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ABSTRACT
To evaluate a software specification for its performance

potential, it is necessary to supply additional information, not
required for functional specification. Examples range from the
execution cost of operations and details of deployment, up to
missing subsystems and layers. The term “completions” is used
here to include all such additions, including annotations,
component insertions, environment infrastructure, deployment,
communication patterns, design refinements and scenario or
design transformations which correspond to a given deployment
style. Completions are related to the purpose of evaluation, so
they are tailored to describing the performance at a suitable level
of detail. Completions for evaluating other attributes such as
reliability or security are also possible. The paper describes how
completions are added to a specification regardless of the
language used (provided that it describes the system behaviour as
well as its structure), and experience with completions in Use
Case Maps.

General Terms
Performance, Design, Reliability, Documentation.

Keywords
Performance prediction, software specification, generative
design.

1. INTRODUCTION
Developers may wish to evaluate non-functional properties

of software specifications, in order to make satisfactory choices
in systems which are increasingly complex. Properties such as
performance, dependability and security may be evaluated at
many different levels of specification, including Use Cases,
execution scenarios, formal specifications, architecture, design
(including executable behaviour specified by state machines),
and prototypes. For any such specification, this work considers
evaluation for performance; further we focus on quantitative
evaluation by building a model, which is a common approach.
The main ideas apply equally to evaluation for other properties.

There are many specification techniques which are
performance-enabled to some degree. Scenarios were used in the
pioneering work of Smith [34], and by many others, including the
authors’ work with Use Case Maps [37]. Formal specifications
by Petri Nets and Process Algebras have been extended to Timed
Petri Nets and Stochastic Process Algebras [14]. Executable

design tools based on SDL [36] and the UML [5] have had
annotations added for performance properties. Woodside et al
[20, 31] made models from specifications in ROOM, similar to
Real-time UML. Prototyping approaches with performance
analysis were described by Menasce and Gomaa in [21], and by
Bagrodia in [1]. Architecture evaluation has been described by
Bass et al [3], making use of scenarios to explore any property of
interest; an example with quantitative performance analysis was
described by Nord [27]. Another approach to architecture
performance evaluation was described by Balsamo et al in [2].

Existing performance–enabled specification languages
provide
• descriptions of the deployment of the software on the

hardware, and
• annotations for the CPU demands of operations, for the size

of messages and databases, and for the latencies and
bandwidth of communications.

• Annotations to describe the intensity of the workload
(arrival rate, user population, event intervals)

Examples include proposals for considering time and
performance in the UML (e.g. [19], [30]), in Process Algebras
and Petri Nets (see  [6]), modifications to SDL to support
performance analysis (see [22] for examples), and annotations to
Use Case Maps (which are used for developing concurrent
architectures) [37].

However these annotated specifications are often
insufficient for performance evaluation, because of their level of
abstraction. If we compare a satisfactory high-level functional
specification to the final deployed version whose performance we
wish to evaluate, we can see four categories of elements in the
final system, of which only one is fully defined in the
specification:
• specified elements which are fully described in the

specification, usually being the system elements under
development,

• implied elements, which can be inferred from the description
of the specified elements,

• re-used elements which are existing software components,
represented in the specification by design stubs, (meaning,
abstractions which just show their interfaces). Demand
annotations to the stubs ignore the actual structure of these
elements, which may be subsystems with many components
and be distributed over many nodes.

• system service layers which provide communications, data
access and system management, which aren’t shown
explicitly, but can be inferred.
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The gap comes from missing elements that cannot be described
by simple annotations. (By “elements” we mean the entities
defined by the specification language, such as components,
processes, roles, ports, gates, connectors, etc.) Some languages
do have facilities, such as stereotypes in the UML, which can in
principle be used to define these missing elements.

Performance evaluation needs to include the workload and
delays for the implied, re-used and service layer elements.
Deployment and demand annotations on the specified and stub
elements in the specification (which is the present state of the
art) may not be sufficient. The gap is the possibly complex and
distributed structure of the missing elements, which may be
critical to the evaluation. The width of the gap depends on the
nature of the system (will it use such complex elements?) and on
the depth of detail needed in the evaluation. For example some
existing works model communications by a known overhead cost
and a latency. However when CORBA is used to connect
application components [23], a single message at the
specification level may imply references to a remote directory,
and multiple interactions with the ORB, as well as the messages
between the components.

This work defines completions as a general means to
capture performance concerns, to modify the specification and to
describe all of the expected elements. Completions include the
existing ideas of annotations, but also:
• self-contained fully-defined components or subsystems that

replace stubs and that provide system services,

• self-contained subsystems that are implied by the
specification (the second category above), according to
interpretations or policies for interpretation, or to suitable
annotations,

• patterns which transform the specification

• deployment, demand annotations and overhead allowances,
as used in previous work.

Because they are for performance evaluation, they may be
approximate in both functional and structural terms, or they may
define workload and demand abstractions. In this way they are
different from functional refinements of the specification,
elaborations by generative programming [11], or software
components in component-based software engineering [35].

A possible tool structure to build models with completions
is suggested in Figure 1. There are completions that transform
the specification, and others that are indicated within the
specification but are incorporated only when the model is built.
User input is provided to resolve any parameter values or
decisions which are undefined when the model-building begins.
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Figure 1  Suggested tool architecture for Evaluation

Of existing specification languages only the UML profile
proposed in [30], and Use Case Maps [37] go beyond simple
demand and workload annotations, and even they are limited to
stub replacement and service indications.

The purpose of this work is to investigate the general idea of
completions and how performance completions can be introduced
into specifications. This work only considers the capability to
build a model; the accuracy and usefulness of the  model will
depend on the system, the goals of evaluation, the modeling
technique and the quality of data available.

The potential uses of performance completions include
verifying performance requirements, comparing design
alternatives and evaluating flexible systems targeted to a range of
environments.

2. EVALUATION OF SPECIFICATIONS .
To carry out an evaluation, we assume that we have

1. a specification language which accommodates performance
annotations, as already discussed,

2. a procedure for building a performance model from the
specification, as in Figure 1.

Figure 2 shows an example specification which illustrates
different kinds of completions. It specifies a scenario for the use
of a video server that is accessed through the Web. This is a Use
Case Map (UCM) [9], [8] which shows a scenario as a line
beginning at a filled circle and ending at a bar. Responsibilities
along the path are indicated by X, and alternative paths by a Y-
shaped branching out or joining together. Parallel paths fork out
from a bar placed across the path, and may join at another similar
bar. Components are indicated by boxes and parallelograms
traversed by the path. Use Case Map specifications are suitable
for presenting the ideas because they are highly visual and
describe a high level of abstraction.
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Figure 2.  A Use Case Map specification for a video server,
indicating execution paths, components, and some completions

In the scenario, a user accesses the video server to request a
video (including a step to search one or more catalogues), and
then the server connects to a video player component associated
with the browser, and transmits the video. The performance
concerns are
• the response times for the search and for confirming the

request, and

• the jitter of the playback.

We consider the viewpoint of a designer of the video server
software. A version of this example is used to explain the
proposed UML Profile, with examples of UML annotations [30].

2.1 Performance Evaluation
Use Case Maps have well-defined performance annotations

for the execution demand of responsibilities, services used by
responsibilities (such as the database operations from the Web
Server), loop counts, and the numbers of users initiating
scenarios [12]. From an annotated UCM a layered queueing
model can be generated automatically for performance prediction
[24].

The important gap in this chain of operations is that only
execution demands and delays that are attached to the UCM
specification will enter the evaluation. Parameters cannot be
attached to system components that are not included in the
specification. Performance in this system is affected by elements
that are only implied in Figure 2, such as the database.

2.2 Completions
The video server performance would be affected by all the

following factors, which could be supplied as completions:
1. the users: how many at once, and how often they make a

request,

2. the browser: its execution delays,

3. the web server execution demands in handling the request
and sending the response,

4. the execution demands of the CGI script that creates the
web page,

5. the database operations to get the list of videos to show the
user,

6. the middleware that connects the web server to the
database, such as (perhaps) a CORBA layer,

7. the video player software initialization execution at the
users terminal,

8. the video storage subsystem that retrieves the frames of the
video, possibly with special parallel structure in the storage,

9. the internet protocol software layers,

10. the assumptions about internet delays and their variability,
to be used in the analysis.

The placement of these completions is indicated approximately
in the diagram of Figure 2 by the numbered circles. A more
precise notation to indicate that a completion is to be created is
discussed in Section 4.
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Figure 3a. The web server access to a database (detail)
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Figure 3b. Completions for middleware and database

Some of this information could be added as annotations to
the design (UML annotations for this example are described in
[30]), but others cannot. An example of  a high-level completion
which is too complex to be described by a simple annotation is
indicated in Figure 3. Figure 3a shows just part of Figure 2,
where the web server accesses a database. To complete the
description of the access, Figure 3b adds:
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• first, for circled item number 6 in Figure 2, a representation
of a CORBA layer connecting the web server to the database
(an ORB agent and services, shown as processes in the box
in the middle), which discovers the appropriate database
and its network address, and directs the request to the
database

• also, for the database access indicated by circled item
number 5 in Figure 2, it defines two alternative databases
Database1 and Database2 with videolists, such that the
ORB agent can resolve the request to go to one of them.

Further completions to show the internet delays, the structure of
the database software and processors, and its storage devices and
their organization, could be appropriate. Thus we can see that
completions can be recursive (can require or imply further
completions), and that the process of adding them can stop at a
point chosen by the designer.

2.3 Evaluation Techniques
The performance model created from the specification and

the completions may be based on simulation, queueing analysis,
Markov Chains or other approaches. Some examples are
surveyed by Dumke et al. in [14]. The present authors have used
layered queueing, which is appropriate for systems with
stochastic behaviour and service layers, and scales up well to
large systems. An application of layered queueing to e-commerce
servers is described in [13], and its use to analyse scalability of
an IP telephony system is described in [17].

For time-critical systems with deadlines, schedulability
analysis (e.g. [27]) can verify that responses can always be
completed on time.

3. COMPLETENESS OF SPECIFICATIONS
The example in the previous section demonstrates that

incompleteness can be a problem; how can we measure it? How
can we say that a specification is sufficiently complete?
Performance Completeness of a specification implies that it
contains enough information to evaluate the performance of the
system, to the desired accuracy. It must include sufficient
information on:
• deployment data and workload intensity parameters

• system structure and behaviour,

• demand values by system elements for execution (CPU
demand) and for services (from other elements, or from the
system, such as IO demands),

• latency values

Information can be missing if it is not essential for meeting the
goals of the evaluation.

A limited form of analysis called “bottleneck analysis”
requires only the total demand for every device; the bottleneck
device has the highest demand and limits the system capacity.
Schedulability analysis which can guarantee that a system meets
certain deadlines, on the other hand, requires precise information
about everything.

The approach to a definition taken above has a certain
circularity, in that one can be satisfied about completeness only
after carrying out the analysis. More practical measures of levels

of performance completeness can be defined, analogous to levels
of coverage achieved in testing:
Levels of Performance Completeness (definition)

• total completeness, means the specification describes all
activities of the system and its environment that are
important to the performance goals

• scenario completeness, equivalent to total completeness but
for a defined set of scenarios only,

• time granularity completeness which includes all operations
with time demands greater than a defined granularity DT,

• software/hardware granularity completeness, in which some
objects or subsystems are aggregated together.

4. INDICATING COMPLETIONS IN A
SPECIFICATION
Completions need to be indicated for a specification, either

within the document or as an attached commentary. Many
languages have annotations or stereotypes which can be attached
to specification elements (for instance, the tagged values and
stereotypes in the UML [5]). These annotations which indicate
completions add parameters of different kinds to the
specification. We will define the completions in a way which is
independent of any particular specification language, as a string
defining a tuple which in turn indicates the completion. These
tuples could be placed either in annotations within the
specification, or in an ancillary document.

4.1 Replacement
A simple case is a completion which replaces a “stub”

element in the specification by a subsystem (such as putting in
the components and behaviour of a particular database in place of
a “Database” stub in Figure 2 or 3a). The UCM language defines
a “stub” element, but the term here refers to a design placeholder
in any language. The replacement might be indicated by a tuple:

Replacement = (“substitution”;

element to be replaced;

completion type:name:instance;

parameter vector of elements type:name:value)

Elements to be replaced could include both components such as
objects and processes, and connectors indicating
communications, messages, calls or flows. The completion type
and name are significant within an assigned library of
completions, and the instance defines a name at the specification
level for the instantiation of the completion. The type establishes
the possible associations (roles or ports) of the completion
(which must be compatible with the stub in the specification) and
the parameters (defined by type:name) that can be assigned.
Some generic types for completions are:

• a service, which replaces a stub which provides an operation
through a call-return interface. Several services may be
provided by the one server, so the server may be a
parameter (and another completion). Web servers, database
servers, file servers and directory servers are common
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examples of server completions and services include
queries, updates, and transactions.

• a layer, which interposes between two components and
modifies a service. The ORB in Figure 2 has this role,

• a two-port filter, which replaces a connection in the
specification. A filter processes data and passes it on.
Communications channels and real-time interfaces are
common examples of filter completions.

• a multicast filter in which one send is propagated to many
receivers.

The process of inserting a completion into a specification is
essentially the same as binding a component into a design using
a system such as RESOLVE [35].

In Figure 3b the database design stub of Figure 2 is replaced
by a pair of databases and a choice between them. This could be
defined by the following tuples:

(“substitution”; Database; subsystem:MultiDB:DB(1:2); -)
(“substitution”; DB(1); process:Oracle-DBS:Database1;

int:records:25000)
(“substitution”; DB(2); process:MSQL-DBS:Database2;

int:records:5500)

The first tuple introduces the choice and two placeholders DB(1)
and DB(2). The second and third define the completions for the
placeholders, and give the sizes of the databases. The tuples
presumably do not have parameters for the execution workload of
an Oracle database system, or an MSQL system, because those
can be part of the completion itself.

4.2 Rules
Direct replacement can be implied rather than explicitly

indicated, using rules which identify both the elements to be
replaced, and the completion and its parameters. An example
might be to replace all web servers in the specification by an
Apache web server. Because a rule may cause multiple
replacements it is not suitable to give a single instance name, so
a group name is defined for all the instances, with a symbol # to
be replaced by a number 1, 2, …

Replacement Rule: (“substitution-by-rule”;

rule name as a string;

{set of properties of set E of elements to be replaced as
a comma-separated list of strings};

completion type:name:instance#;

parameter vector of elements type:name:value)

The properties referred to in the rule could be defined in special
property tags or comments attached to specification elements, or
(conceivably) they could be inferred by reasoning on the roles
and context of the elements in the specification. In the video
server, such a rule might be expressed as:

(“substitution-by-rule”; webServerRule; “ANY web server”;
process:ApacheServer:ApacheWebServer#; -)

The web server element in Figure 2 would have to have a “web
server” property. In this example the execution parameters of the
web server are not specified in the tuple; they may be specified
internally in the completion in some way.

4.3 Styles
A set of rules like this could represent the normal practices

of a designer or design group, and such a set will be called a
completion style. It consists of either a set of rules, or a set of
groups of rules, or both:

Style: (“style”;

style name (a string);

{set of Replacement Rules, a comma-separated list of
rule names};

{set of Substyles, a comma-separated list of substyle
names})

Styles can be hierarchical, with substyles to govern subsystems
or aspects of the system, with rules that apply under some
condition. A substyle can be defined by:

Substyle: (“substyle”;

substyle name (a string);

condition for application of the substyle;

{set of Rules, a comma-separated list of rule names})

In the context of the example of Figure 1 and 2, a style might
include rules for using Apache for any web server, sockets with
TCP/IP for communications, and Linux NFS for any file server.
A more sweeping style could be to always include an audit
process in a system, which examines system state and initiates
recovery in certain error conditions. The audit process does have
to be specified, but its use could be indicated as part of an
overall style for the system.

4.4 Communications Completions
Communications gives rise to slightly different completion

rules because it links entities together, and is attached to
connectors rather than to entities themselves. In general, a
completion for communications may also involve more
sophisticated additions to the specification, such as:
• scenario modifications to represent the protocol, for instance

with stages for connection, directory search and
authentication, data transfer,

• protocol operations at the sender and receiver

• other components and their operations, such as directory
service,

• network contention delays

• latencies across network links

It may be bound into the system to serve a particular pair of
processes, or several processes, or all the messages in the system,
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with multiple roles as senders and receivers. The elements to be
added to the specification have to be configured according to
these choices and to the deployment of processes. Protocol
operations may be combined with the other application demands
of application processes, or modeled separately with a
communications front-end. In these cases the rules for
configuring the completion are part of its definition, and they
may depend on some of its parameters. For a two-party
communications substrate a completion can be identified by the
tuple:

Two-Party Communications Rule: (“comm2”;

rule name (a string);

initiator role element; responder role element;

completion type:name:instance;

parameter vector of elements type:name:value)

The completion instance may include elements shared with other
communication paths. The parameters may govern the
configuration and deployment of the subsystem, and its capacity
and demand values.

A set of two-party paths by socket communication over a
LAN provides an example of a completion to handle a simple
message delivery. Each path has a specification of its completion
with its own initiator and responder roles, but they all share the
same completion instance. This completion will have to
accommodate incrementally added usages when it is inserted into
the specification. For each connection there is a message size
description and protocol overhead, and for the entire LAN there
is a speed parameter (such as 10 Mbit, 100 Mbit, or 1 Gbit per
second), and (perhaps) a level of additional contending traffic.

In Figures 1 and 2, completions for internet communications
between the user’s browser and video player, and the service site
including the web server and video server, could be indicated by
a tuple:

(“comm2”; “CommByTCPSocket”; “ANY user-node-element”;
“ANY server-node-element”;
network:TCPconnection;internet;
real:accessSpeedMegabits:100)

This identifies processes with the properties of being a “user-
node-element” and a “server-node-element” and links them by a
path with a TCP protocol stack at each end of each connection,
suitable access interface, and a 100 Mbit access rate. It implies
acknowledgements for messages, and waiting for TCP window
flow control.

The CORBA layer shown in Figure 3b is an example of a
more complicated subsystem which provides a service linking
two entities, and replaces a connection in the specification. The
layer could be quite complex, and (for example) provide
transaction semantics and guaranteed delivery. The completion
might be indicated by:

(“comm2”; “CommByCORBA”; “element WebServer”;
“element Database”; layer:CORBA-Orbix:ORB; -)

This identifies particular elements for the participants. The ORB
completion has the structure shown in Figure 2b, and connects to
whatever replaces the Database.

A more general multiparty communications completion
requires a rule that identifies instances of elements by their roles
in the completion. Examples include sending and receiving, but
also specialized sub-roles such as sending queries, sending
updates, and other roles such as subscribing to receive updates.

Multiparty Communications Rule: (“commN”;

rule name (a string);

{Set of bindings of form role:element};

completion type:name:instance;

parameter vector of elements type:name:value)

The set of possible roles are a property of the type of the
completion, and there may be more than one element bound to
one role.

An interesting example of a multiparty communications
completion is communication via a global shared memory
presented as a distributed tuple space, with the following
supposed properties [28]:
• there are separate sets of processes which create tuples and

write values into the space, which subscribe to updates for
certain tuples, and which query the space for values. Only
certain interfaces of these process (which we have called
here “role instances”) are bound to the tuple space. Other
roles of the same processes might use socket
communications.

• the tuple space has multiple servers, deployed on certain
nodes (which are parameters of the completion), and each
process interacts with the nearest server. These interaction
bindings could be made explicitly, or could be inferred from
the overall deployment in configuring the completion.

• the tuple space servers execute operations to synchronize
their representation of the tuple space, so they all have a
correct and complete representation.

This could be indicated by

   (“commN”; “CommByMyTupleSpace”; {“sender:SENDER1”,
“receiver:RECEIVER1”, “receiver:RECEIVER2”...};
layer:MyTupleSpace:TS; -)

4.5 Variables in Completion Indications
As they have been described, the indications may have

parameters of any type (such as numeric, boolean or strings). It is
also useful to allow parameter values indicated by variable
names, which must be given values before the evaluation model
is built. These unresolved parameters provide flexibility in
coordinating and adapting completions to the circumstances of
each evaluation. Where a system attribute is shared among many
completions, the same parameter could be defined globally and
appear in several completion indications.

The syntax suggested for the variable names is to begin
them with a $ sign:
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Variable name = $string

to identify variable names from other elements of a completion.
This assumes that the specification tool does not use this
convention for another  conflicting purpose (if it does, then
another convention could be substituted). Thus, in indicating the
TCP completion above, a variable $netspeed could be used
instead of 100 Megabits/sec.

  (“comm2”; “CommByTCPSocket”; “ANY user-node-element”;
“ANY server-node-element”;
network:TCPconnection;internet;
real:accessSpeedMegabits:$netspeed)

This value will have to be resolved before a model can be
built. One way is to have a statement

$netspeed = 100

included in the specification with the completions, global to all
completions, as already mentioned; another way is query the user
at the time a model is built, as indicated in Figure 1.

Where a completion itself contains a further completion or
annotation, it may be defined by a parameter name from the outer
completion. Thus in the example of the database completions
above, the MSQL-DB completion type could (just as an example)
be defined as a process allocated to processor $DBPROCR, with
relative execution speed $CPUSPEEDFACTOR. Its execution
demand could be defined by an equation such as:

$CPUDemand = (0.3 + 0.01 * $records)/$CPUSPEEDFACTOR

In evaluating the CPU demand value to calibrate a performance
model, the $records parameter has been supplied as a parameter
in the indication of the completion given above (with value
5500). If the processor and its speed factor are not known, they
would be presented as a query to the user while building the
performance model.

Parameters can therefore be used to link together different
levels, in defining completions in terms of additional
completions. Also, keeping undefined parameters to be resolved
by the user is an excellent way to allow flexibility at the time the
evaluation model is created. However, if parameters from a
variety of completions are presented at the user interface in
Figure 1, an indication of where they were defined will be
necessary to avoid name conflicts. The completion instance name
could be prepended as CompletionInstance.$variable

The MSQL-DBS completion instance is Database2, so a
user reference to the CPU speed would take the form

Database2.$CPUSPEEDFACTOR

4.6 Sets of Completions
In the rules described above, the specification of a single

completion name or parameter value could be replaced by the
specification of a set of candidates, so that either an installation
rule can be used by the model-builder to choose the most
appropriate, or the user can be queried for a choice, or the
evaluation can scan over the entire set (and over combinations of
such sets for different completions) in order to evaluate multiple
configurations for a single design specification.

The more general form of the completion-defining tuple
would indicate a set of values for a single element, as a comma-
separated list contained in curly braces:

completion type:{set of names}:instance
parameter type:name:{set of values}

The indication described above for a TCP connection completion
could be generalized to:

(“comm2”; “CommWithChoice”; “ANY user-node-element”;
“ANY server-node-element”;
network:{TCPconnection, RPC}:internet;
real:accessSpeedMegabits{10, 100, 1000})

in which the protocol used is either sockets with TCP (defined in
theTCPconnection completion) or a form of Remote Procedure
Call (defined in the RPC completion) and the access speed to the
internet is 10, 100 or 1000 Mbit/sec. The intention of the
multiple choices could be either to make a choice later, or to
evaluate all six combinations.

4.7 Integration with Specification Tools
Different specification languages may be able to incorporate

these indications in different ways, so the tuple syntax defined
above is just meant to identify the information. In the UML for
example, elements can be stereotyped and annotated with tags.
One way to indicate completions would be to use tags with
strings which contain the tuples just defined. A proposed UML
profile for performance [30] defines many tag types to define
scenarios with performance measures, demands and workload
parameters; these definitions could be extended with typed tags
for each tuple type, and structured parameter fields.

vs: VideoServer

<<PAstep>>
{PArep=14500,
PAdemand = (‘est’,’mean’,5,’ms’),
PAextop = (‘filesys’,12, network’, 65)}

retrieveVideoFrame

Figure 4 UML tags annotated on a Sequence Diagram

Figure 4 shows a fragment of a UML Sequence Diagram to
specify the behaviour of the same video server as in Figure 2,
showing UML tag values defined in the profile, which define
14500 repetitions (video frames), and CPU demand of 5 ms, 12
file operations and 65 network packets per video frame, for the
videoserver step which retrieves frames and sends them..

In the Use Case Map Navigator, some performance-related
completions have been integrated into the language and the tool
interface. Each specification element has a performance-related
window for this information, including path choice probabilities,
arrival rates at start points, deployment of processes to
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processors, and the workload demands of responsibilities. The
window for the performance attributes of the GetVideoList
responsibility in Figure 2 is shown in Figure 5.

Figure 5  UCM Navigator window for annotating a service

5. DEFINING THE COMPLETIONS
A performance completion is a transformation applied to the

specification, which is tailored to the goal of predicting
performance. There are similarities to design elaborations and
refinements that are used in generative programming [11], but
the completions themselves may be quite different. Performance
completions need to describe only those scenarios which are
important for performance evaluation, typically those with heavy
use, and others whose timing is important for reasons such as
system safety or security. In this way a large part of the
functionality of a service or communications subsystem may be
missing altogether from a performance completion (for instance,
relating to system initialization, and some kinds of exception
handling). Further, the description of the subsystem provided in
the completion may be approximate. Functions may be lumped
together if they are always performed together, and alternative
paths may be combined and averaged.

The actual completion is the change that is inserted
(preferably automatically, to avoid excessive effort) into the
specification. This creates an expanded specification, which may
not need to be read by the designer (but only used to create a
performance model). There are three kinds of change, which we
will call annotation, refinement and transformation.

5.1 Additional Annotation Completions
The simplest form of completion is an additional annotation

in the specification. Effectively this converts the indication of the
completion (which is already a kind of annotation) into one or
more other annotations for performance properties or further
completions. For example a completion indication for a particular
database system might be converted into annotations giving
execution demand figures and IO demands for that system. A
parameter for database size on the completion indication could
be used to compute the demand figures for this instantiation of
the database.

5.2 Refinement Completions
A refinement is described by a sub-specification, which can

replace a design stub, a connection, or an operation (which may
be indicated in UCMs as a responsibility). It should have
interfaces that match the path attachment points in the scenario.

A simple refinement is a server that accepts a request and
sends a reply. It can be used wherever this behaviour pattern
appears, which is often. A refinement to complete a service
request could be described by a specification as a scenario, like
the web server in Figure 1, or by information about the server
and the services it offers, which defines:

ServerType

Deployment

Service1: Execution demand per request

List of: {Lower-level service; requests}

Service2: ….

This is sufficient for understanding the performance impact of
the server, at a coarse level of detail. Further servers would have
their own descriptions for the services they offer, and their
deployment.

A more powerful refinement is a subsystem like the
CORBA layer in Figure 2b. It has internal behaviour and
elements which may be system-wide, but it still has to conform
to the interfaces, which in this case handle requests in one
direction and responses in the other.

A different kind of refinement is an elaboration of behavoiur
to show the sequence of responsibilities necessary to carry out a
single high-level responsibility. Such a path eleboration is
strictly at the level of the specification, and is indicated by a sub-
specification. In UCMs there is a notion of sub-map which plugs
into a point in the scenario to refine it; other specification
languages provide similar abstractions (a process definition in
process algebras or SDL, for instance).

5.3 Transformations
The most general form of completion requires transforming

the specification in some defined way in order to progress in the
details. This goes beyond additional behaviour specified in a
subsystem behind an interface, and actually modifies behaviour
in the original specification.

Transformations can be based on pattern substitution, in
which one pattern of elements and interactions is replaced by
another one. General theories, prescriptions, tools and experience
for doing this are found in the graph transformation literature,
using the ideas surveyed in [29].

An example of pattern substitution is the replacement of a
multicast connection in a specification by a tuple space
subsystem (described briefly above), in which the receivers
request updates to certain tuples. In the completed specification
the receivers have to actively request data from a tuple-space
server, instead of passively waiting for the data to arrive, and
then they have to test whether it has changed. The transformation
begins by identifying the roles of senders and receivers, and then
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modifying their behaviour as illustrated in Figure 6. Tools for
formal graph replacement are described in the reference.

.

SENDER

SENDER

    RECEIVER1

    RECEIVER2

    RECEIVER3

Tuple
Space
Server

RECEIVER1

RECEIVER2

RECEIVER3

Figure 6 A transformation from a multicast to multiple retrievals
from a Tuple Space

              

Another similar pattern-based refinement would arise in the
use of a polling discipline for requests which are specified as
being sent to a server (in polling, the server seeks out the
requests instead of waiting for them).

5.4 Parameters of Completions
A completion may define and use a number of parameters,

using concrete values or variables with the naming convention
$variable described in the previous section. The values of
variable parameters may be defined by the indication when it is
bound into the specification, or by the completion itself, and they
may be used in defining further (nested) completions.

Where a completion defines a value for a parameter it is
treated as a default value which can be overridden by a value
given in an indication.

Processors and other devices may have to be named as
annotations in the specification of a completion. They are
assumed to be indicated by strings which name the processors,
and these can also be variables.

5.5 Insertion of Completions
The process of inserting a completion into a specification

includes compatibility checks (to see if the interfaces are
compatible) and parameter bindings. Compatibility checks may
be more complex if the specification is more detailed. For
instance if the specification describes data types transferred
across an interface into a design stub, then a completion for the
stub should be capable of accepting these types. In a
sophisticated system the interface types might be exploited to
create parameter values for the completion (for instance,
communications overhead depends on message sizes, which
might be defined as part of the specification of a service request.

6. RELATED WORK AND IDEAS
Other approaches to evaluating designs and architectures for

performance either use predictive quantitative models, as we do
here, or make qualitative analyses, which we shall not attempt to
analyze. The problem of adding performance information to
specifications has been handled either by using annotations
alone, or by including submodels within the performance
modelling environment for existing re-used components.

Smith in her pioneering work used a scenario specification
which was dedicated to performance (rather than to software
specification), with user-supplied demand parameters in place of
annotations [33]. The user must capture and add up all the
demands of an operation, on all devices. Smith’s modeling
language has a high-level operation abstraction to act as a stub
that can be substituted by a submodel, providing a limited
capability for replacement completions. Her approach has been
reflected in other work also, such as  [10] and [18].

Attempts to obtain performance models from standard
software specification languages such as SDL or the UML are
roughly at the stage of defining annotations. Completions which
go beyond this have not been considered, as far as we know,
except for service demands in the proposal [30].

Performance models from other specification languages such
as Petri Nets and Process Algebras have been widely studied
[14], often by generating Markovian models at the state-
transition level as described by Pooley [26]. One example that
has been put to practical use in design is the PROTOB system
[7], another is HIT [4].

Menasce and Gomaa described a language to specify the
components and interactions of a system, with a tool to generate
a queueing model. In building the model, they used a submodel
for a database “stub” [21]. The Hyperformix Strategizer
modeling tool uses pre-built performance sub-models for
software and hardware components such as databases, networks
and storage subsystems. Their approach is quite similar to that
taken here, but is not designed for user-defined completions.

The present authors and our collaborators have for many
years attached performance parameters to a software architecture
model to define layered queueing models [15]. In [16], an
attempt was made to provide a way to build these models from
any executable software design tool, and this was realized in [38]
for the ObjecTime Developer tool, which implements the ROOM
methodology.

Models have been built from UCM specifications [37], [32]
and from UML specifications [25]. For completions, we have
found it useful to pass the description of certain kinds of
subsystem completions through to the performance model, which
can then incorporate pre-built submodels of the subsystems, as
indicated in Figure 1 [32]. In this work, at least up to this point,
the operations shown in Figure 1 have some automated steps,
such as generating the performance model from the UCM, and
some manual steps, such as invoking further completions.
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7. CONCLUSIONS
Completions are essential for evaluation of non-functional

properties, because specification languages have been (properly
enough) designed to describe functional properties first. In work
to date, a beginning has been made with annotations for
workloads, deployment and resource demands. The idea of
completions generalizes this to describe more complex
information which is properly missing in many specifications,
such as the functional behaviour of service layers. This idea is
similar to software components, but is specialized for the
particular evaluation (in this case, for performance).

With completions, we make a specification complete for an
evaluation goal, (performance completeness) as well as in a
functional sense.

Completions must be indicated within a specification, and
this may be done using an annotation mechanism in the
language, or by an added description which has been defined
here using six classes of tuples. The classes of tuples include
rules which can be used to infer the need for a particular
completion from the semantics of the specification, and styles of
development embodied in set of rules. The question of how to
infer completions appears to open rich research possibilities.
Rules for describing communications have more complex
semantics than those for other elements. Indications may identify
sets of completions, either for later resolution or for evaluation of
multiple cases.

Completions must also be defined in a way that can be used
to transform the specification, or to contribute to the performance
model as it is being built. The general problem of transforming
the specification can be approached by graph transformation
guided by graph patterns. Special cases include generating
annotations, substitution of a design stub by a sub-specification,
and invocation of a service described by a submodel in the
performance tool. Parameters defined in the indication may be
used in calculations of parameters of the completion itself, or
propagated into deeper-level completions. Unresolved
parameters can be queried to the user before completing the
model.
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