁatmsarfs171 | | E13 | E44 | 1363 Trailer_atmAccessDevice_saal_atmCpes_i263Trailer_80_1
| E15 | E16 | Ex |AthoreiathccessDevlceﬁathnliathor976971 |

| E17 | Eﬂ/ |AthcreiatmNetwcrkiatleni27&“mcare74371 | | E41 | 1361 Header_atmAccessDevice_atmUni_atmGore_i361Header_70_1 |
| E1 |AImSariaImNelworkisaalzialmsar75571 | | E18 | E37 | 1361 Header_atmNetwork_atmUni2_atmCore_i361Header_44_1 |

| E20 |AtmGpcsﬁatmNetworkisaalziatmcpcsiszli1 |

| E21 | E31 | 1363 Trailer_atmNetwork saal2_atmGCpcs_i363Trailer_55_1 | | E22 | Sscop_atmNetwork_saal2_sscop 53 1

| Eza | Dss1Message_atmNetwork_atmUniSveNz_dss1Message_38_1 |

[0 E24

-115-

lFrom E23

| E24

| SignalingQ2931N_atmNetwork _atmUniSvcN2_signalingQ2931N 37 1 |

| E25 |CaIIComrollerNiatmNetworkiathniSvcN270a||Con(roIlerN73671 |

| E26 |CaIIComrollerNﬁalmNeIworkiathniSvcNLcaIIControIlerNﬁSZJ |

| E27 | SignalingQ2931N_atmNetwork_atmUniSvcN1_signalingQ2931N_33_1 |

| E28 | Dss1Message_atmNetwork _atmUniSvcN1_dss1Message 34 1 |

|E29 |SscopﬁaimNetwovkﬁsaaH7sscop74771 |

|E30 |AthpcsiatmNetworkisaah7athpcsi4871 |

| E33 | AtmSar_atmNetwork _saal1_atmSar 50 _1 | | E32 | 1363Trailer_atmNetwork saall_atmCpcs_i363Trailer 49 1
|E35 |E36 |Athore atmNetwork_atmUni1_atmCore_40_1

/\

| E40

|At| A DeviceProxy_: Proxy 2 1| IESQ |I361Header atmNetwork_atmUni1_atmCore_i361Header_41_1 |

| E45 |AthniiathccessDeviceProxyiathccessDeviceTesLathni7471 | |E50 |GsmMobiIeServicesSwitchingCemerigsmMSSC172071 |

| E47 |Athnre7 viceProxy_atr DeviceTest_atmUni_atmCore_5 1 I | E51 |GsmMobiIi(yManagemenLgsm55511117gsmMcbiIeEquipmenLgsmMubiIilyManagememJ 14 2
| E52 | GsmMobileEquipment_gsm5551111_gsmMobileEquipment 112_2 |

| E53 | GsmMobileStation_gsm5551111_104_2

| E54 |MobiIeSubscriberUnitGﬁ_phoneGui_mobiIeSubscriberUnitGﬁA_QG_Z |

| E55 |GHGUIInlerfaceJ)honeGuLmubiIeSubscriberUniIGﬂAjUIImerface79772 |

| E56 | GtfGuiConverter_phoneGui_mobileSubscriberUnitGitfA_gtfGuiConverter 110 _2 |

116-

APPENDIX C1- AcceptingRequest: Sequence Trace

thread acceptingcall.1.1 {

2582501 & f Cui Converter: phoneGui/ nmobi | eSubscri berUnit G f B/ gt f Gui Converter(111-2) send

¥snd;

2582501 G f QU I nterface: phoneGui/ nobi | eSubscri berUnit&fB/gU I nterface(101-2) state

Power | dl e/ Activel dl g;

2582501 & f Ul I nterface: phoneGui/ nobil eSubscri berUnit&fB/gU I nterface(101-2) receive

¥snd;

2582506 G f GUI I nterface: phoneGui/ nobi |l eSubscri berUnit&fB/gUlnterface(101-2) send

%Connect ;

2582506 G f QU I nterface: phoneGui/ nobil eSubscri berUnitG&fB/ gU I nterface(101-2) spawn

acceptingcal |l .1.1.1;

2582509 & f CGUI I nterface: phoneGui/ nobil eSubscri berUnit & fB/gU I nterface(101-2) send

% spl ay;

2582509 G f QU I nterface: phoneGui / nobi | eSubscriberUnitGfB/ gU I nterface(101-2) spawn

acceptingcal |l . 1.1.2;

thread acceptingcall.1.1.1 {

2582507 Mobi | eSubscri ber Unit G f: phoneGui / nobi | eSubscri ber Unit G f B(100 2)
%Connect ;

2582515 Mobi | eSubscri ber Unit G f: phoneGui / nobi | eSubscri ber Uni t Gt f B(100- 2)
2582517 Mobi | eSubscri ber Unit G f: phoneGui / nobi | eSubscri ber Unit G f B(100 2)
Initialized;

2582515 Gsm\bbi | eSt ati on: gsnb552222(107-2) state Si;

2582515 Gsm\bbi | eSt ati on: gsnb552222(107-2) receive %Connect;

2582526 Gsmvbbil eStati on: gsnb552222(107-2) send %Connect;

2582526 Gsmivbbi | eEqui pnent : gsnb552222/ gsmivbbi | eEqui pnent (116-2) state Si;

receive

send %Connect ;
state

2582526 Gsm\bbi | eEqui pnent : gsnb552222/ gsmvbbi | eEqui pnent (116-2) recei ve %Connect ;
2582537 Gsm\bbi | eEqui pnent : gsnb552222/ gsmvbbi | eEqui pnent (116-2) send %Connect ;
2582537 Gsmvbbi | i t yManagenent : gsnb552222/ gsmivbbi | eEqui pnent / gsmivbbi | i t yManagenent (118 2)

state Sl;

2582537 Gsm\bbi | i t yManagenent : gsnb552222/ gsmvbbi | eEqui pnent / gsnivbbi | i t yManagenent (118 2)

recei ve %Connect;

2582545 Gsmvbbi | i t yManagenent : gsnb552222/ gsmvbbi | eEqui pnent / gsmivbbi | it yManagenment (118- 2)

send % Connect;

2582545 Gsmbbi | i t yManagenent : gsnVSSC2/ gsmivbbi | i t yManagenent (84-1) state Si;
2582545 Gsm\bbi | it yManagenent : gsmVSSC2/ gsmvbbi | i t yManagenent (84-1) recei ve %Connect;
2582550 Gsm\bbi | i tyManagemnent: gsmvSSC2/ gsnivbbi | i t yManagenent (84-1) send %Connect ;

2582550 Gsmivbbi | eServi cesSwi t chi ngCent er: gsmMSSC2(82- 1) state Si;

2582550 Gsmivbbi | eServi cesSwi t chi ngCent er: gsmMSSC2(82- 1) recei ve %Connect ;

2582553 Gsm\bbi | eServi cesSwi t chi ngCent er: gsmMSSC2(82-1) send %Cal | Set upResp;

2582553 Cal | Control | er U at mAccessDevi ce/ at mni SvcU cal | Control | er U 66 1)
2582553 Cal | Control | er U: at mAccessDevi ce/ at mni SvcU cal | Control | er U 66 1)
%Cal | Set upResp;

2582557 Cal | Control | er U at mAccessDevi ce/ at mni SvcU cal | Control | er U(66- 1)
2582557 Si gnal i ngQR931U: at mAccessDevi ce/ at mni SvcUl si gnal i ng@2931U(65 1)
CanBeC ear ed/ | ncom ngCal | Proceedi ng9;

2582557 Si gnal i ngQ931U: at mAccessDevi ce/ at mni SvcUl si gnal i ngQ@2931U(65 1)
%Set upResp;

2582561 Si gnal i ngQR931U: at mMAccessDevi ce/ at mni SvcUl si gnal i ngQ2931U(65 1)
2582562 Si gnal i ngQR931U: at mAccessDevi ce/ at mni SvcUl si gnal i ngQ2931U(65 1)
CanBeC ear ed/ Connect Req8;

state Ready;
receive

send %Set upResp;
state

receive

send %Connect ;
state

2582561 DsslMessage: at mMAccessDevi ce/ at mni SvcU/ dss1Message(67-1) state Ready;
2582561 DsslMessage: at mAccessDevi ce/ at mni SvcU/ dss1Message(67-1) receive %Connect;
2582564 DsslMessage: at mMAccessDevi ce/ at mni SvcU/ dss1Message(67-1) send %Dss1Pdu;

2582564 Sscop: at mMAccessDevi ce/ saal / sscop(78 1) state Ready;

2582564 Sscop: at mMAccessDevi ce/ saal / sscop(78-1) receive %sslPdu;
2582568 Sscop: at mMAccessDevi ce/ saal / sscop(78 1) send %Aal 5Sdu;
2582568 At mCpcs: at mAccessDevi ce/ saal / at mCpcs(79-1) state Ready;
2582568 At nCpcs: at mAccessDevi ce/ saal / at mCpcs(79 1) recei ve %Aal 5Sdu;
2582572 At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79-1) send %CpcsSdu;

2582572 1363Trail er: at mMccessDevi ce/ saal / at mCpcs/i 363Trai |l er (80-1) state Ready;
2582572 1363Trail er: at mMccessDevi ce/ saal / at mCpcs/ i 363Trail er (80-1) receive %pcsSdu;
2582577 1363Trail er: at mMccessDevi ce/ saal / atnCpcs/i 363Trai |l er (80-1) send %CpcsPdu;

2582577 At nCpcs: at mAccessDevi ce/ saal / at mCpcs(79 1) receive %CpcsPdu;
2582581 At nmCpcs: at mAccessDevi ce/ saal / at mCpcs(79-1) send %Sar Sdu;
2582581 At nBar: at mAccessDevi ce/ saal / at nSar (81-1) state Ready;

-117-

2582581 At nBar: at mAccessDevi ce/ saal / at nf5ar (81-1) recei ve %Sar Sdu;
2582584 At nBar: at mAccessDevi ce/ saal / at nBar (81-1) send %At nlul;
2582584 At nBar: at mAccessDevi ce/ saal / at nSar (81-1) spawn acceptingcal |
2582586 At nBar: at mAccessDevi ce/ saal / at nSar (81-1) send %At nCel | Sdu;
2582586 At nBar: at mAccessDevi ce/ saal / at nBar (81-1) spawn acceptingcall
h

thread acceptingcall.1.1.1.1 {

2582584 At nCore: at mMAccessDevi ce/ at mni / at mCor e(69-1) state Ready;

2582584 At nCor e: at mAccessDevi ce/ at mni / at mCor e(69 1) recei ve %At nlul;

h
thread acceptingcall.1.1.1.2 {

.1.1.1.1;

.1.1.1. 2

2582586 At nmCore: at mMAccessDevi ce/ at mni / at mCore(69-1) receive %At nCel | Sdu;

2582591 At nCor e: at mAccessDevi ce/ at mni / at mCor e(69 1) send %At nCel | Sdu;

2582591 | 361Header : at mMAccessDevi ce/ at mni / at mCor e/ i 361Header (70-1) state Ready;

2582591 | 361Header: at mAccessDevi ce/ at mni / at nCor e/ i 361Header (70-1) recei ve %At nCel | Sdu;
2582595 | 361Header : at mMAccessDevi ce/ at mni / at mCor e/ i 361Header (70-1) send %At nCel | Pdu;
2582595 At nCor e: at mAccessDevi ce/ at mni / at mCor e(69 1) recei ve %At nCel | Pdu;

2582597 At nCor e: at mAccessDevi ce/ at mni / at nCor e(69-1) send %At nCel | Pdu;

2582599 At nCor e: at mAccessDevi ce/ at mni / at mCor e(69-1) state Ready;
2582597 At mCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) state Ready;

2582597 At nCor e: at mNet wor k/ at mni 2/ at nCore(43-1) recei ve %At nCel | Pdu;

2582602 At nCor e: at mNet wor k/ at nni 2/ at nCor e(43-1) send %At nCel | Pdu;

2582602 | 361Header : at mNet wor k/ at mni 2/ at mCor e/ i 361Header (44-1) state Ready;
2582602 | 361Header : at mNet wor k/ at mni 2/ at mCor e/ i 361Header (44-1) receive %At nCel | Pdu;
2582607 | 361Header : at mNet wor k/ at nuni 2/ at mCor e/ i 361Header (44-1) send %At nCel | Sdu;

2582607 At nCor e: at mNet wor k/ at mni 2/ at nCore(43-1) recei ve %At nCel | Sdu;

2582609 At nCor e: at mNet wor k/ at mni 2/ at nCore(43-1) send %At nCel | Sdu;
2582609 At nSar: at nNet wor k/ saal 2/ at nSar (56-1) state Ready;

2582609 At nSar: at mNet wor k/ saal 2/ at nfSar (56-1) recei ve %At nCel | Sdu;
2582613 At nSar: at nNet wor k/ saal 2/ at nSar (56-1) send %Sar | du;

2582613 At nCpcs: at nNet wor k/ saal 2/ at nCpcs(54-1) state Ready;
2582613 At mCpcs: at mNet wor k/ saal 2/ at nCpcs(54-1) receive %Sarl du;
2582617 At mCpcs: at m\et wor k/ saal 2/ at nCpcs(54-1) send %CpcsPdu;

2582617 |1363Trail er: at mNet wor k/ saal 2/ at nCpcs/i 363Trail er (55 1) state Ready;
2582617 |1363Trail er: at mNet wor k/ saal 2/ at mCpcs/ i 363Trail er (55 1) receive % pcsPdu;
2582620 |363Trail er: at mNet wor k/ saal 2/ at mCpcs/ i 363Trai |l er (55-1) send %CpcsSdu;

2582620 At mCpcs: at mNet wor k/ saal 2/ at nCpcs(54-1) receive %pcsSdu;
2582622 At nCpcs: at mNet wor k/ saal 2/ at nCpcs(54-1) send %Aal 5Sdu;
2582622 Sscop: at mNet wor k/ saal 2/ sscop(53-1) state Ready;

2582622 Sscop: at mNet wor k/ saal 2/ sscop(53-1) receive %\al 5Sdu;
2582626 Sscop: at mNet wor k/ saal 2/ sscop(53-1) send %Dss1Pdu;

2582626 DsslMessage: at mNet wor k/ at mni SvcN2/ dss1Message(38 1) state Ready;
2582626 DsslMessage: at mNet wor k/ at mni SvcN2/ dss1Message(38 1) receive %Dss1Pdu;
2582629 DsslMessage: at mNet wor k/ at mni SvcN2/ dss1Message(38-1) send %Connect;

2582629 Si gnal i ngQR931N: at mNet wor k/ at mni SvcN2/ si gnal i ngQ931N(37- 1)
CanBeC ear ed/ | ncom ngCal | Proceedi ng9;

2582629 Si gnal i ngQR931N: at nNet wor k/ at mni SvcN2/ si gnal i ngQ931N(37- 1)
2582632 Si gnal i ngQ2931N: at mNet wor k/ at mni SveN2/ si gnal i ngQR2931N(37- 1)
2582634 Si gnal i ngQR931N: at mNet wor k/ at mni SvcN2/ si gnal i ngQ2931N(37- 1)
CanBeCl ear ed/ Connect Req8;

2582633 Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36- 1)
2582633 Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36- 1)
2582636 Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36- 1)
2582636 Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36- 1)
acceptingcall.1.1.1.2.1;

2582638 Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36- 1)
%set upConpl et eReq;

2582638 Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36- 1)
acceptingcall.1.1.1.2.2;

thread acceptingcall.1.1.1.2.1 {

2582636 Cal | Control | er N: at mNet wor k/ at mni SveN1/ cal | Control | er N(32- 1)
2582636 Cal | Control | er N: at mNet wor k/ at mni SveN1/ cal | Control | er N(32 1)
%Cal | Set upResp;

2582641 Cal | Control | er N: at mNet wor k/ at mni SvcN1/ cal | Control | er N(32- 1)
2582641 Si gnal i ngQR931N: at mNet wor k/ at mni SveN1/ si gnal i ngQ931N(33 1)
CanBeCl ear ed/ Qut goi ngCal | Proceedi ng3;

2582641 Si gnal i ngQ931N: at mNet wor k/ at mni SvceN1/ si gnal i ngQ931N(33 1)
2582647 Si gnal i ngQR931N: at mNet wor k/ at mni SvcN1/ si gnal i ngQR2931N(33- 1)
2582650 Si gnal i ngQR931N: at mNet wor k/ at mni SvcN1/ si gnal i ngQ2931N(33 1)
CanBed ear ed/ Acti velO;

-118-

state

recei ve %Connect;
send %Set upConf;
state

state Ready;

recei ve %set upConf ;
send %Cal | Set upResp;
spawn

send

spawn

state Ready;
receive

send %Set upResp;
state

recei ve %set upResp;
send %Connect ;
state

2582647 DsslMessage: at mNet wor k/ at mni SvcN1/ dss1Message(34- 1) state Ready;
2582647 DsslMessage: at mNet wor k/ at mni SvcN1/ dss1Message(34-1) recei ve %Connect;
2582655 DsslMessage: at mNet wor k/ at mni SvcN1/ dss1Message(34-1) send %Dss1Pdu;
2582655 Sscop: at mNet wor k/ saal 1/ sscop(47-1) state Ready;

2582655 Sscop: at mNet wor k/ saal 1/ sscop(47-1) receive %Dss1Pdu;

2582662 Sscop: at mNet wor k/ saal 1/ sscop(47-1) send %Aal 5Sdu;

2582662 At mCpcs: at mNet wor k/ saal 1/ at nCpcs(48- 1) state Ready;

2582662 At mCpcs: at mNet wor k/ saal 1/ at nCpcs(48-1) recei ve %Aal 5Sdu;

2582674 At nCpcs: at mNet wor k/ saal 1/ at nCpcs(48 1) send % CpcsSdu;

2582675 |1363Trail er: at mNet wor k/ saal 1/ at nCpcs/ i 363Trai |l er (49-1) state Ready;
2582675 |1363Trail er: at mNet wor k/ saal 1/ at mCpcs/ i 363Trai |l er (49-1) receive % pcsSdu;
2582678 |363Trail er: at mNet wor k/ saal 1/ at mCpcs/ i 363Trai |l er (49-1) send %CpcsPdu;
2582678 At nCpcs: at mNet wor k/ saal 1/ at nCpcs(48-1) recei ve %CpcsPdu;

2582680 At nCpcs: at mNet wor k/ saal 1/ at nCpcs(48-1) send %Sar Sdu;

2582680 At nSar: at nNet wor k/ saal 1/ at nSar (50-1) state Ready;

2582680 At nSar: at nNet wor k/ saal 1/ at nSar (50-1) recei ve %Sar Sdu;

2582689 At nBar: at nNet wor k/ saal 1/ at nSar (50- 1) send %At nlul;

2582689 At nSar: at nNet wor k/ saal 1/ at nSar (50- 1) spawn acceptingcall.1.1.1.2.1.1;
2582690 At nSar: at nNet wor k/ saal 1/ at nSar (50-1) send %At nCel | Sdu;

2582690 At nSar: at mNet wor k/ saal 1/ at nSar (50-1) spawn acceptingcall.1.1.1.2.1.2;
h

thread acceptingcall.1.1.1.2.1.1 {

2582689 At mCor e: at mNet wor k/ at mni 1/ at nCor e(40- 1) state Ready;

2582689 At mCor e: at mNet wor k/ at mni 1/ at mCor e(40- 1) recei ve %At nbul,

thread acceptingcall.1.1.1.2.1.2 {

2582690 At nCor e: at mNet wor k/ at mni 1/ at nCor e(40- 1) recei ve %At nCel | Sdu;

2582709 At mCor e: at mNet wor k/ at mni 1/ at mCor e(40- 1) send %At nCel | Sdu;

2582709 | 361Header : at mNet wor k/ at mni 1/ at mCor e/ i 361Header (41-1) state Ready;
2582709 | 361Header : at mNet wor k/ at mni 1/ at mCor e/ i 361Header (41-1) recei ve %At nCel | Sdu;
2582712 | 361Header : at mNet wor k/ at mni 1/ at nCor e/ i 361Header (41-1) send %At nCel | Pdu;
2582712 At mCor e: at mNet wor k/ at mni 1/ at mCor e(40- 1) recei ve %At nCel | Pdu;

2582714 At mCor e: at mNet wor k/ at mni 1/ at mCor e(40- 1) send %At nCel | Pdu;

2582716 At nCor e: at mNet wor k/ at mni 1/ at nCor e(40- 1) st ate Ready;

2582714 At mAccessDevi ceProxy: at mAccessDevi ceProxy(2-1) state Si;

2582714 At mAccessDevi ceProxy: at mAccessDevi ceProxy(2- 1) receive %At nCel | Pdu;
2582728 At mAccessDevi ceProxy: at mAccessDevi ceProxy(2- 1) send %At nCel | Pdu;

2625499 At mAccessDevi ceProxy: at mAccessDevi ceProxy(2 1) receive %At nCel | Pdu;
2625507 At mAccessDevi ceProxy: at mMAccessDevi ceProxy(2-1) send %At nCel | Pdu;

2625532 At mAccessDevi ceProxy: at mAccessDevi ceProxy(2- 1) state Si;

b

thread acceptingcall.1.1.1.2.2 {

2582638 Si gnal i ngQ931N: at nNet wor k/ at mni SvcN2/ si gnal i ngQ2931N(37-1) receive
%set upConpl et eReq;

2582644 Si gnal i ngQ2931N: at nNet wor k/ at mni SvcN2/ si gnal i ngQ2931N(37-1) send % Connect Ack;
2582645 Si gnal i ngQ931N: at nNet wor k/ at mni SvcN2/ si gnal i ngQ2931N(37-1) state
CanBeC ear ed/ Acti velO;

2582644 DsslMessage: at mNet wor k/ at mni SvcN2/ dss1Message(38-1) recei ve % onnect Ack;
2582652 DsslMessage: at mNet wor k/ at mni SvcN2/ dss1Message(38-1) send %Dss1Pdu;
2582653 DsslMessage: at mNet wor k/ at mni SvcN2/ dss1Message(38-1) state Ready;
2582652 Sscop: at mNet wor k/ saal 2/ sscop(53-1) receive %ss1Pdu;

2582659 Sscop: at mNet wor k/ saal 2/ sscop(53-1) send %Aal 5Sdu;

2582660 Sscop: at mNet wor k/ saal 2/ sscop(53-1) state Ready;

2582659 At mCpcs: at mNet wor k/ saal 2/ at nCpcs(54-1) receive %Aal 5Sdu;

2582666 At nCpcs: at mNet wor k/ saal 2/ at nCpcs(54-1) send % CpcsSdu;

2582666 | 363Trail er: at mNet wor k/ saal 2/ at nCpcs/i 363Trai |l er (55-1) receive %CpcsSdu;
2582669 |363Trail er: at mNet wor k/ saal 2/ at mCpcs/ i 363Trai |l er (55 1) state Ready;
2582669 |363Trail er: at mNet wor k/ saal 2/ at mCpcs/ i 363Trai |l er (55 1) send %CpcsPdu;
2582669 At nCpcs: at mNet wor k/ saal 2/ at nCpcs(54-1) recei ve % CpcsPdu;

2582671 At nCpcs: at mNet wor k/ saal 2/ at nCpcs(54-1) send %Sar Sdu;

2582672 At mCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) state Ready;

2582671 At nSar: at nNet wor k/ saal 2/ at nSar (56-1) recei ve %Sar Sdu;

2582684 At nBar: at nNet wor k/ saal 2/ at nSar (56-1) send %At nlul;

2582684 At nSar: at nlNet wor k/ saal 2/ at nSar (56- 1) spawn acceptingcall.1.1.1.2.2.1;
2582685 At nBar: at nNet wor k/ saal 2/ at nSar (56-1) send %At nCel | Sdu;

2582685 At nSar: at mNet wor k/ saal 2/ at nSar (56-1) spawn acceptingcall.1.1.1.2.2.2;
2582686 At nSar: at nNet wor k/ saal 2/ at nSar (56-1) state Ready;

h

thread acceptingcall.1.1.1.2.2.1 {

2582684 At nmCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) receive %At nlul,

2582695 At nCor e: at mNet wor k/ at mni 2/ at nCore(43-1) state Ready;

-119-

h

thread acceptingcall.1.1.1.2.2.2 {

2582685 At nmCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) receive %At nCel | Sdu;

2582697 At mCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) send %At nCel | Sdu;

2582697 | 361Header : at mNet wor k/ at mni 2/ at mCor e/ i 361Header (44-1) recei ve %At nCel | Sdu;
2582701 | 361Header : at mNet wor k/ at mni 2/ at mnCor e/ i 361Header (44- 1) state Ready;

2582701 | 361Header: at mNet wor k/ at mni 2/ at nCor e/ i 361Header (44-1) send %At nCel | Pdu;
2582701 At mCore: at mNet wor k/ at mni 2/ at mCor e(43-1) receive %At nCel | Pdu;

2582703 At nCor e: at mNet wor k/ at mni 2/ at nCor e(43-1) send %At nCel | Pdu;

2582704 At nCor e: at mNet wor k/ at mni 2/ at nCore(43-1) state Ready;

2582703 At mCore: at mMAccessDevi ce/ at mni / at mCor e(69-1) recei ve %At nCel | Pdu;

2582718 At mCore: at mMAccessDevi ce/ at mni / at mCor e(69-1) send %At nCel | Pdu;

2582718 | 361Header : at mMAccessDevi ce/ at mni / at mCor e/ i 361Header (70-1) recei ve %At nCel | Pdu;
2582721 | 361Header: at mAccessDevi ce/ at mni / at nCor e/ i 361Header (70-1) state Ready;
2582722 | 361Header : at mMAccessDevi ce/ at mni / at mCor e/ i 361Header (70-1) send %At nCel | Sdu;
2582722 At mCor e: at mMAccessDevi ce/ at mni / at mCor e(69-1) receive %At nCel | Sdu;

2582724 At nCor e: at mAccessDevi ce/ at mni / at nCor e(69-1) send %At nCel | Sdu;

2582725 At nCore: at mMccessDevi ce/ at mni / at mCor e(69 1) state Ready;

2582724 At nBar: at mAccessDevi ce/ saal / at nSar (81-1) receive %At nCel | Sdu;

2582732 At nBar: at mAccessDevi ce/ saal / at nSar (81-1) send %Sar | du;

2582734 AtnSar: at mAccessDevi ce/ saal / at nSar (81-1) state Ready;

2582732 At nCpcs: at mMAccessDevi ce/ saal / at mCpcs(79 1) receive %Sarl du;

2582820 At nmCpcs: at mMAccessDevi ce/ saal / at mCpcs(79-1) send %CpcsPdu;

2582820 1363Trail er: at mMccessDevi ce/ saal / at mCpcs/ i 363Trail er (80-1) receive %CpcsPdu;
2582829 |363Trail er: at mMccessDevi ce/ saal / at mCpcs/ i 363Trail er (80-1) state Ready;
2582829 |363Trail er: at mMccessDevi ce/ saal / at mCpcs/ i 363Trail er (80-1) send %CpcsSdu;
2582829 At nCpcs: at mAccessDevi ce/ saal / at mCpcs(79 1) receive %CpcsSdu;

2582832 AtnCpcs: at mAccessDevi ce/ saal / at nCpcs(79-1) send %Aal 5Sdu;

2582835 At nmCpcs: at mAccessDevi ce/ saal / at mCpcs(79-1) state Ready;

2582832 Sscop: at mAccessDevi ce/ saal / sscop(78 1) receive %Aal 5Sdu;

2582884 Sscop: at mMAccessDevi ce/ saal / sscop(78 1) send %Dss1Pdu;

2582886 Sscop: at mMAccessDevi ce/ saal / sscop(78-1) state Ready;

2582884 DsslMessage: at mAccessDevi ce/ at mni SvcU dss1Message(67-1) receive %sslPdu;
2582892 DsslMessage: at mAccessDevi ce/ at mni SvcU/ dss1Message(67-1) send % Connect Ack;
2582894 DsslMessage: at mMAccessDevi ce/ at nini SvcU/ dss1Message(67-1) state Ready;
2582892 Signal i ngQ931U: at mAccessDevi ce/ at muni SvcU si gnal i ngQ2931U(65 1) receive
%Connect Ack;

2582899 Si gnal i ngQ931U: at mAccessDevi ce/ at muni SvcU si gnal i ngQ2931U(65 1) send

%set upConpl et el nd;

2582902 Si gnal i ngQ931U: at mAccessDevi ce/ at mni SvcU si gnal i ngQ2931U(65 1) state
CanBeCl ear ed/ Acti velO;

2582899 Cal | Control | er U: at mAccessDevi ce/ at mni SvcU cal | Control | er U 66 1) receive
%set upConpl et el nd;

2582904 Cal | Control | er U at mAccessDevi ce/ at mni SvcU/ cal | Control |l er U 66 1) state Ready;
b

thread acceptingcall.1.1.2 {

2582509 G f Gui Converter: phoneGui / nobi | eSubscri ber Unit G f B/ gt f Gui Converter(111-2) receive
%i spl ay;

-120-

APPENDIX C2- AcceptingRequest: Communication
Patterns

S AtmCpcs:atmAccessDevice/saal/atmCpcsi(y9
I363Trailer:atm\ccessDevice/saal/atmCpcs/i363Trailer@@®582572 2582577

A AtmSar:.atmAccessDevice/saal/atmSar(§1
AtmCore:atmAccessDevice/atmUni/atmCore@2582584

S AtmCore:atmAccessDevice/atmUni/atmCorel§9
I361Header:atmAccessDevice/atmUni/atmCore/i361Heddd) 2582591 2582595
S AtmCore:atmNetwork/atmUni2/atmCore{43
I361Header:atmNetwork/atmUni2/atmCore/i361Headel($2582602 2582607

S AtmCpcs:atmNetwork/saal2/atmCpcs{b4

1363 Trailer:atmNetwork/saal2/atmCpcs/i363Trailer@§32582617 2582620

S AtmCpe:atmNetwork/saall/atmCpcs{4y

1363 Trailer:atmNetwork/saall/atmCpcs/i363TrailerP582675 2582678

A AtmSar:atmNetwork/saall/atmSar¢ad AtmCore:atmNetwork/atmUnil/atmCoref40
1) 2582689

S AtmCore:atmNetwork/atmUnil/atmCore(4)
I361Header:atmNetwofitmUnil/atmCore/i361Header(4) 2582709 2582712

A AtmCore:atmNetwork/atmUnil/atmCore(49
AtmAccessDeviceProxy:atmAccessDeviceProxi) (2582714

S SignalingQ2931N:atmNetwork/atmUniSvcN2/signalingQ2931N(37
CallControllerN:atmNetwork/atmUniSvcN2/call@tollerN(361) 2582633 2582638
A CallControllerN:atmNetwork/atmUniSvcN2/callControllerN¢3%
CallControllerN:atmNetwork/atmUniSvcN1/callControllerN¢22 2582636

S Dss1Message:atmNetwork/atmUniSvcN2/dss1Messad9(38
SignalingQ2931N:atmNetwork/atmUniSv2iignalingQ2931N(31) 2582629 2582644
S Sscop:atmNetwork/saal2/sscop@®B3
Dss1Message:atmNetwork/atmUniSvcN2/dss1Messag (3882626 2582652

S AtmCpcs:atmNetwork/saal2/atmCpcs{BaSscop:atmNetwork/saal2/sscop(B3
2582622 2582659

S AtmCpcs:atmNetwd/saal2/atmCpcs(54)

1363 Trailer:atmNetwork/saal2/atmCpcs/i363Trailer(§32582666 2582669

S AtmSar:atmNetwork/saal2/atmSar{bpAtmCpcs:atmNetwork/saal2/atmCpcs(by
2582613 2582671

S AtmCore:atmNetwork/atmUni2/atmCore{d3 AtmSar:atmNetwork/saal2faSar(56
1) 2582609 2582684

A AtmCore:atmAccessDevice/atmUni/atmCore(H9
AtmCore:atmNetwork/atmUni2/atmCore@3 2582597

S AtmCore:atmNetwork/atmUni2/atmCore(43
I361Header:atmNetwork/atmUni2/atmCore/i36 1Headefl(#2582697 2582701

A AtmSar:atmAcced3evice/saal/atmSar(81L)
AtmCore:atmAccessDevice/atmUni/atmCore(@®2582586

S AtmCore:atmAccessDevice/atmUni/atmCorel§9
I361Header:atmAccessDevice/atmUni/atmCore/i361Headd) (2882718 2582722

-121-

A AtmCpcs:atmAccessDevice/saal/atmCpcs{j9
AtmSar:atmAcessDevice/saal/atmSar{81 2582581

A Sscop:atmAccessDevice/saal/sscogly8
AtmCpcs:atmAccessDevice/saal/atmCpcs]y 2582568

S AtmCpcs:atmAccessDevice/saal/atmCpcsi(y9
I363Trailer:atmAccessDevice/saal/atmCpcs/i363Trailel(BR582820 2582829

A DssIMessage:atmAccessDevice/atmUniSvcU/dss1Messadg(67
Sscop:atmAccessDevice/saal/sscopy 2582564

A SignalingQ2931U:atmAccessDevice/atmUniSvcU/signalingQ29311)65
Dss1Message:atmAccessDevice/atmUniSvcU/dss1Messabep5B82561

A CallControllerU:atmAcessDevice/atmUniSvcU/callControllerU (a6
SignalingQ2931U:atmAccessDevice/atmUniSvcU/signalingQ293) @582557
A GsmMobileServicesSwitchingCenter:gsmMSSC2(§2
CallControllerU:atmAccessDevice/atmUniSvcU/callControllerJ{§&@582553

S GtfGuiConvertephoneGui/mobileSubscriberUnitGtfB/gtfGuiConverter(Z2)1
GtfGUIlInterface:phoneGui/mobileSubscriberUnitGtfB/gUlInterface{2p2582501
2582509

A GtfGUIInterface:phoneGui/mobileSubscriberUnitGtfB/gUIInterface{2p1
MobileSubscriberUnitGtf:phoneGui/mobilaBscriberUnitGtfB(10) 2582507

A CallControllerN:atmNetwork/atmUniSvcN1/callControllerN(22
SignalingQ2931N:atmNetwork/atmUniSvcN1/signalingQ2931N(B2582641

A SignalingQ2931N:atmNetwork/atmUniSvcN1/signalingQ2931 N33
Dss1Message:atmNetwork/atmiSucN1/dss1Message (39 2582647

A Dss1Message:atmNetwork/atmUniSvcN1/dss1MessagB(34
Sscop:atmNetwork/saall/sscop(#)72582655

A Sscop:atmNetwork/saall/sscop{@)yAtmCpcs:atmNetwork/saall/atmCpcs{¥8
2582662

A AtmCpcs:atmNetwork/saall/atmCpcs{aBAtmSar:atmNetwork/saall/atmSar(a)
2582680

A AtmSar:atmNetwork/saall/atmSar¢ad AtmCore:atmNetwork/atmUnil/atmCoref40
1) 2582690

A AtmSar:atmNetwork/saal2/atmSar¢gy AtmCore:atmNetwork/atmUni2/atmCoref43
1) 2582685

A AtmCore:atmNetwork/atmUni2/atmCe{@31)
AtmCore:atmAccessDevice/atmUni/atmCore@®582703

A AtmCore:atmAccessDevice/atmUni/atmCore(H9
AtmSar:atmAccessDevice/saal/atmSar{3 582724

A AtmSar.atmAccessDevice/saal/atmSar(§1
AtmCpcs:atmAccessDevice/saal/atmCpcs{y 2582732

A AtmCpcs:atmAccessDevice/saal/atmCpcs(}J9
Sscop:atmAccessDevice/saal/sscop(y 2582832

A Sscop:atmAccessDevice/saal/sscogl) 8
Dss1Message:atmAccessDevice/atmUniSvcU/dss1Messatjep5B82884

A Dss1Message:atmAccessDevice/atmUniSvcU/dss1Messate(67
SignalingQ2931U:atmAccessDevice/atmUniSvcU/signalingQ293141)6E82892

-122-

A SignalingQ2931U:atmAccessDevice/atmUniSvcU/signalingQ293)65
CallControllerU:atmAccessDevice/atmUniSvcU/callControllerJ{§&582899

A MobileSubscriberUnitGtf:phoneGui/mobileSubberUnitGtfB(1002)
GsmMobileStation:gsm5552222 (127 2582515

A GsmMobileStation:gsm5552222 (12§
GsmMobileEquipment:gsm5552222/gsmMobileEquipment(2)1B582526

A GsmMobileEquipment:gsm5552222/gsmMobileEquipment{2)L6
GsmMobilityManagement:gsm555222&igMobileEquipment/gsmMobilityManagement
(118-2) 2582537

A
GsmMobilityManagement:gsm5552222/gsmMobileEquipment/gsmMobilityManagement
(118-2) GsmMobilityManagement:gsmMSSC2/gsmMobilityManagemerit (82682545
A GsmMobilityManagement:gsmMSSC2/gsmMobilityManageni841)
GsmMobileServicesSwitchingCenter:.gsmMSSC2{32582550

-123-

APPENDIX C3- AcceptingRequest: LON Performance
Model
G

0.0
0

0
0.9
-1

PO
p procl f
-1

TO

t AtmAccessDeviceProxy:atmAccessDeviceProxi(2 E41 -1 procl

t AtmCore:atmAccessDevicamUni/atmCore(69L) f E15 E16 E39-1 procl

t AtmCore:atmNetwork/atmUnil/atmCore(f E36 E37-1 procl

t AtmCore:atmNetwork/atmUni2/atmCore@3 f E18 E35-1 procl

t AtmCpcs:atmAccessDevice/saal/atmCpcsly9E12 E44-1 procl

t AtmCpcs:atmNetworlgaall/atmCpcs(48) f E31 -1 procl

t AtmCpcs:atmNetwork/saal2/atmCpcs{bgf E21 -1 procl

t AtmSar:atmAccessDevice/saal/atmSar{31 E14 E43-1 procl

t AtmSar:atmNetwork/saall/atmSar(aPf E34 -1 procl

t AtmSar:atmNetwork/saal2/atmSar(®pf E20 -1 procl

t CallControllerN:atmNetwork/atmUniSvcN1/callControllerN¢32f E27 -1 procl

t CallControllerN:atmNetwork/atmUniSvcN2/callControllerN¢3pf E26 -1 procl

t CallControllerU:atmAccessDevice/atmUniSvcU/callControllerd{§6 E8 E49-1
procl

t Dss1Message:atmAccessDevice/atmUniSvcU/dss1Messabe{&10 E47-1 procl
t Dss1Message:atmNetwork/atmUniSvcN1/dss1Messagg(BE29 -1 procl

t Dss1Message:atmNetwork/atmUniSvcN2/dss1Messadg(BB24 -1 procl

t GsmMobileEquipment:gsm5552222/gsmidileEquipment(11€) f E4 -1 procl

t GsmMobileServicesSwitchingCenter:gsmMSSC2(32E7 -1 procl

t GsmMobileStation:gsm5552222(2QY f E3 -1 procl

t
GsmMobilityManagement:gsm5552222/gsmMobileEquipment/gsmMobilityManagement
(1182) f E5 -1 procl

t GsmMobilityManagement:gsmMSSC2/gsmMobilityManagement{$4 E6 -1 procl
t GtfGUlInterface:phoneGui/mobileSubscriberUnitGtfB/gUIInterface{20LE1 -1
procl

t GtfGuiConverter:phoneGui/mobileSubscriberUnitGtfB/gtfGuiConverterA)Ir1EO -1
procl

t 1I361Header:atmAccessDevice/atmUni/atmCore/i361Headel{#E17 E42-1 procl
t I361Header:atmNetwork/atmUnil/atmCore/i361Headel(4flIE40 -1 procl

- 124-

t I361Header:atmNetwork/atmUni2/atmCore/i361Headel(44E19 E38-1 procl

t I363Trailer:atmAccessDevice/s@mCpcs/i363Trailer(8Q) f E13 E45-1 procl

t 1363Trailer:atmNetwork/saall/atmCpcs/i363Trailerdd E33 -1 procl

t I363Trailer:atmNetwork/saal2/atmCpcs/i363Trailer(§5 E22 E32-1 procl

t MobileSubscriberUnitGtf:phoneGui/mobileSubscriberUniBs100-2) f E2 -1 procl
t SignalingQ2931N:atmNetwork/atmUniSvcN1/signalingQ2931N(BBE28 -1 procl
t SignalingQ2931N:atmNetwork/atmUniSvcN2/signalingQ2931N(BVE25 -1 procl
t SignalingQ2931U:atmAccessDevice/atmUniSvcU/signalingQ2931W)6%9 ES -1
procl

t Sscop:atmAccessDevice/saal/sscop(Y8E11l E46-1 procl

t Sscop:atmNetwork/saall/sscop®)/f E30 -1 procl

t Sscop:atmNetwork/saal2/sscop(B3f E23 -1 procl

-1

EO

SEO0 1.01

y EO E11.01
SE11.01
zE1E21.01
SE101.01.61
zE10E11 0.0 1.0
sE111.01.61
zE11E12 0.0 1.0
sE121.01.61

y E12 E13 0.0 1.01
zE12 E140.0 1.0
sE131.01
sE141.01.61
zE14E150.0 1.0
zE14E16 0.0 1.61
sE151.01
sE161.0 1.61

y E16 E17 0.0 1.61
z E16 E18 0..0-1
sE171.01
sE181.01.61

y E18 E19 0.0 1.01
y E18 E20 0.0 1.61
sE191.01
sE21.01.01

z E2 E30.0 1.61
sE201.01.61

y E20 E21 1.0 0.61
z E20 E35 0.0 1.61
sE211.01

y E21 E22 1.01

-125-

y E21 E231.01

y E21 E32 1.01

s E221.0-1
sE231.01

y E23 E24 1.01
sE241.01

y E24 E25 1.01
sE251.01

y E25 E26 1.01

s E26 1.01

z E26 E27 1.01
sE271.01.01

z E27 E28 0.0 1.601
sE281.01.01
zE28E290.01.a1
sE291.01.01
zE29E300.01.a1
sE31.01.01
ZzE3 E40.01.01
sE301.01.601
zE30E310.01.a
sE311.01.01

y E31 E33 0.0 1.601
ZzE31E340.01.0
sE321.01
sE331.01
sE341.01.01
zE34 E360.01.00
zE34E370.01.a
sE351.01.01

y E35E38 0.0 1.601
zE35E390.00-1
s E36 1.01
sE371.01.01

y E37 E40 0.0 1.61
zE37E410.01.0
sE38 1.01
sE391.01.01

y E39E42 0.0 1.601
zE39E430.01.0
sE41.01.01
ZzE4 E50.01.601

s E40 1.01
sE411.01

sE42 1.01
sE431.01.01

-126-

z E43 E440.0D-1
sE44 1.0 1.61

y E44 E45 0.0 1.61
z E44 E46 0.0 1.6
s E45 1.01

s E46 1.0 1.61

z E46 E47 0.0 1.6
s E47 1.0 1.61

z EA7 E48 0.0 1.6
s E481.0 1.61

z E48 E49 0.0 1.61
s E49 1.01
sE51.01.01

z E5E6 0.0 1.61
sE61.01.01

z E6 E7 0.0 1.61
sE71.01.01
zE7E80.01.61
sE81.01.01

z E8 E9 0.0 1.61
sE91.01.01

z E9 E100.0 1.61
-1

-127-

APPENDIX C4- AcceptingRequest: Graphical LQN
Performance Model

ED GiGuiConverter_phoneGui_mahileSubscriberlnitGB_gtfGuiConverter_111_2
F

E1 GiiGUIInterface_phoneGui_maobileSubscriberUnitGiB_glUlinterface_101_2

EZ MobkileSubscriberlUnitG_phoneGui_mahileSubscriberJnitGiB_100_2

E3 GsmmobileStation_gsmaa52222_107_2

Ed GsmmobileEquipment_gsm5552222_gsmiobileEquipment_116_2

ES Gsmmobilityhlanagement_osma552222_gsmdobileEquipment_gsmbobilitManagement_118_2

EB GsmhobilityManagement_gsmMSSC2_gambohilityManagement_84_1

ET GsmmobileSendcesSwitchingCenter_gsmmMS5C2_82 1

E8 E44 CallCantrallerl_stmaAccessDevice_atmUniSvel_callControllerl)_G6_1

E4 E44 Signaling@ 2931 U_atmaAccessDevice_atmUniSvell_signaling@29311_B5_1
To E10 From E47

-128-

From E9 to E48

|

| E10 | Ed7 | DssihMessage_atmAccessDevice_atmUniSvell_dssi1Message_67_1

| E11 | E4§ | Sscop_atmAccessDevice_saal_sscop_T8_1 |

|E12 |E44 |Athpcs_athccessDevice_saal_athpcs_?gj |

|E14 |E4C |Athar_athccessDevice_saal_athar_81_1 | |E13 |E45 |I363Trai|er_athccessDevice_saal_atmopcs_i363TraiIer_SD_1

|E15 |E1B |Athore atmAccessDevice_atmUni_atmCore_B9_1 |
| E18 | E;S\/ |Athore_atmNetwork_athniQ_athore_43_1 | | E17 | Ed2 | I361Header_atmaAccessDevice_atmUni_atmCore_i361Header_70_1
| E20 |Athar_atmNetwurk_saal2_atm8ar_56_1 | | E189 | E38 | |361Header_atmMetwork_atmUniZ_atmCore_i361Header_44_1

|E21 |Athpcs_atmNeMork_saaI2_athpcs_54_1 |

|E22 |E32 |I363Trai|er_atmNetw0rk_saal2_atmCpcs_iSESTraiIer_55_1 | |E23 |Sscop_atmNet\n\tork_saalz_sscop_SSJ

| E24 | DssiMessage_atmMetwork_atmUniSvei2_dssiMessage_38_1 |

To E25

-129-

lFrom E24

| E25 | Signaling 2831 KH_atmMetwark_atmlJniSveM2_signaling@2831H_37_1 ‘

| EZ6 | CallControllert_atmietwork_atmUniSvehZ_callContrallert_36_1 ‘

| E27 | CallControllert_atmMetwork_atmUniSveM1_callContrallert_32_1 ‘

| Ez8 | Signaling@ 2831 K_atmMetwoark_atmUniSveM1 _signaling@2831H_33_1 ‘

| Ez4 | Dss1Message_atmietwark_atmJniSveh1_dss1Message_34_1 |

|E30 |Sscnp_atmNeMork_saaH_sscop_4?_1 ‘

|E31 |Athpcs_atmNeMork_saaH_athpcs_48_1 |

| E34 |Athar_atmNetwork_saaH_athar_SD_1 ‘ [E33 ‘ I353TraiIer_atmNetwnrk_saaH_athpcs_i363Trai|er_49_1]

|E36 |E3? ‘Athore_atmNet\-\rurk_athni1_athnre_dD_1 ‘

[

|E41 |AthccessDeviceProw_athccessDeviceProw_2_1‘ |E4D ||361Header_atmNet\-vork_athnH_athore_i361Header_41_1

- 130-

APPENDIX D1- CallTermination: Sequence Trace

thread endingacall.1 {

4249758 & f Gui Converter: phoneCui / mobi | eSubscri ber Unit G f B/ gt f Gui Converter (111 2) send
%End;

4249759 & fGUl I nterface: phoneCui / mobi | eSubscriberUnitGfB/ gUl I nterface(101-2) state
Power | dl e/ Activel dl e;

4249759 G fGUl I nterface: phoneCui/ nobi | eSubscriberUnitGfB/ gUl I nterface(101-2) receive
%End;

4249765 & fGUl I nterface: phoneCui / mobi | eSubscriberUnitGfB/ gUl I nterface(101-2) send % r;
4249765 & fGUl I nterface: phoneCui / mobi | eSubscriberUnitGfB/ gUl I nterface(101-2) spawn

endi ngacal | . 1. 1;

4249768 & f QU I nterface: phoneGui / nobi | eSubscri berUnitGfB/ gU I nterface(101-2) send %End,;
4249768 & fGUl I nterface: phoneCui / mobi | eSubscriberUnitGfB/ gUl I nterface(101-2) spawn

endi ngacal | . 1. 2;

h

thread endingacall.1.1 {

4249766 & f Gui Converter: phoneCui / nmobi | eSubscri berUnit G f B/ gt f Gui Converter(111-2) receive
9 r;

4249774 & f Gui Convert er: phoneCui / mobi | eSubscri ber Unit G f B/ gt f Gui Converter (111 2) send
%0 ear Di spl ay;

4249778 & f Gui Converter: phoneCui / mobi | eSubscri berUnit G f B/ gt f Gui Converter(111-2) state

t op;

4249775 GUI Proxy: phoneGui / gUl Proxy(95-1) state running;

4249775 QU Proxy: phoneGui / gUl Proxy(95- 1) receive %d ear Di spl ay;

thread endingacall.1.2 {

4249769 Mobi | eSubscri ber Uni t G f: phoneCui / nobi | eSubscri ber Unit & f B(100-2) recei ve %End;
4249781 Mobi | eSubscri ber Uni t G f: phoneCui / nobi | eSubscri ber Uni t & f B(100- 2) send %End;
4249783 Mobi | eSubscri ber Uni t G f: phoneCui / nobi | eSubscri ber Uni t & f B(100-2) state
Initialized;

4249781 Gsmivbbi | eSt ati on: gsnb552222(107-2) state SI;

4249781 Gsnivbbi | eSt ati on: gsnb552222(107-2) recei ve %End;

4249794 Gsmivbbi | eSt ati on: gsnb552222(107-2) send %End;

4249795 Gsmivbbi | eEqui prent : gsnb552222/ gsmivbbi | eEqui prent (116-2) state S1;

4249795 Gsmivbbi | eEqui prent : gsnb552222/ gsmivbbi | eEqui prent (116-2) recei ve %End;

4249798 Gsnivbbi | eEqui prment : gsnb552222/ gsnivbbi | eEqui prrent (116- 2) send %Cal | Di sconnect ;
4249798 Gsmivbbi | i t yManagenent : gsnb552222/ gsmivbbi | eEqui pment / gsmivbbi | i t yManagenent (118 2)
state SI1,

4249798 Gsmivbbi | i t yManagenent : gsnb552222/ gsnivbbi | eEqui prent / gsmivbbi | i t yManagenent (118 2)
recei ve %Cal | Di sconnect;

4249802 Gsmivbbi | i t yManagenent : gsnb552222/ gsmivbbi | eEqui pnent / gsnivbbi | i t yManagenent (118 2)
send %Cal | Di sconnect;

4249802 Gsmivbbi |i t yManagenent : gsmMSSC2/ gsmivbbi | i t yManagenent (84 1) state SI;

4249802 Gsmivbbi | i t yManagenent : gsmMSSC2/ gsmivbbi | i t yManagenent (84 1) receive

%Cal | Di sconnect ;

4249806 Gsmivbbi | i t yManagenent : gsmvSSC2/ gsmivbbi | i t yManagenent (84 1) send %Cal | Di sconnect ;
4249806 Gsmivbbi | eServi cesSwi t chi ngCent er: gsmvSSC2(82-1) state SI;

4249806 Gsmivbbi | eServi cesSwi t chi ngCent er: gsmvVBSC2(82- 1) recei ve %Cal | Di sconnect;
4249809 Gsmivbbi | eSer vi cesSwi t chi ngCent er: gsnVBSC2(82- 1) send %Cal | Di sconnect ;

4249811 Cal | Control |l er U at mAccessDevi ce/ at mni SvcU cal | Control | er (66 1) state Ready;
4249811 Cal | Control |l er U at mAccessDevi ce/ at mni SvcU cal | Control | er U(66- 1) receive

%Cal | Di sconnect;

4249814 Cal | Control | er U: at mAccessDevi ce/ at mni SvcU cal | Control | er (66 1) send

% sconnect Req;

4249815 Signal i ngQ2931U: at mAccessDevi ce/ at mni SveU si gnal i ngQ2931U(65 1) state

CanBeCl ear ed/ Acti velO;

4249815 Signal i ng@931U: at mAccessDevi ce/ at mni SvelU si gnal ingQ2931U(65-1) receive

% sconnect Req;

4249818 Si gnal i ngQ2931U: at mAccessDevi ce/ at mni SvelU si gnal i ngQ2931U(65 1) send

% sconnect ;

4249820 Signal i ngQ931U: at mAccessDevi ce/ at mni SvcU si gnal i ngQR931U(65 1) state

Di sconnect Request 11;

4249818 DsslMessage: at mAccessDevi ce/ at mni SveU dss1Message(67-1) state Ready;

4249818 DsslMessage: at mAccessDevi ce/ at mni SvcU dss1Message(67-1) receive %D sconnect;
4249822 DsslMessage: at mAccessDevi ce/ at nni SvcU dss1Message(67-1) send %Dss1Pdu;
4249822 Sscop: at mMAccessDevi ce/ saal / sscop(78-1) state Ready;

-131-

4249822 Sscop: at mMAccessDevi ce/ saal / sscop(78 1) receive %ssl1Pdu;

4249827 Sscop: at mMAccessDevi ce/ saal / sscop(78 1) send %Aal 5Sdu;

4249827 At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79-1) state Ready;

4249827 At nCpcs: at mAccessDevi ce/ saal / at mCpcs(79-1) recei ve %Aal 5Sdu;

4249831 At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79 1) send %CpcsSdu;

4249831 |1363Trail er: at miccessDevi ce/ saal / at nCpcs/i 363Trail er (80 1) state Ready;
4249831 |1363Trail er: at mAccessDevi ce/ saal / at nCpcs/i 363Trai |l er (80-1) receive %pcsSdu;
4249836 |1363Trail er: at mAccessDevi ce/ saal / at nCpcs/i 363Trail er (80 1) send %CpcsPdu;
4249836 At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79 1) receive % CpcsPdu;

4249839 At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79 1) send %Bar Sdu;

4249839 At nfar: at mAccessDevi ce/ saal / at nBar (81-1) state Ready;

4249839 At nfBar: at mAccessDevi ce/ saal / at mBar (81-1) recei ve %Sar Sdu;

4249843 At nfar : at mAccessDevi ce/ saal / at nBar (81- 1) send %At nlul;

4249843 At nfar : at mAccessDevi ce/ saal / at nBar (81- 1) spawn endi ngacal | . 1. 2. 1;

4249844 At nBar : at mAccessDevi ce/ saal / at nBar (81-1) send %At nCel | Sdu;

4249844 At nBar : at mAccessDevi ce/ saal / at mBar (81-1) spawn endi ngacal | . 1. 2. 2;

h

thread endingacall.1.2.1 {

4249843 At nCor e: at mAccessDevi ce/ at mni / at nCore(69- 1) state Ready;

4249843 At nCor e: at mAccessDevi ce/ at mni / at nCor e(69-1) recei ve %At nul,

h

thread endingacall.1.2.2 {

4249844 At nCor e: at mAccessDevi ce/ at mni / at nCor e(69-1) receive %At nCel | Sdu;

4249850 At nCor e: at mAccessDevi ce/ at mni / at nCor e(69-1) send %At nCel | Sdu;

4249850 | 361Header : at mAccessDevi ce/ at muUni / at nCor e/ i 361Header(70-1) state Ready;
4249850 | 361Header : at mAccessDevi ce/ at mni / at nCor e/ i 361Header (70-1) recei ve %At nCel | Sdu;
4249853 | 361Header : at mAccessDevi ce/ at mni / at nCor e/ i 361Header (70-1) send %At nCel | Pdu;
4249853 At nCor e: at mAccessDevi ce/ at mni / at nCor e(69-1) receive %At nCel | Pdu;

4249856 At nCor e: at mAccessDevi ce/ at mni / at nCor e(69-1) send %At nCel | Pdu;

4249858 At nCor e: at mAccessDevi ce/ at mni / at nCor e(69 1) state Ready;

4249856 At nCor e: at mNet wor k/ at mni 2/ at nCor e(43- 1) state Ready;

4249856 At nCor e: at mNet wor k/ at nmni 2/ at mCor e(43-1) receive %At nCel | Pdu;

4249861 At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) send %At nCel | Pdu;

4249861 | 361Header : at mNet wor k/ at muni 2/ at nCor e/ i 361Header (44 1) state Ready;
4249861 | 361Header : at mNet wor k/ at mni 2/ at nCor e/ i 361Header (44-1) receive %At nCel | Pdu;
4249864 | 361Header : at mNet wor k/ at mni 2/ at mCor e/ i 361Header (44-1) send %At nCel | Sdu;
4249864 At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) receive %At nCel | Sdu;

4249867 At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) send %At nCel | Sdu;

4249867 At nfar : at nNet wor k/ saal 2/ at nSar (56- 1) st ate Ready;

4249867 At nBar : at mNet wor k/ saal 2/ at nSar (56-1) recei ve %At nCel | Sdu;

4249870 At nfBar: at mNet wor k/ saal 2/ at nSar (56-1) send %gar | du;

4249871 At nCpcs: at mNet wor k/ saal 2/ at nCpcs(54- 1) state Ready;

4249871 At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) receive %arl du;

4249874 At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) send %CpcsPdu;

4249874 1363Trai |l er: at mNet wor k/ saal 2/ at nCpcs/i 363Trai |l er (55 1) state Ready;
4249874 1363Trai |l er: at mNet wor k/ saal 2/ at nCpcs/ i 363Trai |l er (55 1) receive % pcsPdu;
4249878 1363Trail er: at mNet work/ saal 2/ at nCpcs/i 363Trail er (55-1) send %CpcsSdu;
4249878 At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) receive %pcsSdu;

4249880 At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) send %Aal 5Sdu;

4249880 Sscop: at mNet wor k/ saal 2/ sscop(53-1) state Ready;

4249880 Sscop: at mNet wor k/ saal 2/ sscop(53-1) receive %Aal 5Sdu;

4249884 Sscop: at nNet wor k/ saal 2/ sscop(53-1) send %Dss1Pdu;

4249884 DsslMessage: at mNet wor k/ at mni SvcN2/ dss1Message(38 1) state Ready;

4249884 DsslMessage: at mNet wor k/ at mni SvcN2/ dss1Message(38-1) receive %ssl1Pdu;
4249887 DsslMessage: at mNet wor k/ at mni SvcN2/ dss1Message(38 1) send %bDi sconnect;
4249887 Si gnal i ngQ2931N: at mNet wor k/ at mni SvcN2/ si gnal i ngQR931N(37-1) state
CanBeCl ear ed/ Acti velO;

4249887 Si gnal i ngQ2931N: at mNet wor k/ at muni SvcN2/ si gnal i ngQ2931N(37-1) receive % sconnect;
4249891 Si gnal i ng@@931N: at mNet wor k/ at mni SvcN2/ si gnal i ngQ2931N(37-1) send %bDi sconnect | nd;
4249892 Si gnal i ng@931N: at mNet wor k/ at mni SvcN2/ si gnal i ngQR931N(37-1) state

Di sconnect Request 11;

4249891 Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36- 1) state Ready;
4249891 Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | erN(36- 1) receive

9Di sconnect | nd;

4249895 Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36- 1) send

%Cal | Di sconnect ;

4249895 Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Contrad | er N(36-1) spawn

endi ngacal | . 1. 2. 2. 1;

4249896 Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | erN(36-1) send %Rel easeReq;
4249896 Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36- 1) spawn

endi ngacal | . 1. 2. 2. 2;

-132-

}s

thread endingacall.1.2.2.1 {

4249895 Cal | Control | er N: at mNet wor k/ at mni SvcNL1/ cal | Control | erN(32 1) state Ready;
4249895 Cal | Control | er N: at mNet wor k/ at mni SvcN1/ cal | Control | erN(32 1) receive

%Cal | Di sconnect ;

4249901 Cal | Control | er N: at mNet wor k/ at mni SvcNL1/ cal | Control | erN(32 1) send %D sconnect Req;
4249901 Si gnal i ngQ2931N: at mNet wor k/ at mni SvcN1/ si gnal i ngQ2931N(33 1) state

CanBeCl ear ed/ Acti velO;

4249901 Si gnal i ng@2931N: at mNet wor k/ at mni SvcN1/ si gnal i ngQR931N(33 1) receive

% sconnect Req;

4249910 Signal i ng@931N: at mNet wor k/ at mni SvcNL/ si gnal i ng@931N(33-1) send %bi sconnect;
4249911 Signal i ngQ2931N: at mNet wor k/ at mni SvcN1/ si gnal i ngQ2931N(33 1) state

Di sconnect | ndi cati onl2;

4249910 DsslMessage: at mNet wor k/ at muni SvcN1/ dss1Message(34 1) state Ready;

4249910 DsslMessage: at mNet wor k/ at mni SvcN1/ dss1Message(34-1) receive %D sconnect;
4249917 DsslMessage: at mNet wor k/ at mni SvcN1/ dss1Message(34 1) send %Dssl1Pdu;

4249917 Sscop: at mNet wor k/ saal 1/ sscop(47-1) state Ready;

4249917 Sscop: at mNet wor k/ saal 1/ sscop(47-1) receive %Dss1Pdu;

4249924 Sscop: at mNet wor k/ saal 1/ sscop(47-1) send %Aal 5Sdu;

4249924 At nCpcs: at mNet wor k/ saal 1/ at nCpcs(48-1) state Ready;

4249924 At nCpcs: at mNet wor k/ saal 1/ at mCpcs(48- 1) recei ve %Aal 5Sdu;

4249936 At nCpcs: at mNet wor k/ saal 1/ at nCpcs(48 1) send %CpcsSdu;

4249936 |1363Trail er: at mNet wor k/ saal 1/ at nCpcs/i 363Trai | er (49-1) state Ready;

4249936 |1363Trail er: at mNet wor k/ saal 1/ at mCpcs/ i 363Trai | er (49-1) receive % pcsSdu;
4249940 |1363Trail er: at mNet wor k/ saal 1/ at nCpcs/ i 363Trai |l er (49 1) send %CpcsPdu;

4249940 At nCpcs: at mNet wor k/ saal 1/ at mCpcs(48- 1) recei ve % CpcsPdu;

4249943 At nCpcs: at mNet wor k/ saal 1/ at mCpcs(48- 1) send %Sar Sdu;

4249943 At nBar : at mNet wor k/ saal 1/ at nSar (50- 1) st ate Ready;

4249943 At nBar : at mNet wor k/ saal 1/ at mSar (50-1) recei ve %Sar Sdu;

4249953 At nfar : at nNet wor k/ saal 1/ at nSar (50- 1) send %At nul;

4249953 At nfar : at mNet wor k/ saal 1/ at nSar (50-1) spawn endi ngacal | .1.2.2.1.1;

4249954 At nBar : at mNet wor k/ saal 1/ at nSar (50-1) send %At nCel | Sdu;

4249954 At nBar : at mNet wor k/ saal 1/ at nSar (50-1) spawn endi ngacal | .1.2.2.1.2;

h

thread endingacall.1.2.2.1.1 {

4249953 At nCor e: at mNet wor k/ at mni 1/ at nCor e(40- 1) st ate Ready;

4249953 At nCor e: at mNet wor k/ at mni 1/ at mCor e(40- 1) recei ve %At nul,

H

thread endingacall.1.2.2.1.2 {

4249954 At nCor e: at mNet wor k/ at nmni 1/ at mCor e(40-1) recei ve %At nCel | Sdu;

4249972 At nCor e: at mNet wor k/ at mni 1/ at nCor e(40-1) send %At nCel | Sdu;

4249973 | 361Header : at mNet wor k/ at muni 1/ at nCor e/ i 361Header (41-1) state Ready;

4249973 | 361Header : at mNet wor k/ at mni 1/ at nCor e/ i 361Header (41-1) recei ve %At nCel | Sdu;
4249979 | 361Header : at mNet wor k/ at mni 1/ at nCor e/ i 361Header (41-1) send %At nCel | Pdu;
4249979 At nCor e: at mNet wor k/ at nmni 1/ at mCor e(40-1) recei ve %At nCel | Pdu;

4249981 At nCor e: at mNet wor k/ at mni 1/ at mCor e(40- 1) send %At nCel | Pdu;

4249983 At nCor e: at mNet wor k/ at mni 1/ at nCor e(40- 1) st ate Ready;

4249981 At mAccessDevi ceProxy: at mMAccessDevi ceProxy(2-1) state Si;

4249981 At mAccessDevi ceProxy: at mAccessDevi ceProxy(2-1) receive %At nCel | Pdu;

4249995 At mAccessDevi ceProxy: at mAccessDevi ceProxy(2-1) send %At nCel | Pdu;

4253253 At mAccessDevi ceProxy: at mAccessDevi ceProxy(2 1) receive %At nCel | Pdu;

4253258 At mAccessDevi ceProxy: at mAccessDevi ceProxy(2-1) send %At nCel | Pdu;

4253261 At mAccessDevi ceProxy: at mMAccessDevi ceProxy(2-1) state SI,;

4253258 At mni : at mAccessDevi ceProxy/ at mMAccessDevi ceTest/atnni (4 1) state 2;

4253258 At mni : at mAccessDevi cePr oxy/ at mAccessDevi ceTest/at mni (4 1) receive %At nCel | Pdu;
4253264 At mni : at mAccessDevi cePr oxy/ at mAccessDevi ceTest/ at mni (4 1) send %At nCel | Pdu;
4253265 At nCor e: at mAccessDevi ceProxy/ at mMAccessDevi ceTest/ at nni / at mCore(5 1) state Ready;
4253265 At nCor e: at mAccessDevi ceProxy/ at mMAccessDevi ceTest / at nni / at nCor e(5-1) receive
%At mCel | Pdu;

4253274 At nCor e: at mAccessDevi ceProxy/ at mAccessDevi ceTest/ at nni / at nCore(5 1) send

%At mCel | Sdu;

4253274 At mni : at mAccessDevi cePr oxy/ at mMAccessDevi ceTest/ at mni (4 1) receive %At nCel | Sdu;
h

thread endingacall.1.2.2.2{

4249896 Si gnal i ngQ931N: at mNet wor k/ at mni SvcN2/ si gnal i ngQR931N(37-1) receive %Rel easeReq;
4249905 Si gnal i ngQ2931N: at mNet wor k/ at muni SvcN2/ si gnal i ngQR2931N(37-1) send %Rel ease;
4249905 Si gnal i ng@931N: at mNet wor k/ at mni SvcN2/ si gnal i ngQR931N(37-1) spawn

endi ngacal | . 1.2.2.2.1;

4249906 Si gnal i ng@931N: at mNet wor k/ at mni SvcN2/ si gnal i ngQ2931N(37-1) send % i neout del ay
20000;

-133-

4249906 Signal i ngQ931N: at mNet wor k/ at mni SvcN2/ si gnal i ngQR931N(37-1) spawn

endi ngacal | . 1. 2. 2. 2. 2;

4249908 Si gnal i ng@931N: at mNet wor k/ at mni SvcN2/ si gnal i ngQ2931N(37-1) state Rel easeReql9;
b

thread endingacall.1.2.2.2.1 {

4249905 DsslMessage: at mNet wor k/ at mni SvcN2/ dss1Message(38 1) recei ve %Rel ease;
4249913 DsslMessage: at mNet wor k/ at mni SvcN2/ dss1Message(38 1) send %Dssl1Pdu;
4249915 DsslMessage: at mNet wor k/ at mni SveN2/ dss1Message(38-1) state Ready;

4249913 Sscop: at mNet wor k/ saal 2/ sscop(53-1) receive %ss1Pdu;

4249920 Sscop: at nNet wor k/ saal 2/ sscop(53-1) send %Aal 5Sdu;

4249921 Sscop: at mNet wor k/ saal 2/ sscop(53-1) state Ready;

4249920 At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) receive %Aal 5Sdu;

4249927 At nCpcs: at mNet wor k/ saal 2/ at nCpcs(54-1) send %CpcsSdu;

4249927 1363Trai |l er: at mNet wor k/ saal 2/ at nCpcs/ i 363Trai |l er (55 1) receive %CpcsSdu;
4249931 1363Trail er: at mNet wor k/ saal 2/ at nCpcs/i 363Trai |l er (55 1) state Ready;
4249931 1363Trail er: at mNet wor k/ saal 2/ at nCpcs/i 363Trai |l er (55 1) send %CpcsPdu;
4249931 At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) receive % CpcsPdu;

4249933 At nCpcs: at mNet wor k/ saal 2/ at nCpcs(54-1) send %Sar Sdu;

4249934 At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) state Ready;

4249933 At nBar : at mNet wor k/ saal 2/ at nSar (56-1) recei ve %Sar Sdu;

4249948 At nfar : at mNet wor k/ saal 2/ at nBar (56- 1) send %At mul;

4249948 At nfar : at mNet wor k/ saal 2/ at nSar (56-1) spawn endingacall.1.2.2.2.1.1;
4249949 At nfBar : at mNet wor k/ saal 2/ at nBar (56-1) send %\t nCel | Sdu;

4249949 At nfBar : at mNet wor k/ saal 2/ at nSar (56-1) spawn endi ngacal | .1.2.2.2.1.2;
4249950 At nfBar: at mNet wor k/ saal 2/ at nSar (56- 1) st ate Ready;

h

thread endingacall.1.2.2.2.1.1 {

4249948 At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) receive %At nlul,

4249958 At mCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) state Ready;

H

thread endingacall.1.2.2.2.1.2 {

4249949 At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) receive %At nCel | Sdu;

4249960 At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) send %At nCel | Sdu;

4249960 | 361Header : at mNet wor k/ at muni 2/ at nCor e/ i 361Header (44-1) receive %At nCel | Sdu;
4249964 | 361Header : at mNet wor k/ at mni 2/ at nCor e/ i 361Header (44 1) state Ready;
4249964 | 361Header : at mNet wor k/ at mni 2/ at mCor e/ i 361Header (44-1) send %At nCel | Pdu;
4249964 At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) receive %At nCel | Pdu;

4249966 At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) send %At nCel | Pdu;

4249968 At nCor e: at mNet wor k/ at mni 2/ at nCor e(43- 1) state Ready;

4249967 At nCor e: at mAccessDevi ce/ at mni / at nCor e(69-1) receive %At nCel | Pdu;

4249986 At nCor e: at mAccessDevi ce/ at mni / at nCor e(69-1) send %At nCel | Pdu;

4249986 | 361Header : at mAccessDevi ce/ at mni / at nCor e/ i 361Header (70-1) recei ve %At nCel | Pdu;
4249989 | 361Header : at mAccessDevi ce/ at nni / at nCor e/ i 361Header (70-1) st ate Ready;
4249989 | 361Header : at mAccessDevi ce/ at mni / atmCor e/ i 361Header (70-1) send %At nCel | Sdu;
4249989 At nCor e: at mAccessDevi ce/ at mni / at nCor e(69-1) receive %At nCel | Sdu;

4249992 At nCor e: at mAccessDevi ce/ at mni / at nCor e(69 1) send %At nCel | Sdu;

4249993 At nCor e: at mAccessDevi ce/ at mni / at nCor e(69 1) state Ready;

4249992 At nfBar: at mMAccessDevi ce/ saal / at nBar (81-1) receive %At nCel | Sdu;

4250116 At nfBar: at mAccessDevi ce/ saal / at nBar (81-1) send %sar | du;

4250118 At nfar: at mAccessDevi ce/ saal / at nBar (81- 1) state Ready;

4250116 At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79 1) receive %arl du;

4250142 At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79 1) send %CpcsPdu;

4250142 1363Trail er: at mAccessDevi ce/ saal / at nCpcs/i 363Trai |l er (80-1) receive %pcskdu;
4250221 1363Trail er: at mAccessDevi ce/ saal / at nCpcs/i 363Trail er (80 1) state Ready;
4250221 1363Trail er: atmAccessDevi cel/ saal / at nCpcs/i 363Trai |l er(80-1) send %CpcsSdu;
4250221 At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79 1) receive % CpcsSdu;

4250224 At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79-1) send %Aal 5Sdu;

4250227 At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79-1) state Ready;

4250224 Sscop: at mMAccessDevi ce/ saal / sscop(78 1) receive %Aal 5Sdu;

4250232 Sscop: at mAccessDevi ce/ saal / sscop(78 1) send %Dss1Pdu;

4250235 Sscop: at mAccessDevi ce/ saal / sscop(78-1) state Ready;

4250232 DsslMessage: at mAccessDevi ce/ at mni SvcU dss1Message(67-1) receive %sslPdu;
4250240 DsslMessage: at mAccessDevi ce/ at nni SvcU dss1Message(67-1) send %Rel ease;
4250242 Dssl1lMessage: at mAccessDevi ce/ at nni SvcU dss1Message(67-1) state Ready;
4250240 Signal i ng@2931U: at mAccessDevi ce/ at mni SvcU si gnal i ngQ2931U(65 1) receive
%=el ease;

4250281 Si gnal i ngQ2931U: at mAccessDevi ce/ at mni SvclU si gnal i ngQR931U(65 1) send
%Rel easel nd;

4250281 Signal i ngQ2931U: at mAccessDevi ce/ at mni SvcU si gnal i ngQ2931U(65 1) spawn
endingacal | . 1.2.2.2.1.2. 1,

-134-

4250283

Si gnal i ngQR931U: at mAccessDevi ce/ at mni SveU si gnal i ngQR931U(65-1) send

%=el easeConpl et e;

4250283

Si gnal i ngQ2931U: at mAccessDevi ce/ at mni SvelU si gnal i ngQ2931Y(65 1) spawn

endi ngacal | . 1.2.2.2.1.2. 2;

4250286
}s

Si gnal i ngQR931U: at mAccessDevi ce/ at mni SvcU si gnal i ngQ2931U(65 1) state Nul | O;

thread endingacall.1.2.2.2.1.2.1 {

4250281

Cal | Control | er U at mMAccessDevi ce/ at mni SvcU cal | Control | er Y 66-1) receive

%Rel easel nd;

4250291

Cal | Control | er U at mMAccessDevi ce/ at mni SvcU cal | Control | er Y 66-1) send

%Cal | Di sconnect ;

4250295
4250291
4250307
4250310
4250307

Cal | Control | er U at mMAccessDevi ce/ at mniSvcU cal | Control | erU(66-1) state Ready;
GsmiVbbi | eServi cesSwi t chi ngCent er: gsmVSSC2(82- 1) recei ve %Cal | Di sconnect;
GsmiVbbi | eSer vi cesSwi t chi ngCent er: gsnVSSC2(82- 1) send %Cal | Di sconnect;

GsmiVbbi | eServi cesSwi t chi ngCent er: gsmVSSC2(82-1) state Si;

Gsmivbbi | i t yManagenent : gsmVBSC2/ gsiivbbi | i t yManagenent (84-1) receive

%Cal | Di sconnect ;

4250358
4250369
4250360
receive
4250393

Gsmivbbi | i t yManagenent : gsmVBSC2/ gsnivbbi | i t yManagenent (84-1) send %Cal | Di sconnect;
Gsmivbbi | i t yManagenent : gsmVBSC2/ gsiivbbi | i t yManagenent (84-1) state S1;

Gsmivbbi | i t yManagenent : gsnb552222/ gsmivbbi | eEqui prent / gsmivbbi |i t yManagenent (118 2)
%Cal | Di sconnect ;

Gsmivbbi | i t yManagenent : gsnb552222/ gsnivbbi | eEqui prent / gsmivbbi | i t yManagenent (118 2)

send %Cal | Di sconnect;

4250458

Gsmivobi | i t yManagenent : gsnb552222/ gsmivbbi | eEqui prment / gsmivbbi | i t yManagenent (118 2)

state S1;

4250393
4250565
4250568
4250565
4250737
4250738
4250737
4250757
4250759
Initial
4250757
%End;

4250775
4250778
Power | d
4250775
% r;

4250794

GsmiVbbi | eEqui prent : gsnb552222/ gsmivbbi | eEqui prent (116-2) recei ve %Cal | Di sconnect ;
GsmiVbbi | eEqui prent : gsnb552222/ gsmivbbi | eEqui prrent (116-2) send %End;

Gsmivbbi | eEqui prrent : gsnb552222/ gsmivbbi | eEqui prent (116-2) state S1;

GsmiVbbi | eSt ati on: gsnb552222(107-2) receive %End;

GsmiVbbi | eSt ati on: gsnb552222(107-2) send %End;

GsmiVbbi | eSt ati on: gsnb552222(107-2) state Si;

Mobi | eSubscri ber Uni t G f: phoneCui / nobi | eSubscri ber Uni t & f B(100-2) recei ve %End;
Mobi | eSubscri ber Uni t & f: phoneCui / nobi | eSubscri ber Uni t & f B(100-2) send %End;
Mobi | eSubscri ber Uni t G f: phoneCui / nobi | eSubscri ber Uni t & f B(100-2) state

zed;

G fGQU I nterface:phoneCGui/ nmobil eSubscri berUnit&fB/gU Interface(101-2) receive

G f QU I nterface: phoneCui/ nobi | eSubscriberUnit & fB/ gUl I nterface(101-2) send % r;
G f QU I nterface: phoneCui/ nobi | eSubscriberUnit & fB/gUl I nterface(101-2) state

e/ Activel dl e;

G f Gui Convert er: phoneCui / nobi | eSubscri ber Unit & f B/ gt f Gui Converter(111-2) receive

G f Gui Converter: phoneCui / nobi | eSubscri ber Uni t & f B/ gt f Gui Converter(111-2) send

%Cl ear Di spl ay;

4250798
t op;
4250795

G f Gui Convert er: phoneCui / nobi | eSubscri berUnit G f B/ gt f Gui Converter(111-2) state

GUl Proxy: phoneCui / gUl Proxy(95-1) receive %C ear Di spl ay;

b
thread endingacall.1.2.2.2.1.2.2 {

4250283

Dss1Message: at mAccessDevi ce/ at mni SvcU dss1Message(67-1) receive

%=el easeConpl et €e;

4250300
4250303
4250300
4250314
4250353
4250315
4250373
4250374
4250381
4250381
4250381
4250385
4250388
4250385
4250537
4250537
4250540
4250540
4250543

}s

Dss1Message: at mAccessDevi ce/ at mni SveU dss1Message(67-1) send %Dss1Pdu;
Dss1Message: at mAccessDevi ce/ at nni SvcU dss1Message(67-1) state Ready;

Sscop: at mMAccessDevi ce/ saal / sscop(78-1) receive %Wss1Pdu;

Sscop: at mAccessDevi ce/ saal / sscop(78-1) send %Aal 5Sdu;

Sscop: at mMAccessDevi ce/ saal / sscop(78-1) state Ready;

At nCpcs: at mAccessDevi ce/ saal / at mCpcs(79-1) receive %Aal 5Sdu;

At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79-1) send %CpcsSdu;

1 363Trai | er: at mAccessDevi ce/ saal / at nCpcs/i 363Trai | er (80-1) receive % pcsSdu;
1 363Trai | er: at mAccessDevi ce/ saal / at nCpcs/ i 363Trail er (80 1) state Ready;
1363Trai | er: at mAccessDevi ce/ saal / at nCpcs/i 363Trail er (80 1) send %CpcsPdu;
At nCpcs: at mAccessDevi ce/ saal / at nCpcs(79-1) receive % pcsPdu;

At mCpcs: at mAccessDevi ce/ saal / at nCpcs(79 1) send %Sar Sdu;

At mCpcs: at mAccessDevi ce/ saal / at nCpcs(79 1) state Ready;

At nBBar : at mMAccessDevi ce/ saal / at mBar (81-1) recei ve %Sar Sdu;

At nBBar : at mAccessDevi ce/ saal / at nBar (81-1) send %At nlul;

At nSar : at mAccessDevi ce/ saal / at nBar (81- 1) spawn endi ngacal | .1.2.2.2.1.2.2.1;
At nSar : at mAccessDevi ce/ saal / at nBar (81-1) send %At nCel | Sdu;

At nBBar : at mMAccessDevi ce/ saal / at nBar (81-1) spawn endingacall.1.2.2.2.1.2.2.2;
At nBBar : at mMAccessDevi ce/ saal / at nSar (81-1) state Ready;

-135-

thread endingacall.1.2.2.2.1.2.2.1 {

4250537
4250632

At mCor e: at mAccessDevi ce/ at mni / at mCor e(69 1) recei ve %At nul;
At nCor e: at mAccessDevi ce/ at mni / at nCor e(69- 1) state Ready;

b
thread endingacall.1.2.2.2.1.2.2.2 {

4250540
4250704
4250704
4250731
4250731
4250731
4250733
4250735
4250733
4250746
4250746
4250749
4250749
4250749
4250751
4250753
4250752
4250772
4250773
4250772
4250785
4250785
4250789
4250789
4250789
4250791
4250792
4250791
4250812
4250813
4250812
4250828
4250829
4250828

At mCor e: at mAccessDevi ce/ at mni / at mCor e(69 1) recei ve %At nCel | Sdu;

At nCor e: at mAccessDevi ce/ at mni / at nCor e(69-1) send %At nCel | Sdu;

| 361Header : at mAccessDevi ce/ at nni / at nCor e/ i 361Header (70-1) receive %At nCel | Sdu;
| 361Header : at mMAccessDevi ce/ at mni / at mCor e/ i 361Header (70- 1) state Ready;

| 361Header : at mAccessDevi ce/ at muni / at nCor e/ i 361Header (70-1) send %At nCel | Pdu;
At nCor e: at mAccessDevi ce/ at mni / at nCor e(69-1) recei ve %At nCel | Pdu;

At nCor e: at mAccessDevi ce/ at mni / at nCor e(69-1) send %At nCel | Pdu;

At mCor e: at mAccessDevi ce/ at mni / at mCor e(69 1) state Ready;

At mCor e: at nNet wor k/ at mni 2/ at nCore(43-1) recei ve %At nCel | Pdu;

At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) send %At nCel | Pdu;

| 361Header : at mNet wor k/ at mni 2/ at mCor e/ i 361Header (44-1) receive %At nCel | Pdu;
| 361Header : at mNet wor k/ at mni 2/ at nCor e/ i 361Header (44 1) state Ready;

| 361Header : at mNet wor k/ at muni 2/ at nCor e/ i 361Header (44 1) send %At nCel | Sdu;

At nCor e: at mNet wor k/ at mni 2/ at nCor e(43-1) receive %At nCel | Sdu;

At nCor e: at mNet wor k/ at mni 2/ at mCor e(43-1) send %At nCel | Sdu;

At mCor e: at mNet wor k/ at mni 2/ at nCore(43-1) state Ready;

At nmSar : at nNet wor k/ saal 2/ at nSar (56- 1) recei ve %At nCel | Sdu;

At nBBar : at m\et wor k/ saal 2/ at nSar (56-1) send %sar | du;

At nBar : at mNet wor k/ saal 2/ at nBar (56-1) st ate Ready;

At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) receive %Sar | du;

At mCpcs: at nNet wor k/ saal 2/ at nCpcs(54-1) send %CpcsPdu;

1 363Tr ai | er: at mNet wor k/ saal 2/ at nCpcs/ i 363Trail er (55-1) receive % pcsPdu;

1 363Trai | er: at mNet wor k/ saal 2/ at nCpcs/i 363Trai |l er (55 1) state Ready;

1 363Tr ai | er: at mNet wor k/ saal 2/ at nCpcs/i 363Trai |l er (55 1) send % pcsSdu;

At mCpcs: at nNet wor k/ saal 2/ at nCpcs(54-1) recei ve %CpcsSdu;

At mCpcs: at nNet wor k/ saal 2/ at nCpcs(54-1) send %Aal 5Sdu;

At nCpcs: at mNet wor k/ saal 2/ at mCpcs(54-1) state Ready;

Sscop: at mNet wor k/ saal 2/ sscop(53-1) receive %Aal 5Sdu;

Sscop: at mNet wor k/ saal 2/ sscop(53-1) send %ss1Pdu;

Sscop: at mNet wor k/ saal 2/ sscop(53-1) state Ready;

Dss1Message: at mNet wor k/ at mni SvcN2/ dss1Message(38 1) receive %sslPdu;
Dss1Message: at mNet wor k/ at mni SvcN2/ dss1Message(38 1) send %Rel easeConpl et e;
Dss1Message: at mNet wor k/ at mni SvcN2/ dss1Message(38-1) state Ready;

Si gnal i ngQ931N: at mNet wor k/ at mni SveN2/ si gnal i ngQR931N(37-1) receive

%Rel easeConpl et e;

4250836
4250837
4250836

Si gnal i ngQ2931N: at mNet wor k/ at mni SveN2/ si gnal i ngQR931N(37-1) send %zel easeConf ;
Si gnal i ngQR931N: at mNet wor k/ at mLhi SveN2/ si gnal i ngQR931N(37-1) state Null O;
Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36-1) receive

%Rel easeConf ;

4250843
}s

Cal | Control | er N: at mNet wor k/ at mni SvcN2/ cal | Control | er N(36-1) state Ready;

thread endingacall.1.2.2.2.2 {

}s

-136-

APPENDIX D2- CallTermination: Communication
Patterns

S GtfGuiConverter:phoneGui/mobileSubscriberUnitGtfB/gtfGuiConverter@)11
GtfGUIlInterface:phoneGui/mobileSubscriberUnitGtfB/gUlInterface{2p4249759
4249766

S AtmCpcs:atmAccessDevice/saal/atmCpcsi)/9
I363Trailer:atmAccessDevice/saal/atmCpcs/i363Trailel(B0249831 4249836

A AtmSar:atmAccessDevice/saal/atmSar(§1
AtmCore:atmAccessDevice/atmUni/atmCore@%249843

S AtmCore:atmAccessDevice/atmUni/atmCorel§9
I361Header:atmAccessDevice/atmUmnii&tore/i361Header(70) 4249850 4249853
S AtmCore:atmNetwork/atmUni2/atmCore(43
I361Header:atmNetwork/atmUni2/atmCore/i36 1Headefl(14249861 4249864

S AtmCpcs:atmNetwork/saal2/atmCpcs{b4

1363 Trailer:atmNetwork/saal2/atmCpcs/i363Trailer(§512498744249878

S AtmCpcs:atmNetwork/saall/atmCpcs{#3

1363 Trailer:atmNetwork/saall/atmCpcs/i363Trailer(31249936 4249940

A AtmSar:atmNetwork/saall/atmSar¢ad AtmCore:atmNetwork/atmUnil/atmCoref40
1) 4249953

S AtmCore:atmNetwork/atmUnil/atmCore{4)
I361Header:atmNetwork/atmUnil/atmCore/i361Headed%4249973 4249979

A AtmCore:atmNetwork/atmUnil/atmCore(49
AtmAccessDeviceProxy:atmAccessDeviceProxy 2249981

S AtmUni:atmAccessDeviceProxy/atmAccessDeviceTest/atmtini(4
AtmCore:atmAccessDeviceProggmAccessDeviceTest/atmUni/atmCord (54253265
4253274

S SignalingQ2931N:atmNetwork/atmUniSvcN2/signalingQ2931N(37
CallControllerN:atmNetwork/atmUniSvcN2/callControllerN¢2$ 4249891 4249896
A CallControllerN:atmNetwork/atmUniSvcN2/callControllerN¢3%
CallControllerN:atmNetwork/atmUniSvcN1/callControllerN¢22 4249895

S Dss1Message:atmNetwork/atmUniSvcN2/dss1Messad9(38
SignalingQ2931N:atmNetwork/atmUniSvcN2/signalingQ2931N(B4249887 4249905
S Sscop:atmNetwork/saal2/sscop®B3
Dss1Message:attetwork/atmUniSvcN2/dss1Message(BB4249884 4249913

S AtmCpcs:atmNetwork/saal2/atmCpcs{baSscop:atmNetwork/saal2/sscop(B3
4249880 4249920

S AtmCpcs:atmNetwork/saal2/atmCpcs{b4
I363Trailer:atmNetwork/saal2/atmCpcs/i363Trailer(§54249927 424993

S AtmSar:atmNetwork/saal2/atmSar{bpAtmCpcs:atmNetwork/saal2/atmCpcs(b
4249871 4249933

S AtmCore:atmNetwork/atmUni2/atmCore{d3 AtmSar:atmNetwork/saal2/atmSar{56
1) 4249867 4249948

A AtmCore:atmAccessDevice/atmUni/atmCore(H9
AtmCore:atmNetwdt/atmUni2/atmCore(43) 4249856

-137-

S AtmCore:atmNetwork/atmUni2/atmCore(43
I361Header:atmNetwork/atmUni2/atmCore/i36 1Headefl(14249960 4249964

A AtmSar:atmAccessDevice/saal/atmSar(§1
AtmCore:atmAccessDevice/atmUni/atmCore@%249844

S AtmCore:atmA&cessDevice/atmUni/atmCore(dy
I361Header:atmAccessDevice/atmUni/atmCore/i361Headd) (4249986 4249989
A AtmCpcs:atmAccessDevice/saal/atmCpcs{j9
AtmSar:atmAccessDevice/saal/atmSar(§ 4249839

A Sscop:atmAccessDevice/saal/sscogly8
AtmCpcs:atmAcessDevice/saal/atmCpcs{Ip4249827

S AtmCpcs:atmAccessDevice/saal/atmCpcsi(y9
I363Trailer:atmAccessDevice/saal/atmCpcs/i363Trailel(8B0250142 4250221

A Dss1Message:atmAccessDevice/atmUniSvcU/dss1Messate(67
Sscop:atmAccessDevice/saal/sscoply8249822

A SignalingQ2931U:atmAccessDevice/atmUniSvcU/signalingQ293)65
Dss1Message:atmAccessDevice/atmUniSvcU/dss1Messaed@A9818

A CallControllerU:atmAccessDevice/atmUniSvcU/callControllerU(§6
SignalingQ2931U:atmAccessDevice/atmUniSvcU/sigui)2931U(651) 4249815
A GsmMobileServicesSwitchingCenter:gsmMSSC2(§2
CallControllerU:atmAccessDevice/atmUniSvcU/callControllerU(§e249811

A GsmMobilityManagement:gsmMSSC2/gsmMobilityManagemeni(84
GsmMobileServicesSwitchingCenter:.gsmMSSC2{32249806

A
GsmMobilityManagement:gsm5552222/gsmMobileEquipment/gsmMobilityManagement
(1182) GsmMobilityManagement:gsmMSSC2/gsmMobilityManagemerit({84249802
A GsmMobileEquipment:gsm5552222/gsmMobileEquipment{2)L6
GsmMobilityManagement:gsm5552222/gsmMeBiguipment/gsmMobilityManagement
(1182) 4249798

A GsmMobileStation:gsm5552222 (12§
GsmMobileEquipment:gsm5552222/gsmMobileEquipment(2)14249795

A MobileSubscriberUnitGtf:phoneGui/mobileSubscriberUnitGtfB(-R)0
GsmMobileStation:gsm5552222 (12 424981

A GtfGUIlInterface:phoneGui/mobileSubscriberUnitGtfB/gUIInterface{2p1
MobileSubscriberUnitGtf:phoneGui/mobileSubscriberUnitGtfBR)@#249769

A GtfGuiConverter:phoneGui/mobileSubscriberUnitGtfB/gtfGuiConverteqaj11
GUIProxy:phoneGui/gUIProxy(98) 4249775

S Dss1Message:atmAccessDevice/atmUniSvcU/dss1Messéhe(67
SignalingQ2931U:atmAccessDevice/atmUniSvcU/signalingQ293) @250240
4250283

A SignalingQ2931U:atmAccessDevice/atmUniSvcU/signalingQ293)65
CallControllerU:atmAccessDevice/atmUni@¥/callControllerU(661) 4250281

S Sscop:atmAccessDevice/saal/sscofd()/8
Dss1Message:atmAccessDevice/atmUniSvcU/dss1Messabed@b0232 4250300
S AtmCpcs:atmAccessDevice/saal/atmCpcsi(y9
Sscop:atmAccessDevice/saal/sscop(y8250224 4250315

- 138-

S AtmCpcsatmAccessDevice/saal/atmCpcs{l9
I363Trailer:atmAccessDevice/saal/atmCpcs/i363Trailel(B0250374 4250381

S AtmSar:atmAccessDevice/saal/atmSai{$1
AtmCpcs:atmAccessDevice/saal/atmCpcs{y 94250116 4250385

S AtmCore:atmAccessDevice/atmUni/atmCorel§9
AtmSar:atmAccessDevice/saal/atmSar(§ 4249992 4250537

A AtmCore:atmNetwork/atmUni2/atmCore(43
AtmCore:atmAccessDevice/atmUni/atmCore@%249967

S AtmCore:atmAccessDevice/atmUni/atmCorel§9
I361Header:atmAccessDevice/atmUni/atmCore/i361H¢a0d) 4250704 4250731
A Root AtmCore:atmNetwork/atmUni2/atmCore{484249949

S AtmCore:atmNetwork/atmUni2/atmCore{43
I361Header:atmNetwork/atmUni2/atmCore/i36 1Headefl(14250746 4250749

S AtmCpcs:atmNetwork/saal2/atmCpcs{b4

1363 Trailer:atmNetworlsaal2/atmCpcs/i363Trailer(55 4250785 4250789

A AtmAccessDeviceProxy:atmAccessDeviceProxy)2
AtmUni:atmAccessDeviceProxy/atmAccessDeviceTest/atmu)i@R53258

A CallControllerN:atmNetwork/atmUniSvcN1/callControllerN(22
SignalingQ2931N:atmNetworddmUniSvcN1/signalingQ2931N(3B) 4249901

A SignalingQ2931N:atmNetwork/atmUniSvcN1/signalingQ2931 N33
Dss1Message:atmNetwork/atmUniSvcN1/dss1Messagg(3249910

A Dss1Message:atmNetwork/atmUniSvcN1/dss1MessagB(34
Sscop:atmNetwork/saall/sscop(#)/4249917

A Sscop:atmNetwork/saall/sscop{@)yAtmCpcs:atmNetwork/saall/atmCpcs{¥8
4249924

A AtmCpcs:atmNetwork/saall/atmCpcs{aBAtmSar:atmNetwork/saall/atmSar{bp
4249943

A AtmSar:atmNetwork/saall/atmSar¢ad AtmCore:atmNetwork/atmUnil/atmCoref40
1) 4249954

A CallControllerU:atmAccessDevice/atmUniSvcU/callControllerUJ(§6
GsmMobileServicesSwitchingCenter:gsmMSSC2{32250291

A GsmMobileServicesSwitchingCenter:.gsmMSSC2{32
GsmMobilityManagement:gsmMSSC2/gsmMobilityManagemen1(84250307

A GsmMobilityManagement:gsmMSSC2/gsmMobilityManagement(34
GsmMobilityManagement:gsm5552222/gsmMobileEquipment/gsmMobilityManagement
(1182) 4250360

A
GsmMobilityManagement:gsm5552222/gsmMobileEquipment/gsmMobilityManagement
(1182) GsmMobileEquipment:gsm5552282mMobileEquipment(11@) 4250393
A GsmMobileEquipment:gsm5552222/gsmMobileEquipment{2)L6
GsmMobileStation:gsm5552222 (127 4250565

A GsmMobileStation:gsm5552222 (127
MobileSubscriberUnitGtf:phoneGui/mobileSubscriberUnitGtfB(R)@250737

A MobileSubscriberUnitGtf:phoneGui/mobileSubscriberUnitGtfB (120
GtfGUIInterface:phoneGui/mobileSubscriberUnitGtfB/gUlInterface{2pa250757

-139-

A GtfGUIlInterface:phoneGui/mobileSubscriberUnitGtfB/gUIInterface{2p1
GtfGuiConverter:phoneGui/mobileSubscriberUnitGgBGuiConverter(111R) 4250775
A GtfGuiConverter:phoneGui/mobileSubscriberUnitGtfB/gtfGuiConverteraj11
GUIProxy:phoneGui/gUIProxy(9%) 4250795

A AtmSar:atmAccessDevice/saal/atmSar(§1
AtmCore:atmAccessDevice/atmUni/atmCore@%250540

A AtmCore:amAccessDevice/atmUni/atmCore(ad9
AtmCore:atmNetwork/atmUni2/atmCore(43 4250733

A AtmCore:atmNetwork/atmUni2/atmCore43 AtmSar:atmNetwork/saal2/atmSar{56
1) 4250752

A AtmSar:atmNetwork/saal2/atmSar¢dp AtmCpcs:atmNetwork/saal2/atmCpcs(b4
425072

A AtmCpcs:atmNetwork/saal2/atmCpcs{bi Sscop:atmNetwork/saal2/sscop(B3
4250791

A Sscop:atmNetwork/saal2/sscop{583
Dss1Message:atmNetwork/atmUniSvcN2/dss1Messag (3850812

A Dss1Message:atmNetwork/atmUniSvcN2/dss1MessagB(38
SignalingQ2931NimnNetwork/atmUniSvcN2/signalingQ2931N37J 4250828

A SignalingQ2931N:atmNetwork/atmUniSvcN2/signalingQ2931N(B7
CallControllerN:atmNetwork/atmUniSvcN2/callControllerN¢2$ 4250836

- 140 -

APPENDIX D3- CallTermination: LON Performance
Model

G
0.0
0

0
0.9
-1

PO
p procl f
-1

TO

t AtmAccessDeviceProxy:atmAccessDeviceProxi) (2 E43 -1 procl

t AtmCore:atmAccessDevice/atmUni/atmCore@@9 E16 E17 E41 E571 procl

t AtmCore:atmAccessDeviceProxy/atmAccessDeviceTest/atmUni/atmCbrésr4 -
1 procl

t AtmCore:atmNetwork/atmUnil/atmCore f E38 E39-1 procl

t AtmCore:atmNetwork/atmUni2/atmCore@3 f E19 E37 E60-1 procl

t AtmCpcs:atmAccessDevice/saal/atmCpcs{J9E13 E46-1 procl

t AtmCpcs:atmNetwork/saall/atmCpcs{2Bf E32 -1 procl

t AtmCpcs:atmNetwork/saal2/atmCpcs(aff E22 E65-1 procl

t AtmSar:atmAccessDevice/saal/atmSar{31 E15 E45-1 procl

t AtmSar:atmNetwork/saall/atmSar(aPf E35 -1 procl

t AtmSar:atmNetwork/saal2/atmSar(3hf E21 E63-1 procl

t AtmUni:atmAccessDevicaBxy/atmAccessDeviceTest/atmUni{4 f E73 -1 procl

t CallControllerN:atmNetwork/atmUniSvcN1/callControllerN¢32f E28 -1 procl

t CallControllerN:atmNetwork/atmUniSvcN2/callControllerN¢3pf E27 E72-1 procl
t CallControllerU:atmAccessDevice/atmUnridJ)/callControllerU(661) f E9Q E51-1
procl

t Dss1Message:atmAccessDevice/atmUniSvcU/dss1Messabef{&l1 E49-1 procl
t Dss1Message:atmNetwork/atmUniSvcN1/dss1Messagg(BE30 -1 procl

t Dss1Message:atmNetwork/atmUniSvcN2/dss1Messadg(BB25E70 -1 procl

t GUIProxy:phoneGui/gUIProxy(9%) f E3 E69-1 procl

t GsmMobileEquipment:gsm5552222/gsmMobileEquipment@16ES E56-1 procl
t GsmMobileServicesSwitchingCenter.gsmMSSC2(82 E8 E52-1 procl

t GsmMobileStation:gsm5552222(1QY f E4E58 -1 procl

t
GsmMobilityManagement:gsm5552222/gsmMobileEquipment/gsmMobilityManagement
(1182) f E6 E54-1 procl

t GsmMobilityManagement:gsmMSSC2/gsmMobilityManagemenri(84E7 E53-1
procl

- 141-

t GtfGUlInterface:phoneGui/mobileSubscriberUnitGtfB/gUIIfdee(1012) f E1 E64 -
1 procl

t GtfGuiConverter:phoneGui/mobileSubscriberUnitGtfB/gtfGuiConverteFA)I1EO
E66 -1 procl

t I361Header:atmAccessDevice/atmUni/atmCore/i361Headd)(V&18 E44 E59-1
procl

t 1I361Header:atmNetwork/atmUnil/atmCore/i36aHer(411) f E42 -1 procl

t I361Header:atmNetwork/atmUni2/atmCore/i361Headel(44E20 E40 E62-1 procl
t 1363Trailer:atmAccessDevice/saal/atmCpcs/i363Trailel(80E14 E47 E55-1 procl
t I363Trailer:atmNetwork/saall/atmCpcs/i363Trailerdd E34 -1 procl

t 1363Trailer:atmNetwork/saal2/atmCpcs/i363Trailer(§5 E23 E33 E67-1 procl

t MobileSubscriberUnitGtf:phoneGui/mobileSubscriberUnitGtfB(2)0 E2 E61-1
procl

t Root r E36-1 procl

t SignalingQ2931N:atmNetwork/atmUniSvcN1/signalingQ29@&M\L) f E29 -1 procl
t SignalingQ2931N:atmNetwork/atmUniSvcN2/signalingQ2931N(BVE26 E71-1
procl

t SignalingQ2931U:atmAccessDevice/atmUniSvcU/signalingQ2931W)6%10 E50-
1 procl

t Sscop:atmAccessDevice/saal/sscop(Y8E12 E48-1 procl

t Sscop:atmNetwork/saall/sscop®)/f E31 -1 procl

t Sscop:atmNetwork/saal2/sscop(B3f E24 E68-1 procl

-1

EO

SE01.01.01

y EO E1 1.0 0.61
ZEOE30.01.61
SE11.01.01
zZE1E20.01.61
sE101.01.61
zZE10 E11 0.0 1.6
sE111.01.61
zZE11E120.0 1.6l
sE121.01.61
zE12 E130.0 1.6
sE131.01.61

y EI3E14 0.0 1.01
zE13E150.0 1.6
sE141.01
sE151.01.61

z E15E16 0.0 1.6
zE15E17 0.0 1.1
sE16 1.01
sE171.01.61

y E17 E18 0.0 1.61

- 142-

zE17E19® 1.0-1
sE18 1.01
sE191.01.61

y E19 E200.0 1.01
y E19 E21 0.0 1.61
sE21.01.01
zE2E40.01.61
sE201.01
sE211.01

y E21 E22 1.01
sE221.01

y E22 E23 1.01

y E22 E24 1.61

y E22 E33 1.01
sE231.01
sE241.01

y E24E25 1.0-1
sE251.01

y E25 E26 1.61
sE261.01

y E26 E27 1.61
sE27 1.01

z E27 E28 1.01
sE281.01.61
zE28E290.01.a1
sE291.01.61
zE29E300.01.a1
sE31.01
sE301.01.61
zE30E310.01.a1
sE311.01.61
zE31E32®1.0-1
sE321.01.601

y E32 E34 0.0 1.601
zE32E350.01.a
sE331.01
sE341.01
sE351.01.61
zE35E380.01.a
zE35E390.01.a1
sE36 1.01

z E36 E37 1.01
sE371.01.61

y E37 E400.0 1.01
zE37E410.01.a
s E381.01

- 143-

sE391.01.01

y E39 E42 0.0 1.61
z E39 E43 0.0 1.6
sE41.01.01
zE4E50.0 1.61

s E40 1.01
sE411.01.61

y E41 E44 0.0 1.01
y E41 E450.0 1.61
s E42 1.01
sE431.01.61

z E43 E730.0 1.61
s E44 1.01

s E451.0 1.61

y E45 E461.0 0.0-1
z E45 E57 0.0 1.61
s E46 1.01

y E46 E47 1.01

y E46 E48 1.01

y E46 E55 1.01

s E47 1.01

s E48 1.01

y E48 E49 1.61

s E49 1.01

y E49 E50 1.61
SE51.01.01

z E5E6 0.0 1.61

s E50 1.01

z E50 E51 1.61
sE51 1.0 1.61

z E51E52 0.0 1.01
sE52 1.0 1.61

z E52 E53 0.0 1.61
sE53 1.0 1.61

z E53 E54 0.0 1.61
sE54 1.0 1.61

z E54 E56 0.0 1.61
s E55 1.01

s E56 1.0 1.61

z E56 E58 0.0 1.61
sE57 1.0 1.61

y E57 E59 0.0 1.61
z E57 E60 0.0 1.61
s E58 1.0 1.61

z E58 E61 0.0 1.61
s E59 1.01

- 144-

sE61.01.01
ZzE6E70.01.01
sE601.01.61

y E60 E62 0.0 1.601
zE60E630.01.a1
sE611.01.61
ZzE61E640.01.a1
sE62 1.01
sE631.01.61
zE63 E650.01.01
sE641.01.601

z E64 E66 0.0 1.1
sE651.01.61

y E65 E67 0.0 1.601
zE65E680.0 1.1
s E66 1.01.601
zE66 E69 0.0 1.1
s E67 1.01
sE681.01.61
zE68 E700.01.a1
s E69 1.01
sE71.01.01
zE7E80.01.61
sE701.01.61
zE70E710.01.a
sE711.01.61
zE71E72 0.0 1.01
sE721.01
sE731.01.61
yE73E740.0 1.601
sE74 1.01
sE81.01.01
ZzE8E90.01.01
sE91.01.01
ZzE9E100.01.e1
-1

- 145-

Appendix D4- CallTermination: Graphical LON
Performance Model

| EO0 | ESSNTEWGQQ\Dnvener_ph0neGui_mobiIeSubScriberUnitGrrEl_gthuiConvener_1 11_2

[ES |E68 |GUIProxy_phoneGui_gUIProxy_QSJ] 3 |thGUIInterrace_ph0neGui_m0biIeSubScriberUnithfEl_gUIInterrace_1D1_2

|E2 |EGE/‘I—M@bscriberUnithf_phuneGui_mubileSubscriberUnithrEl_100_2 |

| E4 |E5? |GsmMobiIeStation_gsm5552222_1D?_E

| ES | E5q | GamidohileEquipment_gsm5552222_gsmMobileEquipment_116_2

|E6 |E5: |GsmMobilityManagement_gsm5552222_gsmru10biIeEquipment_gSmMobiIinanagemenU18_2

| E7 | E54 | GsmhdohilityManagement_gsmM3SC2_gsmblohilivanagement_284_1

| E& |E51 |GsmMobiIeServiceSSwitchingCenter_gsmMSSCE_SE_'l

|E9 |E5E |CallControIIerU_athccessDevice_atmUniSch_caIIControIlerU_E6_1 |

|E1D |E4E |Signaling@2931U_athccesSDevice_atmUniSch_signaIingQ2931U_65_1 |

|E11 |E4E |Dss1Message_athccessDevice_athniSch_d991Message_ﬁ?_1 |

| E12 |E4? |SSc0p_athccessDevice_saal_sscop_?8_1

To E13 From E45

- 146-

From E12 To E47

|

|E13 |E4E ‘AlmCpcsfathccessDewcefsaaLaImecsjEU|

| E15 | Ed44 ‘AtmSar_athccessDewce_saaI_athar_Bﬂ_1 | ‘ E14 | E46 | E5d | 1363 Trailer_atmAccessDevice_saal_atmCpes_i363Trailer_80_1

| E16 | E ‘ Eg | E&6 |Athore_athccessDevice_atmUm_athore_EQ_1 |

7
|E19 |E§/€ ‘ESQ |AtmCore_atmNetwurk_almUmz_athore_43_1| |E18 |E43 |E58 ‘I361Header_almAccessDevice_athni_athDre_i361Header_?DJ
|E21 |E62 ‘AI Sar_atrmietwork_sasl2_atmSar 56 1 |

|E21 |EB=1 ‘A (Cpos_atmMetwork_saal?_atmCpes_54_1 |

| E2 | E33 ‘ EG | 1363 Trailer_atmMetwork_saal2_atmCpes_i363Trailer_55_1 | ‘ E24 | EET | Sscop_atmbletwork_saal?_sscop_53_1

—
|E2‘ |E6§ ‘Ds1Message_atmNeMork_athniSchz_dsmMessage_38_1|

| EZ | ET(‘ Sigpaling@2931MN_atmMetwork_atmUniSveMN2_signaling@2931M_37_1 |

| E27 | ET1 ‘ Cal|Cantrollert_atmbletwork_atrmUniSveN2_callControllerh_36_1 |

ToE28 ToE39 ToE61

- 147-

From E27From E3€From E59

| E24 ‘ Cal|Controllgrh_atmMetwvark_atmUniSwe N1 _callControllem_32_1 ‘

|E2§ ‘Signaling(’ﬂ MK _atmhetwork_atmlniSveh1 _signalingQ2931K_33_1 ‘

|E3E ‘Ds 1Message_atmhetwork_atmUniSveh1_dssiMessage_34_1 ‘

|E31 ‘S op_atm ehf-rnrk_saal1_sscop_4?_1‘

ol

|E32 ‘At Cpos_at Netwnrk_saal‘l_athpcs_48_1|
|

|E35 ‘At Sar_atmbetwark_saall_atmSar_50_1 ‘ |E34 ‘I3ESTraiIer_atmNetwnrk_saal‘l_athpcs_i363TraiIer_4El_1

|E3? ‘ESE ‘At Core_atmNetwork_athnH_athUre_4U_1‘

| E43 ‘At 1 ocesshpviceProwy_atmaccessDeviceProwy_2_1 ‘ ‘ E41 ‘ 1361 Header_atmbtletiork_atmlUnil_atmCore_i361Header_41_1
|E?E ‘At Lini_atmpceessDeviceProxy_atmAccessDeviceTest_atmUni_4_1 ‘

r
|E?C ‘At Core_at AcceSSDevicePruw_athccessDeviceTest_athni_athure_5_1‘

| Ez0 ‘ E349 ‘ Ef1 ‘ 1361 Header_atmbtletiork_atmlUni2_atmCore_i361Header_44_1 |

- 148-

Appendix E1- PowerDown: Sequence Trace

thread PowerOfFf. 1 {

1320599 G f Gui Converter: phoneCui / nobi | eSubscri ber Uni t & f B/ gt f Gui Converter(111-2) send
YoPw O f Ack;

1320599 G f Gui Converter: phoneCui / nobi | eSubscri ber Uni t & f B/ gt f Gui Converter(111-2) spawn
Power O f. 1. 1;

1320604 G f Gui Converter: phoneCui/ nobi | eSubscri ber Uni t & f B/ gt f Gui Converter(111-2) send
%Power Down;

1320604 G f Gui Converter: phoneCui/ nobi | eSubscri ber Unit & f B/ gt f Gui Converter(111-2) spawn
Power OF f . 1. 2;

h

thread PowerOFf. 1.1 {

1320601 GUI Proxy: phoneGui / gUl Proxy(95-1) state running;

1320601 GUI Proxy: phoneCui / gUl Proxy(95-1) receive %Pw O f Ack;

h

thread PowerOfFf. 1.2 {

1320604 G f QU I nterface: phoneCui / nobi | eSubscriberUnit & fB/ gUl I nterface(101-2) state
Power | dl e/ Activel dl e;

1320604 G f QU I nterface: phoneGui / nobi | eSubscri berUnit & fB/gU I nterface(101-2) receive
%Power Down;

1320614 G f QU I nterface: phoneCui / nobi | eSubscri berUnit &G fB/ gUl I nterface(101-2) send
%Power Down;

1320614 G f GUl I nterface: phoneCui / nobi | eSubscri berUnit & fB/ gUl I nterface(101-2) spawn
Power O f . 1. 2. 1;

1320617 G f QU I nterface: phoneCui / nobi | eSubscri berUnit & fB/ gUl I nterface(101-2) send % r;
1320617 G f GUl I nterface: phoneCui / nobi | eSubscri berUnit & fB/ gUl I nterface(101-2) spawn
Power OF f . 1. 2. 2;

1320621 G f QU I nterface: phoneCui / nobi | eSubscriberUnit & fB/gUl I nterface(101-2) state |dle;

h

thread PowerOff.1.2.1 {

1320614 Mobi | eSubscri berUnit G f: phoneGui / mobi | eSubscri ber Unit G f B(100-2) receive
%Power Down;

1320624 Mbobi | eSubscri ber Uni t G f : phoneGui / nobi | eSubscri ber Uni t G f B(100-2) send %Power Down;

1320626 Mobil eSubscri ber Unit G f: phoneCui / nobi | eSubscri berUnit G fB(100-2) state
Initialized;

1320624 Gsmivbbi | eSt ati on: gsnb552222(107-2) state Si;

1320624 Gsmivbbi | eSt ati on: gsnb552222(107-2) recei ve %Power Down;

1320633 Gsmivbbi | eSt ati on: gsnb552222(107-2) send %Power Down;

1320638 Gsmivbbi | eEqui prent : gsnb552222/ gsnivbbi | eEqui prent (116-2) state S1;

1320638 Gsmivbbi | eEqui prrent : gsnb552222/ gsmivbbi | eEqui prrent (116-2) recei ve %Power Down;
1320647 Gsmivbbi | eEqui prent : gsnb552222/ gsnivbbi | eEqui prent (116-2) send %Power Down;
1320647 Gsmivbbi | i t yManagenent : gsnb552222/ gsnmivbbi | eEqui pnent / gsnivbbi | i t yManagenent (118 2)
state SI1,
1320647 Gsmivbbi | it yManagenent : gsnb552222/ gsmivbbi | eEqui prent / gsmivbbi |i t yManagenent (118 2)
recei ve % ower Down;
1320651 Gsmivbbi | i t yManagenent : gsnb552222/ gsnivbbi | eEqui pnent / gsmivbbil i t yManagenent (118- 2)
send %Power Down;

1320652 Gsmivbbi | i t yManagenent : gsmVBSC2/ gsiivbbi | i t yManagenent (84-1) state S1;

1320652 Gsmivbbi | i t yManagenent : gsmVBSC2/ gsnivbbi | i t yManagenent (84-1) recei ve %Power Down;
1320656 Gsmivbbi | it yManagenent : gsmVBSC2/ gsnivbbi | i t yManagenent (84-1) send %Power Down;
1320656 GsmiNet wor kRegi stry: gsnRegi stry(57-1) state Ready;

1320656 GsmiNet wor kRegi stry: gsnRegi stry(57-1) receive %Power Down;

h

thread PowerOfFf.1.2.2 {

1320618 G f Gui Converter: phoneCui / nobi | eSubscri ber Uni t & f B/ gt f Gui Converter (111-2) receive

9 r;

1320628 G f Gui Converter: phoneCui/ nobi | eSubscri ber Uni t & f B/ gt f Gui Converter(111-2) send
%0 ear Di spl ay;

1320630 G f Gui Converter: phoneCui/ nobi | eSubscri ber Unit & f B/ gt f Gui Converter(111-2) state
t op;

1320628 GUI Proxy: phoneCui / gUl Proxy(95-1) receive %C ear D spl ay;

H

- 149-

Appendix E2- PowerDown: Communication Patterns

A GtfGuiConverter:phoneGui/mobileSubscriberUnitGtfB/gtfGuiConverter{2)L 1
GUIProxy:phoneGui/gUIProxy(9%) 1320601

S GtfGuiConverter:phoneGui/mobileSubscriberUnitGtfB/gtfGuiCoter€t112)
GtfGUIlInterface:phoneGui/mobileSubscriberUnitGtfB/gUlInterface{201320604
1320618

A GtfGUIlInterface:phoneGui/mobileSubscriberUnitGtfB/gUIInterface{2p1
MobileSubscriberUnitGtf:phoneGui/mobileSubscriberUnitGtfBR)A 320614

A MobileSubsciberUnitGtf:phoneGui/mobileSubscriberUnitGtfB (120
GsmMobileStation:gsm5552222(1@F 1320624

A GsmMobileStation:gsm5552222 (12§
GsmMobileEquipment:gsm5552222/gsmMobileEquipment(2)16320638

A GsmMobileEquipment:gsm5552222/gsmMobileEquipment{2)L6
GsmMobilityManagement.gsm5552222/gsmMobileEquipment/gsmMobilityManagement
(1182) 1320647

A
GsmMobilityManagement:gsm5552222/gsmMobileEquipment/gsmMobilityManagement
(118-2) GsmMobilityManagement:gsmMSSC2/gsmMaobilityManagement (8320652
A GsmMobilityManagment:gsmMSSC2/gsmMobilityManagement(34
GsmNetworkRegistry:gsmRegistry¢dy 1320656

A GtfGuiConverter:phoneGui/mobileSubscriberUnitGtfB/gtfGuiConverte-2j11
GUIProxy:phoneGui/gUIProxy(9%) 1320628

- 150-

Appendix E3- PowerDown: LQN Performance Model

G
"9.0E41 1091

P1
p procl f
-1

T9

t GUIProxy_phoneGui_gUIProxy 95 1fE1 Ebprocl

t GsmMobileEquipment_gsm5552222 gsmMobileEquipment_116 2-fifBocl

t GsmMobileStation_gsm5552222 107_2 f Bdprocl

t
GsmMobilityManagemenggsm5552222_gsmMobileEquipment_gsmMobilityManageme
nt 118 2 fE7-1 procl

t GsmMobilityManagement_gsmMSSC2_gsmMobilityManagement_84 1-fiFfocl

t GsmNetworkRegistry _gsmRegistry 57 1 f H9procl

t GtfGUlInterface_phoneGui_mobileSubscribeitGtfB_gUlInterface_101 2 f E21

procl

t GtfGuiConverter_phoneGui_mobileSubscriberUnitGtfB_gtfGuiConverter_111 2 r EO
-1 procl

t MobileSubscriberUnitGtf_phoneGui_mobileSubscriberUnitGtfB_100_2 tEBrocl

-1

E 10

sE11.01
sE51.01
sE61.01.01
ZzE6E70.01.01
sE41.01.01
zZzE4E60.01.01
sE71.01.01
zE7E80.01.01
sE81.01.01
zE8E90.01.01
sE91.01
sE21.01
zE2E31.01
sE01.01.01
zEOE11.00.601
y EOE2 0.0 1.01
zEOE50.01.601
sE31.01.01
zE3E40.01.601
-1

-151-

Appendix E4- PowerDown: LQN Performance Graphical
Model

|ED

| GifGuiConverter_phoneGui_mobileSubscriberUnitGiB_gfGuiConverter_111_2

| E1 | Ea ‘ GUIProxy_phoneGui_gUIProsxy_94_1 ‘ ‘ E; | GifiGlUIInterface_phoneGui_mohileSubscriberUnitGHB_gUlinterface_101_2
| E3 | MaobileSubscriberUnitG_phoneGui_maohileSubscriberUnitGiB_100_2 ‘

|E4 |Gsmnﬂobilestati0n_gsm5552222_1D?_E

|E6 |GsmMDbiIeEquipment_gsm5552222_gsmMobiIeEquipmenU 16_2

| E7 | GsmblohilityManagement_gsma552222_gemiobileEquipment_gsmbobilityManagement_118_2

| E& | Gemblobilitymanagement_gsmmMSSC2_gsmiahilityManagement_84_1

| E4 | GsmMetworkRegistry_gsmRegistry_57_1

-152-

