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1. Introduction

The Early Performance Aware Development (E-PAD) process uses generative program-
ming principles in order to incorporate performance analysis in the early stages of software devel-
opment.  Starting with a Use Case Map (UCM) [1] design specification that has been augmented
with performance information, we automatically generate a Layered Queueing Network (LQN)
preliminary performance model.  The LQN model is analyzed using automated solvers and the
results can then be incorporated back into the design specification.

The E-PAD process can be further enhanced through the adoption of component-based
approach that makes use of pre-existing components in order to build the system under develop-
ment [6].  The existing components should have known performance parameters which provide a
more accurate starting point for augmenting the UCM design specifications with performance
data.  Furthermore, a component-based approach can also provide designers with a choice of
available components that could be used to address performance concerns possibly arising from
the analysis of the generated LQN model.

Figure  1: Early Performance Aware Development (E-PAD) process.
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The proposed approach implements Software Performance Engineering (SPE) [8] princi-
ples in a generative manner that significantly reduces the high overhead traditionally associated
with creating performance models from design specifications.  An overview of software and per-
formance research work can be found in [11] and [12]. 

2. Notations

2.1. Use Case Maps

The Use Case Map (UCM) notation is used to describe design specifications. UCMs are a
graphical representation of the scenarios executing across a system. UCMs enable the user to
grasp a system’s emerging behaviour without getting lost in execution details [1].

The basic building block of the UCM notation is the path. As a scenario is executed one
can imagine a token traversing the path from the start to the end. UCM is a concurrent notation;
there is no restriction as to the number of tokens that may traverse a given path or the position of
any token on a path relative to any other token. UCM paths can also be overlaid on components,
which represent functional or logical entities that are encountered during the execution of a sce-
nario. Paths are refined to show more scenario detail through the addition of responsibilities.
Responsibilities represent functions that need to be accomplished at given points in the execution
of the scenario. UCMs also incorporate AND and OR forks and joins which show parallel and
alternate scenario variants. As well, loops can be represented with a special loop construct.

Figure 3 shows the UCM design for a distributed Ticket Reservation System (TRS). The
TRS allows users to browse through a catalogue of events and seat availability, and to buy tickets
using a credit card. The path for the main TRS scenario requires that a user first connect to the
TRS before repeating a loop that incorporates two alternative sections describing either browsing
or purchasing tickets.  Once the user is satisfied, she exists the loop and requests to be discon-
nected from the TRS.  

Figure  2: E-PAD enhanced with a component-based approach.
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The UCM notation enjoys a growing profile in the design community and is further bol-
stered by an industry-led effort to make UCMs an ITU-T standard as part of a recognized User
Requirements Notation (URN) [2].

2.2. Layered Queueing Networks

Layered Queueing Networks (LQNs), previously called Stochastic Rendez-Vous Net-
works (SRVN), are used to specify performance models. LQNs allow for of an arbitrary number
of client-server interactions. An LQN can thus model intermediate software servers and be used to
detect software deadlocks and software as well as hardware performance bottlenecks. The layered
aspect of LQNs also makes them very suitable for evaluating the performance of distributed sys-
tems [9].

LQNs model software and hardware resources as tasks and devices respectively. Commu-
nication consists of calls between tasks and are shown as messaging arrows.  Synchronous mes-
sages are blocking calls that require a reply, and the sending task suspends execution until that
reply arrives. Asynchronous messages are non-blocking calls that do not require a reply.  Tasks
receive service requests at designated interface points called entries. An entry may either be
defined atomically or by activities. An activity is a smaller computational blocks with its own
hardware service demands.  An activity can make calls to entries in other tasks.  Activities can be
arranged in sequences, as well as in parallel (AND forks and joins) or alternative (OR forks and
joins) configurations. An activity can also make repeated service calls in order to model repetitive
behaviour. 

An LQN entry receiving a synchronous service request is responsible for either replying to
it, or it may forward it to other entries. An entry that is forwarded to becomes responsible for
eventually sending the reply back to the original caller. In the case of a forwarded call, the original
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Figure  3: UCM of the Ticket Reservation System.
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calling task remains blocked until it finally receives the reply at the very end of the forwarding
chain. 

Figure 4 shows a graphical representation of the automatically generated LQN for the
TRS. The large parallelograms are tasks and the small parallelograms are entries. Activities are
represented by the small rectangles.  The messaging arrows with a filled head represent synchro-
nous service calls while the other arrows represent asynchronous calls. The dashed arrows with a
filled head represent forwarded calls.  

3. Tool Support

The UCM Navigator (UCMNav) is a UCM editing tool developed at Carleton University
by Andrew Miga [5].  The UCMNav allows the user to draw and modify UCMs.  Fields are pro-
vided to add additional comments and descriptions both for individual elements and for the over-
all design.  These fields can be used to add resource demand figures and specify the system’s
devices.  The UCMNav can also be used to integrate multiple UCMs into an overall design.

Figure  4: Graphical view of the LQN of the Ticket 
Reservation System generated by UCM2LQN.
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The UCM2LQN converter is a generative tool that uses the UCMNav internal data repre-
sentation to generate LQN performance models.  It is integrated with the UCMNav and interprets
the UCM paths into sequences of LQN elements.  UCM2LQN assigns default values to perfor-
mance information that is missing in the UCM design specification.  The LQN models that are
generated are saved as LQN text files that can be read by the LQNS and ParaSRVN solvers.

LQNS is an analytic solver that breaks the LQN layers down into separate queueing net-
work sub-models. The individual queueing networks can be solved analytically using mean value
analysis (MVA).  The MVA results for each sub-model are then used to fine-tune the MVA param-
eters for the other sub-models it is connected to and the MVA is performed anew.  This process is
repeated either for a maximum number of iterations or until the results converge on a user speci-
fied convergence value. LQNS cannot solve models that are not hierarchically decomposable [4]. 

ParaSRVN uses the ParaSol simulation environment, which can simulate multithreaded
systems that support transactions and provides built-in statistics for monitoring simulation
objects. ParaSrvn simulates LQNs by creating tokens for each call and following those tokens
through the system. The performance metrics are arrived at by recording the wait times and other
statistics for each token. Since ParaSRVN simulates the execution of the system rather than
attempting to generate analytical solutions, it can deal with any type of model.

LQNS and ParaSRVN both use the same input file format and generate similar outputs
listing device utilizations, response times for activities and calls, and throughput figures.

4. Methodology

The first step of E-PAD is to create a UCM design specification for the system.  This is
accomplished with the UCMNav editor. The design is then augmented with workload parameters.
These parameters can either be known figures from systems of similar type [3], or if working
within a component-based context they can be known from the components themselves [10], or
they can result from using a performance budgeting approach to allocating maximum allowable
response times [7].

The next step is to use UCM2LQN to automatically generate the corresponding LQN
model. This is a generative step that creates non-code artifacts.  It uses automation to bring perfor-
mance modeling with the reach of average designers, a process that traditionally carries high
overhead and requires specialized performance analysis knowledge.

The LQN model is solved with LQNS and/or ParaSRVN.  The performance results can be
brought back into the design and used to:

• exploit the concurrency of the system

• exploit the parallelism of the system

• identify and flag performance-critical spots that will create software bottlenecks if not imple-
mented carefully

• evaluate the scalability of the system

• guide the choice of components in a component-based development
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5. Conclusions

The E-PAD methodology proposed in this paper provides for the automated generation of
a performance model from a design specification.  The UCM2LQN tool makes a performance
interpretation of an early system specification and fills in the missing performance information
where necessary.  This process is enhanced by using a component-based approach where the use
of existing components includes known performance parameters for those components.

The resulting layered queueing performance model can be solved or simulated using the
LQNS or ParaSRVN tools in order to obtain performance results that can feedback into the design
of the system.

The generative approach used by the UCM2LQN tool to create performance models from
design specifications is a step forward compared to traditional non-automated processes.  E-PAD
enables designers to get preliminary performance models without requiring them to become per-
formance analysts.  By removing that obstacle, this approach adds significant value to the SPE
process.
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