
 1

Generating a Performance Model
from a Design Specification

Dorin Petriu, Murray Woodside
Department of Systems and Computer Engineering

Carleton University
1125 Colonel By Drive

Ottawa, Canada K1S 5B6
email: {dorin,cmw}@sce.carleton.ca

1. Introduction

The Early Performance Aware Development (E-PAD) process uses generative program-
ming principles in order to incorporate performance analysis in the early stages of software devel-
opment. Starting with a Use Case Map (UCM) [1] design specification that has been augmented
with performance information, we automatically generate a Layered Queueing Network (LQN)
preliminary performance model. The LQN model is analyzed using automated solvers and the
results can then be incorporated back into the design specification.

The E-PAD process can be further enhanced through the adoption of component-based
approach that makes use of pre-existing components in order to build the system under develop-
ment [6]. The existing components should have known performance parameters which provide a
more accurate starting point for augmenting the UCM design specifications with performance
data. Furthermore, a component-based approach can also provide designers with a choice of
available components that could be used to address performance concerns possibly arising from
the analysis of the generated LQN model.

Figure 1: Early Performance Aware Development (E-PAD) process.

Performance
Results

Design
(UCM)

Performance Model
(LQN)

UCM2LQN (Generative Step)
LQ

NS
 s

ol
ve

r /
 P

ar
aS

RV
N

si
m

ul
at

or

Workload
Parameters

Feedback to design

 2

The proposed approach implements Software Performance Engineering (SPE) [8] princi-
ples in a generative manner that significantly reduces the high overhead traditionally associated
with creating performance models from design specifications. An overview of software and per-
formance research work can be found in [11] and [12].

2. Notations

2.1. Use Case Maps

The Use Case Map (UCM) notation is used to describe design specifications. UCMs are a
graphical representation of the scenarios executing across a system. UCMs enable the user to
grasp a system’s emerging behaviour without getting lost in execution details [1].

The basic building block of the UCM notation is the path. As a scenario is executed one
can imagine a token traversing the path from the start to the end. UCM is a concurrent notation;
there is no restriction as to the number of tokens that may traverse a given path or the position of
any token on a path relative to any other token. UCM paths can also be overlaid on components,
which represent functional or logical entities that are encountered during the execution of a sce-
nario. Paths are refined to show more scenario detail through the addition of responsibilities.
Responsibilities represent functions that need to be accomplished at given points in the execution
of the scenario. UCMs also incorporate AND and OR forks and joins which show parallel and
alternate scenario variants. As well, loops can be represented with a special loop construct.

Figure 3 shows the UCM design for a distributed Ticket Reservation System (TRS). The
TRS allows users to browse through a catalogue of events and seat availability, and to buy tickets
using a credit card. The path for the main TRS scenario requires that a user first connect to the
TRS before repeating a loop that incorporates two alternative sections describing either browsing
or purchasing tickets. Once the user is satisfied, she exists the loop and requests to be discon-
nected from the TRS.

Figure 2: E-PAD enhanced with a component-based approach.

Performance
Results

Design
(UCM)

Performance Model
(LQN)

UCM2LQN (Generative
Step)

LQ
N

S
 s

ol
ve

r
/ P

ar
aS

R
V

N

si
m

ul
at

or

Workload
Parameters

Existing
Components

Feedback to design

 3

The UCM notation enjoys a growing profile in the design community and is further bol-
stered by an industry-led effort to make UCMs an ITU-T standard as part of a recognized User
Requirements Notation (URN) [2].

2.2. Layered Queueing Networks

Layered Queueing Networks (LQNs), previously called Stochastic Rendez-Vous Net-
works (SRVN), are used to specify performance models. LQNs allow for of an arbitrary number
of client-server interactions. An LQN can thus model intermediate software servers and be used to
detect software deadlocks and software as well as hardware performance bottlenecks. The layered
aspect of LQNs also makes them very suitable for evaluating the performance of distributed sys-
tems [9].

LQNs model software and hardware resources as tasks and devices respectively. Commu-
nication consists of calls between tasks and are shown as messaging arrows. Synchronous mes-
sages are blocking calls that require a reply, and the sending task suspends execution until that
reply arrives. Asynchronous messages are non-blocking calls that do not require a reply. Tasks
receive service requests at designated interface points called entries. An entry may either be
defined atomically or by activities. An activity is a smaller computational blocks with its own
hardware service demands. An activity can make calls to entries in other tasks. Activities can be
arranged in sequences, as well as in parallel (AND forks and joins) or alternative (OR forks and
joins) configurations. An activity can also make repeated service calls in order to model repetitive
behaviour.

An LQN entry receiving a synchronous service request is responsible for either replying to
it, or it may forward it to other entries. An entry that is forwarded to becomes responsible for
eventually sending the reply back to the original caller. In the case of a forwarded call, the original

Database

WebServer

CCReq

NetwareUser

Connect

ConnectWeb

Disconnect

DisconnectWeb

DisplayWeb

DisplayNet

DisplayDatabase

ConfirmWeb

ConfirmNet

ConfirmDatabase

VerifyCC

Figure 3: UCM of the Ticket Reservation System.

 4

calling task remains blocked until it finally receives the reply at the very end of the forwarding
chain.

Figure 4 shows a graphical representation of the automatically generated LQN for the
TRS. The large parallelograms are tasks and the small parallelograms are entries. Activities are
represented by the small rectangles. The messaging arrows with a filled head represent synchro-
nous service calls while the other arrows represent asynchronous calls. The dashed arrows with a
filled head represent forwarded calls.

3. Tool Support

The UCM Navigator (UCMNav) is a UCM editing tool developed at Carleton University
by Andrew Miga [5]. The UCMNav allows the user to draw and modify UCMs. Fields are pro-
vided to add additional comments and descriptions both for individual elements and for the over-
all design. These fields can be used to add resource demand figures and specify the system’s
devices. The UCMNav can also be used to integrate multiple UCMs into an overall design.

Figure 4: Graphical view of the LQN of the Ticket
Reservation System generated by UCM2LQN.

User_clone1

User_clone1_A4
[User_clone1_E1]

User_clone1_
A3

User_clone1_
A2

User_clone1_
A1

User_clo
ne1_E1

+

WebServer

WebServer_
A10

DisplayWeb_
hid13

WebServer_
A9

WebServer_
A8

WebServer_
A7

WebServer_
A6

ConfirmWeb_
hid23

WebServer_
A5

WebServer_
A4

WebServer_
A3

WebServer_A2
[WebServer_E1]

ConnectWeb
_hid3

WebServer_
A1

DisconnectW
eb_hid10

WebServer_
A14

WebServer_A13
[WebServer_E2]

OrJoin_Lqn_
A1

WebServer_
A12

WebServer_
A11

WebServer_A15
[WebServer_E3]

WebSer
ver_E1

WebSer
ver_E2

WebSer
ver_E3

+

Databas
e_E1

Database

Database_A4
[Database_E2]

DisplayDatab
ase_hid16

Database_A3

Database_A2
[Database_E1]

ConfirmDatab
ase_hid25

Database_A1

Databas
e_E2

ConfirmNet_h
id24

Netware_A1

Netware_A4
[Netware_E2]

DisplayNet_hi
d15

Netware_A3

Netware_A2
[Netware_E1]

Netware
_E1

Netware
_E2

Netware

RefTask1_A1

RefTask
1_E1

RefTask1

CCReq

CCReq_A2
[CCReq_E1]

VerifyCC_hid
27

CCReq_A1

CCReq_
E1

User

User_A1

User_A2

Connect_hid1

User_A6 User_A5

User_A4

Disconnect_hi
d8

3 *
User_LH_48

User_A3

User_E1

 5

The UCM2LQN converter is a generative tool that uses the UCMNav internal data repre-
sentation to generate LQN performance models. It is integrated with the UCMNav and interprets
the UCM paths into sequences of LQN elements. UCM2LQN assigns default values to perfor-
mance information that is missing in the UCM design specification. The LQN models that are
generated are saved as LQN text files that can be read by the LQNS and ParaSRVN solvers.

LQNS is an analytic solver that breaks the LQN layers down into separate queueing net-
work sub-models. The individual queueing networks can be solved analytically using mean value
analysis (MVA). The MVA results for each sub-model are then used to fine-tune the MVA param-
eters for the other sub-models it is connected to and the MVA is performed anew. This process is
repeated either for a maximum number of iterations or until the results converge on a user speci-
fied convergence value. LQNS cannot solve models that are not hierarchically decomposable [4].

ParaSRVN uses the ParaSol simulation environment, which can simulate multithreaded
systems that support transactions and provides built-in statistics for monitoring simulation
objects. ParaSrvn simulates LQNs by creating tokens for each call and following those tokens
through the system. The performance metrics are arrived at by recording the wait times and other
statistics for each token. Since ParaSRVN simulates the execution of the system rather than
attempting to generate analytical solutions, it can deal with any type of model.

LQNS and ParaSRVN both use the same input file format and generate similar outputs
listing device utilizations, response times for activities and calls, and throughput figures.

4. Methodology

The first step of E-PAD is to create a UCM design specification for the system. This is
accomplished with the UCMNav editor. The design is then augmented with workload parameters.
These parameters can either be known figures from systems of similar type [3], or if working
within a component-based context they can be known from the components themselves [10], or
they can result from using a performance budgeting approach to allocating maximum allowable
response times [7].

The next step is to use UCM2LQN to automatically generate the corresponding LQN
model. This is a generative step that creates non-code artifacts. It uses automation to bring perfor-
mance modeling with the reach of average designers, a process that traditionally carries high
overhead and requires specialized performance analysis knowledge.

The LQN model is solved with LQNS and/or ParaSRVN. The performance results can be
brought back into the design and used to:

• exploit the concurrency of the system

• exploit the parallelism of the system

• identify and flag performance-critical spots that will create software bottlenecks if not imple-
mented carefully

• evaluate the scalability of the system

• guide the choice of components in a component-based development

 6

5. Conclusions

The E-PAD methodology proposed in this paper provides for the automated generation of
a performance model from a design specification. The UCM2LQN tool makes a performance
interpretation of an early system specification and fills in the missing performance information
where necessary. This process is enhanced by using a component-based approach where the use
of existing components includes known performance parameters for those components.

The resulting layered queueing performance model can be solved or simulated using the
LQNS or ParaSRVN tools in order to obtain performance results that can feedback into the design
of the system.

The generative approach used by the UCM2LQN tool to create performance models from
design specifications is a step forward compared to traditional non-automated processes. E-PAD
enables designers to get preliminary performance models without requiring them to become per-
formance analysts. By removing that obstacle, this approach adds significant value to the SPE
process.

6. References

[1] R. J. A. Buhr and R.S. Casselman, “Use Case Maps for Object-Oriented Systems”, Prentice Hall,
1996

[2] D. Cameron et al., “Draft Specification of the User Requirements Notation”, Canadian Contribution
CAN COM 10-12 to ITU-T Study Group 10, November 2000

[3] M. Courtois and C. M. Woodside, “Using Regression Splines for Software Performance Analysis”,
ACM Proceedings of the Workshop on Software and Performance (WOSP2000), Ottawa, Canada,
2000, pp. 105-114

[4] Greg Franks, “Performance Analysis of Distributed Server Systems”, Report OCIEE-00-01, Ph.D.
thesis, Carleton University, Ottawa, Jan. 2000

[5] A. Miga, “Application of Use Case Maps to System Design With Tool Support”, M.Eng. Thesis,
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada, 1998

[6] R. Schmidt and U. Assmann, “Concepts for Developing Component-Based Systems”, 1998 Interna-
tional Workshop on Component-Based Software Engineering, 1998

[7] K. H. Siddiqui, C. M. Woodside, “A description of Time/Performance Budgeting for UCM
Designs”, The 5th Mitel Workshop (MICON2000), Mitel Networks, Ottawa, August 2000

[8] C. U. Smith, “Performance Engineering of Software Systems”, Addison-Wesley, 1990
[9] C. M. Woodside, J. E. Neilson, D. C. Petriu and S. Majumdar, “The Stochastic Rendezvous Network

Model for Performance of Synchronous Client-Server-Like Distributed Software”, IEEE Transac-
tions on Computers, Vol. 44, No. 1, Jan 1995, pp. 20-34

[10] C. M. Woodside, C. Hrischuk, B. Selic and S. Bayarov, “Automated Performance Modeling of Soft-
ware Generated by a Design Environment”, to appear in Performance Evaluation, 2001

[11] ACM Proceedings of the Workshop on Software and Performance (WOSP’98), Santa Fe, USA,
1998

[12] ACM Proceedings of the Workshop on Software and Performance (WOSP2000), Ottawa, Canada,
2000

	Generating a Performance Model
	from a Design Specification
	Dorin Petriu, Murray Woodside
	Department of Systems and Computer Engineering
	Carleton University
	1125 Colonel By Drive
	Ottawa, Canada K1S 5B6
	email: {dorin,cmw}@sce.carleton.ca
	1. Introduction
	The Early Performance Aware Development (E-PAD) process uses generative programming principles in...
	Figure 1: Early Performance Aware Development (E-PAD) process.

	The E-PAD process can be further enhanced through the adoption of component-based approach that m...
	Figure 2: E-PAD enhanced with a component-based approach.

	The proposed approach implements Software Performance Engineering (SPE) [8] principles in a gener...

	2. Notations
	2.1. Use Case Maps
	The Use Case Map (UCM) notation is used to describe design specifications. UCMs are a graphical r...
	The basic building block of the UCM notation is the path. As a scenario is executed one can imagi...
	Figure 3 shows the UCM design for a distributed Ticket Reservation System (TRS). The TRS allows u...
	Figure 3: UCM of the Ticket Reservation System.

	The UCM notation enjoys a growing profile in the design community and is further bolstered by an ...

	2.2. Layered Queueing Networks
	Layered Queueing Networks (LQNs), previously called Stochastic Rendez-Vous Networks (SRVN), are u...
	LQNs model software and hardware resources as tasks and devices respectively. Communication consi...
	An LQN entry receiving a synchronous service request is responsible for either replying to it, or...
	Figure 4 shows a graphical representation of the automatically generated LQN for the TRS. The lar...
	Figure 4: Graphical view of the LQN of the Ticket Reservation System generated by UCM2LQN.

	3. Tool Support
	The UCM Navigator (UCMNav) is a UCM editing tool developed at Carleton University by Andrew Miga ...
	The UCM2LQN converter is a generative tool that uses the UCMNav internal data representation to g...
	LQNS is an analytic solver that breaks the LQN layers down into separate queueing network sub-mod...
	ParaSRVN uses the ParaSol simulation environment, which can simulate multithreaded systems that s...
	LQNS and ParaSRVN both use the same input file format and generate similar outputs listing device...

	4. Methodology
	The first step of E-PAD is to create a UCM design specification for the system. This is accomplis...
	The next step is to use UCM2LQN to automatically generate the corresponding LQN model. This is a ...
	The LQN model is solved with LQNS and/or ParaSRVN. The performance results can be brought back in...

	5. Conclusions
	The E-PAD methodology proposed in this paper provides for the automated generation of a performan...
	The resulting layered queueing performance model can be solved or simulated using the LQNS or Par...
	The generative approach used by the UCM2LQN tool to create performance models from design specifi...

	6. References
	[1] R. J. A. Buhr and R.S. Casselman, “Use Case Maps for Object-Oriented Systems”, Prentice Hall,...
	[2] D. Cameron et al., “Draft Specification of the User Requirements Notation”, Canadian Contribu...
	[3] M. Courtois and C. M. Woodside, “Using Regression Splines for Software Performance Analysis”,...
	[4] Greg Franks, “Performance Analysis of Distributed Server Systems”, Report OCIEE-00-01, Ph.D. ...
	[5] A. Miga, “Application of Use Case Maps to System Design With Tool Support”, M.Eng. Thesis, De...
	[6] R. Schmidt and U. Assmann, “Concepts for Developing Component-Based Systems”, 1998 Internatio...
	[7] K. H. Siddiqui, C. M. Woodside, “A description of Time/Performance Budgeting for UCM Designs”...
	[8] C. U. Smith, “Performance Engineering of Software Systems”, Addison-Wesley, 1990
	[9] C. M. Woodside, J. E. Neilson, D. C. Petriu and S. Majumdar, “The Stochastic Rendezvous Netwo...
	[10] C. M. Woodside, C. Hrischuk, B. Selic and S. Bayarov, “Automated Performance Modeling of Sof...
	[11] ACM Proceedings of the Workshop on Software and Performance (WOSP’98), Santa Fe, USA, 1998
	[12] ACM Proceedings of the Workshop on Software and Performance (WOSP2000), Ottawa, Canada, 2000

