
Performance Analysis of Distributed Server Systems

by

Roy Gregory Franks, B.A.Sc, M.Eng

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial ful�llment of

the requirements for the degree of

Doctor of Philosphy

Ottawa-Carleton Institute for Electrical and Computer Engineering

Faculty of Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada, K1S 5B6

December 20, 1999

c
1999, Roy Gregory Franks

ii

The undersigned recommend to

the Faculty of Graduate Studies and Research

acceptance of the thesis

\Performance Analysis of Distributed Server Systems"

submitted by Roy Gregory Franks, B.A.Sc., M.Eng.

in partial ful�llment of the requirements for

the degree of Doctor of Philosophy

Department Chair

Thesis Supervisor

External Examiner

iii

Abstract

Client-server systems are becoming increasingly common in the world today as users

move to networks of distributed, interacting computers. This form of work demands new

performance models as the interactions in client-server systems are more complex than

the types supported by classic queueing network solvers such as Mean Value Analysis. A

Layered Queueing Network is one of these models; it uses hierarchical decomposition and

surrogate delays to solve the model.

This thesis describes a new analytic modeling tool called LQNS (Layered Queueing

Network Solver) which extends previous techniques used to model distributed client-server

systems. The contributions of the thesis are as follows. First, the model now supports

forwarding. Forwarding is a technique where a reply to a client is deferred to a lower

level server in a multi-level system, improving performance by reducing message tra�c.

Forwarding can also be used to convert open models to closed models. Second, systems

that use early replies can be modeled. Early replies are used to reduce the response time

by replying to a client before all of its work at a server is completed. Previous techniques

have been extended to multiservers and to allow multiple clients. Third, activities have

been introduced. Activities represent the smallest unit of modeling detail and can have

arbitrary precedence relationships. Finally, the solver has been extended to handle models

with both homogeneous and heterogeneous threads within a task. Homogeneous threads are

used to model multiservers. Heterogeneous threads are used to model fork-join interactions

such as asynchronous remote procedure calls and in in RAID storage devices. The solver

also incorporates accuracy improvements for models with early replies and for models with

multiple layers.

The solver has been used to analyze numerous systems found in existence today in-

cluding a tele-operator system and a transaction processing system. Finally, a extensive

performance model of the Linux 2.0 Network File System (NFS) is presented.

iv

Acknowledgements

I would like to dedicate this thesis to the memory of my father, Roy Wilfred Franks.

I would like to thank my supervisor, Professor Murray Woodside, for his support and

friendship throughout the years. His guidance been instrumental in success of this work.

I would like to thank my family and friends for their moral support. In particular,

I would like to thank my wife, Sylvie L�epine, for her support and desire to help, my son,

Erik, for his smile each and every morning which always boosted my spirits, and my mother,

Eleanor, for her constant encouragement.

I would also like to thank all the people at Carleton University I have had the pleasure to

meet. Alex Hubbard, Curtis Hrischuk, Dorina Petriu and Shikharesh Majumdar all deserve

mention for their involvement with this work. Don Bailey, Darlene Herbert, Naren Mehta,

Dave Sword and Danny Lemay also deserve mention, either for keeping me on the straight

and narrow, or for keeping everything in the RADS lab running so smoothly.

Financial assistance was provided by Communications and Information Technology

of Ontario (CITO), the National Science and Engineering Research Council of Canada

(NSERC) and Carleton University.

Contents

1 Introduction 1

1.1 Performance Evaluation . 2

1.2 The Client-Server Model . 3

1.2.1 Performance Analysis of Client-Server Systems 4

1.3 Performance of Client Server Systems . 5

1.3.1 Server-Side Performance Improvement Techniques 5

1.3.2 Client-Side Performance Improvement Techniques 5

1.4 Contributions . 7

1.4.1 Object Oriented Solver . 7

1.4.2 Accuracy of Solutions . 8

1.4.3 Modelling Power Enhancements . 8

1.4.4 Case Study . 9

1.5 Organization of Thesis . 9

2 Extended Queueing Networks 10

2.1 Markov Modelling . 10

2.2 Mean Value Analysis . 11

2.2.1 Product-Form Queueing Networks 11

2.2.2 Exact Mean Value Analysis . 12

v

CONTENTS vi

2.2.3 Approximate Mean Value Analysis 13

2.2.4 Assumptions for Product Form Queueing Networks 14

2.2.5 The Method of Surrogates . 15

2.3 Client-Server Models . 16

2.3.1 Stochastic Rendezvous Network Model 18

2.3.2 Task Directed Aggregation . 18

2.3.3 Method of Layers . 20

2.3.4 Client-Server Queueing Network Model 22

2.3.5 Extended Flow-Equivalent Queueing Models 22

2.4 Queueing Networks with Fork-Join Interactions 23

2.4.1 Heidelberger and Trivedi . 23

2.4.2 Thomasian and Bay . 25

2.4.3 Chu, Sit and Leung . 25

2.4.4 Nelson, Towsley and Tantawi . 26

2.4.5 Mak and Lundstrom . 27

2.4.6 Liu and Perros . 29

2.4.7 Rolia's Synchronization Server . 29

2.4.8 Jonkers . 30

2.4.9 Woodside, Jiang, Hubbard . 31

2.4.10 Huang et. al. 32

2.4.11 Lee and Katz . 32

2.4.12 Varki . 33

3 The Layered Queueing Network Solver 34

3.1 The Stochastic Rendezvous Network Model 34

3.1.1 Model Components . 35

3.1.2 Model Inputs and Outputs . 37

CONTENTS vii

3.2 Solver Capabilities . 39

3.2.1 Extensions to the Original Model . 40

3.3 The Layered Queueing Network Solver . 41

3.3.1 Model Transformation . 42

3.3.2 MVA Submodel Generation . 47

3.3.3 MVA Submodel Construction . 54

3.3.4 MVA Submodel Solution . 57

3.3.5 Overall Solution . 59

3.4 Solver Design . 60

3.4.1 Principles of Design . 60

3.4.2 Solver Class Organization . 62

3.4.3 Closed Model Mean Value Analysis 63

3.4.4 Open Model Mean Value Analysis 69

3.4.5 Priorities . 71

3.4.6 Server Objects . 72

3.4.7 Conclusions . 76

4 Tra�c Dependencies 77

4.1 Interlock Phenomena . 78

4.1.1 Factors That A�ect Performance Estimation 79

4.2 Calculation of Contention with Interlocked Flows 79

4.2.1 Path Finder Example . 83

4.3 Examples . 85

4.3.1 Example 1: Common Server System (Send Interlock) 86

4.3.2 Example 2: Send Interlock . 88

4.3.3 Example 3: Split Interlock . 89

4.3.4 Factors that A�ect Performance Estimation 90

CONTENTS viii

4.4 Conclusions . 91

5 Second Phases and Phased Fixed-Rate Servers 93

5.1 Performance Enhancement through Early Server Replies 95

5.1.1 Example 1: Single Server, Single Phase Client 95

5.1.2 Example 2: Multiple Servers and Two Phase Clients 96

5.1.3 Example 3: Deeply Layered System 98

5.1.4 Conclusions . 99

5.2 Analytic Approximations for Two Phase Queues 101

5.2.1 Elementary Analysis of Overtaking 102

5.2.2 Server-Based Approximation for PrfOTg 103

5.2.3 Accuracy of the Server-Based Approach 104

5.3 Client-Server Based Approximation . 104

5.3.1 Improved Waiting Time Calculation 109

5.3.2 Entries . 111

5.4 Improved Accuracy of the LQNS Approximation 112

5.4.1 Example 1: Single Server, Single Phase Client 112

5.4.2 Example 2: Multiple Servers and Two Phase Clients 112

5.4.3 Example 3: Deeply Layered System 115

5.4.4 Example 4: Woodside et. al. Test Case 115

5.5 Solver Construction . 118

5.5.1 Server-Based Overtaking . 119

5.5.2 Client-Server-Based Overtaking . 121

5.6 Conclusions . 122

6 Multiservers 123

6.1 Performance Implications of Multiple Layers 126

6.2 Multiclass Multiservers . 127

CONTENTS ix

6.2.1 MVA Waiting Time Expressions . 129

6.2.2 Accuracy and Performance Comparisons 131

6.3 Multiphase Multiclass Multiservers . 133

6.3.1 MVA Waiting Time Expressions . 133

6.3.2 Accuracy and Performance Comparisons for Multiphase Servers . . . 134

6.4 Industrial Example 1: Telephone Inquiry System 135

6.5 Industrial Example 2: Transaction Processing System 139

6.6 Solver Design . 143

6.6.1 Single Phase Multiservers . 143

6.6.2 Multi Phase Multiservers . 148

6.7 Conclusions . 149

7 General Precedence Extensions 151

7.1 Activity Patterns . 152

7.1.1 Sequential Execution . 152

7.1.2 Remote Procedure Calls . 153

7.1.3 Patterns that Fork . 157

7.1.4 Patterns that Join . 159

7.1.5 Patterns that Fork and Join . 160

7.2 Task Semantics . 166

7.2.1 Activity Execution . 166

7.2.2 AND Fork-Join . 167

7.3 Grammar . 168

7.3.1 Abbreviated SRVN Input Grammar 168

7.3.2 Activity Extensions . 169

7.4 Examples . 171

7.4.1 Asynchronous Send . 172

CONTENTS x

7.4.2 Remote Procedure Call with Second Phase 173

7.4.3 Synchronization Server . 173

7.4.4 Intra-task Fork-Join . 173

7.4.5 Asynchronous Remote Procedure Call 173

7.4.6 Inter-task Fork-Join . 178

7.4.7 Chu, Sit and Leung Example . 179

7.5 Activity Aggregation . 183

7.5.1 Sequential Activities . 183

7.5.2 OR Fork-Join . 183

7.5.3 Repetition . 185

7.5.4 AND Fork-Join . 186

7.5.5 \Non-Regular" Graphs . 186

7.6 Conclusions . 187

8 Queueing Networks with Fork-Join Interactions 188

8.1 Performance Implications of Parallel Operations 188

8.1.1 Previous Work . 191

8.1.2 The Example System as a Layered Model 192

8.2 Solutions for Parallelism . 195

8.2.1 Contention Generated by Parallel Activities 196

8.2.2 Approximation for Join delays . 199

8.2.3 Complexity . 200

8.3 Results . 201

8.3.1 Application Server Example . 201

8.3.2 Extended Client-Server Example . 202

8.3.3 Comparison to Decomposition . 205

8.4 Conclusions . 207

CONTENTS xi

9 Case Study of the Linux 2.0 NFS Implementation 210

9.1 The Network File System . 211

9.1.1 Linux NFS operation . 211

9.1.2 Related Work . 214

9.2 Layered Queueing Model of NFS . 214

9.3 Results . 223

9.3.1 Model Validation . 223

9.3.2 Performance Predictions . 230

9.4 Conclusions . 237

10 Conclusions 239

10.1 Accuracy Improvements . 239

10.1.1 Interlocking Calculation . 240

10.1.2 Overtaking Calculation . 240

10.2 Modelling Power Enhancements . 240

10.2.1 Forwarding . 241

10.2.2 Two-Phase Multiservers . 241

10.2.3 Activities . 241

10.2.4 Intra-task Fork-Join . 241

10.2.5 Summary . 242

10.3 Case Study . 242

10.4 Future Research . 243

A Input File Grammar 264

A.1 General Information . 264

A.2 Processor Information . 265

A.3 Task Information . 266

A.4 Entry Information . 266

CONTENTS xii

A.5 Activity Information . 267

B Marginal Probabilities 270

List of Figures

1 SRVN Nomenclature . xxi

2 Activity Nomenclature . xxiii

1.1 Techniques to reduce response times in client-server systems. 6

1.2 Using client parallelism to improve RPC performance. 7

2.1 Example multi-tier client-server system. 17

2.2 Stochastic Rendezvous Network solution partitioning. 19

2.3 Submodels used by the Method of Layers. 21

2.4 Three-point approximation for a distribution with tx = 2:0 and �2x = 0:4. . . 31

3.1 Task cycles and phases. 36

3.2 Stochastic Rendezvous Network example. 38

3.3 Solution algorithm. 42

3.4 Processor Transformation applied to Figure 3.2. 43

3.5 Forwarding. 44

3.6 Asynchronous to Synchronous messaging model conversion with forwarding. 45

3.7 Open to closed model conversion with forwarding. 46

3.8 Model transformation for forwarding. 46

3.9 The tasks of Figure 3.2 sorted by nesting level. 47

3.10 Submodels for Figure 3.2 using strict layer partitioning. 49

xiii

LIST OF FIGURES xiv

3.11 Submodels for Figure 3.2 using loose layer partitioning. 50

3.12 Submodels for Figure 3.2 using batch partitioning. 51

3.13 Submodels for Figure 3.2 using squashed partitioning. 51

3.14 MVA submodels for Figure 3.2. 55

3.15 Parameter
ow from one MVA submodel to another. 58

3.16 Class hierarchy of Layered Queueing Network solver. 61

3.17 Class hierarchy for MVA objects. 64

3.18 One-Step Mean Value Analysis . 66

3.19 Exact Mean Value Analysis . 67

3.20 Schweitzer Approximate MVA . 68

3.21 Linearizer Approximate MVA . 70

3.22 Mixed Model MVA . 71

3.23 Class hierarchy for Server objects. 73

4.1 Interlocking. 78

4.2 Common parent �nder for interlocking. 81

4.3 Complex Interlocking Case . 84

4.4 Parameters for Interlocking Example 1. 86

4.5 Results for Example 1. 88

4.6 Parameters for split interlock model. 90

4.7 Relative Error versus for the split interlock case shown in Figure 4.1(b). . . 91

5.1 Overtaking and non-overtaking arrivals . 94

5.2 Example 1: Simple two-level client-server system 96

5.3 Performance results for Example 1 . 97

5.4 Example 2: Complex Client-Server system. 98

5.5 Example 2: Per-call response time and utilization 99

5.6 Example 3: Deeply layered (multiple tier) client server system. 100

LIST OF FIGURES xv

5.7 Example 3: Per-call response time. 101

5.8 Improvement factor for Example 1. 102

5.9 Percent Relative Error in throughput for Example 2. 105

5.10 Jump chain for �nding overtaking probabilities. 106

5.11 Relative error in client throughput for Example 1. 113

5.12 Relative error in client throughput for Example 2. 114

5.13 Relative error in client throughput for Example 3. 115

5.14 Class hierarchy for phased �xed-rate servers. 118

6.1 Layered Queueing Network Model used to examine the e�ect of threading . 125

6.2 Layered Queueing Network of a Web Server 126

6.3 Impact of phase two service on response time for the Web Server. 128

6.4 Test Network . 132

6.5 Telephone Operators model. 137

6.6 Waiting time for the Operators-Only model. 138

6.7 Waiting time contours for the Voice Response Unit model. 139

6.8 Transaction Processing System Model . 140

6.9 Transaction Processing System Model Response Times. 142

6.10 Class hierarchy for multiservers. 144

7.1 A sequence of activities. 153

7.2 Remote procedure call de�ned using activities. 154

7.3 Nested remote procedure call. 155

7.4 Forwarded remote procedure call. 156

7.5 Asynchronous send. 157

7.6 Remote procedure call with second phase. 158

7.7 Simple fork. 159

7.8 Barrier synchronization. 161

LIST OF FIGURES xvi

7.9 Guarded accept. 162

7.10 Fork-join within a task. 163

7.11 Asynchronous remote procedure calls using synchronous and asynchronous

messages. 164

7.12 Inter-task fork-join. 165

7.13 Abbreviated SRVN input �le grammar. 169

7.14 Activity BNF. 170

7.15 Asynchronous send. 172

7.16 Input speci�cation for a remote procedure call. 174

7.17 Input speci�cation for barrier synchronization. 175

7.18 Input speci�cation for intra-task fork-join. 175

7.19 Asynchronous remote procedure call. 177

7.20 Input speci�cation for inter-task fork-join. 178

7.21 Chu, Sit and Leung model. 179

7.22 Layered queueing network for Chu, Sit and Leung model. 180

7.23 Input speci�cation for Chu, Sit and Leung model. 184

7.24 Sequential activity aggregation. 185

7.25 OR fork-join activity aggregation. 185

7.26 Repeated activity aggregation. 185

7.27 AND fork-join activity graph aggregation. 186

7.28 Graph which is di�cult to aggregate. 187

8.1 System with Fork-Join interaction. 189

8.2 Layered Queueing Network for Figure 8.1. 193

8.3 Relationship between chains and the activity graph for Figure 8.2. 197

8.4 Layered Queueing Network for an extended business client-server system with

parallelism in one of the databases. 203

LIST OF FIGURES xvii

8.5 Results for the extended example, with varying threads in Application Server.204

9.1 Use Case Map of the primary NFS operations. 212

9.2 Layered Queueing Network of principle NFS operations. 216

9.3 Disk Service Times Scatter Plots. 222

9.4 Vary the number of disk classes. 227

9.5 E�ect on ethernet service time on Throughput. 228

9.6 E�ect of Client Cache miss ratio on Throughput. 229

9.7 E�ect of Server Cache miss ratio on Throughput. 229

9.8 Varying the number of clients. 230

9.9 Ethernet collisions. 230

9.10 Synchronous Writes. 231

9.11 8K Read. 234

9.12 Kernel-based rpc.nfsd. 236

9.13 Multiple rpc.nfsd threads. 237

List of Tables

1 Nomenclature . xxii

1.1 Criteria for selecting an evaluation technique 4

2.1 Storage and operations cost of exact MVA. 13

2.2 Storage and operation cost comparison . 14

3.1 Layered Queueing Network graph notation. 35

3.2 Solver capabilities. 40

3.3 Run-time cost comparison of layering strategies. 53

4.1 Path table for complex example of path �nding. 85

4.2 Relative Error in client throughput for Figure 4.4. 87

4.3 Results for Example 2. 89

4.4 Results for Example 3. 89

5.1 Throughput results from the Woodside test cases. 116

5.2 Throughput results from the Woodside test cases. 117

5.3 Summary of Tables 5.1 and 5.2. 117

6.1 Accuracy of the multiclass multiserver approximations. 132

6.2 Performance Results for two phase multiclass multiservers. 135

xviii

LIST OF TABLES xix

7.1 Activity graph notation. 152

7.2 Parameters for Chu, Sit and Leung model. 181

7.3 Parameters for the Chu, Sit and Leung layered queueing network model. . . 182

8.1 Results for the Application Server with M threads 202

8.2 Throughput and mean relative error results for the extended example, with

10 threads in Application Server. 205

8.3 Throughput and mean relative error results for the extended example, with

20 threads in Application Server. 206

8.4 Throughput and mean relative error results for the extended example, with

30 threads in Application Server. 206

8.5 Magnitudes of percentage throughput errors in the 228 test cases studied by

Heidelberger and Trivedi . 208

8.6 Bias and spread of the percentage errors in throughput from the same cases

as Table 8.5. 208

9.1 NFS Operation Mix. 217

9.2 Client Service Times. 218

9.3 Server Service Times. 219

9.4 Disk Request Rates. 221

9.5 LQN Model Parameters. 222

9.6 Base model results. 224

9.7 Base model component utilizations. 225

9.8 Results for near-deterministic service times. 225

9.9 Measured Disk Parameters for one and four class disk models. 226

9.10 Results for c classes of disk service. 227

9.11 Comparison of Synchronous Writes to Base model. 232

9.12 Comparison of Synchronous Writes with Gathering to Base model. 233

LIST OF TABLES xx

9.13 Comparison of 8K Read Requests to Base model. 235

9.14 Comparison of Kernel-Based nfsd to Base model. 236

9.15 Comparison of Multiserver rpc.nfsd to Base model. 238

Glossary

Entry

p1

Asynchronous Send

Forward

Processor

Rendezvous (RPC)

Task (with entry)

Task Pool
(multiserver)

e1

e1

t1

t1

e1

Figure 1: SRVN Nomenclature

xxi

Glossary xxii

m station index.
M the number of stations.
k chain index.
K the total number of chains in the queueing network model.
ek the vector [01; 02; :::; 1k; :::0K].
Jm the number of servers at station m.
e entry index.
Em the number of entries at station m.
smk the mean service demand per visit of a chain-k customer at station m.
smk1 the mean phase-one service demand per visit of a chain-k customer at station

m.
smk2 the mean phase-two service demand per visit of a chain-k customer at station

m.
�mk the mean service rate per visit of a chain-k customer at station m. �mk = S�1mk

N the population vector of the network, with each element representing a chain.
�m(i) the service rate multiplier for i customers of all chains at station m.
�m(n) the service rate multiplier for a population n at station m.
Pm(i;N) the probability that there are i customers at queue m.
Pm(n;N) the probability that the vector of the number of customers is n at queue m.
PBm(N) the probability that all Mm servers are busy at queue m. PBm(N) = 1 �PMm

i=1 Pm(i;N)
Lmk(N) the mean number of chain-k customers at queue m including those in service.
Qmk(N) the mean number of chain-k customers at queue m, but not in service.

Qmk(N) = Lmk(N)� Umk(N)
Wmk(N) the mean waiting time for a single visit of a chain-k customer at queue m.
Umk(N) the mean utilization of chain-k customers at queue m.
Umk1(N) the mean phase-one utilization of chain-k customers at queue m.
Umk2(N) the mean phase-two utilization of chain-k customers at queue m.

U
(1)
mk(N) the mean utilization of one chain-k customer at queue m.

vmk the mean number of visits of a chain-k customer at station m.
�k the chain-k throughput.
Cl The set of clients in submodel l.
Em The set of entries for task or processor m.
L The set of MVA queueing submodels.
P the set of processors.
Sl The set of servers in submodel l.
T the set of tasks.

Table 1: Nomenclature

Glossary xxiii

And-Join

c

Activity Flow

&

Or-Join

And-Fork

c

&

+
Or-Fork

Activity

c

c

+

a

Figure 2: Activity Nomenclature

Chapter 1

Introduction

To gain a competitive edge, suppliers of computer systems either want to maximize per-

formance for a given price-point, or minimize cost for a given level of functionality. Users

of computer systems have the same goals. To achieve this end, performance analysis is

necessary at all stages in the life cycle of a computer system. During the early design

of a system performance analysis is used to aid in the comparison of design alternatives.

When a system is being purchased or sold, performance analysis is used to determine its

size. Finally, end-users can use performance analysis to determine whether the system is

performing properly, and what e�ect changes to the con�guration will have.

Business and industry is moving to the \client-server" computing paradigm to lower

both the cost of the hardware and software needed today [130]. With this computing

model, clients with varying degrees of sophistication are connected to one or more servers.

The servers run applications on behalf of the clients, or store some resource such as data,

or perform both functions. Servers may also call other servers, which forms the basis of the

so-called three-tiered architecture.

The sections that follow describe brie
y common techniques used for performance eval-

uation, the emerging client-server paradigm for distributed computing, and how designers

1

CHAPTER 1. INTRODUCTION 2

can improve the performance of client-server systems. This chapter concludes with contri-

butions to the model used to solve performance models of client-server networks followed

by an outline of the proposal.

1.1 Performance Evaluation

Three techniques are used typically for performance evaluation: measurement, simulation,

and analytic modelling. Measurement involves the construction and test of a live system

while simulation and analytic modelling rely on a model of the system being evaluated. The

tradeo�s involved between the methods are discussed below.

The measurement technique is only possible if a system close to the desired con�guration

already exists. Since it requires a real system, it is often the most costly of the techniques

described here. However, measurement of a live system can often give the most accurate

results, provided that environmental parameters such as workload are representative. This

factor alone often makes performance results derived from a measurement study the most

believable when compared against results derived using the other two techniques.

Analytic modelling uses relatively simple mathematical expressions to derive the per-

formance results for a system under study. These expressions can usually be solved quite

quickly which aids in the exploration of the parameter space of a system. Unfortunately,

many simplifying assumptions are often necessary in order to use analytical models. These

assumptions may result in a model which may not represent accurately the system being

studied, although experience modelling many systems has found that the prediction error

for response time typically ranges between 10 and 30%. This error range is acceptable for

a great number of applications [75].

A simulation relies on a model of a system being studied; as such, it can take place at

any point in the life-cycle of the product. Once the model has been formulated, a program

is generated that tracks the evolution of time in discrete steps that model events in the

CHAPTER 1. INTRODUCTION 3

actual system. The simulation may be generated automatically by a software tool such

as RESQ [123], be written in a language for a special purpose simulation system such as

GPSS [45], or it may be written in a generic programming language.

One major advantage of simulation over analytic modelling is that it can be used to

create very detailed, thus potentially accurate models. Unfortunately, very detailed models

are often time consuming and di�cult to design, code, debug, parameterize and execute.

The accuracy also depends on the run-time of the simulation because of its statistical nature.

Finally, as the simulation becomes more costly to execute, the di�culty of evaluation of

di�erent system increases.

Deciding which technique to use is often based on the following criteria (ranked from

most to least important) [59]:

Stage: point in life cycle when study is to take place.

Time required: when the results are needed.

Tools: analytic modelling tools, simulators, measurement packages.

Accuracy: degree to which results match reality.

Trade-o� evaluation: ability to study di�erent system con�gurations.

Cost: time and money needed to conduct the study.

Saleability: the degree to which others will believe the results.

Table 1.1 compares the techniques based on these criteria.

1.2 The Client-Server Model

The client-server computing paradigm is a system where processing of requests from users

is distributed among several tasks. Tasks interact with one and another using the remote

CHAPTER 1. INTRODUCTION 4

Criterion Analytical Modelling Simulation Measurement

1. Stage Any Any Post prototype
2. Time Required Small Medium Varies
3. Tools Analysts Computer languages Instrumentation
4. Accuracy Low Moderate Varies
5. Trade-o� evaluation Easy Moderate Di�cult
6. Cost Small Medium High
7. Saleability Low Medium High

Table 1.1: Criteria for selecting an evaluation technique (from [59]).

procedure call (RPC) [143, 5]. Applications make requests for services using what appear

to be conventional procedure calls. However, rather than branching to another section of

the same program, a message is sent to another task which may or may not reside on the

same computer. When the remote task replies, the remote procedure call returns. The

client-server model also applies to a wide variety of other systems. Distributed systems

built using the Common Object Request Broker (CORBA) [93], systems built using Ada [2]

(the rendezvous), and those that run on the V [14] and Amoeba [88] operating systems,

among others, also use the same send-receive-reply paradigm that makes up the remote

procedure call.

1.2.1 Performance Analysis of Client-Server Systems

The blocking nature of the remote procedure call causes problems for mean value-based

performance analysis. The remote procedure call is a type of simultaneous resource posses-

sion: the requesting task and the serving task are both held by the same customer while the

remote procedure call is in progress. Furthermore, should the server continue to execute

after the remote procedure call replies, a second customer is e�ectively created.

Fortunately, techniques have been developed which overcome the restrictions imposed

by mean value analysis while preserving the solution speed. These approximations generally

CHAPTER 1. INTRODUCTION 5

rely on the techniques of surrogate delays and hierarchical decomposition to solve a multi-

tier client-server model as a set of smaller product-form queuing network models. Two of

the more successful approaches are Stochastic Rendezvous Networks [152] and the Method

of Layers [110].

1.3 Performance of Client Server Systems

In a multi-tier client-server system, overall system performance may be limited by the

performance of intermediate servers. In fact, the system may be saturated even though

none of the devices are fully utilized. Performance can be improved by minimizing the

blocking time at the client, at the server, or at both, shown in Figure 1.1. Performance

can also be improved by using \multi-threaded" clients, shown in Figure 1.2. The various

techniques are described below.

1.3.1 Server-Side Performance Improvement Techniques

System performance can be improved at the server in two ways. First, the server may

reply to the client before the request is actually completed, thus allowing the client to

resume operation (Figure 1.1(b)). For example, a �le server that replies to a client's write

request once the data is received but before the data is written to the disk is one potential

application of this technique. Second, the server process may be duplicated or \cloned".

Queues that formed at the server will be pushed down to lower level servers (Figure 1.1(e)).

1.3.2 Client-Side Performance Improvement Techniques

Performance in the system may also be improved by making changes at the client. Fig-

ure 1.1(c) shows the e�ect of an asynchronous remote procedure call. Again using a �le

server as an example, the client issues a read request well ahead of the point in time where

it needs the data. The client continues execution, blocking only when the data is actu-

CHAPTER 1. INTRODUCTION 6

server

client2

send

receive reply

client1

queue

(a) A simple remote procedure call.

queue

server

client2

send

receive

client1

reply

(b) Early Reply: reply to client before
completing request.

reply
server

client2
client1

send

receive

queue

(c) Asynchronous RPC: send to server
before needing reply.

client2

send
client1

server1
server2

replyreceive

(d) Multiple Servers: Replicate server so
clients don't queue.

client2
client1

server1
server2

send

receive reply

(e) All Improvements together.

Figure 1.1: Techniques to reduce response times in client-server systems. Two clients run-
ning on separate processors make requests to one or more servers running on one processor.
The time scale at the bottom of each �gure shows how each technique can potentially
improve performance.

CHAPTER 1. INTRODUCTION 7

ally needed. Performance may also be improved by exploiting parallelism in the client.

Figure 1.2 shows how the performance at a client that makes requests to separate servers

can be improved using parallelism. In Figure 1.2(a), the client waits for each request to

complete. Figure 1.2(b) shows the performance improvement by using separate threads of

execution for each request.

send

queue

receive reply

send

receive
queue

reply
server2

server1

client

(a) Serial client (standard RPC)

send send

server2

server1

client

reply

reply

(b) Parallelism within client (asyn-
chronous RPC)

Figure 1.2: Using client parallelism to improve RPC performance. One client makes a
request to two servers. Tra�c from other clients competing at the servers is represented by
the light shading. The servers run on separate processors.

1.4 Contributions

The contributions of this work are described in the sections below.

1.4.1 Object Oriented Solver

A new object-oriented solver has been designed and implemented that incorporates many

of the features of the client-server queueing network solvers that preceded it (see Chapter

3). The solver also incorporates a new submodel construction strategy which generalizes

submodel construction.

CHAPTER 1. INTRODUCTION 8

1.4.2 Accuracy of Solutions

The accuracy of solutions is improved in two ways.

1. The interlocking calculation that compensates for correlated tra�c
ow from common

sources and is now more generalized (see Chapter 4).

2. The overtaking calculation, used for models that incorporate early replies (see Fig-

ure 1.1(b)), now takes into account the e�ects of both multi-phase clients and servers

(see Chapter 5).

1.4.3 Modelling Power Enhancements

The modelling power of the solver is broadened in several ways.

1. The model now includes forwarding. Forwarding can be used to model systems that

employ asynchronous messaging with synchronous messaging semantics (see x3.3.1).

2. New analytic approximations are incorportated into multiservers to allow for two

phases of service (see x6.3).

3. The model now incorporates activities. Activities are components that represent the

lowest level of detail in the performance model. They extend the performance model

because they can be connected together not only sequentially, but with fork and

join interactions as well. This change broadens the modelling power substantially

because the existing client-server queueing network solvers can only solve models with

sequences of activities.

4. The analytic solver can now solve models with intra-task fork-join interactions, per-

mitting the analysis of client-server systems with all of the interaction patterns shown

earlier in Figures 1.1 and 1.2.

CHAPTER 1. INTRODUCTION 9

1.4.4 Case Study

The solver has been used to analyze the performance of the Linux V2.0 Network File System

implementation.

1.5 Organization of Thesis

The thesis is organized as follows. Chapter 1 is a brief introduction of the client-server com-

puting paradigm and a broad overview of the subject of performance modelling. Chapter 2

describes performance modelling in more detail, with emphasis on analytic client-server

performance models. It also describes previous work in queueing networks with fork-join

behaviour. Chapter 3 introduces the Stochastic Rendezvous Network model, the basis for

the work in the thesis. Chapter 3 also describes improvements to many of the algorithms in

the performance model. Chapter 4 describes interlocking: why it arises in layered queueing

models, and how the solver compensates for the e�ect. Chapter 5 describes the new over-

taking approximation. Chapter 6 describes and evaluates the multiserver algorithms used

in the solver. It also describes the changes to the various multiserver algorithms needed to

incorporate second-phase e�ects. Chapter 7 describes important extensions to the original

input model using activities. Activities can be connected together in a more general fashion,

broadening the modeling power of the solver. Chapter 8 describes the fork-join approxi-

mation used by LQNS to solve performance models incorporating heterogeneous threads.

In Chapter 9, the solver is then used to evaluate the performance of the Network File Sys-

tem (NFS) implementation in the Linux version 2. kernel. Finally, Chapter 10 contains

conclusions.

Chapter 2

Extended Queueing Networks

Analytic performance modelling takes many forms, from simple bounds analysis to the

evaluation of complex Markov Chains. Analytical techniques are a popular method for doing

performance studies, despite potential accuracy problems, because they can be performed

both quickly and cheaply. This chapter supplies a brief overview of analytic modelling with

origins to the solution of a Markov chain. In particular, the technique known as \mean

value analysis", which is used to solve product-form queueing networks, is described. Next,

the limitations of mean value analysis, and ways to overcome them, are discussed with

emphasis on client-server queueing systems. Finally, techniques are described for solving

queueing networks with fork-join behaviour.

The layered queueing or stochastic rendezvous network model described in this thesis

can be viewed as a standardized formulation for extended queueing networks (EQN's),

particularly suited for a wide variety of distributed server systems.

2.1 Markov Modelling

Markov modelling involves the construction and solution of a Markov chain representing the

system being studied. Tools now exist to automate this process, for example, MARCA [133,

10

CHAPTER 2. EXTENDED QUEUEING NETWORKS 11

69], GreatSPN [17, 18], SPNP [22] and UltraSAN [122]. However, Markovmodels have three

major problems which limits their use. First, they su�er from state space explosion for all

but the smallest of models. Research is continuing to ameliorate this problem, either by

exploiting symmetry in the Markov chain, or by decomposing the problem into smaller units

and iterating between solutions. Second, chains with huge di�erences in their transition

rates cause numerical instability during solution (this problem is referred to as \sti�ness").

Finally, systems which have purely deterministic services times or service time distributions

without a rational Laplace transform can be di�cult to model accurately. Of the three, the

state explosion problem is the one that most often limits the use of this technique.

2.2 Mean Value Analysis

Queueing networks with certain restrictions were found to have a \product form" solution

which led to computationally e�cient techniques such as Convolution and Mean Value

Analysis. Mean Value Analysis has been found to be a particularly popular technique

for solving product-form queueing networks because it is reasonably e�cient, often robust

when assumptions are violated, and intuitive. This section describes brie
y product form

queueing networks, the mean value analysis technique, the assumptions for its use which

can be limiting for certain models, and ways to accommodate these assumption when they

are violated. Sections that follow then describe the application of mean value analysis to

client-server queueing systems.

2.2.1 Product-Form Queueing Networks

Theory in the solution of networks of queues made rapid progress after the publication of

the work by Jackson [57]. He found that solution to the underlying Markov chain for a

restricted queueing network had a \product-form" solution. This work was extended by

others with Baskett et. al. summarizing the results for a general class of product-form

CHAPTER 2. EXTENDED QUEUEING NETWORKS 12

networks [4].

The service centers in product form networks exhibit a property called \local bal-

ance" [91] which permits computationally e�cient solution algorithms for moderately sized

networks. The �rst computationally e�cient algorithm for solving closed networks was

published by J. P. Buzen [10]. However, this method, called convolution [105], often has

numerical stability problems.

2.2.2 Exact Mean Value Analysis

Reiser developed a new approach to solving product form queues, based on the arrival

theorem, which gives (2.1) and similar results. This approach is called Mean Value Analysis

(MVA) [106, 104]. The basis of the algorithm is solving for the waiting time for chain k at

each service center m using

Wmk(N) = Dmk

2
41 + KX

j=1

Lmj(N� ek)

3
5 (2.1)

Dmk represents the demand at station m for chain k, N is a vector of customers and

Lmj(N � ek) is the average queue length at station m with one less customer from chain

k present in the network. Once the waiting time is found, the throughputs for all chains

can be found, then through Little's law [79], queue lengths. The exact MVA algorithm for

multiple routing chains K is given in Figures 3.18 and 3.19 on pages 66 and 67 respectively.

Equation (2.1) requires the queue length at the service center when there is one less

customer of chain k present. Exact MVA therefore solves Equation (2.1) for all customer

populations, N, starting with zero customers. Because it is necessary to sequence through

all customer populations, exact MVA becomes prohibitively expensive for networks with

moderate numbers of stations, routing chains and customers. Table 2.1 summarizes the

costs in terms of space and time complexity.

Other variations of mean value analysis exist which help in special cases, such as Mean

CHAPTER 2. EXTENDED QUEUEING NETWORKS 13

time: MK
KY
k=1

(Nk + 1) operations

space: M
KY
k=1

(Nk + 1) storage locations

Table 2.1: Storage and operations cost of exact MVA for M service centers, K routing
chains and Nk customers in chain k.

Value Analysis by Chain [25], and Distribution Analysis by Chain [27]. However, these al-

gorithms also su�er when there are large numbers of stations and customers in the queueing

network.

2.2.3 Approximate Mean Value Analysis

Because exact MVA becomes prohibitively expensive for moderate numbers of stations,

customers and chains, approximation techniques were devised to estimate the queue lengths

at the reduced customer levels, thus eliminating the need to sequence through all customer

populations.

Bard [3] and Schweitzer [125] developed the �rst approximation technique by replacing

Lm(N� ek) in Equation (2.1) with

Lmk(N� ej) =

8><
>:

Lmk(N) j 6= k

(Nj�1)
Nj

Lmj(N) j = k
(2.2)

and iterating until convergence.

Later, Chandy and Neuse [12] developed the Linearizer algorithm. Lmk(N � ej) is

estimated using the following:

Fmk(N) = Lmk(N)=Nk (2.3)

Dmkj(N) = Fmk(N� ej)� Fmk(N) (2.4)

CHAPTER 2. EXTENDED QUEUEING NETWORKS 14

Lmk(N� ej) = (N� ej)k(Fmk(N) +Dmkj(N)) (2.5)

(Equation (2.5) is equivalent to (2.2) when Dmkj(N) = 0.) Estimates for Dmkj(N), the

di�erence in queue length when a customer is added, are found by using the Schweitzer

approximation with one and two customers removed from the network.

The linearizer algorithm is generally more accurate than Schweitzer's approach because

the estimate for Dmkj(N) is better than zero. However, linearizer is also more expensive

because the Schweitzer approximation must be run at the full customer population and with

one customer removed from each routing chain. The cost of the algorithms are summarized

in Table 2.2.

Exact MVA Schweitzer Linearizer

Operations MK
KY
k=1

(Nk + 1) ~IM ~IM(3 + 2K)

Storage M
KY
k=1

(Nk + 1) MK
MK2

2

Table 2.2: Storage and Operation cost comparison for the exact and approximate MVA
techniques forM service centers,K routing chains andNk customers in chain k. ~I represents
the number of iterations needed for convergence with the approximate solution techniques.

2.2.4 Assumptions for Product Form Queueing Networks

Product-form queuing networks have been used successfully to solve performance models

for a large variety of systems. However, certain assumptions are made about the model in

order to use the more computationally e�cient solution techniques. Service centers will be

assumed to be of speci�c types:

� Single server, �rst-come, �rst-served with exponential service times. The mean service

times for all chains must be identical.

CHAPTER 2. EXTENDED QUEUEING NETWORKS 15

� Single server, last-come, �rst-served, random or processor sharing service. Service

time distributions can be general and di�erent routing chains can have di�erent service

times.

� Load dependent service, �rst come, �rst served only. The service rate is dependent

on the number of customers at the station only.

Second, the population of a closed product form network is �xed, although open and mixed

networks permit the customer population to vary. Finally, customer routing cannot be

dependent on the state of the network. These assumptions may seem overly restrictive for a

wide variety of real systems. However, in many models where they are violated the models

still produce approximate but su�ciently accurate results for practical use.

Two areas where product-form queueing networks cannot be used directly are systems

with simultaneous resource possession, and systems with fork-join behaviour. Systems with

simultaneous resource possession cannot be modelled directly because the service rate at a

center is dependent on other centers in the network. Systems with fork-join behaviour vio-

late the �xed customer and routing homogeneity assumptions in a closed queueing network

because forking generates customers while joining eliminates them. This work uses the the

method of surrogates to adapt MVA for systems with these behaviours.

2.2.5 The Method of Surrogates

Simultaneous resource possession arises in a number of places in computer systems, for

example:

� limited multiprogramming due to memory capacity or channel contention,

� lock contention in data base systems, and

� remote procedure calls.

CHAPTER 2. EXTENDED QUEUEING NETWORKS 16

(The last example is of particular importance because it is the inter-process communica-

tion method typically used in client server systems.) If the e�ects of simultaneous resource

possession are ignored, the throughput estimates from a performance model will be overes-

timated because the time needed to acquire resources is not accounted for.

To solve this problem in a Mean Value Analysis framework, Jacobson and Lazowska [58]

developed the \method of surrogates". It accounts for the time needed to acquire simul-

taneously held resources by splitting the original model into two submodels and iterating

between the two. Each of the submodels includes an explicit representation of one of the

simultaneously held resources and a delay center representing other. The waiting time so-

lution for the explicitly modelled resource in the �rst model is used for the service time for

the delay center in the other and vice versa. The iteration continues until the di�erence in

waiting time between solutions becomes negligible.

The method of surrogates was generalized by de Souza e Silva and Muntz [29] to handle

resources by customer chain and to handle nesting of resources. Jenq [60] demonstrates the

technique for a substantial distributed transaction testbed system with the e�ects of the

concurrency control protocol, the transaction recovery protocol, and the commit protocol

all modelled and validated against measurements.

2.3 Client-Server Models

Multi-tier client-server computer systems cannot be modelled directly using mean value

analysis because the blocking from nested remote procedure calls is a form of simultaneous

resource possession. This problem is overcome in the Stochastic Rendezvous Network Model

(SRVN) [147, 149, 152], Stochastic Rendezvous Networks by Task-Directed Aggregation

(SRVN-TDA) [100, 97, 101, 98], the Method of Layers (MOL) [112, 113, 110], and by Ramesh

and Perros [103] using hierarchical decomposition and the method of surrogates. These

approaches break a multi-tier client-server system into a collection of two-layer systems

CHAPTER 2. EXTENDED QUEUEING NETWORKS 17

solve these systems individually, then use the results as the input to the other two-layer

systems. While the overall approach between the methods is similar, they di�er substantially

in their implementation. The sections that follow describe each method in greater detail

using the system in Figure 2.1 as an example.

Think

CPU1

CPU2

COM

Group1

Disk1

DP1

A1

Group2

A2

DP2

Disk2

Figure 2.1: Example multi-tier client-server system from [113]. Tasks are represented by
parallelograms. Pure servers, such as devices and think times for customers, are represented
by circles. The customers themselves are represented by the tasks Group1 and Group2.

Kurasugi and Kino [71] have also developed a technique for solving a two-level client-

server queueing model. They too use hierarchical decomposition, but use
ow-equivalent

service centers instead of surrogate delays. This technique is described in greater detail in

x2.3.5.

Finally, the problem of blocking at software servers has also been addressed by Fontenot

with his mobile server model [35]. This technique relies on a new residence time expression

for open queueing systems called the hyperbolic model. However, the technique appears

limited because it can only nest to one level (i.e., it can only model two-tier client-server

systems), it appears to be sensitive to the arrival rate distributions from other streams,

and it has not been applied to closed queueing networks. Because of these limitations, this

technique will not be discussed further.

CHAPTER 2. EXTENDED QUEUEING NETWORKS 18

2.3.1 Stochastic Rendezvous Network Model

The Stochastic Rendezvous Network Model [147, 149, 152] consists of an acyclic graph of

clients and servers. Clients and servers are collectively referred to as tasks, which are used

to model users, devices, and software processes. Requests from one task to another use the

remote procedure call paradigm [143, 5]: i.e., clients are blocked until the server responds.

The overall model is solved by �rst constructing a set of submodels each consisting of

only one server and a set of clients and their surrogate delays. For example, Figure 2.2 shows

the MVA submodels for each of the servers in Figure 2.1. The clients in each submodel

are found by searching for all callers to the particular server and are treated as unique

routing chains with populations based on the number of instances of the client task. For

single-threaded tasks, the number of instances is one, while for multi-threaded tasks, the

number of instances is the maximum number of threads that can be active at one time.

Next, the overall model is solved by applying one-step MVA to each of the submodels. A

variation of the Bard-Schweitzer MVA approximation [3, 125] is used where the waiting time

expression, (2.1), is modi�ed so that the queue length Lmk(N� ek) is found using arrival

instant probabilities instead of simply scaling Lmk(N) based on a fraction of customers in

the system. Throughput results from each submodel are then used to adjust the surrogate

delays in all of the other submodels. The solution iterates among all the submodels until

convergence criteria are met.

The Stochastic Rendezvous Network Model is more formally discussed in Section 3.1 as

it and the Method of Layers are the basis of the modi�cations being proposed here.

2.3.2 Task Directed Aggregation

The key to the SRVN approach is in the estimation of the arrival instant probabilities.

Petriu improved the accuracy of the estimate through her technique called \task directed

aggregation" [100, 97, 101, 98]. This technique uses a Markov submodel to derive the

CHAPTER 2. EXTENDED QUEUEING NETWORKS 19

Group1 Group2

Think Delay Delay

(a) Submodel 1

Group1

A1Delay

(b) Submodel 2

Group1 Group2

COMDelay Delay

(c) Submodel 3

Group2

A2Delay

(d) Submodel 4

Group1 Group2

COM

CPU1

Delay Delay

Delay

(e) Submodel 5

Delay Delay

A2

DP1

A1

(f) Submodel 6

Delay Delay

A2

DP2

A1

(g) Submodel 7

Disk1

DP1

Delay

(h) Submodel 8

DP1

A1 A2

DP2

CPU2Delay Delay

Delay Delay

(i) Submodel 9

DP2

DelayDisk2

(j) Submodel 10

Figure 2.2: Stochastic Rendezvous Network solution partitioning for the example in Fig-
ure 2.1. The circles marked Delay are surrogate delays introduced during the solution of
the model.

CHAPTER 2. EXTENDED QUEUEING NETWORKS 20

in-service and in-queue probabilities rather than using the probabilistic approach used by

Woodside et. al. However, the approach is somewhat more computationally expensive.

2.3.3 Method of Layers

The Method of Layers (MOL) [112, 113, 110] solves client-server queueing networks by

decomposing the network into a set of two level MVA submodels then solving each of

these models using the linearizer algorithm [12]. Each submodel forms a conventional

product form queueing network where the servers form the stations and the clients form

the customers. The MVA submodel are constructed �rst by splitting the input model

into two submodels, one for hardware contention and the other for software contention.

The hardware contention submodel consists of all of the tasks and devices from the input

model; the software tasks act as clients and the devices act as servers. Next, the software

contention submodel, using only the tasks from the input model, is sorted into layers.

Software submodel n is then constructed by using all of the tasks in level n as clients, and

all of the tasks from level n + 1 as servers. The �nal set of submodels for the example in

Figure 2.1 is shown in Figure 2.3.

The Method of Layers estimates the performance of the system under study by iterating

among the various submodels. It begins by solving the software submodels from submodel

1 to submodel N�1. (There is no software submodel N because the pure servers at level N

make no requests). Once the software submodels have converged, the performance results

are used to set the think and service times for the tasks in the hardware model. The

performance estimates from the solution of the hardware model are then used to set the

service times for the various software submodels. This sequence continues until the desired

convergence criteria are met.

CHAPTER 2. EXTENDED QUEUEING NETWORKS 21

DelayDelay

COM

Group2

A2

Group1

A1

(a) Software Contention Submodel 1

Delay Delay Delay

A1

DP2

COM A2

DP1

(b) Software Contention Submodel 2

Delay Delay DelayDelay DelayDelay Delay

A1COM DP1A2Group2Group1 DP2

Disk2Think CPU1 CPU2 Disk1

(c) Hardware Contention Submodel

Figure 2.3: Submodels used by the Method of Layers for the example in Figure 2.1. The
circles marked Delay are surrogate delays introduced during the solution of the model.

CHAPTER 2. EXTENDED QUEUEING NETWORKS 22

2.3.4 Client-Server Queueing Network Model

The Client-Server Queueing Network model of Ramesh and Perros [103] decomposes a

strictly-layered model into a set of two-level submodels similar to the approach used by

the Method of Layers. The clients and the servers in each submodel may have Coxian

distributions, in which case each submodel is further divided up into a set of sub-submodels

consisting of exactly one client.

The solution of the network consists of a backward and a forward pass. The backward

pass starts from the lowest level server submodel and �nds the �rst three moments of waiting

time to its clients. These values are used to set the service time of the servers in the next

higher submodel. This pass terminates when the servers at level two are evaluated (level

one consists of clients only). Next, the clients at level 1 are solved using a C2=C2=1 queue.

The solution to this queue is used to set the arrival process to the servers in level 2. The

servers in level 2 are then re-solved to set the arrival processes for the servers in level 3, and

so on. The algorithm terminates when the di�erence in the arrival process probabilities is

su�ciently small. Otherwise, the backward and forward passes are repeated.

2.3.5 Extended Flow-Equivalent Queueing Models

The Extended Flow-Equivalent Queueing Models of Kurasugi and Kino [71] decomposes

a three-level, strictly-layered model into two submodels. The models are constructed in a

manner similar to the method of layers (i.e., the intermediate-level servers are customers in

the lower submodel, and queueing stations in the upper submodel). The lower submodel

is a closed queueing network with multiple routing chains. This model is solved for all

customer populations once; these solutions are used to either set the transition rates for a

Markov chain, or to set the service rates of extended
ow-equivalent service centers in the

upper model.

The bene�t of this approach is that it is non-iterative, unlike all of the preceding tech-

CHAPTER 2. EXTENDED QUEUEING NETWORKS 23

niques. Unfortunately, this advantage will become a hindrance if there are a large number

of routing chains with a large number of customers because of the need to calculate solu-

tions to all of the intermediate population values in the lower submodel. The authors only

consider three-level models at present. However, it appears the technique can be extended

to models with more layers.

2.4 Queueing Networks with Fork-Join Interactions

Forking describes the phenomenon where a single thread of control within a process branches

out into two or more independent threads of control that can potentially execute in parallel.

Joining is the reverse operation: multiple threads of control all wait for each other to

complete at which time a single thread of control continues on.

Computer systems with fork-join behaviour cause two problems for mean-value based

performance analysis. First, the number of customers (threads of control) varies with time.

Second, the join delay must be found. These problems preclude the direct application

of exact MVA. However, several authors have solved systems with forks and joins using

mean value analysis, either by setting up a Markov Chain to describe the customer states

and using MVA for each state in the chain, or by estimating the join delay and using a

surrogate delay in an MVA model. The sections that follow brie
y outline these approaches

in a roughly chronological order.

There are a lot of references on fork-join systems. The following are just a few that are

most relevant to the present work as closed models are considered here.

2.4.1 Heidelberger and Trivedi

Heidelberger and Trivedi developed two techniques for systems with fork-join behaviour [51].

The systems under study consisted of a set of homogeneous jobs which forked, then joined.

The �rst technique used hierarchical decomposition with two models. The upper level

CHAPTER 2. EXTENDED QUEUEING NETWORKS 24

model consisted of a Markov chain where each state represented a set of tasks executing

concurrently. The lower level model consisted of a set of closed product form queueing

networks, one for each state in the Markov Chain. First, each of the queueing networks was

solved. Next, the results from the queueing networks were used to set the transition rates

for the Markov Chain. Finally, the Markov Chain was solved giving the overall response

time for the system.

The second technique developed by the authors employed the method of surrogate de-

lays. The system was modelled using one product form queueing network with two addi-

tional in�nite servers. The �rst in�nite server was used to model the serial portion of the

overall system (i.e., when only one job was running). The second in�nite server was used

to model the synchronization delay. The solution to this model was then used to derive

new values for the synchronization delay. These steps were repeated until the change in the

synchronization time reached some small value.

The value of the synchronization delay is the maximum value of all of the response

times, Wi, of the tasks involved in the join. These times were assumed to be exponentially

distributed with mean values of �i = 1=Wi. Therefore, the synchronization delay was

MaxW =
NX
i=1

1

�i
�
X
i<j

1

�i + �j
+
X

i<j<k

1

�i + �j + �k

� � � �+ (�1)N�1
X

i1<i2:::<iN

1

�i + � � �+ �N
(2.6)

This technique was used to model a task which forked into a number of sub-tasks, then

joined. Of the two approaches, the hierarchical decomposition technique was found to be

more accurate when compared to simulation (it had a mean relative error of 1% versus 5%

for the other method). The solution times of both techniques were found to be comparable.

CHAPTER 2. EXTENDED QUEUEING NETWORKS 25

2.4.2 Thomasian and Bay

Thomasian and Bay [138, 139] use hierarchical decomposition to �nd the response time of

a distributed system with fork-join interactions. Multiple fork-join interactions can take

place, unlike the models studied by Heidelberger and Trivedi. All tasks are assumed to

join, thus completing a cycle in the overall model.

The performance model consists of two components. The top-level component is a

Markov chain which is used to �nd the overall response time for the system. Each state

in the Markov chain corresponds to the number of active tasks in the system. The second

component is a set of queuing network models, one for each state in the Markov chain.

The solution to each queueing network model is used to �nd the transition rates for the

corresponding state.

This technique appears to be quite accurate. However, the computational complexity

can become prohibitive due to the number of queueing network models that may have to

be solved. The cost of the technique is reduced somewhat by exploiting state aggregation

in the Markov chain where possible, and by further decomposing the model.

2.4.3 Chu, Sit and Leung

The approach taken by Chu et. al. [19, 20, 21] uses two submodels to �nd response times in

a distributed system, one to �nd contention delays at devices, and one to �nd the overall

response time for requests. The overall system is considered to be open, i.e., once a task

�nishes a request, it is free to accept a new one. The upper-level model describes the

precedence relationships among the tasks. This model is used to aggregate the response

times from the lower level model to �nd the overall response time for requests to the

system. The lower-level model consists of an extended queueing network model which is

used to �nd the response time for each task in the system. Tasks in the system are assumed

to be independent and execute concurrently where possible. Furthermore, since the overall

CHAPTER 2. EXTENDED QUEUEING NETWORKS 26

system model is open, the population for the lower-level model (i.e. the tasks in the upper

level) is �xed, unlike the models by Heidelberger and Trivedi, and Thomasian and Bay. The

authors also develop a Markov Chain based method for solving networks with simultaneous

resource possession. The solution provides the �rst two moments of response time, used in

the following step.

Synchronization delays, needed by the upper level model, are found by �nding the mean

and variance for the function Y = max(y1; y2; :::; yn) where yi is the response time for

thread i in a fork-join interaction. To �nd the moments, the fork-join graph is repartitioned

into a set of fork-joins each with exactly two threads. The mth moment for each of the new

graphs is then found using

E[Ym] =
Z 1

0
ymF1(y)f2(y)dy +

Z 1

0
ymF2(y)f1(y)dy; m = 1; 2; ::: (2.7)

where fi(y) is the probability density function and Fi(y) is the probability distribution

function for thread i. Threads can have Erlangian, exponential, or hyper-exponential dis-

tributions

2.4.4 Nelson, Towsley and Tantawi

Nelson, Towsley and Tantawi model [90] a system where an open stream of jobs arrive at

a processor complex, fork, then possibly join. The system is modelled as a bulk arrival

MX=M=c queueing system and solved using a continuous time Markov Chain. The solution

for the overall system is complicated by the fact that there is no closed form expression for

the service completion time { a set of recurrence expressions must be solved numerically

instead.

This solution is applicable to the class of systems where a job forks then joins on a pool

of processors. It is not suitable for systems with more complex fork-join patterns, nor for

systems with heterogeneous threads.

CHAPTER 2. EXTENDED QUEUEING NETWORKS 27

2.4.5 Mak and Lundstrom

Mak [85] and Mak and Lundstrom [84] solved series-parallel task systems using only one

queueing network model by modifying the MVA waiting time expression (2.1) to account

for the probability that tasks interact with one and another. The overlap probabilities are

estimated by reducing the task graph after the queueing network model is solved. The

queueing network solution and graph reduction steps are repeated until the estimate of

mean task completion time converges. This technique is much the second approach used by

Heidelberger and Trivedi [51] except that extra delay centers are not incorporated explicitly

in the model. This method may not be as accurate as solving a Markov chain representing

the task precedence model, however, it does not su�er the problem of state space explosion

inherent in Markov chain based solutions.

As mentioned earlier, the MVA waiting time expression (2.1) is modi�ed to account

for \overlap" in the execution of two or more tasks1. Furthermore, (2.1) is simpli�ed

by constraining each chain in the queueing network to exactly one customer; the termPK
j=1 Lmj(N � ek) is replaced with

PN
j=1;j 6=k Lmkj . Equations (2.8) through (2.11) show

the modi�ed waiting time expressions:

Wmk = Dmk(1 + Amk) (2.8)

Amk =
NX

j=1;j 6=k

Lmkj (2.9)

Amk � Âmk =
NX

j=1;j 6=k

pkjdkj
Wk

Lmkj (2.10)

Lmkj =
WmkjPK
i=1Wmki

(2.11)

The term pkj is the overlap probability and dij is the overlap duration, described below.

1This approach is much like that used to remove contention due to \interlocking", as described in Sec-
tion 4.2.

CHAPTER 2. EXTENDED QUEUEING NETWORKS 28

Equation (2.11), an approximation of the reduced population residence time, also exploits

the constraint that there is only one customer in each chain.

The overlap probability, pkj , for tasks k and j with a start time S and and end time E

is estimated using:

pkj = 1� Pr(Ej < Sk)� Pr(Ek < Sj) (2.12)

Let A and B be two independent nonnegative continuous random variables, and fA(x) and

FB(x) be their respective probability density and distribution functions, then

Pr(A < B) =

Z 1

0
Pr(B > x)fA(x)dx

=

Z 1

0
[1� FB(x)]fA(x)dx (2.13)

If the distributions of A and B are assumed to be of the Erlang type with r stages of 1=�

duration, then (2.13) simpli�es to:

Pr(A < B) =

�
�A

�A + �B

�rA rB�1X
k=0

�
�A

�A + �B

�k
�
(rA + k � 1)!

(rA � 1)!k!
(2.14)

The overlap duration is the amount of time two tasks can execute concurrently given

they overlap to begin with. The residence times of the tasks are assumed to be exponentially

distributed, therefore

dij =
1

�i + �j
(2.15)

The prediction method was found to be both accurate and computationally e�cient.

The time complexity is O(N2M +N3) per iteration and the space complexity is O(N2M)

where N is the number of tasks, and M is the number of servers.

CHAPTER 2. EXTENDED QUEUEING NETWORKS 29

2.4.6 Liu and Perros

Liu and Perros [81, 82] use decomposition and aggregation to �nd the response time of a

closed queueing system with fork-join interactions. To solve a system with a K-way fork-

join interaction, with K > 2, the K-way fork-join is reduced to a 2-way fork-join through

aggregation, ignoring the serial part of the queueing network. The aggregated 2-way fork-

join network is then combined with the serial portion of the original queueing network to

form a new queueing network which is solved numerically.

The technique produces a lower bound for the system's throughput for a heterogeneous

fork-join network. For a homogeneous fork-join network, the error introduced by the aggre-

gation is proportional to the number of branches present. The accuracy can be improved by

solving the system numerically for k = 2 and K = 3, and with the approximation technique

for K = 3 to �nd a scaling constant that can be applied to a network with an arbitrarily

large K.

2.4.7 Rolia's Synchronization Server

The Method of Layers [112, 113, 111] allows two tasks to synchronize on a third special task

called a \sync provider". This task is an explicit representation of the surrogate delay for

synchronization in the join operation; the delay itself is found using (2.6). Waiting times

are assumed to have hyper-exponential distributions. A source with this distribution can

be modelled as two sources with exponential distribution which permits higher accuracy in

the overall solution while retaining the simplicity and speed of the join-delay calculation.

The synchronization server allows two or more remote procedure calls from disjoint

sources to synchronize with each other. Since RPC's block the solution is feasible, unlike

the case with two disjoint asynchronous input streams. There is no provision in the model

to permit forking.

CHAPTER 2. EXTENDED QUEUEING NETWORKS 30

2.4.8 Jonkers

The Generalised Architecture Modelling with Stochastic techniques methodology, Glamis,

combines general task graphs with separable closed queueing networks [63, 65, 64, 66]. Task

graphs are used to model interactions among tasks. Closed queueing networks are used to

model contention among devices. Task service times are assumed to be deterministic, unlike

the other methods described here. The task graph is of the series-parallel type.

Two techniques were developed by Jonkers and his colleagues. The �rst approach used

a surrogate delay to represent the synchronization delay in the system [63, 65]. Initially,

the closed queueing network model is solved ignoring the e�ects of synchronization in the

task graph. The task graph is then solved to �nd the synchronization delays along each

path from the fork to the join. Since the service times at the tasks in the upper level model

are deterministic, the expression used to �nd the join delay is exceptionally simple. These

delays are then incorporated into the queueing network model. These steps are repeated

until some convergence criteria are met.

The second approach solves a number of closed queueing network models, each with

one less set of customers than the previous [64, 66]. Initially, all tasks the the system are

modelled. The path in the task graph with the shortest response time, i.e., when the most

contention is present in the system, is then removed. The service times for all remaining

tasks are then adjusted to remove the overlap time; the modi�ed queueing network is then

solved. This process is repeated until there are no customers left.

Replication is exploited to speed the solution. Furthermore, services centers have de-

terministic service times. Equation (2.16) shows the expression used to approximate the

service rate at a center with m replicated servers, and n customers.

�m(n) =
1

S

n�1X
j=0

�
m� 1

m

�j
if m � n; �m(n) =

1

S

m�1X
j=0

�
n � 1

n

�j
if m � n; (2.16)

This approximation was found to be superior to the exact MVA expression which assumes

CHAPTER 2. EXTENDED QUEUEING NETWORKS 31

exponential service times.

2.4.9 Woodside, Jiang, Hubbard

In many of the methods described here, it is necessary to �nd the result of the expression

Y = max(y1; y2; :::; yn) where yi is a random variable describing the response time for a

thread in a fork-join interaction. Two problems arise. First, the distribution of the random

variables, yi, is not known; mean value analysis only supplies means. Second, assuming

second moments are available, numerical integration of (2.7) can be costly.

Given that second moments for response times can be estimated (see [21, 152, 113]),

Woodside et. al. estimate synchronization delays using a three point approximation [150, 62],

shown in Figure 2.4. This technique is much faster than numerically integrating (2.7).

However, accuracy su�ers for some distributions.

t
0.04

0.42

0.54

Probabilities axj

tx1 tx2 tx3
(1.37)(2.00) (3.26)

(a) Approximate distribution for a
branch x.

t

1.00

1� ax3

ax1
tx1 tx2 tx3

Axt

(1.37)(2.00) (3.26)

(b) Distribution Function

Figure 2.4: Three-point approximation for a distribution with tx = 2:0 and �2x = 0:4.

CHAPTER 2. EXTENDED QUEUEING NETWORKS 32

2.4.10 Huang et. al.

Huang et. al. constructed a model of a Multicube multiprocessor system and its cache

coherence protocol [56] and used mean value analysis to solve it. The primary di�culty

that arose in modelling this system was that of forking. The authors modelled the forking

behaviour by treating the forked tra�c stream as an open class in the MVA model. The

arrival rate of the open class was then set by the solution of the closed model for the system.

The resulting mixed model was then solved iteratively until convergence2

2.4.11 Lee and Katz

Fork-Join interactions are found in Redundant Arrays of Inexpensive Disks (RAID) [13]

because a read or write operation requires the completion of reads and writes to multiple

disks before the originating request can return.

Lee and Katz [78] derive a performance model for a RAID level 5 disk array with left-

symmetric parity placement. The inputs to the model consist of L processes making requests

of size n to the disk array. An exact expression for the disk array utilization is found which

is then simpli�ed to

U �
1

1 + 1
L

�
1
p � 1

� (2.17)

where p is the probability of a request accessing a given disk. Little's result is then used to

�nd throughputs and response times.

This model is quite accurate and insensitive to disk service times. Further work is

needed to allow the L customers in the model to have think times instead of constantly

issuing requests to the disk array.

2This technique is identical to the solution of send-no-reply type requests in Stochastic Rendezvous
Networks.

CHAPTER 2. EXTENDED QUEUEING NETWORKS 33

2.4.12 Varki

Varki [140] considers a queueing system consisting of a sequential and parallel subsystems. A

parallel subsystem consists of K > 1 identical queueing systems. The technique transforms

a parallel subsystem into a
ow-equivalent service center with state-dependent rates, the

state being the number of jobs in service as a result of a fork.

Results in the paper show the technique is very accurate, with errors of less than 5% in

most cases. Further work is needed to extend the technique to multi-class networks and to

networks with more general parallel subsystems.

Chapter 3

The Layered Queueing Network

Solver

The Layered Queueing Network Solver (LQNS), developed in the present research, combines

the strengths of SRVN and MOL solvers to broaden the modelling scope and to improve the

accuracy of solutions to layered queueing networks. This chapter �rst describes the seman-

tics of layered qeueing networks, then follows with a description of the Layered Queueing

Network Solver.

3.1 The Stochastic Rendezvous Network Model

A Stochastic Rendezvous Network Model consists of the inputs tasks, entries, and phases,

and the output, throughput. Tasks represent hardware and software objects which may

execute concurrently, entries di�erentiate service demands at the tasks and phases denote

di�erent intervals of service within entries. Requests for service are made from entry to entry

through send-receive-reply message interactions. Tasks do not possess internal concurrency,

a de�ciency which will be addressed in Chapter 7. Table 3.1 shows the icons used in the

model.

34

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 35

Name Icon Description

RPC request Remote Procedure Call.
Forwarded RPCy Request which has been forwarded.
Asynchronous Message Send only { no reply.

Entry e1
An entry is a subdivision of a task correspond-
ing to a particular service.

Task

e1
t1

A task is an object which has a single thread
of control and can initiate or accept service
requests.

Task Pool

e1

t1
A set of tasks sharing a common input queue.

Device
p1 A device consumes time (i.e. executes) on be-

half of a request from a task.

yForwarded remote procedure calls were not part of the original model.

Table 3.1: Layered Queueing Network graph notation.

The underlying assumptions of the Stochastic Rendezvous Network Model are [152]:

� Messages arriving at a task are queued with a �rst-come, �rst-served discipline.

� The CPU demand at a task in response to a message is divided up into exponentially

distributed slices between requests to lower level servers.

� Calls to lower level services are geometrically distributed with the speci�ed mean, or

occur in the (deterministic) number speci�ed.

� The call graph with tasks as nodes and requests as arcs is acyclic (cyclic graphs may

deadlock).

3.1.1 Model Components

Tasks in Stochastic Rendezvous Network Models are divided into three groups: pure clients,

active servers and pure servers. Pure clients, also called reference tasks, only send messages.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 36

These tasks cycle continuously, and can be used to model actual users and other input

sources. Pure servers only receive requests and are analogous to stations in conventional

queueing networks. Typically, they model hardware such as processors and disks. Active

servers accept requests, then go on to make their own. Active servers are typically software

processes. In Figure 2.1, Group1 is a an example of a reference task, A1 and DP1 are

examples of active servers, and Disk1 is an example of a pure server.

Tasks communicate between one and another using the send-receive-reply [16] messaging

paradigm, shown in Figure 3.1. The calling task, the client, is blocked during the interval

between the send and the reply (the blocking time is labeled rendezvous delay in the �gure).

This style of inter-process communication is also known as a rendezvous [2] and models the

remote procedure call [143, 5].

r.d. ξ

send

ξξ

replysend

send reply replysend

ξ

reply

task cycle
phase 1 phase 2 phase 3

rendezvous delay

Server

Client

ξ rendezvous
delay

ξr.d.

Figure 3.1: Task cycles and phases. Entry execution is divided up into a sequence of phases,
which are themselves divided up into a number of slices, �.

Messages are serviced using a �rst-come �rst-served queueing discipline. The time a task

spends processing a message, either awaiting responses from lower level servers, or executing

on a processor, is broken up into phases. The time spent between the receive and reply

operations in a server is a service phase and is called phase one (this phase is equivalent

to the service time at a station in a product form queueing network). Subsequent phases

are called autonomous phases because the client that initiated their execution is no longer

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 37

blocked. Simple remote procedure calls (e.g., Figure 1.1(a)) have no autonomous phases.

Synchronous message passing systems which release the caller as soon as the message is

received, have no service phase; this is implemented in hardware on Transputers [53]. Send-

receive-reply interactions which can have autonomous second phases are supported by the

programming language Ada [2] and with the Thoth [16], and Amoeba [88] operating systems

(among others), and with remote procedure calls [143, 5].

A server may di�erentiate its actions based on the requests it receives which are o�ered

through entries. Entries may correspond to actual communication ports on tasks, or they

may correspond to message types that invoke di�erent actions at a server. They can also

be thought of as classes in a conventional queueing network.

Figure 3.2 shows a Stochastic Rendezvous Network with two reference tasks, one active

server, and two pure servers. The two pure servers each have two entries whereas the other

tasks in the model have one. The list of numbers within each of the entries represents the

average service time for each phase. Variance may also be speci�ed by phase, but is not

shown here.

Arcs on the �gure denote requests from one entry to another. The labels on the arcs

denote the average number of requests made each time the corresponding phase in the

source entry is executed. The number of requests is normally geometrically distributed.

However, the model also permits a deterministic number of requests for a phase, which has

proven useful when modelling pipelines [146].

3.1.2 Model Inputs and Outputs

Inputs to the model consist of mean service times, variance, phase types and call rates:

sep = the mean total execution time of entry e phase p.

c2ep = the squared coe�cient of variation for a slice of execution time of entry e, phase p.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 38

[1.0,2.0]

Task 3 Task 5

Task 1 Task 2

Task 4

[0,0.1,0.2][0,1.5,0.5]

[0.3,0.1]

[0.1,0.7][0.3,0.5][0.1,2.0]

(0,2.0,1.0)

(0,0.5,0)

(0,2.0,1.1)

(0,1.0,0)

(0.5,1.7)

(0,1.0,2.5)

(0,0,1.0)

Pure client

Active server

Pure server

tasks

tasks

(reference) tasks

entry 7

entry 5

entry 2entry 1

entry 3 entry 4 entry 6

Figure 3.2: A Stochastic Rendezvous Network using the notation of Woodside et. al. [152].
Processors are not shown in this diagram.

pt ep = the phase type (stochastic or deterministic). Stochastic phases emit a random num-

ber of requests to lower level servers with a geometric distribution with the request

mean. Deterministic phases emit the exact number of (intergral) requests to lower

level servers.

�0e = an open or external arrival stream of requests to entry e. Entry e must be part of a

task designated as a server.

yedp = the mean number of requests from phase p of entry e to entry d.

The throughput of each of the entries is the main result from the solution of a Stochastic

Rendezvous Network:

�e = the throughput of entry e in messages per unit time.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 39

3.2 Solver Capabilities

The �rst solvers of Stochastic Rendezvous Networks were SRVN [147, 149, 152] and MOL

[112, 113, 110]. The solver described here, LQNS, was developed from ideas from both,

starting in 1993. MOL has continued to be developed, but when it is referred to here, the

version extant in 1993 and described in [113] is indicated.

The existing capabilities of the MOL, SRVN and LQNS solvers are summarized in

Table 3.2 below [40]. Starting from the top of the table, the device scheduling parameter

refers to the type of scheduling supported by hardware devices; task scheduling refers to

the order in which messages are accepted by tasks. Open arrivals are an external Poisson

input stream with a given rate to some entry of a non-reference task. The phase type of

an entry speci�es whether an exact number of requests are made (deterministic phases),

or a random number of requests are made (stochastic phases). The squared coe�cient of

variation, c2v , (s
2=�2) sets the variance of the service time of an execution slice. By default,

execution slices have exponential distributions (i.e. c2v = 1). The fast coupling heuristic1

applies a correction to servers with both frequent and infrequent arrivals at di�erent entries.

Forwarding2 speci�es rendezvous-type messages that are sent to multiple servers before the

reply is sent to the original client. A \multiserver" refers to a �xed-size set of identical

single-threaded tasks that share a single queue of requesters. For an in�nite server there is

no upper limit on the number of copies. Finally, the capacity parameter refers to the size

of model that can be analyzed. A medium sized model may have upwards of twenty �ve

tasks and processors; there is no �xed limit for large models.

1The fast coupling heuristic is not found in [40] { refer to [152].
2Forwarding is not found in [40] { refer to 3.3.1.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 40

Parameter MOL [152] SRVN [113] LQNS

Device Schedulingy FPHS FPH FHPS
Task Schedulingy F F FH
Open arrivals no yes yes
Phase typez S SD SD
Vary c2v yes yes yes
Fast Coupling Heuristic no yes yes
Asynchronous sends no yes yes
Forwarding no no yes
Multiservers yes no yes
In�nite-servers yes yes yes

y F: FIFO, P: Preemptive Priority, H: Head-of-Line Priority,
R: Random, S: Processor Sharing

z S: Stochastic, D: Deterministic

Table 3.2: Solver capabilities.

3.2.1 Extensions to the Original Model

The following improvements have been made and incorporated into the Layered Queueing

Network solver. Changes denoted by section references `x' are by the author. Changes

denoted by references `[]' are by others.

� The layering strategy from the Method of Layers has been modi�ed to unify the

processor/process model along the lines of Stochastic Rendezvous Networks (x3.3.2).

� The solver is object-oriented to allow changes to be made easily (x3.4).

� Replication of tasks can be performed to allow rapid solution of large models with

varying degrees of symmetry (See [94]).

� Forwarded remote procedure calls are added to the model (x3.3.1).

� Think times by reference task and entry are added to the model (x3.3.1).

� The \interlocking" calculation from the SRVN solver and MOL solvers is generalized

(x4).

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 41

� The \overtaking" calculation used by the SRVN and MOL solvers is replaced with a

new, more accurate algorithm (x5).

� Multiservers can have two phases of service (x5).

� Tasks may have heterogenous threads of control (x7).

3.3 The Layered Queueing Network Solver

The Layered Queueing Network Solver (LQNS) is a new solver combining features from

the Method of Layers (MOL) [112, 113, 110] and the Stochastic Rendezvous Network

(SRVN) [147, 149, 152] solvers. Layered queueing networks are solved using surrogate

delays to solve the simultaneous resource possession problem arising from the nested calling

pattern in the system being modelled. This goal is accomplished by partitioning the in-

put layered queueing network model into a set of smaller \MVA submodels", then iterating

among these submodels until convergence in waiting times.

The steps to solving a client-server queueing network model using LQNS are as follow:

1. Read the input �le and construct an object data base consisting of the tasks, processors

and entries and the calls between them.

2. Perform processor, forwarding and think-time transformations.

3. Generate the layer submodels, then construct MVA submodels from the layer sub-

models.

4. Solve the MVA submodels. The inputs to and the outputs from each submodel are

extracted from or saved to the object database. This step is repeated until the waiting

time results converge for each layer.

5. Write the results out.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 42

Figure 3.3 shows the steps above algorithmically; the steps are described in greater detail

below.

1: Read input and create LQNS model.
2: Transform model.
3: Generate layers and submodels.
4a: Find Type one throughput bounds to give an initial solution.

repeat

for l! 1 to submodel L do

4b: Set MVA parameters for submodel l
4c: Solve submodel l
4d: Set waiting times for submodel l and think times for submodel l+ 1

end for

until convergence
5: Write results.

Figure 3.3: Solution algorithm.

3.3.1 Model Transformation

Processor Transformation

The original input model consists of entries assigned to tasks which are, in turn, assigned

to processors. In the input model, service time demands are assigned to phases of entries.

However, the execution of a program can only take place on processors. The processor trans-

formation step converts the input model so that service demand is assigned to processors

only.

The processor transformation step proceeds by replacing the service time sip of the

original phase p of entry i by a number (
P

j yijp + 1) of requests for slices of execution at

the task's processor where yijp represents the requests made from entry i to some other

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 43

entry j on a lower-level serving task. The service time for the slice on the processor is:

�ip =
sipP

j yijp + 1
(3.1)

When a submodel with a processor is solved, the requests for slices of execution will include

processor contention. Figure 3.4 shows the processor transformation applied to Figure 3.2.

(0,1)
(0,0,5.6)

(0,1) (1,0)(1,0)

[0,0]

(0,1) (1,0)
(0,4.0,0)

[0,0][0,0,0]

(0,4.5,0)

[0,0][0,0,0]

(0,1)(0,1) (1,0)

[0.1][0.3][0.5][0.3][2.0][0.1]

(0,0,2)

Processor 4

(1,0)

Task 4

[0,0][0,0]

[0.7][0.1][2.0][1.0][1/28][1/40]

Processor 3

Task 3Task 2

Processor 1

Task 1

[1/4][1/3]

Processor 2

Task 5

entry 5entry 7entry 6entry 2entry 1 entry 3 entry 4

�52�51�42�41�32�31�72�71�62�61�23�22�13�12

Figure 3.4: Processor Transformation applied to Figure 3.2.

Entry Think Times

Think times can be speci�ed for both a task as a whole, and for individual entries. The

think time for a task is handled by the underlying MVA solver as the think time for a chain.

Think times for individual entries are handled by �rst creating a delay center, then making

requests to the delay center.

Forwarding

Forwarding occurs when a server passes a message to yet another server rather than reply-

ing to the originating client, shown in Figure 3.5, and is a new modelling capability. This

interaction can be used to improve performance for small RPC requests by removing the

need for a client to send a request to one server, wait for a reply, then send a subsequent

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 44

request to a second server. This form of interaction was found in one of the earliest op-

erating systems using the send-receive-reply message system, namely Thoth's .forward()

function [16]. A more recent example is the callit() function in the portmapper [26] in

SunOS.

phase 2

Client
rendezvous delay

phase 1 phase 2

Server1

Server2
phase 1

send

forward
task cycle

task cycle

reply

Figure 3.5: Forwarding.

Forwarding can be used to model a system with asynchronous messaging, provided that

there is a cycle in the call graph. This interaction is shown in Figure 3.6(a) and occurs when

a task sends an asynchronous message then blocks awaiting a response from some server

stimulated by the original request. The converted model, shown in Figure 3.6(b) is created

by locating a task within the cycle of asynchronous messages that �rst sends a message,

then blocks waiting for a reply. The outgoing request is replaced with a rendezvous. All

remaining asynchronous requests in the cycle from the remaining tasks are replaced with

forwarding requests.

Forwarding can be used to convert an open model, shown in Figure 3.7(a) to a closed

model, shown in Figure 3.7(b). The open arrival source is replaced by a set of client tasks

that make rendezvous requests. The remaining send-no-reply requests are then converted

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 45

e1

e2

e3

t1

t2

t3

Send-no-reply

(a) Send-no-reply Loop

e1

e2

e3

t1

t2

t3

Rendezvous

Forward

(b) After Transformation

Figure 3.6: Asynchronous to Synchronous messaging model conversion with forwarding.

to forwarding calls. Shousha et. al. [129] have applied this technique with good results to a

telecommunications system.

Forwarding in the LQNS solver is handled by transforming the input model. The trans-

formation reconnects the forwarding requests to the client making the original rendezvous

request (in essence the client makes all of the requests in the transformed model). Figure 3.8

shows a three-level system with forwarding before and after transformation. Note that one

level of servers is removed.

It is important to note that the transformed model is not the same as one where

the client makes two remote procedure calls directly; the transformed requests are not

included when �nding slice times, nor are they used to �nd the overtaking and interlocking

probabilities.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 46

e2

e3

t2

t3

λ

λ

λ

Open arrival

Send-no-reply

Job completion

(a) Open System

e1

e2

e3

t1

t2

t3

Forward

Rendezvous

(b) After Transformation

Figure 3.7: Open to closed model conversion with forwarding.

e1

(y)

(F)

e2

e3

t1

t2

t3

(a) Original Speci�cation

e1

(y) (Fy)

e2 e3

t1

t2 t3

(b) After Transformation

Figure 3.8: Model transformation for forwarding.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 47

3.3.2 MVA Submodel Generation

Layered queueing networks are solved by hierarchical decomposition and the method of

surrogates [58]. The input layered queueing network model is broken down into a set of

submodels L each consisting of a set of clients Cl and a set of servers Sl. Processors and other

pure-servers will only appear as servers in submodels, reference tasks and other pure-clients

will only appear as clients, while active servers will apear in some submodels as clients and

in other submodels as servers. The submodels are then solved using approximate MVA.

LQNS incorporates four di�erent layering strategies for partioning the input model into

submodels. These strategies will be demonstrated using Figure 3.9, a version of Figure 3.2

showing processors but omitting entries. The topological sorter and the layering strategies

are described next.

t1

p1 t4

p3 p4 t5

t2

p2

t3

Level 4

Level 3

Level 2

Level 1

Figure 3.9: The tasks of Figure 3.2 sorted by nesting level. Entries are not shown.

Topological Sort

Before model solution can begin, the tasks and processors in the input model must be

sorted to set their respective nesting levels. The nesting level for reference tasks is de�ned

as 1. The nesting level for tasks which accept open arrivals is de�ned as 2 (the open arrival

requests implicitly arrive from level 1). The nesting level for any other task or processor in

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 48

the input model is de�ned as the longest call path from the reference task or open arrival

source. Figure 3.9 shows the nesting level for the model in Figure 3.2.

Strict Layering

Strict Layering is the primary approach used by the Method of Layers [113]. Tasks are

sorted into levels by the topological sorter and form the software submodel. Processors are

all assigned to their own level called the hardware submodel.

In the Method of Layers, tasks from level l make up the clients for submodel l, and tasks

from level l+1make up the servers. Di�culties arise from this approach when the call graph

is not strictly layered, as is the case with Figure 3.9 (the task t2 is not an immediate parent

of task t5). This problem is overcome by adding psuedo-tasks between the requesting and

accepting tasks prior to layer construction.

The Layered Queueing Network Solver takes a di�erent approach: tasks from level l+1

still make up the servers for submodel l, but clients can come from any other level. This

approach has the advantage of not adding psuedo-tasks to �ll the intervening layers, but at

the cost of extra storage space to save waiting times for each layer.

The hardware submodel consists of all the devices in the input model acting as servers

and all of the tasks acting as clients.

Figure 3.10 shows the submodels resulting from this technique.

Loose Layering

Loose Layering is the approach used by Stochastic Rendezvous Networks and also imple-

mented in the Method of Layers. Layers consist of exactly one serving task or processor

acting as a server plus all of the tasks that call the task or processor acting as clients.

Figure 3.11 shows the submodels that arise from Figure 3.9 using this technique.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 49

t1

t4

t2

t3

(a) Submodel 1

t4

t5

(b) Submodel 2

t1

p3p1 p4

t4

p2

t2

t5

Level 4

Level 3

Level 2

Level 1

t3

(c) Submodel 3

Figure 3.10: Submodels for the model shown in Figure 3.9 using strict layer partitioning.

Batched Layering

Batched Layering is the primary layering strategy used by the new Layered Queueing Net-

work Solver. As in loose layering, processors and tasks are treated uniformly; i.e., processors

are included as servers at the appropriate level along with software tasks. Submodel l is

constructed by �nding all clients, regardless of level, that make calls to servers in nesting

level l+ 1.

Figure 3.12 shows the submodels for the system in Figure 3.9. Reference tasks in the

original input model (for example, t2) never appear as servers. Similarly, pure servers (for

example, the processor p2) never appear as clients. Active servers appear as both clients

and servers, but in di�erent submodels (for example, task t5). Note that task t2 appears

in all three sub-models.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 50

t1

p1

(a) Submodel 1

t1

t3

(b) Submodel 2

t1

t4

t2

Level 4

Level 3

Level 2

Level 1

(c) Submodel 3

p3

t3

(d) Submodel 4

t4

p4

(e) Submodel 5

t4

t2

t5

(f) Submodel 6

t2

p2

t5

Level 4

Level 3

Level 2

Level 1

(g) Submodel 7

Figure 3.11: Submodels for the model shown in Figure 3.9 using loose layer partitioning.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 51

t1

p1 t4

t2

t3

(a) Submodel 1

t4

p3 t5p4

t2

t3

(b) Submodel 2

t5

t2

p2 Level 4

Level 3

Level 2

Level 1

(c) Submodel 3

Figure 3.12: Submodels for the model shown in Figure 3.9 using batch partitioning.

Squashed Layering

With Squashed Layering, only one submodel is created. Reference tasks appear as clients,

pure servers (processors) appear as servers and active servers appear as both clients and

servers. Figure 3.13 shows the submodel generated from Figure 3.9. Note that active servers

such as t3, t4 and t5 appear twice, once as a client and once as a server in the submodel.

t1

p1 t3 t4

t2

t5 p2

t5

p3

t3

Level 2

Level 1t4

p4

Figure 3.13: Submodels for the model shown in Figure 3.9 using squashed partitioning.

Comparison of Layering Strategies

The overall solution performance of the LQNS solver depends on four factors:

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 52

1. the number of submodels, N ,

2. the number of clients, Cn, in submodel n,

3. the number of servers, Sn, in submodel n,

4. the rate of convergence, ~In for submodel n, and

5. the rate of convergence, ~� for the overall model.

The solution cost is:

Cost = O(~�(N � 1)
NX
n=1

SnC
3
n
~In): (3.2)

The terms of the summation are from Linearizer [12]. ~� is a random quantity re
ecting the

rate of convergence of the outer iteration of Figure 3.3. The N submodels must be solved

at least N�1 times because queueing delays from the lowest level submodel only propagate

upwards one layer each time the outer loop executes.

Typically, the solution time is dominated by the layer with the largest number of clients

because of the C3 term in (3.2). Solution time can be improved if the Schweitzer approxi-

mate MVA [125] is used instead, but with a loss of accuracy.

The best layering strategy minimizes (3.2). In all cases, the loose layering strategy

produces the most submodels and the least number of servers S = 1 in each submodel.

Conversely, the squashed layering strategy produces the least number of submodels, N = 1,

but has the most clients and servers in the one submodel. The strict and batched layering

strategies will always produce the same number of submodels equal to the maximum call

depth. However, the terms S;C, ~I and ~� will di�er. Finally, since ~I and ~� depend in a

complex way on the submodels, and impossible to know a-priori, optimal strategy selection

is di�cult.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 53

Table 3.3 compares the four strategies from the 18 test cases from [149] and the 21 test

cases from [152]3. The column labeled N is the number of submodels. The next three

columns show the average number of times key functions are executed over all of the test

cases. The column solve is the mean number of times a submodel is solved using Linearizer,

the column step is the average number of times the core MVA step function is executed,

and the column wait is the average number of times any waiting time is calculated4. The

number of time the wait function is called determines the overall run time. The �nal

column, labeled �(�), shows the average relative error in throughput (in percent) when the

results are compared to exact values computed using GreatSPN [17, 18].

strategy N solve step wait �(�)%

strict 3 16:9 188:889 56365:2 3:07
loose 6 63 611:556 222211 3:07
batched 3 20:8 297:167 168058 3:06
squashed 1 6:6 201:167 455684 3:07

(a) Test cases from [149]. Convergence was set at 10�5.

strategy N solve step wait �(�)%

strict 3 83:4 989:286 364402 2:72
loose 7 74:2 762:15 92293:5 2:72
batched 3 37:4 579:952 254355 2:72
squashed 1 15:3 621:667 1:42858�106 2:86

(b) Test cases from [152]. Convergence was set at 10�6.

Table 3.3: Run-time cost comparison of layering strategies. Each of the test cases produced
results comparable to the others in accuracy.

From Table 3.3, there is no simple conclusion about the best approach. Strict layering

works best for the 18 tests cases from [149], while loose layering works best for the 21 test

3The example used here and shown in Figure 3.2 is the �rst test case from [152].
4These functions are described in Section 3.4.3.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 54

cases from [152]. Squashed layering is clearly inferior due to the C3 term in (3.2), though

this would change if the simpler Schweitzer approximate MVA were used instead. Batched

layering appears to be a reasonable compromise.

Convergence

The ~� term in (3.2) expresses the in
ation factor in the run-time cost due from the rate

of convergence in the outer iteration of the main algorithm. Experience has shown that

convergence problems arise when two or more servers in a particular submodel are saturated.

In some instances, tra�c is shifted from one server to the other during execution, causing

oscillations. Under-relaxing the waiting time result from each submodel usually corrects

the problem, but at a cost of more iterations of the outer loop.

3.3.3 MVA Submodel Construction

Once layer submodels are created from the original layered queueing network using one of

the four strategies described in the preceding section, MVA submodels are created to �nd

throughputs and response times. Clients in a given submodel are modelled as delay stations

and also form the routing chains in the corresponding MVA model (the populations of the

routing chains are described in the next section). The servers are modelled as queueing

stations where the queueing discipline is derived from the properties of the associated tasks.

Server types are described in Section 3.4.6 below. Figure 3.14 shows the MVA submodels

that arise from the example system using batched layering.

Initial Service Times

Initial service times for all of the MVA submodels are set by �nding the minimum service

time for each entry. The minimum service time value for an entry is found by adding the

entry's service time demand to the service time of all entries that it calls. Since entries

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 55

t1 t2

p1 t4t3

(a) Submodel 1

t2t1

p1 t3 t4

(b) MVA Submodel 1

t3 t4 t2

p4p3 t5

(c) Submodel 2

t4 t2t3

p4 t5p3

(d) MVA Submodel 2

t2 t5

p2

(e) Submodel 3

t2

p2

t5

(f) MVA Submodel 3

Figure 3.14: MVA submodels arising from the submodels shown in Figure 3.12.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 56

at higher levels depend on the service times of entries at lower levels, the bounds must be

found starting from the lowest level in the model.

Type one throughput bounds are de�ned as the throughputs of the entries when there are

no contention delays; i.e., they de�ne the \guaranteed not to exceed" values of throughput.

These bounds are simply the reciprocal of the minimum service times and are used to set

the initial request rates for send-no-reply requests.

Customer Derivation

Customers for routing chains are based on the number of potentially active instances of

a task when it appears as a client in a submodel. For simple single threaded �rst-come

�rst-served �xed-rate (FCFS-FR) tasks, the number of active instances is one. Multi- and

In�nite-servers pose another problem. Representing these tasks as routing chains with only

one customer would not produce the right customer mix in the queueing network and would

consequently produce low estimates for contention delays. Representing in�nite servers with

routing chains with an in�nite number of customers would produce an infeasible queueing

network. Similarly, a multiserver may not be be driven to the point where all its instances

are active at once; too many customers in the routing chain will overestimate the amount

of contention.

The customer derivation algorithm estimates the number of customers in each routing

chain based on the client's corresponding task type. For FCFS-FR clients, the number

of customers in the corresponding routing chain is set to one. For multiserver clients,

the number of customers is set to the minimum of either the number of servers at the

multiserver task, or to the number of clients that can call the multiserver. For in�nite

servers, the number of customers is the number of clients that call the task5.

5Reference tasks must always have a �xed number of instances. To model an unlimited source of requests,
use \open arrivals" instead.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 57

3.3.4 MVA Submodel Solution

The input parameters of visits to stations and customer populations of chains to each of

the MVA submodels are set by the overall input model and do not vary as it is solved.

Think times for pure clients (reference tasks) and service times for pure servers (generally

processors) are also set by the overall input model. The remaining parameters, think times

for chains in all but submodel 1 and the service times for all pure clients and active servers,

are based on previous solutions to the overall model, or from the type one throughput

bounds for the �rst iteration.

Active servers such as t3 in Figure 3.9 take on roles as both clients and servers in MVA

submodels. When a taskm is acting as a client in an MVA submodel l, it is always modelled

as in�nite server. Its service time demand is found by taking the sum of the waiting times

wmj to all of its servers in all other submodels except for those in the current submodel l:

sml
=

X
i2L;i 6=l

X
j2Si

wmj (3.3)

For example, Figure 3.15 shows task t3 acting as a client to processor p3 in MVA Submodel

2. Since t3 does not call any servers outside of this MVA submodel, its service time demand

is set to zero.

Clients in an MVA submodel also correspond directly to the chains in the submodel.

The think time, Zi;l, for chain i in an MVA submodel l is found from the utilization, �i;l�1,

of task i, when it is acting as a server in submodel l � 1:

Zi;l = Ni;l
1� �i;l�1
�i;l�1

(3.4)

From Figure 3.15, the think time for the chain corresponding to task t3 in MVA Submodel

2 is found from the utilization of the server t3 in MVA Submodel 16. As reference tasks

6Since clients are in�nite servers, the think time could be represented as service time demand at the client

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 58

Level 2

Level 3

Level 1

t3

p3

t3

p3

t1

t3

t1

t3

MVA Submodel 1 MVA Submodel 2

Zt3

wt3;p3

�t3

st3

Figure 3.15: Parameter
ow from one MVA submodel to another. Think times for submodel
l+ 1 are based on the utilizations found from solving submodel l. Service times for servers
in submodel l are based on the waiting times found in all submodels.

never appear as servers, the think time for the corresponding chain is always set to the

value de�ned initially by the user in the model input �le (by default, zero).

When a task m is acting as a server in an MVA submodel l, its service time is found by

taking the sum of the waiting times to all of its servers regardless of submodel:

sml
=
X
i2L

X
j2Si

wmj (3.5)

Returning to Figure 3.15; in MVA Submodel 1, task t3 is acting as one of the servers to

task t1. The service time demand for t3 in this MVA submodel is the waiting time found

in in MVA submodel 2 when t3 calls p3.

station instead of a think time for a chain.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 59

3.3.5 Overall Solution

The submodels are solved starting from submodel 1 and �nishing with submodel L, except

when strict layering is used (this algorithm was shown earlier in Figure 3.3). For strict

layering, submodels 1 through L�1 (the software submodel) are solved using this approach

�rst. Next, submodel L (the hardware submodel) is solved and the process repeats.

The outer iteration of the solution algorithm stops when the service time di�erence for

every submodel in the solution is less than the convergence value speci�ed by the user. The

service time di�erence for a submodel is the root mean square di�erence of the service time

of all of the phases in the submodel from one iteration to the next.

Back Propagation Improvement

Solution of layered models starts typically at the top most layer and works down. However,

as shown in Figure 3.15, submodel l is dependent on the results from submodel l + 1 and

vice versa. Consequently, contention delays are only propagated up one level at a time for

each iteration of the outer loop shown in Figure 3.3. Reversing the order of solution will

not improve matters. The top-down strategy propagates \think times" down during each

iteration of the inner loop, but at the cost of propagating waiting times up one level per

iteration of the outer loop. Reversing the order would propagate waiting times up more

quickly, but then think times would propagate down slowly.

There two ways to ameliorate this situation. The �rst is to simply re-run the type-

one throughput bounds calculation to re-estimate the waiting times, thus propagating the

contention delay from the lowest level upwards. However, care must be exercised so that

waiting times at intermediate levels do not oscillate from being set using two di�erent

techniques. The second way (the one used by the LQNS solver) is to cycle from the top to

the bottom, then back up again, much like an elevator in a building. This technique has

the advantage that the waiting times for level l � 1 will be based on actual contention at

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 60

level l, rather than simply being estimated.

3.4 Solver Design

The LQNS solver is written in the object oriented language C++ [134] to speed development,

increase the quality of code, to reduce maintenance costs and to allow changes to be made

easily [48, 6]. Furthermore, since classes can be substituted easily, algorithm comparisons

can be performed without having to retain multiple di�ering versions of the software. The

trade o� for all this
exibility is speed { object oriented programs can take more time to

do things due to dynamic lookup and dynamic memory management. This section gives a

brief overview of the software architecture of LQNS. The software itself is described in [38].

3.4.1 Principles of Design

The solver consists of two principle parts: an object representation of the input model and

an MVA solver to solve the submodels that arise from the input model, shown in Figure 3.16.

The rational for the classes for these two parts are described next. The implementation of

the classes are described in sections that follow.

Input Model Objects

The input model (a graph) consists of nodes and arcs. The nodes in the model are the

processors, tasks, entries and phases; these are all represented by their own classes. The

arcs in the model are the calls made from phases to entries.

Task and processor objects share many properties from the standpoint of the solver.

The shared components are de�ned by the class entity. Entities contain objects of class

Entry and Entries contain objects of class Phase.

Entity objects are used to de�ne the stations that appear in the MVA submodels. Entries

represent class changes for customer chains in the corresponding MVA submodels.

C
H
A
P
T
E
R
3
.
T
H
E
L
A
Y
E
R
E
D
Q
U
E
U
E
IN
G
N
E
T
W
O
R
K
S
O
L
V
E
R

61

Layerize

Submodel

Load

ServerCall

MVA

Phase

EntryEntity Open

TaskProcessor

Entries

Tasks

Calls

Client, Server

Submodels

LQN Model

MVA Submodel

Phases Station Customers

Stations

Figure 3.16: Overall class hierarchy of Layered Queueing Network solver. The notation is from Rumbaugh [118].

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 62

MVA Solver Objects

Exact and approximate MVA both use the same core algorithms to �nd the waiting times

at stations. The main di�erence between the two is that exact MVA recursively solves

the queueing network equations for all populations, whereas approximate MVA solves the

equations at one population level. Linearizer and Schweitzer approximate MVA are also

very similar (Linearizer adds a term to (2.2) to better approximate the change to the

queue caused by a new customer). These observation leads to the class hierarchy shown in

Figure 3.17.

In conventional programming languages, switch statements are used to choose among

a collection of di�erent alternatives. In the context of this solver, the alternatives for the

switch statement are the di�erent ways to compute the waiting time at a station. This

observation leads to the class hierarchy shown in Figure 3.23, where each class implements

its own waiting time expression.

3.4.2 Solver Class Organization

Figure 3.16 shows the overall class hierarchy for the LQNS solver. Execution begins at

the class Load. This class calls the input �le parser, which in turn creates instances of

the classes Call, Entry and Entity. Call objects represent arcs in the input model and are

used to connect Entry objects together. They store the visit counts to entries and the per-

call waiting time results. Entry objects contain Phase objects, which in turn store input

parameters such as service demand, and output parameters such as the elapsed time per

invocation of a phase. The Entity class is subclassed into Tasks and Processors which are,

in turn, subclassed into classes such as ReferenceTask and MultiProcessor. Collections of

entries, representing the entry lists of tasks and processors are stored in Entity objects.

The class Layerize is the heart of the solver. It constructs the layer submodels as

instances of class Submodel, then iterates among the submodels until the di�erences in the

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 63

service times for entries between iterations approaches a small value.

Class Submodel creates the relationships between the entities such as tasks and servers

in the MVA submodels. An entity may appear in two or more submodels, depending on

what it calls. For example, in Figure 3.14, task t2 appears as a delay station in all three

MVA submodels; task t4 appears as a delay station in MVA submodel 2, and as a queueing

station in MVA submodel 1.

The sections that follow describe the software design of the MVA solver and its stations

in greater detail.

3.4.3 Closed Model Mean Value Analysis

The Layered Queueing Network Solver implements �ve di�erent versions of Mean Value

Analysis, shown in the Class Hierarchy in Figure 3.17.

The principle results returned by the MVA class are:

1. a vector of throughputs �, dimensioned by the number of chains K,

2. An array of per-call waiting times, W dimensioned by the number of stationsM and

the number of chains K.

Inputs to an MVA object consists of:

1. a vector of customers N, dimensioned by the number of chains K.

2. a vector of think times Z, dimensioned by the number of chains K.

3. a vector of stations Q, dimensioned by the number of stationsM . A station has mean

service times, s, visits, v, and a waiting time calculation.

The MVA solver also takes as optional input values:

1. Overlap probabilities dimensioned by the number of chains K �K (see Chapter 8). If

fork-joins are not present in the model, the overlap probabilities are all set to one.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 64

customers:
stations:
throughput:

N
M
λ

step
solve

MVA

Schweitzer

core

OneStep

Exact

Linearizer

Fast

Figure 3.17: Class hierarchy for MVA objects.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 65

2. Priorties dimensioned by the number of chains K (see x3.4.5).

To represent the class changes, the input variables s and v (for service time and visits

respectively) for a station m are dimensioned both by the number of chains K in the

submodel, and by the number of entries for the task or processor, Em. The outputs of the

MVA calculation, waiting time W , queue length L, and utilization U are also dimensioned

by both K and Em.

Note: Refer to the glossary on Page xxi for de�nitions of the variables used by

the MVA solver.

Class MVA

Class MVA is the abstract superclass and implements one-step MVA through the function

step() shown in Figure 3.18. One-step MVA �nds the waiting times and throughputs for

n customers given the solutions at (n�ek)8k 2 K. Waiting times, W , at queueing stations

Q(m) are found by calling the function wait() 7. Once the waiting times are found, the

queue lengths, L, throughputs, �, and utilizations U are computed.

Class Exact MVA

Exact MVA [106, 104, 107] solves recursively the queueing network for all customer popu-

lations 0 < n � N. Provided that the MVA Submodel meets the constraints of a product

form queueing network [57, 4], the solution is exact.

Since the solution of the overall queueing network depends on the solutions of the net-

work at reduced population levels, the storage and computation time costs are

$ = O(M
KY
k=1

Nk)

7
wait() is implemented in class Server, described in Section 3.4.6.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 66

f One-step MVA g

proc step(n)
for m 1 to M do

for k 1 to K do

for e 1 to Em do

Rmek vmek � wait(m; e; k;n)
for k 1 to K do

begin

�k
nk

Zk +
MX
m=1

EmX
e=1

Rmek

for m 1 to M do

Lmek(n) �kRmek

end

f Compute marginal probabilities for load-dependent servers only g

marginalProbabilities(m)
end step

Figure 3.18: One-Step Mean Value Analysis for multiple routing chains with class changes.
The function wait() is implemented in class Server (See x3.4.6).

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 67

For large networks with multiple customers in each routing chain k, Exact MVA is pro-

hibitively expensive.

proc solve(N)
begin

for m 1 to M do

Lm(0) = 0
for n 1 to N do

step(n)
end solve

Figure 3.19: Exact Mean Value Analysis for multiple routing chains.

Class Schweitzer

For large queueing networks, Exact MVA is prohibitively expensive because of the recursive

solution. Schweitzer Approximate MVA [125] breaks the recursion by solving the network

at N and estimating the queue lengths at with one customer removed from each chain j by

assuming that Lmk(N� ej), is proportional to Lmk(N), i.e:

Lmk(N� ej) =

8><
>:

Lmk(N) for k 6= j

Nj�1
Nj

Lmk(N) for k = j

Figure 3.20 shows the Schweitzer approximate MVA algorithm as incorporated by Lin-

earizer. For Schweitzer approximate MVA, Dmkj(N)) = 0.

Class Linearizer

Schweitzer approximate MVA often has large errors because the queue length estimate

Lmk(N� ej) is not a simple ratio of the customers in chain j. Linearizer [12] improves the

accuracy of the Schweitzer approximation by calculating a scaling factor Dmkj to be used to

�nd the populations of the queues with one customer removed. Linearizer �nds the scaling

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 68

proc core(N)
begin

repeat

f Estimate Lmk g

for m 1 to M do

for e 1 to Em do

for k 1 to K do

begin

Fmek(N) = Lmek(N)=Nk

for j 1 to K do

Lmek(N� ej) (N� ej)k � (Fmek(N) +Dmekj(N))
end

f One-step MVA g

step(N)

f Termination test g

while max
m2M;k2K

jLImk(N)� LI�1mk (N)j

Nk
>

1

4000 + 16jNj
end core

Figure 3.20: Schweitzer MVA approximation for multiple routing chains.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 69

factors by solving the queueing network using the Schweitzer approximation at both the full

customer population N, and N� ej for all j. Figure 3.21 shows the linearizer algorthim.

Class FastLinearizer

Class FastLinearizer implements the improvements to Linearizer described in [28]. This

change reduces the computational complexity of Linearizer from O(MK3) to O(MK2).

The Aggregate Queue Length algorithm [155], which is based on Linearizer but with a

lower computational cost still, is not implemented.

Class OneStepMVA

Class OneStepMVA exports the step() function directly, so that the outer iteration of the

main algorithm shown in Figure 3.3 can perform the convergence test directly. Running the

Layered Queueing Network Solver in this fashion most closely approximates the solution

technique of the Stochastic Rendezvous Network solver.

3.4.4 Open Model Mean Value Analysis

Open models are those which have an in�nite stream of arriving customers. These customers

traverse the queueing network then depart. Open models arise in layered queueing networks

for either open arrival sources (see Figure 3.7(a) on page 46), or from asynchronous send-

no-reply interactions (see Figure 3.6(a) on page 45).

The Layered Queueing Network Solver implements mixed-model MVA [4, 7, 75] because

layer submodels may have both open and closed components. Chain 0 is used to represent

the open component in a given submodel (chains 1::K represent the closed chains). �0 is

the arrival rate of requests, either speci�ed as an open arrival stream in the input �le, or

found during the solution of a submodel and used as a send-no-reply request.

Figure 3.22 shows the mixed-model MVA algorithm. Servers with no closed chains

are solved using the function openWait(m) in step 3. The �m(N), mixedWait(m;N),

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 70

proc solve(N)
begin

for m 1 to M do f Initialization g
for e 1 to Em do

for k 1 to K do

begin

Lmek(N) Nk=MEm

for j 1 to K do

begin

Lmek(N� ej) (N� ej)k=M
Dmekj(N) 0
end

end

for I 1 to 2 do
begin

core(N) f Step 1 g
for c 1 to K do f Step 2 g

core(N� ec)

for m 1 to M do f Step 3 g
for e 1 to Em do

for k 1 to K do

begin

Fmek(N) Lmk(N)=Nk

for j 1 to K do

begin

Fmek(N� ej) Lmek(N� ej)=Nk

Dmekj(N) Fmek(N� ej)� Fmek(N)
end

end

end

core(N) f Step 1 g

end linearizer

Figure 3.21: Linearizer for multiple routing chains.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 71

and openWait(m) functions are implemented as alpha(), mixedWait() and openWait()

respecitively in class Server and its subclasses described below in x3.4.6.

1: f Scale service rates based on open tra�c g

�0m(N) = �m(N)�m(jNj�1)
�m(jNj)

2: f Solve Closed Model with scaled service rates �0m(N).g
3: f Solve Open Model, accounting for closed model tra�c.g

Wm0 mixedWait(m;N)

Figure 3.22: Mixed Model MVA

3.4.5 Priorities

Head-of-Line (HOL) and Preemptive-Resume (PR) priority scheduling are implemented for

Exact and Approximate MVA using the techniques of Bryant et. al. [8] and Eager et. al. [33]

respectively. These techniques solve the equations in Figure 3.18 starting with the chain

with the highest priority and �nishing with the chain the lowest priority. The waiting times

for chains with priorities less than the highest priority are in
ated after solution based on

the utilization of the higher priority chains.

For a Preemptive-Resume server, any customer with a higher priority than the cus-

tomer currently in service will preempt the lower priority customer. The change to waiting

time expression for this case is simple: the residence time for lower priority customers is

in
ated by a factor U 0, shown in (3.6) for the waiting time expression implemented in class

FCFSServer on page 75.

Wmek(N) =
smek +

PK
j=1

PEm
i=1 smijLmij(N� ek)

1� U 0
mk(N)

(3.6)

For a Head-of-Line server, the customer is service is allowed to complete regardless of

the priority of any arriving customers. Equation (3.6) is further modi�ed to account for the

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 72

delay caused by the customer in service.

Wmek(N) =
smek +

PK
j=1

PEm
i=1 smijLmij(N� ek) +

PK
j=k+1

PEm
i=1 smijUmij(N� ek)

1� U 0
mk(N)

(3.7)

The term U 0
mk in (3.6) and (3.7) is the in
ation factor. For exact MVA, U 0

mk is found

using

U 0
mk(N) =

k�1X
j=1

Umj(N� Lmj(N)ej) (3.8)

The summation is the utilization of all of the higher priority chains with N � Lmj(N)ej

representing a closed chain population with Lmj fewer chain j customers.

For approximate MVA, the solutions at all of the intermediate population vectors are

not available. Equation (3.8) is replaced with

U 0
mk(N) =

k�1X
j=1

Umj(N)� Lmj(N) [Umj(N)� Umj(N� ej)] (3.9)

Priorities have only been implemented for �xed-rate (simple) single and multi-phase

servers. Since priorities violate the product form assumptions of routing homogeneity, there

are cases where the solution accuracy is poor.

3.4.6 Server Objects

MVA submodels consist of Server objects which represent stations in the queueing network.

Server objects are created by Entity objects during MVA submodel construction. Subclasses

of Server are based on properties such as second phase, highly variable service time, and

station multiplicity de�ned by the corresponding Entity object. Figure 3.23 shows the

high-level class hierarchy for server objects. This Section describes all of the server types

except for Reiser-Multi and Phased. Simple Phased-Servers are described in Chapter 5.

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 73

Multiservers, both simple and multi-phase, are described in Chapter 6.

Delay PS FCFS Phased

HVFCFS

variance

Reiser_Multi

copies

Server
service
visits
wait

wait

Figure 3.23: Class hierarchy for Server objects.

Class Server

Class Server is an abstract super class used to de�ne the interface to wait() and openWait().

This class is also used to implement alpha() and mixedWait, needed for open and mixed

models, using (3.10) and (3.11) respectively.

�(n)m0 = 1=�n+1m0 (3.10)

Wme0(N) = Wme0 [1 + Lm(N)] (3.11)

The termWme0 in (3.11) is the open chain's waiting time not considering tra�c from the

closed chains. This term is computed using the openWait() function de�ned in subclasses

of class Server. Both alpha() and mixedWait() are overridden in subclasses that have

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 74

state-dependent service times (i.e. delay and multiservers).

Class Delay Server

Customers at a delay server each receive service from their own server, so there is no

queueing component to the waiting time; the waiting time is simply the customer's service

demand [4].

Wmek(n) = smek (3.12)

Equation (3.14) is used to �nd the waiting time for an open model. This class also

overrides the implemenation of alpha(), and mixedWait() using (3.13), (3.14) and (3.15)

respectively, because there is no queueing at a delay server,

�(n)m0 = �nm0 (3.13)

Wme0 = sme0 (3.14)

Wme0(N) = sme0 (3.15)

Class PS Server

Processor Sharing (PS) Servers are used for stations using an idealized form of round-robin

scheduling where the time slice that each task gets is e�ectively zero. In e�ect, all tasks are

serviced simultaneously, but at a rate inversely proportional to the number of customers at

a PS Server in a closed queueing model is shown in (3.16) [107]. Customers at processor

sharing servers can have chain-dependent service times.

Wmek(n) = smek

2
41 + KX

j=1

EmX
i=1

Lmij(n� ek)

3
5 (3.16)

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 75

This equation is also the product-form expression for First-Come, First Served and Last-

Come, First-Served Premptive Resume �xed-rate servers.

Equation (3.17) [73, (3.55)] is the waiting time expression for an open model.

Wme0 =
sme0

1� �m
(3.17)

Class FCFS Server

In a product-form queueing network, the service time for customers at a multi-class �rst-

come, �rst-served �xed rate server must all be identical. When the average service times

di�er, a useful approximation simply multiplies the service time term in (3.16) through the

terms inside the brackets [75], i.e.:

Wmek(n) = smek +
KX
j=1

EmX
i=1

smijLmij(n� ek) (3.18)

This equation does not take into account the variance in service time; in cases where the

per-class service time is substantially di�erent, large errors will result.

Equation 3.19 [73, (3.48)] is the waiting time expression in an open model.

Wme0 =
Sm0

1� �m
(3.19)

Sm0 =

PEm
e=1 �mesme0PEm

e=1 �me

Class HVFCFS Server

Equation 3.18 tends to be inaccurate when there is a large amount of variability in the

service times. A more accurate approximation, by Reiser [108], breaks the time a customer

spends waiting at a station, Lmej(n � ek), into two components, the time waiting in the

queue, Qmej(n � ek), and the remaining time for the customer in service at the station,

CHAPTER 3. THE LAYERED QUEUEING NETWORK SOLVER 76

rmej , which is calculated as a Mean Residual Life (MRL):

Wmek(n) = smek +
KX
j=1

EmX
i=1

smijQmij(n� ek) +
KX
j=1

EmX
i=1

rmijUmij(n� ek) (3.20)

rmij =
smij

2
+

�2mij

2smij
(3.21)

Qmij(n� ek) = Lmij(n� ek)� Umij(n� ek)

The variance, �mij , is calculated using an auxiliary model, either using the method in [110]

or in [152], based on the phase type.

Equation (3.22) [73, (3.54)] �nds the waiting time for an open model.

Wme0 = sme0 +
�m[Sm0 + �=Sm0]

2(1� �m)
(3.22)

Sm0 =

PEm
e=1 �me0sme0PEm

e=1 �me0

3.4.7 Conclusions

The new solver LQNS includes elements from many sources, which have been referenced.

The author's contribution is the new software design expressed by the class relationship in

Section 3.4, the batched and squashed layering strategies described in Section 3.3.2, and

from the forwarding transformation described in Section 3.3.1.

The author also de�ned a new input grammar for the model language, based on the

earlier (SRVN) language. Additional features of the solver for algorithms which are new

to this thesis are presented in the chapters that follow. A simulator and a translator (to

the input language for GreatSPN) have also been written so that the execution time and

accuracy of the solver can be compared to simulations and exact results where possible.

Chapter 4

Tra�c Dependencies in Layered

Queueing Networks

Interlocking is a phenomenon that occurs in the solution of a layered queueing network

when a client and its server share a common resource; the resource may be either another

software server or a hardware device. Tra�c dependencies at the lower-level servers in

multipley layered systems in turn a�ect the prediction of delays. These dependencies arise

because the client task can be queued on, blocked on or executing within only one task

or device at a time. Solutions which ignore interlocking tend to be pessimistic because

arrivals from interlocked clients are treated as independent events when in fact they are

correlated. Furthermore, these solutions may show that the lower level servers and devices

are not fully utilized when in fact they are. Other authors have recognized that interlocking

is a phenomenon which must be considered. However, the SRVN solver [152] only deals

with \send" interlocking (see Figure 4.1) while the MOL solver [110] only accounts for

interlocking at the device level. The improvement described here generalizes the algorithm

of Woodside et. al. to handle a broader range of systems by searching more deeply in the

call graph to �nd these dependencies.

77

CHAPTER 4. TRAFFIC DEPENDENCIES 78

The material in this chapter was mostly published in [39].

4.1 Interlock Phenomena

This section describes the two forms of interlocking found in client-server systems: Send

(shown in Figure 4.1(a)) and Split (Figure 4.1(b)). Interlocking arises when a common

parent task makes requests to a server through independent nested RPC's or call paths

which may pass through intermediate servers in the model. The point where the
ow splits

along independent paths is called the \split point". For example, in Figure 4.1(a), the �rst

path consists of the arc labeled yac; the second path consists of the arcs labeled yab and

ybc. In Figure 4.1(b), the �rst path is comprised of arcs labeled yea and yac and the second

yeb and ybd. In both cases the set of clients labeled t0 are the common parents at the split

point in the
ow and the task labeled t3 is the common server.

t1

t3

t2
b

a

c

yac

yab

yac

(a) Send Interlock

t1 t2

t3

t0

a

e

b

dc

yea yeb

yac ybd

(b) Split Interlock

Figure 4.1: Interlocking arises when tra�c
ows from intermediate servers (eg. tasks t1
and t2) are correlated due to stimulus from a common source. In both cases, the client
cannot be making a request to the server while blocked on the task t1.

Send interlocking arises when there are one or more direct paths between the common

parent and the common server (for example the arc labeled yab in Figure 4.1(a)). Both

CHAPTER 4. TRAFFIC DEPENDENCIES 79

the set of client tasks at the split point for the
ows, t0, and the intermediate interlocked

task, t2, are direct parents of the common server. Split interlocking arises when a common

parent task calls independent intermediate tasks which in turn share a common resource.

In this case, the split point is not a direct parent of the common resource. In both cases,

the common resource may be a device or another task.

Figures 4.1(a) and 4.1(b) show the very simplest forms of interlocking. More complicated

patterns can arise, either by adding more tasks in series along a path, or by adding more

paths in parallel. An example of a complex interaction pattern can be found in Section 4.2

below.

4.1.1 Factors That A�ect Performance Estimation

Four factors a�ect the amount of error introduced into the solution of the model:

1. The number of clients at a common parent split point. Increasing the number of

common parents decreases the e�ect of interlocking.

2. The number of independent paths from the split point to the common resource. In-

creasing the number of independent paths increases the e�ect from interlocked
ows.

3. The utilization of the interlocked tasks and devices. The error increases with overall

utilization.

4. The amount of included service time in the interlocked tasks. Systems with large

amounts of included service time close to the split point will show the largest e�ects

from interlocking.

These factors are illustrated in Section 4.3 with examples.

4.2 Calculation of Contention with Interlocked Flows

The algorithm to estimate and correct for the interlocked
ow rates is split into three parts:

CHAPTER 4. TRAFFIC DEPENDENCIES 80

1. the location of interlocking paths,

2. the calculation of interlocked
ow components, and

3. queue adjustments in the MVA solver

described below.

Path Finder

The purpose of the path �nder is to identify calls which have a common source, like t1 in

Figure 4.1(a). Paths consist of nested remote procedure calls from an originating client task

to a server. They are located by following the requests made from one task to the next

using a depth-�rst recursive search. By incorporating the call rate information associated

with each request while tracing a path, the
ow component originated by any parent to

any entry can be determined. This information is stored by the solver in an ne � ne path

matrix where ne is the total number of entries in the model. Each entry in the matrix stores

the number of calls to the destination entry caused by an invocation of the source entry.

Elements in the matrix are denoted by path(a; b), where a is the source entry and b is the

destination. By de�nition, the diagonal of the matrix is set to 1 indicating that each call

to the associated entry causes it to execute once.

Interlocked Flows

The purpose of the interlocked
ow �nder is to locate all common sources of tra�c to a

particular task in a model since interlocked
ows, in general, do not have to go to the same

entry. The path matrix table de�ned in the preceding section is used to meet this objective.

Common parents to a task j are located by sequencing through all pairings of incoming

arcs that originate from di�erent tasks. The originating entries for each arc, say a and c,

are then used as the destination entries in the path table. The table is then searched for

CHAPTER 4. TRAFFIC DEPENDENCIES 81

source entries belonging to a common task that calls both entries. This algorithm is shown

in Figure 4.2 below.

f Find parents common to entries a and c. g

common parent(a; c)
P ; fSet of common entriesg
for i 2 T do fSearch over all tasks, T g

for e 2 E(i) do fSearch over all entries, E(i)g
for f 2 E(i) do

if path(e; a)� path(f; c) > 0 then
P P [e

endif

endfor

endfor

endfor

return P fReturn the set of common entriesg
end common parent

Figure 4.2: Common parent �nder for interlocking.

As the path table stores call rates from one entry to another rather than by entry to arc,

it is necessary to identify the arcs to the common server by their associated source entries.

The
ow component from the originating source entry e to the ultimate destination entry

c of task j is then found using:

�ec = �e � path(e; a) � yac (4.1)

where yac denotes the number of calls from entry a on task i to entry c on task j, i 6= j.

Furthermore, the throughput at any particular entry a due to calls at e can be found by

the sum:

�a =
X
e2C

�e � path(e; a) (4.2)

CHAPTER 4. TRAFFIC DEPENDENCIES 82

where C is the set of entries belonging to pure client tasks. In fact, any unique cut-set to

the task j can be used in place of C in (4.2). By knowing the total throughput at an entry a

and the throughput at a due to requests from a particular entry e, it is possible to separate

ow caused by common parents from
ow from other sources.

The common parent �nder shown in Figure 4.2 returns a set of entries (denoted as P)

that generate non-zero
ow to the entries labeled a and c. This set must be pruned of all

entries that do not result in the split in
ow. The interlocked
ow component, �IL, is then

found by using the expression:

�ILac = yac
X
e2P

�e � path(e; a) (4.3)

Interlock Adjustment

The interlock adjustment is an adjustment to the contention seen by a request to a certain

entry. It is accomplished by removing
ow which originates from common parents that

arrives by di�erent paths, in the calculation of queue lengths for Mean Value Analysis.

Equation (4.4) shows the queue length calculation where Lmk is the queue length for chain

k at station m, N is the population vector by chain, Wmk is the waiting time for chain k

at station m and �mk is the
ow to station m for chain k. �mk us divided into two parts

using (4.3), so:

Lmk(N) = �mkWmk(N) (4.4)

�mk = �ILmk + �NOILmk (4.5)

Client classes in each submodel of a layered queueing model are represented by separate

chains in the underlying MVA model. Flow from a client task corresponding to chain k to

CHAPTER 4. TRAFFIC DEPENDENCIES 83

the serving station m is found using:

�mk =
X

a2E(k)

X
c2E(m)

�ac (4.6)

where the expression E(k) denotes the set of entries corresponding to task k.

The interlock adjustment separates the
ow from common parents from
ow from other

sources in �mk. The interlocked
ow is then reduced in proportion to the total number of

sources (labeled as ns in (4.7)) of
ow along all chains with interlock. These sources are

the tasks at the point where the interlock paths diverge plus the immediate parents of the

tasks that lie along the interlocked paths that source non-interlocked
ow. In e�ect, one

source out of several that generate the
ow rate �mk is being removed. Equation (4.4) is

then replaced with:

Lmk(N) =

�
ns � 1

ns
�ILmk + �NOILmk

�
Wmk(N) (4.7)

Interlocking has its greatest e�ect on accuracy when there are a small number of ultimate

sources creating a wide diversity of requests at lower levels. The need to adjust for interlock

is a side e�ect of the layered solution strategy which only models the immediate source of

a request.

4.2.1 Path Finder Example

Figure 4.3 shows an example with multiple interlocking paths. The corresponding inter-

locking path table is shown in Table 4.1.

Consider task S1. Its entries are h, i and j. Entry h is called by entry c, entry i is

called by entry d, and entry j is called by both entries f and g. As entries c and d belong

to a common task, the arcs ych and ydi are not separate paths for interlocked
ow (task I5

serializes the requests), therefore they are not paired when locating common sources. The

set of pairings that must be considered is f(c; f); (c; g); (d;f); (d; g); (f;g)g. For (c; f) the

CHAPTER 4. TRAFFIC DEPENDENCIES 84

[1.0]

C1

b
[1]

I2

[1.0]

C2

[1]
f

I3

g
[1]

I4

[1]
a

I1

c
[1]

d
[1]

I5

h
[0.75] [1]

i
[1.25]

j

S1

yC1a

(1.5)

yC1b

(0.5)
yC2b

(1)

yC2g

(1)

(1)
ybf

(1)
yac

(1)
yfj

(1)
ygj

(1)
yfd

(1)
ydi

(1)
ych

Figure 4.3: Complex Interlock Case. The number immediately below an arc labels is the
arc's call rate. The number associated with an entry label is service time.

CHAPTER 4. TRAFFIC DEPENDENCIES 85

Complex Interlock

Src Destination Entry
Ent C1 C2 a b c d f g h i j

C1 1. 0. 1.5 0.5 1.5 0.5 0.5 0. 1.5 0.5 0.5
C2 0. 1. 0. 1. 0. 1. 1. 1. 0. 1. 2.
a 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0.
b 0. 0. 0. 1. 0. 1. 1. 0. 0. 1. 1.
c 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 0.
d 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0.
f 0. 0. 0. 0. 0. 1. 1. 0. 0. 1. 1.
g 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1.
h 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.
i 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.
j 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.

Table 4.1: Path table for complex example of path �nding.

only row that has non-zero entries for the columns c and f is C1. There are no rows that

meet the criteria for (c; g). For (d; f), matches are found for rows C1, C2, b and f. This set

is pruned to row f only as this entry spans the least number of layers to task S1. Finally,

C2 is the only common entry for (d; g) and (f; g). After pruning entries that do not split

ow, the path �nding algorithm returns the set fC1; f; C2g.

4.3 Examples

The following examples illustrate the factors identi�ed earlier that a�ect performance esti-

mation identi�ed earlier and how compensating for interlocked
ows improves the solution

accuracy. This section concludes with a discussion on how these factors a�ect performance

estimation.

CHAPTER 4. TRAFFIC DEPENDENCIES 86

4.3.1 Example 1: Common Server System (Send Interlock)

Figure 4.4 shows a client-server system with a database and a �le system running on a

common processor. Each client runs on its own processor. The central database computer

has two tasks running on it called Database and FileSys (disks are not shown). The service

time for both tasks is 1.0 units. The service time at the client tasks is varied from 0.01 units

to 100.0 units by powers of 10. The number of clients is varied from 1 to 50. Each client

makes one request per cycle on average. This request causes the DataBase tasks to make

one request to the FileSys task. The request parameters are shown next to the appropriate

arc on the �gure.

CPU

CPU

(1)

FileSys

[1.0]

Database

[1.0]

Clients

[0.01] - [100.0]

(1)

nc

nc

Figure 4.4: Parameters for Example 1 (x4.3.1). Entries are not shown.

The throughputs (among other performance results) were found by an exact Markovian

CHAPTER 4. TRAFFIC DEPENDENCIES 87

analysis using the GreatSPN [17] Petri Net solver for the cases with one to four clients, by

simulation for the cases with ten and �fty clients and by the layered queuing network solver

using MVA for all cases with and without the queue length correction for interlocked
ows.

Without the interlock correction, the relative error ranges up to a maximum of 32.63% as

the demand on the database computer increases. However, with the interlocking correction

enabled, the maximum error is only 1.61%, with the typical error less than 0.1%. The

relative error for all test cases is shown in Table 4.2.

Client Service Time
nc % Error, No interlock correction % Error, With interlock correction

0.01 0.10 1.0 10.0 100.0 0.01 0.10 1.0 10.0 100.0

1 32.33 30.78 19.46 1.69 0.02 0.0 0.00 0.00 0.00 0.00
2 32.51 32.39 27.97 3.63 0.04 0.0 0.09 1.47 0.51 0.01
3 32.51 32.51 31.44 6.52 0.06 0.0 0.01 0.48 1.02 0.02
4 32.51 32.51 32.34 10.39 0.08 0.0 0.00 0.04 1.52 0.03
10 32.60y 32.63y 32.55y 30.84y 0.39y 0.16y 0.26y 0.07y 0.67y 0.16y
50 32.60y 32.63y 32.55y 32.59y 24.06y 0.16y 0.26y 0.06y 0.16y 1.61y

Table 4.2: Relative Error in client throughput versus number of clients, nc, and varying
client service time for the system in Figure 4.4. The results marked with `y' were compared
against simulation runs with a 95% con�dence interval of �1%.

From Table 4.2, the largest error occurs with the highest customer demand on the

database computer. The reason for this relationship can be seen easily from Figure 4.5. This

graph shows the waiting time versus utilization for the database system when the number

of clients was varied from one to four and the client service time was set to 1.0. Without

the interlock correction (the points marked with NOIL), the included service introduced by

the nested RPC limits the utilization of the processor to about 0.67 because the DataBase

task spends 1 unit of time at the processor and 1 unit of delay for included service. With

the interlock correction, the waiting times calculated by the layered queuing network solver

and the Markovian analyzer are nearly identical.

The lesson from this example is that errors can be very large if interlocking is ignored.

CHAPTER 4. TRAFFIC DEPENDENCIES 88

In fact, they can be arbitrary large, as is shown next.

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

W
ai

tin
g

T
im

e

Utilization

"NOIL"
"EXACT"

"IL"

Figure 4.5: Waiting time versus utilization for three clients. Exact results generated using
Markovian analysis are labeled EXACT, and analytic results using layered queueing networks
with and without interlock compensation are labeled IL and NOIL respectively.

4.3.2 Example 2: Send Interlock

This example is based on the example in the preceding section. However, the service time

at the FileSys and DataBase tasks were varied instead of varying the demand generated

by the clients. The number of clients was �xed at 3, and the service time for each client

was set to 1 unit. Table 4.3 shows the service times used and the results for the interlocked

and non-interlocked layered queueing network solutions using Mean Value Analysis. As the

service time of the FileSys task was increased, the relative error in the non-interlocked

solution also increased. The utilization at the processor was close to 1.0 for all cases.

CHAPTER 4. TRAFFIC DEPENDENCIES 89

Srv. Time Exact No Interlock Interlock
sDB sFS Util. % � Util. % �

100.0 0.01 1. 0.7321 26.79 1. 0.00
10.0 0.1 0.9999 0.7348 26.51 0.9994 0.04
1.0 1.0 0.9796 0.6716 31.44 0.9843 0.48
0.1 10.0 0.9922 0.5033 49.28 0.9994 0.73
0.01 100.0 0.9992 0.5 49.96 1. 0.08

Table 4.3: Utilization and relative error in utilization for the database computer for the
service times sDB and sFS of the DataBase and FileSys tasks respectively. Exact results
were generated using Markovian analysis.

4.3.3 Example 3: Split Interlock

Figure 4.6 shows the example used earlier in Section 4.1.1. The parameters for the interme-

diate tasks, t1 through t4 and common server are shown on the �gure. The call rates from

the common parent Client to the intermediate level tasks are shown as [1=r] where r is

the number of intermediate tasks (this call rate caused the client throughput to be constant

regardless of the number of intermediate tasks for a system with only one client).

Table 4.4 shows the relative error in throughput for each case (the non-interlocked case is

shown in the graph in Figure 4.7). As the number of clients was increased, the relative error

in the layered queueing network solution without the interlocking correction decreased. As

the number of independent paths was increased, the error increased.

Number of Intermediate Tasks (r)
nc No interlock Interlock

2 3 4 2 3 4

1 5.15 7.15 8.23 0.00 0.00 0.00
2 3.59 6.37 8.11 1.20 0.59 0.12
3 2.61 5.27 7.19 1.65 1.20 0.64
4 2.00 4.26 6.01 1.69 1.62 1.22

Table 4.4: Relative error in client throughput versus number of clients and number of
intermediate tasks for the non-interlocked and interlocked solutions for Figure 4.6.

CHAPTER 4. TRAFFIC DEPENDENCIES 90

r = 1 r = 4r = 3r = 2

[1.0]

(1=r)(1=r)

FileSys

[1.0]

Clients

(1=r)(1=r)

[1.0][1.0][1.0][1.0]

t1 t2 t3 t4

nc

(1)(1)(1)(1)

Figure 4.6: Parameters for split interlock model.

4.3.4 Factors that A�ect Performance Estimation

Example 3 above demonstrates the e�ect on solution accuracy caused by the �rst two factors

(common parents and interlocked paths) listed earlier in Section 4.1.1. The results for the

non-interlocked solution are plotted in the graph shown in Figure 4.7. Increasing the number

of clients at the common parent split point decreased the error in the solution without

the interlock compensation because, as the number of clients increased, the likelihood of a

request arriving at a common server meeting another request from the same common parent

but along a di�erent path decreased. Increasing the number of independent paths increased

the solution error caused by interlock
ows. When the submodel for the common server is

solved without compensating for interlocking, each interlocked call path represents an arrival

from an independent source. Increasing the paths increases the number of independent

sources.

Example 1 above demonstrates the e�ect of utilization on a system with send interlock-

ing. As the utilization of the database computer increased, the relative error in the solution

CHAPTER 4. TRAFFIC DEPENDENCIES 91

0

2

4

6

8

10

1 2 3 4

R
el

at
iv

e
E

rr
or

 (
%

)

Number of Clients

"4-PATHS"
"3-PATHS"
"2-PATHS"

Figure 4.7: Relative Error versus Number of Clients with two, three and four call paths for
the split interlock case shown in Figure 4.1(b) and 4.6.

also increased. The upper limit of the utilization for the non-interlocked solution, 0.675 in

Figure 4.7, is due to the e�ect of included service.

Example 2 above shows the e�ect of included service on the error in the solution. If the

bulk of the service time in the interlocked tasks is located at or near the common server (i.e.

DataBase), then the included service delay will be small and the overall utilization high.

However, if the bulk of the service time is in the intermediate task (i.e. FileSys), then the

included service time at the common parent will be high which will create low utilizations.

4.4 Conclusions

Ignoring interlocking e�ects when solving multilayer client-server performance models can

have a large impact on the accuracy of the solution of the performance model. There are

four factors which a�ect the relative error: the number tasks involved in the interlock, the

CHAPTER 4. TRAFFIC DEPENDENCIES 92

number of interlocked paths in the model, the utilization of the interlocked tasks and devices,

and the amount of included service in the tasks acting as clients. Increasing the number

of tasks associated with the interlocked
ow paths, ns, decreases the relative error as the

ow components are adjusted in proportion to ns�1
ns

. Consequently, the error introduced by

ignoring interlocking will be quite small as the number of parent tasks increases. Conversely,

increasing the number of interlocked paths increases the relative error in the solution because

an arrival from an interlocked client task may now encounter its own requests from additional

sources. The utilization of the devices and the tasks involved in the interlock also a�ects

solution error. As the utilization goes up, the relative error increases. Finally, systems that

have large amounts of included service time in the tasks where the interlocked
ows split

will also tend to show larger relative amounts of error. This e�ect will manifest itself with

lower than expected utilizations at the common server.

Interlocking can occur on both tasks and devices. The e�ect occurs whenever requests

from a task split then rejoin at a lower level in the model. Tasks running on a common

processor that communicate through remote procedure calls can often be a source of solution

error.

Chapter 5

Second Phases and Phased

Fixed-Rate Servers

Second phases arise naturally in the send-receive-reply pattern of communication, which is

widely used in distributed systems, often with a Remote Procedure Call (RPC). This pattern

imposes waiting on the sender or client in the interaction, which can be reduced by sending

the reply as early as possible, referred to as an early reply. To perform an early reply, any

server operations which can be done later are postponed until after replying; the deferred

work is termed a second phase of service [92, 76]. In some cases, the early reply will improve

performance, since it lets the two processes proceed in parallel. Second phases are common

in practice. They perform \cleanup" operations such as delayed writes to stable storage in

database systems, logging of non-critical data, and deallocation of resources [26, page 131].

They also may provide autonomous operations by the server, triggered by the client but

executed in parallel. Smith and Williams [132] describe a real-time system which includes a

second phase. Second phases can also be used to model �le systems with delayed writes (see

Chapter 9). Many existing distributed operating systems support second phase execution,

including Ameoba [136], Chorus [114], V [15], and Sun RPC [26]. Second phase service is

93

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 94

also directly supported in the programming language Ada, in code segments following an

\end accept" [2].

The two phases of service are illustrated in Figure 5.1(a). The time interval from the

instant of the receive at the server to the time of the reply is described as phase one; the

server execution after the reply, is phase two. From the standpoint of the clients, the server's

phase two is a vacation { a client cannot receive service during this period. A request made

by a client while the vacation caused by the client's own previous service request is still

underway is called an overtaking arrival (see Figure 5.1(b)).

client

server
reply

send

receive receive

send

ph. 1 ph. 1ph. 2

(a) Non-overtaking arrival

client

server
reply

send

receive receive

ph. 1 ph. 1ph. 2

send
queue

(b) Overtaking arrival

Figure 5.1: Overtaking and non-overtaking arrivals from a client task i to a server task j.

The use of a second phase improves performance most at lightly loaded servers, as is

demonstrated below. If a certain server is the dominant system bottleneck then putting

some of its work in second phase will not improve its capacity (if the amount of work is still

the same); the bottleneck and associated waiting will remain the same.

For open systems, a single queue with a second phase server has been thoroughly an-

alyzed as a type GNENP (General Non-Exhaustive Service, Non-Preemptive), SV (Single

Vacation) server [32, x2]. An early version of the model, the \walking server" [44, Chapter

2] has been used to model drum-based memories [72] and other computer devices. However,

in general there has been little work on closed models.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 95

For a single �nite source queue with two-phase service, Petriu andWoodside described an

approximation based on Markov Chain decomposition, and showed how it can be extended

to approximate a closed queueing network and a layered queueing network [100]. This

kind of server was incorporated into the SRVN [152] and MOL [113] solvers. Both of

these implementations give large errors for some cases, as will be shown. The errors are

particularly serious when the client process also has two phases and they have di�erent

service interactions.

This work describes an improved approximation which takes into account the phase of

the client when it sends a request, its request behaviour in each phase, and the e�ect of

second phases on the queue length calculation in Mean Value Analysis (MVA). This reduced

the worst-case errors by up to an order of magnitude in the examples reported below.

5.1 Performance Enhancement through Early Server Replies

This section will explore how system throughput is improved by using the second phase in

a design. Three cases are considered: a very simple system consisting of a set of clients

calling a single server, a more complex case where two-phase clients call three two-phase

servers, and a deeply layered system with four tiers of two-phase servers.

5.1.1 Example 1: Single Server, Single Phase Client

The simple client-server system system shown in Figure 5.2 is the �rst example. The set

of client tasks i execute a cycle, and have only one phase (i.e. si1 = 0; yij1 = 0) in each

cycle. At the set of clients, the CPU demands were si2 = 4. At the server sj1 + sj2 = 1,

and the fraction � = sj1=(sj1 + sj2) was varied from 0 to 1. When the phase-one fraction

� equals 0, all the service time is in phase 2 and the model is representative of messaging

employed in transputers [53]. When � equals 1, the model represents a standard RPC client-

server interaction which has a simple product-form queueing model with mi customers, that

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 96

alternate between two classes for phase 1 and phase 2. The mean number of requests from

client i to server j per client cycle, yij2, was varied from 0.5 to 20 in order to vary the load

on the server. Finally, the number of client tasks mi was varied from 1 to 10.

(yij1; yij2)

Task j

[sj1; sj2]

Task i

[si1; si2]
mi

Figure 5.2: Example 1: Simple two-level client-server system. Service times for task i in
phase p are shown as sip. The number of calls from task i in phase p to task j is shown as
yijp.

Results were obtained for cases with exponential service time distributions and random

service requests, by solving the underlying Markov chain for the entire system, using the

GreatSPN Petri net performance tool [17]. Figure 5.3 shows the response time and utiliza-

tion results for the con�gurations with one and ten client tasks. When server task utilization

is low and the number of clients is small, replying as early as possible can have substantial

performance bene�ts. When the server is saturated the second phase is immaterial. When

there are many clients the impact of the second phase is reduced.

5.1.2 Example 2: Multiple Servers and Two Phase Clients

In this example, shown in Figure 5.4 the client cycle goes through two phases with di�erent

server demands, and there are three servers. The number of clients, m0, the fraction of

phase-one to total service time at each of the servers, �, and the number of visits from the

client task to the server tasks, y, were varied. The total number of requests from client task

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 97

20
5

1.0
0.5
yij2

1 Client

�

Rij

10.80.60.40.20

1.2

1

0.8

0.6

0.4

0.2

0

0.8
0.4
0.2
0.1
yij2

10 Clients

�

Rij

10.80.60.40.20

5

4

3

2

1

0

(a) Per-call response time for each request from client to server

1 Client

�

Uj

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

10 Clients

�

Uj

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(b) Server utilization

Figure 5.3: Performance results for Example 1 shown in Figure 5.3. � varies from 9 (all
phase 2) to 1 (all phase 1). Response times, R, show the most improvements when utilization
at the server is low.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 98

0 to each of the servers was the same, however, the fraction of requests from phase one and

phase two of the client was di�erent for each server. The service time at the client task was

�xed at 0.5 for phases one and two.

(y; 0)

m0

(0; y)

Server Task 3

[2�;2(1� �)]

Client Task 0

Server Task 2

[2�;2(1� �)]

[0.5,0.5]

[2�;2(1� �)]

(y=2; y=2)

Server Task 1

Figure 5.4: Example 2: Complex Client-Server system.

Figure 5.5 shows the response time and utilizations for the system in Figure 5.4 with

m0 = 1; 3; 5 and 10 client tasks. The request rate, y, from the client task 0 to the servers was

varied to examine the e�ects of server load and is shown on each of the graphs in Figure 5.5.

Exact results were obtained from a Markov model for 1, 3 and 5 client tasks. Simulation

was used for the 10 client case because of state space problems with the Markovian solver.

The simulation results were generated with 95% con�dence intervals of �0:5%.

In all the cases studied, the worst response times occurred when the fraction of phase

one service time � = 1 (i.e., no phase two). At low utilizations (small y), the best response

time occurred when � = 0 (i.e., immediate reply to client). At high utilizations, the best

response times occurred at some intermediate value of �. For the other servers the curves

are not shown but the same observations hold.

5.1.3 Example 3: Deeply Layered System

Figure 5.6 shows a deeply-layered client-server system with multiple phases at all levels.

The total service time at each of the tasks was �xed at 1.0, but the fraction of phase-one

service time, �, was varied from 0 to 1. Each task made one request to its immediate

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 99

U : 10:0
R : 10:0
U : 0:1
R : 0:1

y

1 Client

�

U1R01

1

0.8

0.6

0.4

0.2

0
10.80.60.40.20

3

2.5

2

1.5

1

0.5

0 U : 1:0
R : 1:0
U : 0:1
R : 0:1

y

3 Clients

�

U1R01

1

0.8

0.6

0.4

0.2

0
10.80.60.40.20

5

4

3

2

1

0

U : 0:5
R : 0:5
U : 0:1
R : 0:1

y

5 Clients

�

U1R01

1

0.8

0.6

0.4

0.2

0
10.80.60.40.20

7
6.5
6

5.5
5

4.5
4

3.5
3 U : 0:3

R : 0:3
U : 0:03
R : 0:03

y

10 Clients

�

U1R01

1

0.8

0.6

0.4

0.2

0
10.80.60.40.20

12

10

8

6

4

2

Figure 5.5: Per-call response time for a request from Client task 0 to Server task 1 and
Utilization at Server Task 1 for the model in Figure 5.4.

lower-level server from phase one only. The number of client tasks, m1, was set at 1, 2 and

3 again to study the e�ect of utilization on throughput and response time.

Figure 5.7 shows response time verses the number of client tasks. This model shows

that early replies always improve performance.

5.1.4 Conclusions

To get more insight into the in
uence of server utilization and number of clients, the results

of Example 1 were analyzed further. A naive ideal e�ect of a factor � is a reduction in

response time by the same factor. Ideally then we might hope that R(�) = �R(1). The

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 100

(1,0)

(1,0)

(1,0)(1,0) (1,0)

(1,0)

m1

t2

t1

t3

t4

t53t52t51

[�; 1��]

[�; 1��][�; 1��][�; 1��]

[0; 1]

[�; 1��]

[�; 1��]

Figure 5.6: Example 3: Deeply layered (multiple tier) client server system.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 101

3
2
1

m1

�

R12

10.80.60.40.20

20

15

10

5

0

Figure 5.7: Per-call response time for client task t1 for the model in Figure5.6.

following factor F measures how close the actual R(�) comes to the ideal:

F =
Rij(�)� �Rij(1)

(1� �)Rij(1)
(5.1)

where F = 0 at the ideal improvement (R(�) = �R(1)), and F = 1 for no speedup

(R(�) = R(1)). Figure 5.8 show the results for Example 1 when � = 0:5. Clearly the

improvement is close to ideal at low server utilization and vanishes as utilization increases.

At 80% utilization one obtains about 30% of the ideal improvement.

From the �gure, the number of clients using the server has little e�ect on the improve-

ment, except as it a�ects utilization.

5.2 Analytic Approximations for Two Phase Queues

The results from the previous section demonstrate that early replies can shorten the re-

sponse times of remote procedure calls. This section addresses the question of analytic

approximations for two-phase servers within a layered queueing model for the software.

The earlier MOL and SRVN approximations for second phases are described and shown to

give large errors in certain cases, and then in Section 5.3 a new and better approximation

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 102

10
5
3
1

mi F = 1 for no improvement

F = 0 for ideal improvement

Uj

F

10.90.80.70.60.50.40.30.20.10

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

Figure 5.8: Improvement factor F for Example 1 in Figure 5.2 when � = 0:5.

is described.

5.2.1 Elementary Analysis of Overtaking

This section summarizes brie
y the overtaking approximations used by the Method of Layers

and Stochastic Rendezvous Networks. The argument centers on the mean-value equation

for the mean total delay Wj(N) of a customer arriving at a queueing station labeled j, with

a load-independent server (e.g. a FIFO or PS server),

Wj(N) = sj + sjLj(N�1) (5.2)

where sj is the delay for the customer's own service, and sjLj(N � 1) is the delay due to

a random number of customers present at the arrival instant. For a two phase server, the

second term is unchanged, but the �rst term is replaced to give:

Wj = sj1 + PrfOTgjsj2 + sjLj(N�1) (5.3)

where:

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 103

� sj1 is the mean delay for service, which is just the phase-one service time, and

� PrfOTgjsj2 is the probability of the customer arriving during the phase-two vacation

caused by its own previous visit to the server multiplied by the phase-two service time.

Both sj1 and sj2 are random variables with exponential distributions. Equation (5.3) is the

MOL calculation [113]. The SRVN waiting calculation is more complex, using estimates

of the state of each client that may contribute to the waiting of the arriving client; it is

described in [152];

Equation (5.3) is approximate, since two phase service does not satisfy the product-form

assumptions. The overtaking term also assumes exponentially-distributed phase-two times,

to make the remaining phase-two time equal to its mean.

5.2.2 Server-Based Approximation for PrfOTg

After a departure of a customer from the server, the probability of it overtaking depends

on the outcome of a race between the completion of phase two (mean delay of sj2) and

the return of the customer, shown in Figure 5.1(b). We will assume that the return delay

has a mean rate of ��1j and is also exponentially distributed for solution convenience. The

probability of the return event winning the race and causing an overtaking event is then:

PrfOTgj =
��1j

(��1j + s�1j)

which simpli�es to

PrfOTgj =
sj2

�j + sj2

The mean return time �j can be calculated if we know the mean arrival rate of requests

at the server from this particular customer, �j, and the mean total delay at the server, Wj ,

as

�j =
1

�j
�Wj

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 104

giving:

PrfOTgj =
sj2

sj2 + 1=�j �Wj
(5.4)

Equations (5.3) and (5.4) make up the server-based overtaking approximation used by

the MOL algorithm, and by the SRVN algorithm as described in [152].

5.2.3 Accuracy of the Server-Based Approach

Now consider client tasks which themselves have second phases, because they are servers to

higher-level tasks in a deeply layered system, as discussed earlier in this chapter. Example

2 has two-phase clients, and Figure 5.9 shows that using (5.4) may give errors up to 50% in

the throughput calculation. The principle reason for the large error is that (5.4) does not

consider the variation in the rate of arrivals between the phases of the client. The exact

Markov solution for this example with y = 3 and � = 0:5 has overtaking probabilities of

0.535 at Server tasks 1 and 3, and 0.354 at Server task 2. Using the service times found

from the exact solution in (5.4) gives only 0.231 for all three servers.

Figure 5.9 shows the percent relative error1 in throughput using (5.3) and (5.4) for the

example system when the proportion of phase-one to phase-two service time was varied

from 0 to 100% for a variety of clients. Very large errors occur even for moderate amounts

of phase 2 service.

5.3 Client-Server Based Approximation

The new Client-Server Based overtaking approximation is based on a transient sequence of

states following a reply from a server j to a client i which is in phase p, shown in Figure 5.10.

This start state is called p; S. The purpose of the analysis is to �nd the probability of exiting

the chain at the absorbing state \OT,x", which designates overtaking while the server is in

1Percent relative error = estimate�exact
exact � 100.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 105

20
10
4
3
1

m0

MOL Approximation

�

�(�)

(%)

10.80.60.40.20

60

50

40

30

20

10

0

Figure 5.9: Percent Relative Error in throughput, �(�) for the multiple servers, two-phase
client system in Figure 5.4 using the server-based overtaking approximation. The request
rate was �xed at y = 1.

phase x, or in state \Done" which designates the end of the server's execution.

The states are labeled (p; x; k) according to the client phase p, the server phase x, and

a value k:

k = 0: client i executing,

k = 1: client imaking a choice among possible servers, including the server j being analyzed

k = 2: client i blocked on the chosen server k; k 6= j, waiting for a reply.

The states (0; 2; 0); (0; 3; 0) :::(0; x; 0), represent the states in which the client itself is idle.

This is a discrete-time or jump chain for the process, with probabilities q for each

transition. The probabilities q are found from the service times and request rates from client

i to server j and to all other servers called by client i, represented by k. The parameters

from the solution of a submodel of a layered queueing network are:

yijp = the mean number of calls from client i to server j during client phase p.

Yip = the mean number of calls from client i to any server j or k during client phase p,

Yip =
P

k yikp.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 106

2,3,1

2,2,0

1,2,0

2,3,2

0,3,0

2,2,2

2,3,0

1,3,0

1,3,21,3,1

Done

1,2,21,2,1

1,S

2,S

2,2,1

OT,2 OT,3

1

1

1

p; s,2p; s,1p,2,2

2,x,2

1,x,21,x,1

p,3,2p,3,1

2,x,1

0,2,0

2,x,0

1,x,0

0,x,0

OT,x

p; s,0p,S p,2,0 p,3,0

qp;x;2

q1;x;2

q2;x;2

qp;2;2

q2;2;2

q1;3;2

q2;2;3

q2;3;2

qp;3;2

q1;2;2

q0;2;0 q0;3;0

q1;2;0 q1;3;0

qp;2;0 qp;3;0

q0;2;6 q0;3;6 q0;x;6

qp;2;6

q2;3;6 q2;x;6

qp;x;6

q1;2;3 q1;3;3 q1;x;3

q2;3;3 q2;x;3

qp;2;3 qp;3;3 qp;x;3

q1;x;6q1;3;6q1;2;6

q2;2;6

q1;2;5

q1;3;1q1;2;1

q2;2;1

qp;2;1 qp;3;1

q2;3;1

q1;x;1

q2;x;1

qp;x;1

q2;2;5

qp;2;5

q1;3;5

qp;3;5

q2;3;5

qp;3;6
qp;2;4 qp;3;4 qp;x;4

q1;2;4 q1;3;4 q1;x;4

q2;2;4 q2;x;4

q0;x;0

q1;x;0

q2;2;0 q2;3;0 q2;x;0

q1;x;5

p,2,1

q2;3;4

q2;x;5

qp;x;5

qp;x;0

Figure 5.10: Jump chain for �nding overtaking probabilities. The states are named with the
three digit combination p; x; k where p represents the phase of the client, x designates the
phase of the server, k = 0 represents client execution, k = 1 represents the client sending
to a server or going to its next phase, and k = 2 designates server execution.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 107

wijp = the mean waiting time for the client i to the server j during phase p.

�ij = the mean throughput from the client i to the server j during phase p.

�ip = the mean execution rate of the client i in phase p between requests to servers.

�kp = the mean delay of the client i when blocked on a server other than server j in phase

p during a remote procedure call, �kp = 1=
P

k wikp.

�jx = the mean execution rate of server j in phase x; x � 2, �jx = 1=sjx.

�i0 = the inverse of the mean idle time of the client i.

The transition probabilities are labeled (p; x; k) according to the client phase p, the

server phase x, and a value k:

qp;x;0 = �jx=(�kp + �jx): the probability that server j completes its own phase-two service

before the client i �nishes its execution interval.

qp;x;1 = �ip=(�ip + �jx): the probability that client i completes its own execution interval

before server j completes its phase two service.

qp;x;2 = (Yip � yijp)=(Yip + 1): the probability that client i calls some other server other

than server j.

qp;x;3 = �kp=(�kp + �jx): the probability that some other server k replies to client i before

server j completes its phase-two service.

qp;x;4 = yijp=(Yip + 1): the probability that client i calls server j and overtakes.

qp;x;5 = �jx=(�ip + �jx): the probability that server j completes its phase two service before

some other server k replies to client i.

qp;x;6 = 1=(Yip + 1): the probability that client i completes phase p and goes to phase p+1.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 108

The chain shown in Figure 5.10 has a product form solution and is evaluated from left

to right by column using:

Pr(OTpjSr;x) =

cp

p�1Y
y=r

by
1� dy

1�

0
@bp Y

x6=p

bx
1� dx

+ dp

1
A

(5.5)

bp =
1

1 + Yip + �jxsip

cp =
yijp

1 + Yip + �jxsip

dp =
Yip � yijp

1 + Yip + �jxsip
�

�kp
�kp + �jx

The solution to this equation, Pr(OTpjSr;x), gives the absorption probability for overtaking

with the client in phase p, when the server, while in phase x, is completing a previous

request made from the client's phase r.

The �nal overtaking probability, when the server is in phase x, is:

PrfOT(x)g =
PiX
p=1

PiX
r=0

PrfSp;x;0gPr(OTpjSr;x) (5.6)

where Pi is the total number of phases of the client i and PrfSp;x;0g is the probability of

starting from state (p; x; 0).

To start the analysis, the initial starting probabilities for the states (1; S); (2; S); :::; (p; S)

are found using:

PrfSp;2;0g =
�iyijp
�ij

(5.7)

These probabilities are simply the ratio of the
ow from client i in phase p to server j over

the total
ow from client i to server j. These probabilities are then used in (5.6).

To continue the analysis for x > 2, the following equation is used to �nd the absorption

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 109

probabilites for the states (p; x; 0):

Pr(NEXTpjSr;x) =

ap

p�1Y
y=r

by
1� dy

1�

0
@bp Y

x 6=p

bx
1� dx

+ dp

1
A

(5.8)

The solution to this equation, Pr(NEXTpjSr;x), gives the absorption probability for over-

taking with the client in phase p, when the server, while in phase x, is completing a previous

request made from the client's phase r2. To �nd the probability of ending in state (p; x+1; 0),

when the server is in phase x:

PrfSp;x+1;0g =
PiX
p=1

PiX
r=0

PrfSp;x;0gPr(NEXTpjSr;x) (5.9)

where Pi is the total number of phases of the client i and PrfSp;x;0g is the probability of

starting from state (p; x; 0). The results from (5.9) are then used in (5.5) and (5.6) to �nd

the solution for the next column in the chain.

5.3.1 Improved Waiting Time Calculation

The MVA equation (5.3) for the waiting time also has a
aw buried in the queue length

calculation. Lj(N�1) is the mean number of clients at the server, which are either in the

queue or in phase-one service. At an overtaking arrival the server is conditioned to be in

phase two by de�nition and this term needs to be modi�ed.

The approximation developed here is based on the assumption that, at the instant of a

non-overtaking arrival, the distribution of states of the server is given by its steady state

distribution in a system with one less client in the same chain. Notice that the probability

that the server is in phase p is a fraction of the total server utilization, Uj(N�1), and is

2Equation (5.8) is almost the same as (5.5) except ac is used in the numerator instead of cp.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 110

given by Uj(N�1)sjp=sj (where sj = sj1 + sj2).

The waiting time at station j is one's own service, sj plus the service time for jobs in

the queue ahead of oneself, plus the mean residual life (MRL) of the job in service at the

time of one's arrival:

Wj = sj1 + sjQj(N�1) +MRLj (5.10)

The MRL term is:

MRLj = PrfOTgjsj2 + (1� PrfOTgj)

2
666664
Pr(idlej)� 0

Pr(pj = 1)�MRL1

Pr(pj = 2)�MRL2

3
777775 (5.11)

MRL1 = sj1 + sj2 = sj

MRL2 = sj2

If:

Pr(pj = 1) + Pr(pj = 2) = Uj(N�1)

Pr(pj = 1) =
sj1
sj
Uj(N�1) (5.12)

Pr(pj = 2) =
sj2
sj
Uj(N�1) (5.13)

Collecting (5.12), (5.13) and (5.11) into (5.10):

Wj = sj1 + sjQj(N�1) + PrfOTgjsj2 (5.14)

+ (1� PrfOTgj)

"
sj1 +

s2j2
sj

#
Uj(N�1)

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 111

Phase-two service is extra utilization. Therefore, the number of customers in queue and

in service, not counting the phase-two \customers" is:

sjLj(N�1) = sjQj(N�1) + sj1Uj(N�1) (5.15)

Substituting (5.15) into (5.14) results in (5.16), shown below:

Wij = sj1 + sjLj(N�1) + PrfOTgjsj2 (5.16)

� sj1Uj(N�1) + (1� PrfOTgj)

"
sj1 +

s2j2
sj

#
Uj(N�1)

Equations (5.6) and (5.16) are used in by the LQNS solution for servers with two phases.

Equation (5.6) has also been incorporated into the SRVN solver.

5.3.2 Entries

To evaluate a system with entries, the overtaking probabilities are computed on an entry to

entry basis using the Markov chain in Figure 5.10. In all of the expressions in Section 5.3,

the indecies i and j are changed to refer to entry i on the source task and entry j on the

destination task. The calculation of the starting probabilities, (5.7), is changed to:

PrfSp;2;0g =
�ayijp
�ab

(5.17)

where a is the source task and owner of entry i, and b is the destination task and owner of

entry j. �a is the total throughput at the task a, and �ab is the total throughput from task

a to task b.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 112

5.4 Improved Accuracy of the LQNS Approximation

The three examples presented earlier in Section 5.1 plus the examples from [152] will be

used to show the improvements in accuracy using the new Client-Server Based LQNS ap-

proximation. Exact results were from a Markovian analysis using GreatSPN [17, 18].

5.4.1 Example 1: Single Server, Single Phase Client

Figure 5.11 contains twelve graphs, all of which plot the relative error in client throughput,

weighted by throughput, for the four cases in Section 5.1.1. The three analytic approxi-

mations, MOL, SRVN and LQNS, are compared against exact results for all cases. The

graphs show that the LQNS approximation is superior, especially when the server is heavily

utilized (note the di�erence in the vertical scales!)

Both the MOL and SRVN solutions su�er when more than one client is present. Since

the client task in this example only has one phase, the improvements in accuracy are due

to the improved waiting time expression (5.16). The reduction in the relative error ranges

up to an order of magnitude in the heavily loaded cases.

The accuracy of the response time calculation improves by an even greater percentage

because it is more sensitive to the change.

5.4.2 Example 2: Multiple Servers and Two Phase Clients

Figure 5.12 shows the relative error in throughput for the system in Section 5.1.2. The

approximations were compared against exact results except for the 10-customer case where

simulation was used. The graphs show that the relative error for the LQNS approximation

is much better than the MOL and SRVN algorithm, especially when the server is heavily

utilized. The SRVN algorithm, coupled with the client-server-based overtaking approxima-

tion (5.6) is also superior to the MOL when the fraction of phase-two service is high. The

improvements again range up to nearly an order of magnitude reduction in the error.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 113

20
5

1.0
0.5
yij2

MOL { 1 Client

�

�(�)

(%)

10.80.60.40.20

60
50
40
30
20
10
0

20
5

1.0
0.5
yij2

SRVN { 1 Client

�

�(�)

(%)

10.80.60.40.20

60
50
40
30
20
10
0

20
5

1.0
0.5
yij2

LQNS { 1 Client

�

�(�)

(%)

10.80.60.40.20

10
8
6
4
2
0
-2

5.0
1.0
0.2
0.1
yij2

MOL { 3 Clients

�

�(�)

(%)

10.80.60.40.20

60
50
40
30
20
10
0

5.0
1.0
0.2
0.1
yij2

SRVN { 3 Clients

�

�(�)

(%)

10.80.60.40.20

60
50
40
30
20
10
0

5.0
1.0
0.2
0.1
yij2

LQNS { 3 Clients

�

�(�)

(%)

10.80.60.40.20

10
8
6
4
2
0
-2

2.0
0.5
0.1
0.05
yij2

MOL { 5 Clients

�

�(�)

(%)

10.80.60.40.20

60
50
40
30
20
10
0

2.0
0.2
0.1
0.05
yij2

SRVN { 5 Clients

�

�(�)

(%)

10.80.60.40.20

60
50
40
30
20
10
0

2.0
0.5
0.1
0.05
yij2

LQNS { 5 Clients

�

�(�)

(%)

10.80.60.40.20

10
8
6
4
2
0
-2

0.8
0.4
0.2
0.1
yij2

MOL { 10 Clients

�

�(�)
(%)

10.80.60.40.20

60
50
40
30
20
10
0

0.8
0.4
0.2
0.1
yij2

SRVN { 10 Clients

�

�(�)
(%)

10.80.60.40.20

60
50
40
30
20
10
0

0.8
0.4
0.2
0.1
yij2

LQNS { 10 Clients

�

�(�)
(%)

10.80.60.40.20

10
8
6
4
2
0
-2

Figure 5.11: Relative error in client throughput, � versus phase-one service time fraction �
for the Single-Server, Single Phase Client system in x5.1.1.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 114

30
3

0.3
0.1
yij2

MOL { 1 Client

�

�(�)

(%)

10.80.60.40.20

60
50
40
30
20
10
0

30
3

0.3
0.1
yij2

SRVN { 1 Client

�

�(�)

(%)

10.80.60.40.20

60
50
40
30
20
10
0

30
3

0.3
0.1
yij2

LQNS { 1 Client

�

�(�)

(%)

10.80.60.40.20

10

8

6

4

2

0

10
1

0.1
0.03
yij2

MOL { 3 Clients

�

�(�)

(%)

10.80.60.40.20

60
50
40
30
20
10
0

10
1

0.1
0.03
yij2

SRVN { 3 Clients

�

�(�)

(%)

10.80.60.40.20

60
50
40
30
20
10
0

10
1

0.1
0.03
yij2

LQNS { 3 Clients

�

�(�)

(%)

10.80.60.40.20

10

8

6

4

2

0

10
1

0.1
0.03
yij2

MOL { 5 Clients

�

�(�)

(%)

10.80.60.40.20

60
50
40
30
20
10
0

10
1

0.1
0.03
yij2

SRVN { 5 Clients

�

�(�)

(%)

10.80.60.40.20

60
50
40
30
20
10
0

10
1

0.1
0.03
yij2

LQNS { 5 Clients

�

�(�)

(%)

10.80.60.40.20

10

8

6

4

2

0

3.0
0.3
0.03
0.01
yij2

MOL { 10 Clients

�

�(�)
(%)

10.80.60.40.20

60
50
40
30
20
10
0

3.0
0.3
0.03
0.01
yij2

SRVN { 10 Clients

�

�(�)
(%)

10.80.60.40.20

60
50
40
30
20
10
0

3.0
0.3
0.03
0.01
yij2

LQNS { 10 Clients

�

�(�)
(%)

10.80.60.40.20

10

8

6

4

2

0

Figure 5.12: Relative error in client throughput, � versus phase-one service time fraction �
for the Three Server Two Phase Client system in x5.1.2.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 115

5.4.3 Example 3: Deeply Layered System

Figure 5.1.3 shows the relative error in throughput for the deeply layered system in Sec-

tion 5.1.3. The LQNS solvers is more accurate than the MOL and SRVN solutions for low

phase-one service time fractions. In this case also the relative error is reduced by up to an

order of magnitude.

3
2
1

m1

MOL Approximation

�

�(�)

(%)

10.80.60.40.20

35
30
25
20
15
10
5
0
-5

3
2
1

m1

SRVN Approximation

�

�(�)

(%)

10.80.60.40.20

35
30
25
20
15
10
5
0
-5

3
2
1

m1

LQNS Approximation

�

�(�)

(%)

10.80.60.40.20

35
30
25
20
15
10
5
0
-5

Figure 5.13: Relative error in client throughput, � versus phase-one service time fraction �
for the deeply layered system in x5.1.3.

5.4.4 Example 4: Woodside et. al. Test Case

Tables 5.1 and 5.2 and show the throughput of the reference tasks of the twenty test cases

presented in [152]. The throughputs found using the LQNS, SRVN and MOL approxima-

tions were compared against exact results (except as noted with `y'). The SRVN results

reported in these tables are from the algorithms in 5.2 and do not include the client-server-

based overtaking approximation.

Table 5.3 summarizes the relative error results from Tables 5.1 and 5.2. The server-based

SRVN and MOL approximations have higher average errors than the newer client-server-

based LQNS approximation; the SRVN approximation tends to underestimate throughput

while the MOL approximation does the reverse.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 116

Throughput
Case Task Exact LQNS SRVN MOL

� � �� � �� � ��

A01 t1 0:0254 0:0274 8:01 0:0255 0:39 0:0284 11:88
t2 0:0149 0:0145 �2:59 0:0133 �10:51 0:0167 12:49

A02 t1 0:0229 0:0253 10:24 0:0225 �1:87 0:0260 13:29
t2 0:0154 0:0140 �8:66 0:0130 �15:30 0:0150 �2:08

A03 t1 0:0225 0:0260 15:18 0:0232 2:73 0:0263 16:43
t2 0:0151 0:0144 �4:86 0:0128 �14:93 0:0161 6:88

A04 t1 0:0251 0:0274 8:84 0:0254 0:98 0:0284 13:06
t2 0:0150 0:0146 �3:16 0:0134 �11:15 0:0168 11:65

A05 t1 0:0259 0:0284 9:64 0:0258 �0:21 0:0292 12:96
t2 0:0208 0:0202 �2:76 0:0184 �11:37 0:0234 12:60

A06 t1 0:0461 0:0530 14:82 0:0482 4:51 0:0553 19:93
t2 0:0310 0:0294 �5:04 0:0267 �13:87 0:0338 9:01

A07 t1 0:0324y 0:0312 �3:71 0:0297 �8:38 0:0350 8:06
t2 0:0100y 0:0100 �0:04 0:0100 �0:04 0:0100 �0:04

A08 t1 0:0722y 0:0671 �6:99 0:0700 �2:99 0:0760 5:29
t2 0:0100y 0:0100 �0:03 0:0100 �0:03 0:0100 �0:03

A09 t1 0:0669 0:0786 17:48 0:0724 8:13 0:0896 33:82
t2 0:0622 0:0589 �5:32 0:0518 �16:74 0:0679 9:08

A10 t1 0:0740 0:0874 18:19 0:0779 5:36 0:0953 28:88
t2 0:0638 0:0582 �8:77 0:0529 �17:05 0:0619 �2:97

Table 5.1: The `A' series of test cases from [152]. The model, corresponding to case `A01'
is shown in Figure 3.2.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 117

Throughput
Case Task Exact LQNS SRVN MOL

� � �� � �� � ��

B01 t1 0:0245 0:0273 11:57 0:0246 0:39 0:0279 13:92
t2 0:0149 0:0146 �2:52 0:0132 �11:36 0:0167 11:66

B02 t1 0:0217 0:0247 13:92 0:0213 �1:51 0:0252 16:45
t2 0:0154 0:0141 �8:73 0:0129 �16:37 0:0150 �2:64

B03 t1 0:0212 0:0253 19:37 0:0219 3:00 0:0255 20:19
t2 0:0153 0:0145 �4:83 0:0128 �16:05 0:0162 6:38

B04 t1 0:0242 0:0272 12:37 0:0244 0:79 0:0278 14:95
t2 0:0150 0:0147 �2:62 0:0133 �11:69 0:0168 11:37

B05 t1 0:0249 0:0282 13:49 0:0249 �0:05 0:0287 15:21
t2 0:0210 0:0203 �3:15 0:0184 �12:51 0:0234 11:35

B06 t1 0:0427 0:0491 14:76 0:0410 �3:98 0:0499 16:70
t2 0:0298 0:0299 0:34 0:0262 �12:26 0:0336 12:85

B07 t1 0:0317y 0:0311 �2:06 0:0284 �10:57 0:0342 7:64
t2 0:0100y 0:0100 �0:07 0:0100 �0:07 0:0100 �0:07

B08 t1 0:0648y 0:0611 �5:73 0:0561 �13:47 0:0654 0:87
t2 0:0100y 0:0100 �0:05 0:0100 �0:05 0:0100 �0:05

B09 t1 0:0582 0:0608 4:40 0:0518 �11:14 0:0651 11:76
t2 0:0494 0:0582 17:71 0:0478 �3:29 0:0659 33:28

B10 t1 0:0643 0:0642 �0:15 0:0531 �17:46 0:0663 3:05
t2 0:0535 0:0553 3:33 0:0469 �12:33 0:0579 8:28

Table 5.2: The `B' series of test cases from [152]. The model, corresponding to case `A01'
is shown in Figure 3.2.

Metric LQNS SRVN MOL

Mean 3:96 �6:05 11:56
Std. Dev. 1:03 0:69 1:21
Min �6:14 �15:13 0:75
Max 10:51 �2:63 21:64

Table 5.3: Summary of Tables 5.1 and 5.2.

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 118

5.5 Solver Construction

Figure 5.14 shows the class diagram of the �xed-rate multi-phased server classes. It is an

extension of the class diagram shown earlier in Figure 3.23.

HVFCFS

variance

Phased

overtaking

HVFCFS_
Rolia

Simple_

Markov_

Simple
HVFCFS_

Markov

Phased

HVFCFS_

Phased

Rolia_Phased

Figure 5.14: Class hierarchy for phased �xed-rate servers.

Two branches in the class hierarchy are present. The left branch (Rolia Phased) imple-

ments the simpler client-based overtaking approximation. Its classes are described below

in x5.5.1. The right branch (Markov Phased) implements the new client-server-based over-

taking approximation. Its classes are described below in x5.5.2. The notation for the

expressions is described in the Glossary on page xxi.

Class Phased Server

Class Phased Server is an abstract superclass that de�nes the waiting time expression for

an open model. The expression used in LQNS is for an M/G/1 queueing system with forced

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 119

idle periods [73, (3.87)], shown below (5.18).

Wme0 = sme01 +
�m0S

2
m0

2(1� �m)
(5.18)

S2
m0 =

PEm
e=1 �me0s

2
me0PEm

e=1 �me0

The term sme01 is the phase 1 service time of the open class at entry e of station m.

For closed models, the waiting time expressions are all de�ned by subclasses.

5.5.1 Server-Based Overtaking

Equation (5.19) is used to �nd the overtaking probabilites for the classes described in this

section. �mek(n� ek) is the overtaking probability de�ned earlier in x5.2.2 on page 103.

�mek(n) =
vmeksmek2

vmeksmek2 + zk + Rk(n)�Rmk(n)
(5.19)

Rk(n) =
MX
m=1

Rmk(n)

Rmk(n) =
EmX
e=1

vmekWmek(n)

Class Rolia Phased Server

This class implements a simpli�ed version of the two-phase server described in [113]. It does

not include the e�ects of variance nor does it include the correction for utilization described

in x5.3.1.

Wmekp(n) = smek1 +
KX
j=1

EmX
i=1

smijLmij(n� ek) + smek2�mek(n� ek) (5.20)

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 120

Class HVFCFS Rolia Phased Server

This class implements the two-phase server described in [113]. The residual term, rmij , is

inherited from class HVFCFS Server and is found using (3.21) on page 3.21. It does not

include the correction for forked customers described in x5.3.1.

Wmek(n) = smek +
KX
j=1

EmX
i=1

smijQmij(n� ek) +
KX
j=1

EmX
i=1

rmijUmij(n� ek)

+ smek2�mek(n� ek) (5.21)

Class Simple Phased Server

This class uses the simpler server-based overtaking, but compensates for the forked cus-

tomers using the method outlined earlier in x5.3.1. It is used for the Processor Sharing

queueing discipline and other cases when variance is not needed.

Wmekp(n) = smek1 +
KX
j=1

EmX
i=1

smijLmij(n� ek) +
KX
j=1

EmX
i=1

smij2�mij(n� ek)

+
KX
j=1

EmX
i=1

(1� �mij(n� ek))

"
smij1 +

s2mij2

smij

#
Umij(n� ek) (5.22)

Class HVFCFS Simple Phased Server

This class uses the simpler server-based overtaking approximation for servers that use FIFO

queueing.

Wmek(n) = smek +
KX
j=1

EmX
i=1

smijQmij(n� ek) +
KX
j=1

EmX
i=1

rmijUmij(n� ek)

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 121

+
KX
j=1

EmX
i=1

smij2�mij(n� ek)

+
KX
j=1

EmX
i=1

(1� �mij(n� ek))

"
smij1 +

s2mij2

smij

#
Umij(n� ek) (5.23)

5.5.2 Client-Server-Based Overtaking

Equation (5.24) is used to �nd the overtaking probabilities for the classes described in this

section.

�mek(p) = Prfovertake(e; k; p)g (5.24)

Class Markov Phased Server

This class assumes that all phases are exponentially distributed.

Wmekp(n) = smek1 +
KX
j=1

EmX
i=1

smijLmij(n� ek)

+
KX
j=1

EmX
i=1

smij2�mij(n� ek)

+
KX
j=1

EmX
i=1

(1� �mij(n� ek))

"
smij1 +

s2mij2

smij

#
Umij(n� ek) (5.25)

Class HVFCFS Markov Phased Server

This class implements that Reiser approximation to account for variance at the server.

Wmek(n) = smek +
KX
j=1

EmX
i=1

smijQmij(n� ek) +
KX
j=1

EmX
i=1

rmijUmij(n� ek)

+
KX
j=1

EmX
i=1

smij2�mij(n� ek)

CHAPTER 5. SECOND PHASES AND PHASED FIXED-RATE SERVERS 122

+
KX
j=1

EmX
i=1

(1� �mij(n� ek))

"
smij1 +

s2mij2

smij

#
Umij(n� ek) (5.26)

5.6 Conclusions

Early replies give performance gains by unblocking a client earlier. However at a saturated

server the client loses this advantage by having to queue for longer. The examples given

here, though limited, show that early replies give worthwhile gains for servers which are

not close to saturation. The improvement in response time is close to the ideal value at

low server utilization. The number of clients competing for the server appears to have little

e�ect on the improvement.

Analytic modeling of early replies requires careful approximation of the queueing e�ects,

since exact queueing solutions do not apply. Previous approximations were oversimpli�ed

and sometimes give large errors, in the set of test cases used here. The new approximation

accounts for two aspects of the client behaviour that were ignored before. First, it represents

the di�erence between client phases. Second, it also models the client delay before its next

request as a sum of a number of exponential delays, instead of by one exponential delay

with the same mean. It also adjusts the queue-length calculation for the early departures.

The new approximation has errors which are always smaller, and are up to an order of

magnitude smaller in relative terms, in the worst cases. The worst error in accuracy of the

new approximation is about 10%, and occurs for a saturated server that has about half the

service in the second phase.

The examples were chosen to have large errors and to stress the approximation. The

impact of the approximation on an entire performance model is usually watered down by

other important delays such as client think time and network latency, shown in Table 5.3.

Chapter 6

Multiservers

Multithreaded tasks, which are common and neccesary in distributed and parallel computing

are naturally modelled as multiserves. The most common software architecture uses remote

procedure calls to a variety of servers to execute the bulk of the processing. This is seen

in transaction processing [60, 128], in business client-server systems [37, 130], and in the

various versions of Open Distributed Processing such as OSI-ODP [153], DCE [36], and

CORBA [93]. In all these areas it has been found to be imperative, for performance reasons,

to have multi-threaded servers. Thus DCE and CORBA have de�ned their own thread

packages, and most operating systems have introduced thread support.

Multi-threading is required for several reasons. First, a service may block to wait for

some other operation such as a disk I/O to complete, and another thread (or even several

threads) may be able to execute in this interval. Second, with multiple threads the server can

exploit a multiprocessor for additional processor capacity (used extensively in web servers

and �le servers, for instance). Third, a single request can spawn parallel threads to manage

parallel subtransactions. Without multithreading a server may have a long queue and be

idle (blocked), and yet be unable to take another request. These requirements lead to a

standard pattern where a task has a \listener" thread which dequeues requests, and a pool

123

CHAPTER 6. MULTISERVERS 124

of identical \worker" threads which each operate on one request [74]. The pool of threads

may have a �xed size or a new thread may be created for every request, which provides an

in�nite server pool.

The analysis of multi-threaded software servers is complicated by some aspects of the

usual distributed systems. The service time or holding time of a thread depends on the

blocking times it may experience for disk I/O or other services, (i.e. nested services); these

blocking times may in turn depend on contention at the nested server. Servers often defer

some of their work until after replying to the request, such as delayed writes or bu�er

clean-up (second-phase service). Servers typically o�er di�erent classes of service, with

quite di�erent operations and service times. These factors all put software multiservers well

outside the descriptions of servers for which elementary queueing solutions can be used to

predict performance.

There has been little research reported on software multiservers. Neilson et. al. discussed

their importance in certain simple situations, and gave a \bottleneck strength" measure for

a server, to identify cases in which the threading level could usefully be increased [89]. They

included multi-tier systems. Rolia and Sevcik described a queueing approximation in [110],

which will be examined below. Dilley et. al. applied it to web servers in [30] (and shown

in Figure 6.1), where long latencies in the network could block a thread; they found that

the number of threads made an enormous di�erence. Concern about the performance e�ect

of threading levels has been expressed in some papers, and experimental and simulation

results have been quoted to show their e�ectiveness [80, 50, 52, 61].

This chapter evaluates seven approximations for multiservers for accuracy and speed,

when used in layered models. A robust approximation must be su�ciently accurate in a

large number of cases covering a great variety of systems, and this work has examined a

large number of randomly constructed cases, as well as a number of systems gathered from

the literature.

This chapter also demonstrates the performance improvements obtained by introducing

CHAPTER 6. MULTISERVERS 125

CGIIMG HTML

accept

Network

Network

Server

Listener

Clients

CPU Disk

Figure 6.1: Layered Queueing Network Model used to examine the e�ect of threading a web
server [30].

CHAPTER 6. MULTISERVERS 126

second phases to multithreaded tasks. The intent is to reduce the blocking time of a client

at a multithreaded server. Some of the Mean Value Analysis expressions described later in

this paper for multiclass �rst-come �rst-served multiservers have been modi�ed to account

for this behaviour. An example based loosely on a model in [86] is used to demonstrate

the execution time enhancement brought on by multiple phases. Other examples show the

performance of the solution and its accuracy. Second phase service in multiserver queues

has not been modelled before this.

The material in this chapter was mostly published in [39].

6.1 Performance Implications of Multiple Layers

Figure 6.2 shows a simple layered queueing model, similar to the Web server example shown

in Figure 6.1, showing multiple clients, a multithreaded application and two lower-level

servers. The networking delay component has been dropped, but lower-level servers which

represent databases and other value-added services have been added. It might represent an

electronic commerce server.

[0.05]

Clients

Server_1

[0.2(1-x),0.2x]

Server_2

[10.0]

(5(1-x),5x)

(1.0)

Web Server

[0.01]

(2(1-x),2x)

{50}

{4}

{y}

Figure 6.2: A simpli�ed layered queueing network model of web server connected to two
lower-level database servers. The value x represents the fraction of phase-two service and
y represents the number of concurrently active customers.

CHAPTER 6. MULTISERVERS 127

From a performance standpoint, the important aspect of service requests is that a client

is blocked while a server processes its requests. Unacceptable delays may result at an

upper-level client if the intermediate-level applications are single threaded as they also may

be blocked waiting for replies from their own lower-level servers. By allowing for multiple

concurrent threads at intermediate servers, additional services for other clients may be

initiated while the server is waiting for responses from lower level servers [89, 30, 77].

A second technique to improve response time to clients is to split execution at lower-

level servers into two phases, in Figure 1.1(b). Figure 6.3 shows the performance e�ects of

exploiting a second phase in the model of Figure 6.2. The number of concurrent users, y, and

the fraction of phase two service time, x, is varied. When the number of available threads

exceeds the number of potential customers, two-phase multiservers can o�er substantial

performance bene�ts. However, when heavy queueing occurs at the two-phase multiserver,

as in Figure 6.3(d), second phase service o�ers little to no performance improvement. This

result is similar to the conclusion for second phases in a single server described in the

previous chapter.

6.2 Multiclass Multiservers

Submodels that arise from layered queueing networks often have sets of clients that make

di�erent demands on the servers (represented by entries on the servers). Further, software

servers usually have �rst-come, �rst-served (FCFS) queueing disciplines. The corresponding

queueing network model must therefore have FCFS service centers with service demands

that vary by chain. Queueing networks with these characteristics do not have a \product

form" [11, 91]. Fortunately, approximations exist for multiclass FCFS single- and multiple-

servers which are su�ciently accurate for practical purposes. The following section describes

seven multiclass multiserver waiting time expressions and compares their accuracy and

execution time to simulation. The notation used is shown in Table 1.

CHAPTER 6. MULTISERVERS 128

LQN U
Sim U
LQN R
Sim R

10 Clients, 50 Servers

Fraction Phase 2 Service

S
er
ve
r
U
ti
li
za
ti
o
n

R
es
p
o
n
se
T
im
e

1

0.8

0.6

0.4

0.2

0
10.80.60.40.20

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

-0.1

(a) 10 Clients

LQN U
Sim U
LQN R
Sim R

30 Clients, 50 Servers

Fraction Phase 2 Service

S
er
v
er
U
ti
li
za
ti
o
n

R
es
p
o
n
se
T
im
e

6

5

4

3

2

1

0
10.80.60.40.20

1.6
1.4
1.2
1

0.8
0.6
0.4
0.2
0

-0.2

(b) 30 Clients

LQN U
Sim U
LQN R
Sim R

50 Clients, 50 Servers

Fraction Phase 2 Service

S
er
ve
r
U
ti
li
za
ti
on

R
es
p
on
se
T
im
e

50

40

30

20

10

10.80.60.40.20

3.5

3

2.5

2

1.5

1

0.5

0

(c) 50 Clients

LQN U
Sim U
LQN R
Sim R

70 Clients, 50 Servers

Fraction Phase 2 Service

S
er
ve
r
U
ti
li
za
ti
on

R
es
p
on
se
T
im
e

50

40

30

20

10

10.80.60.40.20

7.7

7.65

7.6

7.55

7.5

7.45

7.4

7.35

(d) 70 Clients

Figure 6.3: Impact of moving operations into the second phase on the client response time
and Web Server utilization versus fraction of phase 2 service time for the model in Fig-
ure 6.2. The phase 2 fraction and the number of clients correspond to x and y respectively.
Simulations were conducted with 95% con�dence intervals of �1%. The analytic solutions
were performed using (6.9).

CHAPTER 6. MULTISERVERS 129

6.2.1 MVA Waiting Time Expressions

The approximations listed below all give di�erent expressions for waiting time Wmk for

a class k customer at queue m which is a Jm-fold multiservers. Many of the expressions

rely on the marginal probability of �nding i customers in service, Pm(i;N� ek), and the

probability of �nding all servers busy, PBm(N� ek .

� Reiser and Lavenberg [107] gave the exact MVA expression for a multiserver based on

special product-form networks with multiclass multiservers:

Wmk(N) = smk +
smk

Jm

2
4 KX
j=1

Qmj(N� ek) + PBm(N� ek)

3
5 (6.1)

where the �rst term is the customer's own service, the second term is the time the

customer spends in the queue waiting for service and the third term is the busy

probability. For FCFS scheduling, the service time terms smk must be equal for each

class. Equation (6.1) is often expressed as

Wmk(N) =
smk

Jm

2
41 + KX

j=1

Lmj(N� ek) +
Jm�2X
i=0

(Jm � 1� i)Pm(i;N� ek)

3
5 (6.2)

� Ruth [119] evaluated a version of (6.2) where each of the individual terms is multiplied

by the service time. The class dependent service times are used for the customers in

queue (the �rst summation) and the overall mean service time sm is used for the

customers in service (the second summation).

Wmk(N) =
1

Jm

2
4smk +

KX
j=1

smjLmj(N� ek) + Sm

Jm�2X
i=0

(Jm � 1� i)Pm(i;N� ek)

3
5

(6.3)

� de Souza e Silva and Muntz [29] incorporated class-dependent FCFS scheduling into

multiservers by applying the approximation by Reiser for load-independent servers to

CHAPTER 6. MULTISERVERS 130

(6.1) [108]. This approximation was incorporated into Linearizer approximate MVA

with good results [24]. The complete waiting time expression, describing the terms

xe and xr , is given in x6.6.1.

Wmk(N) = smk +
KX
j=1

xekcj(N)Qmj(N� ek) + PBm(N� ek)xrmk(N) (6.4)

� Bruell, Baldo and Afshari [7] list several well-known expressions used for mixed, mul-

tiple class BCMP networks with load dependent service stations, including

Wmk(N) =
X
n2N

jnjsmk

�m(n)
Pm(n� ek;N� ek) (6.5)

which has class-dependent service times. Restrictions exist on the rate multiplier

terms, �m(n). Further, the queueing discipline, called composite queuing, is not FCFS.

The marginal probabilities Pm are computed for every customer population n.

� Schmidt [124] also uses the marginal probabilities based on customer population but

approximates FCFS queueing.

Wmk(N) =
X
n2N

2
4smk +

max(0; jnj �M)

M(jnj � 1)

0
@ KX
j=1

ncVmjsmj � Vmksmk

Vmk

1
A
3
5Pm(n�ek;N�ek)

(6.6)

� Rolia [110] has developed a multiserver approximation for the Method of Layers that

does not require computation of marginal probabilities at all:

Wmk(N) = smk

2
41 + U

(1)
m (N� ek)M

Jm

KX
j=1

Lmj(N� ek)

3
5 (6.7)

� Equation (6.7) is modi�ed here by multiplying the terms inside the brackets by the

class-dependent service times, to better represent the delays caused by customers of

CHAPTER 6. MULTISERVERS 131

each class:

Wmk(N) = smk +
U
(1)
m (N� ek)

M

Jm

KX
j=1

smjLmj(N� ek) (6.8)

Equations (6.2) through (6.6) all use marginal probabilities, either for the total number

of customers at the station, Pm(i;N�ek), or for each population vector, Pm(n�ek;N�ek).

When using exact MVA to solve a queuing network, these terms are all computed recursively

starting with zero customers, and with Pm(0; 0) = 1 and Pm(0; 0) = 1. When using

approximate MVA, the usual backwards MVA approximation step to �nd the value of

Pm(i;N � ek) is to simply let Pm(i;N � ek) = Pm(i;N � ek). This assignment often

leads to infeasible marginal probabilities. Better approximations, given by Krzesinski and

Greyling [70] for Pm(i;N � ek), and by Schmidt [124] for Pm(n � ek;N � ek) have been

used in this work. The exact and approximate expressions are shown in Appendix B.

6.2.2 Accuracy and Performance Comparisons

Figure 6.4 shows the layered queueing network, based on the model in [23], used to evaluate

the accuracy and run-time performance of each of the residence time expressions shown

above. Each server gives four classes of service to each of the four classes of user. Service

times at each of the lower-level servers were chosen randomly from a range of values between

1.57 and 72.39. The number of visits to each of the servers by each class of customer was

varied from 0.35 to 2.30. Two hundred di�erent sets of parameters were tested.

Table 6.1 shows the percent Mean Relative Error (MRE) in throughput at the clients,

MRE = apprx�sim
sim �100, the standard deviation in MRE, the percent mean Absolute Relative

Error (ARE) in throughput at the clients, ARE = japprx�simj
sim � 100, and the average run

time for the test cases. Equations (6.2), (6.5) and (6.7) all give large errors because they

do not represent FCFS queueing with chain-dependent service times. Based on the MRE

metric, (6.8) performs the best, and based on ARE, (6.4) is actually the best. The MRE

error for (6.4) is slightly larger because it gives a slight bias, underestimating throughput.

CHAPTER 6. MULTISERVERS 132

{4} {6}{7}{9}

{i}{10}{2}{5}

c1 c4c2c1 c4 c2c3c3 c2c1 c4c4c1 c2 c3 c3c2c1 c4c4c1 c2 c3 c3

Server 1

Class 1 Class 2
[0.0]

Server 2 Server 6

Class 4
[0.0]

Server 3 Server 5

[0.0]

Class 3
[0.0]

Server 4

Figure 6.4: Test Network

Of these two, Equation (6.8) is clearly superior in run time because it does not need to

compute marginal probabilities nor does it have multiple product terms like those used by

the de Souza e Silva and Muntz approximation. Equation (6.8) is a good compromise of

accuracy and run-time.

Expression MRE � ARE Run Time

Simulation 42:37.9
Reiser (6.2) 11.18 0.41 13.91 2.0
Ruth (6.3) -1.68 0.01 3.52 2.2
de Souza e Silva (6.4) -0.59 0.00 1.55 1:25.9
Bruell (6.5) 11.27 0.42 15.07 2:55.4
Schmidt (6.6) -3.64 0.07 8.51 4:38.5
Rolia (6.7) 11.99 0.38 14.16 2.1
Franks (6.8) 0.48 0.01 2.91 2.3

Table 6.1: Mean Relative Error and mean Absolute Relative Error of client throughput
when compared to simulation. All of the simulations have 95% con�dence intervals of �
1.0%.

CHAPTER 6. MULTISERVERS 133

6.3 Multiphase Multiclass Multiservers

This section describes the impact of second-phase service on the calculations for multi-

class multiservers which were explored for simple load-independent servers in [151, 110].

These servers need new waiting time expressions to compensate for two factors. First, the

client is not held for the entire period of execution of its request at the server, shown in

Figure 5.1(a). Second, a client making a subsequent request to a server may block while

the server completes its own preceding request. This phenomenon is called overtaking as

discussed in Chapter 5.

The next section describes the waiting time expressions for multiphase, multiclass mul-

tiservers. Three approximations were selected based on the accurarcy and solution run time

speed shown in Table 6.1: Ruth (6.3), de Souza e Silva (6.4) and Franks (6.8).

6.3.1 MVA Waiting Time Expressions

The delay to a customer at a multiphase, multiclass multiserver has the following compo-

nents:

1. its own phase 1 service time, smk1,

2. time spent waiting in the queue (e�ective backlog), and

3. time spent waiting for a server to become free (residual service).

The new version of waiting time will be found for the de Souza e Silva approximation (6.4)

�rst since it is the most detailed of the expressions that are suitable for multiple classes.

The �rst term of (6.4), smk , is changed to smk1, the phase one service time. The second

term of (6.4),
PK

j=1 xekcj(N)Qmj(N�ek), is the delay arriving customers see prior to being

serviced. With a multiphase server, servers in phase two are equivalent to \new" customers

that are created when replies to clients are sent. New arrivals must also wait behind these

CHAPTER 6. MULTISERVERS 134

pseudo customers so only the phase one utilization, Umk1, is subtracted. The third term of

(6.4), the departure time, includes both phases of service, so it is unchanged.

The second e�ect that must be taken into consideration is overtaking, described earlier

in Chapter 5.

After these changes, Equation (6.4) becomes:

Wmk(N) = smk1 +
KX
j=1

xekcj(N)[Qmj(N� ek) + Ucj2(N� ek)] (6.9)

+ PBm(N� ek)xrmk(N) +
PrfOTgmk

Jm
� smk2

Equations (6.3) and (6.8) are modi�ed in a similar fashion:

Wmk(N) =
1

Jm

2
4smk1 +

KX
j=1

smj [Lmj(N� ek) + Ucj2(N� ek)] (6.10)

+ sm

Jm�2X
i=0

(Jm � 1� i)Pm(i;N� ek) +
PrfOTgmk

Jm
� smk2

#

Wmk(N) = smk1 +
U
(1)
m (N� ek)M

Jm

KX
j=1

smj [Lmj(N� ek) + Ucj2(N� ek)] (6.11)

+
PrfOTgmk

Jm
� smk2

6.3.2 Accuracy and Performance Comparisons for Multiphase Servers

The layered queueing network of Figure 6.4 was again used to test the accuracy and run-time

performance of Equations (6.9), (6.11) and (6.10) with di�erent second phase loads. Service

times for each phase of service at each of the lower-level servers were chosen randomly from

a range of values between 1.275 and 36.195. Two hundred di�erent networks were tested

with the fraction of phase two varying from 0.04 to 0.96. Another two hundred test cases

were run with phase two fractions �xed at 0.25, 0.50, 0.75 and 1.00 for �fty cases each. The

number of visits to each of the servers was varied from 0.35 to 2.30. The results of the runs

CHAPTER 6. MULTISERVERS 135

are shown in Table 6.2.

Expression %Ph2 MRE � ARE Run Time

Simulation 42:44.5

de Souza e Silva (6.9) rand -0.66 0.00 1.34 7:05.1
Ruth (6.10) 0.10 0.07 5.09 15.0
Franks (6.11) 0.96 0.07 4.92 5.9

de Souza e Silva (6.9) 25 -0.80 0.03 1.59 3:43.0
Ruth (6.10) -0.59 0.14 4.08 5.6
Franks (6.11) 0.60 0.18 4.41 8.8

de Souza e Silva (6.9) 50 -0.83 0.03 1.62 3:43.5
Ruth (6.10) 0.93 0.17 4.99 5.1
Franks (6.11) 0.64 0.20 4.67 6.1

de Souza e Silva (6.9) 75 -0.84 0.02 1.66 3:47.3
Ruth (6.10) 1.87 0.48 6.30 5.4
Franks (6.11) 1.12 0.36 5.33 6.2

de Souza e Silva (6.9) 100 -0.79 0.03 1.77 4:22.0
Ruth (6.10) 3.62 0.53 7.24 12.0
Franks (6.11) 0.94 0.54 5.88 4.4

Table 6.2: Performance Results for two phase multiclass multiservers. Simulations were
conducted with 95% con�dence intervals of �1%.

As with the single phase test cases in Table 6.1, based on the ARE metric, (6.9) is more

accurate that either (6.10) or (6.11), but much more computationally expensive. Run times

for the analytic solutions are also higher than the models with only single phase multiserver

because multiple iterations are required { the overtaking probabilities depend on the waiting

times at the lower level servers, hence may change after a submodel is solved.

Equation (6.11), the equation originated in this thesis, is a strategic compromise of

accuracy and e�ort.

6.4 Industrial Example 1: Telephone Inquiry System

This section describes two di�erent tele-operator models, derived loosely on the client-server

tele-marketing model presented by Menasc�e [86]. In each case there is a set of operators

CHAPTER 6. MULTISERVERS 136

who �eld calls arriving at a rate of 2,500 calls per hour. In the �rst system, each operator

handles all aspects of a call and takes, on average, 45 seconds to do so. In the second

system, the operator processes the �rst phase of the call for 30 seconds, then hands o� the

remaining 15 seconds of service to an automated voice response unit. The voice response

unit takes one second to accept the operation from the operator; the remaining 14 seconds

are processed asynchronously in second phase. In both cases, the operators interact with a

database server connected to a LAN. The delay imposed by the LAN is dependent on the

number of operators due to collisions. The delay requirement for the system is that the

average wait for an operator should be �ve seconds or less.

The layered queueing network models for the operators-only and voice response unit

con�gurations are shown in Figures 6.5(a) and 6.5(b) respectively. Service times for each

of the tasks and devices, except for the LAN, are shown in the �gure. The service time for

the LAN, shown as �, depends on the number of operators present, x, and was taken from

the parameters in [86]. The number of operators present was varied to �nd a con�guration

where the queueing time for a customer was no more than �ve seconds.

The voice response unit model augments the Operators Only model by adding a two-

phase multiserver task to deliver responses. The database server forwards requests to the

voice response unit multiserver which takes one second of service time before replying di-

rectly to the originating operator. The voice response unit then takes an additional fourteen

seconds to respond to the customer's request.

Figure 6.6 shows the performance results for the Operators Only system in Figure 6.5(a).

From the graph, 35 operators are needed to meet the performance requirements.

Figure 6.7 shows performance results as waiting time contours, for the Voice Response

Unit system. Both simulation and the analytic LQN solution shows the minimum number

of operators needed is 25. The models di�er slightly in the number of voice response units

needed { the analytic solution is somewhat optimistic in estimating the need for 14 voice

response units while the simulation results estimate the need for 15.

CHAPTER 6. MULTISERVERS 137

0.69λ=

{i}

Server

[0.12]

(1.0)

(1.0)

LAN

Disk
[0.054]

Operators

(1.0)

[α]

[45.0]

{x}

{y}

(a) Operators Only

0.69λ=

{i}

Operators

LAN

(1.0)

(1.0)

(1.0)

(1.0)

[1,14]

[30.0]

Disk
[0.054] Voice Resp

Unit

Server

[0.12][α]

{x}

{y}

(b) With Voice Response Units

Figure 6.5: Telephone Operators models. The values of x (the number of operators) and
y (the number of voice response units in (b)) need to be found so that customer requests
arriving at a rate of � = 0:69 wait no longer than �ve seconds on average before being
serviced. � is a parameter that depends on the number of operators, x.

CHAPTER 6. MULTISERVERS 138

Required Delay
LQN

Simulation

Operators

Q
u
eu
ei
n
g
T
im
e

4544434241403938373635343332

30

25

20

15

10

5

0

Figure 6.6: Waiting time for the Operators Only model shown in Figure 6.5(a). Simulations
were conducted with 95% con�dence intervals of �1%.

Both the simulation and the analytic model have di�culty with nearly-saturated sit-

uations (e.g., with 11 voice response units). The simulation becomes unstable and takes

a long time to give adequate accuracy. The analytic model also becomes unstable due to

infeasible intermediate solutions with in�nite queues, during intermediate iterations of the

solver.

The �gures show that the analytic solution is su�ciently accurate for practical pur-

poses. Further, for the Operators Only case, the simulations took on average, 41 minutes

to complete, whereas the analytic solutions took less than 1 second each. For the voice

response unit model, the simulations took over 75 minutes while the analytic solutions took

approximately 8 seconds each.

CHAPTER 6. MULTISERVERS 139

 5

Wait

 15
 30

22 23 24 25 26 27 28 29 30 31 32
11

12

13

14

15

16

V
oice R

esponse U
nits

Operators

(a) Simulation

 5

Wait

 15
 30

Operators
22 23 24 25 26 27 28 29 30 31 32

11

12

13

14

15

16 V
oice R

esponse U
nits

(b) Analytic

Figure 6.7: Waiting time contours for the Voice Response Unit system shown in Fig-
ure 6.5(b). Simulations were conducted with 95% con�dence intervals of �1%.

6.5 Industrial Example 2: Transaction Processing System

To demonstrate how the calculations scale up to a system with many multiservers, many

layers and many customers, they will be applied to a moderately large transaction processing

system.

The example shown in Figure 6.8 represents a system designed to manage the installa-

tion, operational status and repair of equipment in a large communications system and is

loosely based on the system analyzed in [54]. The system is only partially represented with

the transactions addItem and delItem; these are su�cient to demonstrate the scalability of

the layered queueing network solution technique to a large system.

The design was targeted to a Tandem NonStopTM multiprocessor system [31]. Task are

statically allocated to processors. Redundancy features of the target system are not mod-

elled, however, the overhead needed to update shadow tasks is included. The performance

of the system is therefore calculated for a period without faults.

The system was evaluated with from 1 to 250 users who think for ten seconds each, with

the parameters shown in Figure 6.8. The response time to users, found both analytically

CHAPTER 6. MULTISERVERS 140

(1.0)

(0.33)

{4}

(0.5)

{i}

(0.5)

(0.33) (0.33)(0.33)

(0.9)

{4}

(1.0)

(0.9)(0.9) (2.0)

(1.0)

{i}

(0.33)

(2.0)

(1.0)

{4}

(1.0)

{4}

(1.0)

Disk Controller 2

{4}

Disk Controller 1

CPU2

CPU1

[23.0]
Disk 1 Disk 2

[23.0]

DiskProcess1

[48.91]
del

[41.84]
add

DiskProcess2

del
[41.84]

add

DiskProcess3

[41.84]
add

DiskCont21

[0.1]
dc

DiskCont13

[0.1]
dc

DiskCont11

[0.1]
dc

DelItem

del
[5.95]

AddItem

[5.95]
add

Disk 3
[23.0]

Router

[9.99]
route

Terminal
Communication

comm
[7.45]

[10000]

Users

NameServer

[5.21]
name

[48.91]

Figure 6.8: Transaction Processing System Model

CHAPTER 6. MULTISERVERS 141

and through simulation, is shown in Figure 6.9(a).

The overall accuracy of the analytic solution of layered queueing networkmodels depends

on the number of submodels used, as errors at lower layers tend to be magni�ed as they

percolate upwards. The problem is worse when as tasks at intermediate layers approach

saturation because small changes in their service times arising from errors in lower-level

submodels result in large changes in waiting times to tasks in higher-level submodels.

Figure 6.9(b) shows the solution time of the layered queueing network solver using

the multiserver expressions of (6.4) and (6.8). The solution accuracy of the two analytic

multiserver versions is almost exactly the same, so only one result is plotted in Figure 6.9(a).

Figure 6.9(b) shows that the analytic solver scales very well, particularly when there

are no bottlenecks in the system. When bottlenecks do arise, more iterations between layer

submodels are needed because small changes in one submodel may cause large changes in

another.

The overall speed of the solution is governed primarily by the \width" of the widest layer,

counted in client tasks. Each client in a particular layer submodel corresponds to a chain in

the submodel's queueing network. The number of customers in each chain corresponds to

the number of replicas of the task in the layered queueing network model. In Linearizer, the

solution speed is not a�ected by the number of customers in a chain. However, its run-time

performance is of order JK3 where J is the number of clients and K is the number of

chains.

This example shows that the analytic solution of layered queueing models is both fast

and su�ciently accurate for large industrial-scale models. Approximation errors are only

large when the system being approaches saturation.

CHAPTER 6. MULTISERVERS 142

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

R
es

po
ns

e
T

im
e

Number of Users

sim
LQN

(a) Response Time

0.1

1

10

100

1000

10000

100000

0 50 100 150 200 250

R
un

 T
im

e
(s

ec
on

ds
)

Number of Users

sim
Franks

deSouza

(b) Solution Run Time

Figure 6.9: Transaction Processing System Model Response Times and solution run times.
Simulations were run with 95% con�dence intervals of �5%.

CHAPTER 6. MULTISERVERS 143

6.6 Solver Design

This section describes brie
y the implementation of the various multiserver expressions

described earlier in x6.2. Figure 6.10 shows the class diagram of the various server types.

The classes that inherit from class Markov Phased implement multiphase multiservers and

use the client-server based overtaking approximation from Section 5.3. The notation for

the expressions is described in the Glossary on page xxi. The equations used to �nd the

marginal probabilities using either exact or approximate MVA are found in Appendix B.

6.6.1 Single Phase Multiservers

These classes, in the upper row of Figure 6.10, implement multi servers with one phase of

service.

Class Reiser Multi Server

This class implements the original algorithm for exact MVA by Reiser and Lavenberg [107],

with the modi�cations of Ruth [119] for class-dependent service times for multiservers with

FIFO queueing. The solver does not incorporate the enhancement to account for numerical

stability problems in exact MVA for load-dependent service centers [109]. The marginal

probabilities, Pm(jjn), are computed using the method by Krzesinski and Greyling [70]

when using approximate MVA.

Wmek(n) =
1

Jm

2
4smek +

KX
j=1

EmX
i=1

smijLmij(n� ek) (6.12)

+ Smj

Jm�2X
j=0

(Jm � 1� j)Pm(jjn� ek)

3
5

Pm(0jn) = 1�
JX
j=1

Pm(jjn)

C
H
A
P
T
E
R
6
.
M
U
L
T
IS
E
R
V
E
R
S

144

Reiser_PS Conway_Multi Franks_Multi Bruell_Multi

Phased
Markov_

overtaking

Reiser_Multi

copies

Reiser_PS
Phased_Phased_

Reiser
Phased_
Conway

Phased_
Franks Multi

Schmidt_

Figure 6.10: Class hierarchy for multiservers.

CHAPTER 6. MULTISERVERS 145

Pm(jjn) =
1

j

KX
k=1

�mk(n)Pm(j � 1jn� ek); 0 < j < Jm

Pm(Jmjn) =
1

Jm

KX
k=1

�mk(n) (Pm(Jmjn� ek) + Pm(Jm � 1jn� ek))

Smj =
1

�m(n� ej)

KX
k=1

�mk(n� ej)
EmX
e=1

vmeksmek

�m(n� ej) =
KX
k=1

�mk(n� ej)
EmX
e=1

vmek

For open models, (6.13) [73, (3.128)] is used. This expression is used by all of the other

multiserver classes.

Wme0 = Sm0

1 +

�m(Jm�m)
Jm�1

Jm!Am(1� �m)2

!
(6.13)

Am =
Jm�1X
i=1

(Jm�m)i

i!
+

(Jm�m)Jm

Jm!(1� �m)

Class Reiser PS Multi Server

This class implements the original algorithm for exact MVA by Reiser and Lavenberg [107].

Most of the functions are inherited from class Reiser Multi Server.

Wmek(n) =
smek

Jm

2
41 + KX

j=1

EmX
i=1

Lmij(n� ek) (6.14)

+
Jm�2X
j=0

(Jm � 1� j)Pm(jjn� ek)

3
5

Class Conway Multi Server

The approximate multi-chain solution for load dependent service centers by de Souza e Silva

et. al. [29] modi�ed by Conway for Linearizer [24]. This technique, while accurate, is

CHAPTER 6. MULTISERVERS 146

expensive computationally.

Wmek(n) = smek +
KX
j=1

xemkj(n)Qmj(n� ek) + Pm(Jmjn� ek)xrmk(n) (6.15)

xemkj(n) =
X
i2Ajk

Sm(i)psmk(i; j;n)

xrmk(n) =
X
i2Bk

Sm(i)psmk(i;n)

Ajk = fij
KX
x=1

ix = Jm; i � n� ek ; ij � 1g

Bk = fij
KX
x=1

ix = Jm; i � n� ekg

Sm(i) =

KX
k=1

ik
smk

!�1

psmk(i; j;n) =
am(i;n� ek)

cmj(n� ek)

cmj(n� ek) =
X
i2Ajk

am(i;n� ek)

psmk(i;n) =
am(i;n� ek)

cm(n� ek)

cm(n� ek) =
X
i2Bk

am(i;n� ek)

am(i;n� ek) =
Jm!QK
j=1 nj !

KY
j=1

F
nj
mj(n� ek)

Fmj(n� ek) =
�mj(n� ek)

�m(n� ek)

�m(n� ek) =
KX
j=1

�mj(n� ek)

CHAPTER 6. MULTISERVERS 147

Class Rolia Multi Server

The approximate multi-chain solution for load dependent service centers by Rolia [113,

x3.3], which is surprisingly simple, fast, and accurate. Rolia's technique was modi�ed so

that it would work for exact MVA.

Wmek(n) = smek + pbm(n� ek)
KX
j=1

EmX
i=1

smijLmij(n� ek) (6.16)

pbm(n� ek) =
1

Jm

�
�m(n� ek)

Jm

�Jm

Class Bruell Multiserver

This class implements the mulitserver expression (6.5). The marginal probabilities are

computed in the step() function shown earlier in Figure 3.18 using (B.2) for exact MVA

and (B.4) for approximate MVA. Equations (B.2) and (B.4) are found in Appendix B.

Wmek(n) =
X
i2n

�(i; k)Pm(i� ekjn� ek)

�(i; k) = Smk
jnj

�(jnj)

Pm(0jn) = 1�
X

0<i�n

Pm(ijn)

Pm(ijn) =
1

�(jij)

KX
k=1

�mk(n)Pm(i� ekjn� ek)

(6.17)

CHAPTER 6. MULTISERVERS 148

Class Schmidt Multiserver

This class implements the approximation by Schmidt (6.6).

Wmek(n) =
X
i2n

�(i; k)Pm(i� ekjn� ek)

�(i; k) = Smk +
maxf0; jij� Jmg

Jm(jij � 1)

0
@ KX
j=1

ijSmj � Smk

1
A (6.18)

6.6.2 Multi Phase Multiservers

The classes described in this section implement multiservers with two or more phases. The

overtaking probabilities are found using the client-server-based approximation described

earlier in Section 5.3.

Class Markov Phased Reiser Multi Server

This class implements the original algorithm for exact MVA by Reiser and Lavenberg [107],

with the modi�cations of Ruth [119] for class-dependent service times for multiservers with

FIFO queueing and with modi�cations for two-phase service.

Wmekp(n) =
1

Jm

2
4smek1 +

KX
j=1

EmX
i=1

smijLmij(n� ek) (6.19)

+ Smj

Jm�2X
j=0

(Jm � 1� j)Pm(jjn� ek) + smek2�mek(p)

3
5

(6.20)

Class Markov Phased Reiser PS Multi Server

Not implemented.

CHAPTER 6. MULTISERVERS 149

Class Markov Phased Conway Multi Server

The approximate multi-chain solution for load dependent service centers by de Souza e Silva

et. al. [29] modi�ed to allow for two phases of service.

Wmekp(n) = smek1 +
KX
j=1

xemkj(n)Qmj(n� ek) + Pm(Jmjn� ek)xrmk(n) +
smek2�mek(p)

Jm

(6.21)

Class Markov Phased Rolia Multi Server

This class implements Rolia's multiserver expression, modi�ed for two phases of service.

Wmekp(n) = smek1 + pbm(n� ek)
KX
j=1

EmX
i=1

smijLmij(n� ek) +
smek2�mek(p)

Jm
(6.22)

6.7 Conclusions

Fast, accurate approximations now exist for multiclass multiservers with �rst-come, �rst-

served queueing and chain-dependent service times. This is the �rst careful comparison we

know of, of all the di�erent approximations that have been given for these multiservers.

Seven approximations were evaluated here in the context of layered queueing network mod-

els.

Rolia's approximation scales exceptionally well because it does not rely on the marginal

probabilities, rather, it uses a simple expression using the utilization of the server. This

expression has been generalized here to allow for chain-dependent service times while still

retaining its impressive performance characteristics. From the tests in this paper, ana-

lytic solutions using new approximation are two to three orders of magnitude faster than

simulation.

CHAPTER 6. MULTISERVERS 150

This chapter has introduced the analysis of two phase multiservers with one or more

classes. Two-phase multiservers can yield signi�cant performance improvements provided

that the server is not saturated. Three of the seven multiclass multiserver waiting time

expressions described in this paper (those which allowed for chain-dependent service times

and FCFS scheduling) were modi�ed to allow for two-phase server operations. The new

approximations have approximation errors of less than 7% on average. They are also quite

fast. Both properties mean that multi-tier client server systems with multiphase servers can

be solved analytically both quickly and with su�cient accuracy for practical applications.

These new waiting time expressions broaden the scope of layered queueing networks.

Further, layered queueing networks can be used to solve client/server systems with multiple

tiers of intermediate servers both quickly and accurately.

The remaining limitations in the algorithms presented here are captured in the assuming

made at the end of Section 5.2. In particular, it would be useful to model non-exponential

or non-geometric distributions of demands.

Chapter 7

General Precedence Extensions to

the Performance Model

The existing analytical performance modelling tools and improvements, described earlier,

are useful for modelling a wide variety of computer systems with client-server-like behaviour.

However, software designers are exploiting parallelism in application to improve perfor-

mance. Some of these techniques include parallelism within tasks, asynchronous RPC, and

early replies. None of these techniques are supported by conventional mean value analysis,

even with hierarchical decomposition. Further, Stochastic Rendezvous Networks and the

Method of Layers can only model systems with early replies.

This chapter describes extensions to the layered queueing network model to accommo-

date these and other forms of application parallelism. First, the concept of phases from

SRVN and MOL models is generalized to objects called \activities" which can be connected

together in a variety of patterns. Second, the rules for the behaviour of tasks with activities

are described. Third, the new input grammar is described followed by sample input �les.

Finally, ways to reduce complicated patterns into simpler ones are described.

151

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 152

7.1 Activity Patterns

Activities are components in the performance model that represent the lowest level of detail

necessary. Activities are connected together to form a directed graph which represents

one or more execution scenarios. Execution may branch into parallel concurrent threads

of control which may or may not execute in parallel on the target system. Execution

may also choose randomly between di�erent paths. The nomenclature used to show how

activities are connected together is adopted from Chu et. al. [21] and is shown in Table 7.1.

Smith [131] also has a notation which expresses the same information, but in more detail

than is necessary for the performance models considered here.

Name Icon Description

Activity a Basic unit of modelling detail.

Activity with Reply a[e]
An activity that generates a reply to entry e after it
executes.

Connecting Arc - Transfer of control.

And-Fork
j
a

� -&

Start of concurrent execution. There can be any num-
ber of forked paths.

And-Join

j
a

�-&

A Synchronization point for concurrent activities.

Or-Fork
j
a

� -
p1

+
p2

A branching point where one of the paths is selected
with probability p. There can be any number of
branches.

Or-Join

j
a

�-+

Repetition

j* a-

?

?
n

Repeat the activity an average of n times.

Table 7.1: Activity graph notation.

7.1.1 Sequential Execution

The simplest way to connect activities together is in a series, as shown in Figure 7.1.1.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 153

dba c

Figure 7.1: A sequence of activities.

As an example on the use of activities, consider a transaction that updates a database.

Activity a represents data input, b transaction logging, c database update, and d, output

con�rmation.

7.1.2 Remote Procedure Calls

The client-server paradigm breaks up application processing into parts which run on a client,

often situated on a user's desk, and a server located at another location. A client makes

a request to a server through a remote procedure call [143, 5]. The server can then either

respond to the request directly, or hand it o� to other servers.

The sections that follow describe di�erent ways of performing remote procedure calls.

Immediately thereafter are techniques that can help shorten the blocking time.

Simple Remote Procedure Calls

Figure 7.2(a) shows the activity diagram for a simple remote procedure call based on the

database example used earlier. In this �gure, the the Layered Queueing Network notation

described earlier in Section 3.1 is combined with the activity notation shown in Table 7.1

to show where each activity executes. In this example, the database logging activity, b, and

update activity, c, run on task, t2. The Input and output operations, activities a and d

respectively, run at the client task t1. Activities that send messages to other tasks always

do so before continuing on to the next activity or activities. This behaviour matches that

of phases.

Figure 7.2(b) shows the message sequence chart (MSC) for the remote procedure call

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 154

using the MSC'92 notation [154, 49, 115, 116]. The activities in Figure 7.2(a) have been

transferred to the chart to show where program execution takes place and a particular

order shown. Activity a is split into two activities on the chart because the actual remote

procedure call takes place during the input operation from the user, and not between the

activities. Notice the important di�erences between the arrow styles for a rendezvous/RPC,

with a \barbed" arrowhead, and for precedence of activities (a smaller ordinarily �lled

arrowhead) in Figure 7.2(a). On the right, the MSC conventions for arrows are followed

and all messages are asynchronous.

b

c[e2]

d

a

e1

t2

t1

e2

(a) Activity Diagram

send

reply

b

msc RPC

c

a

d

t1 t2

a

(b) Message Sequence Chart

Figure 7.2: Remote procedure call de�ned using activities.

Nested Remote Procedure Calls

Suppose next that the transaction logging and database update activities, b and c respec-

tively, also can run on separate devices { the so called \three tiered" architecture [34].

Figure 7.3 shows one way to accomplish this goal by nesting remote procedure calls. With

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 155

this technique, both the client task, t1, and the intermediate server task, t2, are blocked

during the RPC request to t3.

d

a

c[e3]

b[e2]
e2

e3

e1

t2

t3

t1

(a) Activity Diagram

reply e2

send e2

send e3

reply e3

a

a

c

d

b

b

Nested_RPC

t1

msc

t2 t3

(b) Message Sequence Chart

Figure 7.3: Nested remote procedure call. The client, t1, calls t2 who in turn calls t3. Both
t1 and t2 are blocked until t3 replies.

Forwarded Remote Procedure Calls

Remote procedure calls can also be forwarded, shown in Figure 7.4. In this example, the

intermediate server task, t2, forwards the RPC request to the lower level server, t3. T2 is

then able to continue execution, unlike the nested RPC case described earlier. The client,

t1, remains blocked until the last server replies.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 156

d

a

c[e3]

b[e2]

t1

e1

e2

e3

t2

t3

(a) Activity Diagram

forward e3

send e2

reply_e3

a

a

c

d

b

t1

msc

t2 t3

Forwarded_RPC

(b) Message Sequence Chart

Figure 7.4: Forwarded Remote Procedure Call. The intermediate server, t2, forwards the
RPC request to the lower level server, t3 which in turn replies to the client, t1.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 157

7.1.3 Patterns that Fork

Forking describes the phenomena where a thread of control splits into two or more concur-

rent subthreads. There are three ways forking may occur, described below.

Asynchronous Messages

The simplest form of starting a separate thread of control is by sending an asynchronous

message (that is, a message to which no reply is expected). Both the client and server tasks

can run in parallel.

Figure 7.5 shows the activity diagram and message sequence chart for an asynchronous

send. Continuing with the simple database transaction example, task t2 continues to exe-

cute the transaction logging activity b (note that since activity b generates a reply, it still

blocks any callers). However, the database disk update activity, c, need not be executed

while the original client waits, so the update can be accomplished using an asynchronous

message to a separate task. The original client can therefore proceed as soon as the trans-

action is logged.

b[e2]

c

t2

t3

e2

e3

(a) Activity Di-
agram

reply

send

send

msc SNR

t3

c

t2

b

b

(b) Message Sequence Chart

Figure 7.5: Asynchronous send.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 158

Two-Phase Execution

A second way of performing a fork is through an early reply at the server (see x5). An

server using an early reply will reply to the client prior to completing all the of the work

due to the client's request. The client and server can then proceed in parallel.

Figure 7.6 shows the activity diagram and message sequence chart for a server with an

early reply. This Figure is very similar to Figure 7.2 except that the reply takes place after

activity b instead of activity c.

a

b[e2]

c

d

t2

e2

e1

t1

(a) Activity Diagram

reply

send

t1 t2

a

b

msc 2Phase_RPC

ca

d

(b) Message Sequence Chart

Figure 7.6: A remote procedure call with a second phase. The second phase at the server,
labeled c, can run in parallel with the client.

From the client's perspective, the modi�ed database transaction systems shown here

and in Figure 7.5 are exactly the same in that the reply is generated as soon as activity b

�nishes. However, there is one important di�erence. A server with an early reply cannot

accept new requests until the second phase execution completes (in this example, activity c).

Furthermore, the second phase activity must run on the same processor. The server using

asynchronous messages to update the database disk �le can accept more requests before

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 159

the database update takes place and can also distribute the update and logging operations

on separate processors, which also can improve performance. However, a system that uses

asynchronous messages can overload the server executing activity d, possibly losing requests.

Thread Creation

The third way to fork a new thread of control is to actually create a new task. Referring to

the Message Sequence Chart (Figure 7.7(a)), this method for forking is almost the same as

using asynchronous messages. Di�erences arise in implementations when the cost of sending

a message to a task that is already created is compared to the cost of creating a new task.

reply

send
t3

c

msc Fork

b

b-1

t2

(a) Message Sequence Chart

Figure 7.7: Simple fork. Task t3 is created and destroyed for each request.

7.1.4 Patterns that Join

Patterns that join arise when two or more tasks synchronize with a third. There are two

cases, barrier synchronization and guarded accepts, described below. The di�erences in the

two cases is based on when the reply is generated to the caller. In both cases, the task

performing the synchronization operation must be single threaded. Furthermore, if the

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 160

sourcing tasks are not reference tasks, the messages must originate from a single fork point.

Barrier Synchronization

Barrier synchronization occurs when several threads of control wait for one and another;

it is often found in scienti�c computing when array operations are farmed out to multiple

processors. It can be implemented with a synchronization server , a task that waits for all

of its client tasks to rendezvous before replying to them all, shown in Figure 7.8. Syn-

chronization servers can only accept synchronous messages from dependent tra�c sources

because random asynchronous arrivals from independent sources cause unbounded queues.

Asynchronous messages that originate from a common source are feasible and are described

in Section 7.1.5 below.

Guarded Execution

Figure 7.9 shows a guarded accept. Both entries reply prior to the join taking place but the

join must take place before entries can accept subsequent messages.

7.1.5 Patterns that Fork and Join

There are two forms of fork-join behaviour which are based on whether the fork and join

take place within the same task, or in two separate tasks, described below.

Intra-Task Fork-Join

Intra-task fork-join behaviour occurs when the fork and join take place within the same

task. This pattern is particularly useful for improving performance if parallelism in an

application can be exploited.

An Asynchronous RPC is a technique which attempts to improve the performance of

a remote procedure call by sending the request to the server as early as possible so that

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 161

& e4e3

e2

t2

b

t1

e1

t3

c[e3,e4]

a

(a) Activity Diagram

reply e3

reply e4

send e3

send e4

send e4

send e3 a

b

b

a

c

msc

t3t2t1

al
te

rn
at

iv
e

Barrier_Sync

(b) Message Sequence Chart

Figure 7.8: Barrier synchronization. The shaded box denotes alternatives, i.e., the order of
messages from t1 and t2 does not matter.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 162

&e3 e4

t3

e2

t1 t2

e1

a[e3] b[e4]

c

(a) Activity Diagram

send e3

reply e3

send e4

reply e4

send e4

reply e3

send e3

reply e4

t2 t3t1

c

a

b

b

a

Guarded_Acceptmsc

al
te

rn
at

iv
e

(b) Message Sequence Chart

Figure 7.9: Guarded accept.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 163

t2 t3

t1

e1

d
&

&
a

b c

e2 e3

(a) Activity Diagram

reply_t3

send_t3
send_t2

reply_t2

msc

t1 t2 t3

t1a

Fork_Join

a

b c

b

d

c

(b) Message Sequence Chart

Figure 7.10: Fork-join within a task.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 164

that the reply is waiting when the results are needed. There are two ways to model this

phenomena:

1. Use a fork-join in the client with one thread making a RPC request while the other

path continues with the main line processing (see Figure 7.11(a)).

2. Use deterministic asynchronous messages, then \join" the reply (see Figure 7.11(b)).

Of the two techniques, the �rst is preferable because it retains the semantics of the remote

procedure call.

e1

t1

t2

b

&
d

a
&

c

e2

(a) Asynchronous RPC by Fork-Join
with a remote procedure call.

t1

e1 e3

t2

&

a

d
c

b2

b1

e2

(b) Asynchronous RPC by
asynchronous messages with
join.

Figure 7.11: Asynchronous remote procedure calls using synchronous and asynchronous
messages.

Inter-Task Fork-Join

Inter-task fork-join combines the behaviours of the fork and join, described earlier in Sec-

tions 7.1.3 and 7.1.4. Messages originate from a common client task, follow independent

routes, then join at a common server task, shown in Figure 7.12. There are two cases:

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 165

1. Asynchronous threads joining with a (possibly forwarded) remote procedure call. All

asynchronous messages must be sent prior to RPC request, or the asynchronous mes-

sages must be emitted from separate threads.

2. Multiple asynchronous threads.

&e4

a

c[e5]

b

e5

e1

t1

t3

t4

e3

t2

e2

(a) Activity Diagram

send e2 send e4

send e3

send e5

reply e5
c

a

b

t1

mscInter-task_Fork-Join

t3t2 t4

(b) Message Sequence Chart

Figure 7.12: Inter-task fork-join. The left path is made up of an asynchronous request from
t1. The right path is a forwarded rendezvous.

Synchronizing asynchronous messages from non-synchronized tasks is not practical (math-

ematically, one queue or the other will grow to in�nity even if the arrival rates have exactly

the same average value). Furthermore, all messages making up the paths from the fork

point to the join point must be sent exactly once per fork-join. Forwarded RPC requests

also must have a forwarding probability of 1.0 at all forwarding points.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 166

7.2 Task Semantics

The previous section described various ways the activity extension can be used to enhance

the modelling power of layered queueing networks. The extensions necessarily change the

semantics of the original model. The semantics of the new model are described next.

7.2.1 Activity Execution

The unit of modelling in layered queueing networks is the activity. Activities consume time

on the processor on which their task runs. By default, service time demand at processors is

exponentially distributed. However purely deterministic, and hyper- and hypo-exponential

service time distributions are also allowed. Non-deterministic service time distributions are

modelled with either series or parallel exponential stages. Activities can also have zero

service time in which case no request is made to the processor.

Activities can make requests to other tasks by way of synchronous (rendezvous) or non-

synchronous (send-no-reply) messages. By default, an activity makes a random number of

requests to its serving tasks. For this case, the user speci�es the mean number of requests;

the value need not be integral. An activity can also make a deterministic number of requests,

but in this instance the number of requests made must be a positive integer. This case has

been useful for modelling pipelines.

Requests sent to tasks are served in �rst-come, �rst-served order. Messages are received

by entries, which di�erentiate task behaviour. Entries invoke activities which, in turn, pass

control on to other activities through forks and joins (the complete list of interactions is

shown in Table 7.1). After an AND-fork, all successor activities can execute in parallel;

it is assumed that additional threads are available or created for this. After an OR-fork,

only one of the successor activities is executed, which probability p. Sequential execution

is a special case of an OR-fork with only one branch. Joins perform the reverse opera-

tion { multiple threads of control and connected together. AND-joins are special in that

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 167

they introduce synchronization delays because multiple independent threads of control are

connected together.

7.2.2 AND Fork-Join

AND fork and join introduce a new set of behaviours to tasks simply because tasks now

have multiple threads of control. Intra-task fork and join do not pose signi�cant di�culty

because the fork-join behaviour is contained within the task. This behaviour can take place

within single, multi- and in�nite server type tasks. Inter-task fork-join is a another matter

altogether because synchronization now takes place at a task boundaries, i.e., the entries.

Messages originating from a common source that must ultimately join can only do so at a

single task. Also, deadlock can arise in a system that has more servers that join independent

RPC request streams than tasks that originate the requests.

Tasks will only accept messages when all internally forked threads have completed.

This constraint also implies that all threads that are forked, but not explicitly joined, must

complete before the task can receive new messages. It also duplicates the existing second-

phase behaviour.

Entries used to synchronize input streams also have new constraints. These entries can

accept only one message during each join cycle. Messages sent to entries in which an activity

has blocked on a join are not accepted. However, messages to other entries not blocked on

joins will be accepted. Once a join takes place, messages will be received in time-stamp

(�rst-come, �rst served) order.

Forked threads proceed independently if possible, otherwise they are processed from

left to right in the input speci�cation. Forked activities with zero service time are always

processed �rst (it is assumed that these threads are asynchronous RPC requests).1

There is no limit on the number of internal threads forked. The user must limit threading

1Asynchronous RPC needs this requirement so that the send takes place as early as possible.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 168

levels explicitly by serializing activities.

7.3 Grammar

In order to handle paradigms such as asynchronous remote procedure calls, forking with

tasks, and synchronization, the Stochastic Rendezvous Network model described in Chap-

ter 3 must be extended to describe these interactions. This section �rst describes brie
y

the major sections of the old grammar. Next, the extensions to the grammar for \activi-

ties" is described. The extensions are intended to be upward-compatible with this grammar

to retain compatibility with the existing performance modelling tool set described in [40].

Examples showing the use of the extensions follow.

7.3.1 Abbreviated SRVN Input Grammar

The existing SRVN input �le is divided into four sections as shown in Figure 7.3.1 (the

complete input �le grammar is found in Appendix A). The four sections are used for the

following purposes:

General information: Sets the upper limit on the number of iterations the analytic solver

will perform, the desired level of precision, the under-relaxation coe�cient and print

interval. These parameters are described in Appendix A.

Processor declarations: Declares the processors and their scheduling discipline.

Task declarations: Declares the tasks and entries in the model. Task-speci�c parameters

such as priority and think times for \reference tasks" are de�ned here.

Entry declarations: Sets the parameters for all of the entries. These parameters include

request rates to other entries and service times.

All identi�ers are scoped globally within the input �le. Furthermore, all identi�ers must

be declared before they are used.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 169

hSRVN input �lei ! hgeneral infoi hprocessor infoi htask infoi hentry infoi

hgeneral infoi ! G hcommenti hconv vali hit limiti hprint inti
opt

hunderrelax coe� iopt hend listi

hprocessor infoi ! P hnpi fhproc declignp1 hend listi

htask infoi ! T hnti fhtask declignt1 hend listi

hentry infoi ! E hnei fhentry decligne1 hend listi

Figure 7.13: Abbreviated SRVN input �le grammar.

7.3.2 Activity Extensions

The existing SRVN input grammar is to be extended by adding new sections devoted to

specifying activities. The SRVN input �le rule is modi�ed by adding the activity info term

begining with `A' (see Figure 7.14). Activities are associated with tasks and not entries

so the term is repeated for as many tasks that need an activity speci�cation. Entries may

be de�ned using the new activity grammar or the existing entry speci�cation grammar2.

However, only one method may be used for a particular entry.

An activity speci�cation begins with the key-letter `A' followed by a task id, a set of

resource demands and connections to other tasks, and a set of activity connections within

the task. Activity speci�cations follow the de�nition of all processors, tasks and entries.

Activities are scoped within tasks meaning that the name space is not shared among

tasks3.

The activity speci�cation for a task is divided into two sections. The �rst section is

used to de�ne the activity's parameters such as service demand, and outgoing requests

(messages) to other tasks. This section is similar to the entry speci�cation section in the

existing grammar, except that there is no phase information so each record accepts only

2The existing input grammar for an entry is somewhat more compact than the activity speci�cation. Each
phase de�ned using the existing grammar is considered to be an activity. The two speci�cation techniques
for a rendezvous to a two-phase server are shown together in Figure 7.16.

3This speci�cation style di�ers from that of entries in that the name space used by entries is global among
all tasks.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 170

hSRVN input �lei ! hgeneral infoi hprocessor infoi htask infoi hentry infoi
fhactivity infoig�0

hactivity infoi ! A htask idi hactivity defn listi : hactivity conn listi
hend listi

=� Entry de�nition. �=

hentry decli ! A hentry idi hactivity idi =� Initial activitiy �=

=� Activity de�nition. �=

hactivity defn listi ! fhactivity defnigna1

hactivity defni ! s hactivity idi hph serv timei =� Service time �=
j c hactivity idi hcoe� of variationi =� Sqr. Coef. of Var. �=
j f hactivity idi hph type
agi =� Phase type �=
j y hactivity idi hto entryi hph RNV nbi =� Rendezvous �=
j z hactivity idi hto entryi hph SNR nbi =� Send-no-reply �=
j Z hactivity idi hthink timei =� Think time �=

=� Activity Connections. �=

hactivity conn listi ! hactivity conni f; hactivity connigna1

hactivity conni ! hjoin listi
j hjoin listi -> hsplit listi
j hrepeat listi -> hsplit listi

hjoin listi ! hreply activityi
j hand join listi
j hor join listi

hsplit listi ! hactivity idi
j hand split listi
j hor split listi

hand join listi ! hreply activityi f& hreply activityigna1

hor join listi ! hreply activityi f+ hreply activityigna1

hand split listi ! hactivity idi f& hactivity idigna1

hor split listi ! hprob activityi f+ hprob activityigna1

hrepeat listi ! hreali * hactivity idi hnext activityiopt

hprob activityi ! (hreali) hactivity idi

hreply activityi ! hactivity idi hreply listiopt

hnext activityi ! , hactivity idi

hreply listi ! [hentry idi f, hentry idi gne0]

Figure 7.14: Activity BNF.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 171

one input term. Activities may make both rendezvous and send-no-reply requests to other

tasks. The precise time at which a rendezvous or send-no-reply request is made from an

activity cannot be speci�ed (as is also the case with entry de�nitions). However, activities

may have zero service time so highly deterministic operations can be de�ned, by placing a

single message with an activity of zero execution demand.

The second section in an activity de�nition speci�es the connections between activities.

Activities are treated as nodes in a graph which are chained together or are connected

through and and or forks and joins. Cycles in the activity graph are not permitted; repe-

tition is speci�ed with the repeat list rule.

The starting activity for a particular graph is de�ned by the `A' rule for the entry

de�nition; this activity is executed �rst when a message arrives at the corresponding entry.

Starting activities may not be shared between entries, however, graphs originating from

di�erent entries within a task may join (see x7.4.3).

Entries that accept rendezvous type messages must generate a reply during the process-

ing of the message. Replies are generated when an activity de�ned by the reply activity

rule completes. Entries that accept rendezvous messages cannot accept send-no-reply type

messages, nor can they accept open arrivals. Replies can be forwarded to other tasks;

forwarding is speci�ed at the entry de�nition.

7.4 Examples

This section contains examples of the input speci�cation language for a variety of interac-

tions. It begins with some of the interaction patterns described in Section 7.1 and concludes

with more complicated systems.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 172

7.4.1 Asynchronous Send

Figure 7.15 shows three di�erent ways of specifying the asynchronous send from Figure 7.5

in Section x7.1.3. Figure 7.16(b) shows the interaction using the existing input grammar.

Figures 7.15(c) and 7.15(d) show the input speci�cation using the activity extensions for t2

and t3 respectively.

b[e2]

c

t2

t3

e2

e3

(a) Ac-
tivity
Diagram

E 2
s e2 1.0 -1
s e3 0.5 -1
z e2 e3 1.0 -1

-1

(b) Original syntax

E 2
A e2 b1
s e3 0.5 -1

-1

A t2
s b1 1.0
z b1 e3 1.0

-1

(c) E1 speci�ced using ac-
tivities

E 2
s e2 1.0 -1
z e2 e3 1.0 -1
A e3 c1

-1

A t3
s c1 0.5

-1

(d) E2 speci�ced using
activities

Figure 7.15: Input speci�cation for the Asynchronous Send from Section 7.1.3. The general
information, processor speci�cation and task speci�cation �elds have been omitted.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 173

7.4.2 Remote Procedure Call with Second Phase

Figure 7.16 shows three di�erent ways of specifying the remote procedure call to a two-

phase server from Figure 7.6 in Section x7.1.3. The client, t1, and server, t2, each have

two activities, which are encoded using the existing input grammar as phases (shown in

Figure 7.16(b)). Figure 7.16(c) shows the client speci�ed using the activity extensions.

Since there are two activities that execute one after the other, it is necessary to show their

relationship. Figure 7.16(d) shows the input speci�cation for the server. Since the server

receives a remote procedure call, it is necessary for it to generate a reply. This action, done

implicitly in Figures 7.16(b) and 7.16(c), must now be done explicitly.

7.4.3 Synchronization Server

The \synchronization server" is a special task used by the Method of Layers [113, x4] to

perform barrier synchronization. Figure 7.17 shows how it is speci�ed using the extended

input grammar.

7.4.4 Intra-task Fork-Join

Figure 7.18 shows a sample input speci�cation for specifying the intra-task fork-join pattern

shown in Figure 7.10.

7.4.5 Asynchronous Remote Procedure Call

Asynchronous remote procedure calls can be speci�ed either using an intra-task fork-join

and a remote procedure call, or by two asynchronous messages and a join. The input

speci�cations demonstrating the two methods, based on the activity diagrams shown earlier

in Figure 7.11, are shown in Figure 7.19.

The speci�cation based on the remote procedure call (Figure 7.19(a)) is preferable for

two reasons. First, it retains RPC semantics (note that there is no cycle in the activity

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 174

a

b[e2]

c

d

t2

e2

e1

t1

(a) Activity Dia-
gram

E 2
s e1 0.75 0.25 -1
y e1 e2 1.0 -1
s e2 0.6 0.4 -1

-1

(b) Entry to entry syn-
tax.

E 2
A e1 a1
s e2 0.6 0.4 -1

-1

A t1
s a1 0.75
y a1 e2 1.0
s d1 0.25

:
a1 � > d1

-1

(c) E1 speci�ed using ac-
tivities.

E 2
s e1 0.75 0.25 -1
y e1 e2 1.0 -1
A e2 b1

-1

A t2
s b1 0.6
s c1 0.4

:
b1[e2] � > c1

-1

(d) E2 speci�ed using ac-
tivities

Figure 7.16: Input speci�cation for the Remote Procedure Call with a two-phase server
from Section 7.1.3. The General information, processor speci�cation and task speci�cation
�elds have been omitted.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 175

& e4e3

e2

t2

b

t1

e1

t3

c[e3,e4]

a

(a) Activity Diagram

E 4
s e1 1.5 -1
s e2 0.5 -1
y e1 e3 1.0 -1
y e2 e4 1.0 -1
A e3 a1
A e4 b1

-1

A t3
s a1 1.
s b1 1.
s c1 1.

:
a1 & b1 � > c1;
c1 [e3,e4]

-1

(b) Activity Speci�cation

Figure 7.17: Input speci�cation for the Barrier Synchronization example from Section 7.1.4.
The general, processor and task information �elds have been omitted.

t2 t3

t1

e1

d
&

&
a

b c

e2 e3

(a) Activity Diagram

E 3
A e1 a1
s e2 1.5 -1
s e3 2.25 -1

-1

A t1
s a1 0.75
s b1 1.25
s c1 1.0
s d1 0.25
y b1 e2 1.
y c1 e3 1.

:
a1 � > b1 & c1;
b1 & c1 � > d1

-1

(b) Activity Speci�cation

Figure 7.18: Input speci�cation for the Intra-task Fork-Join system from Section 7.1.5. The
general, processor and task speci�cation sections have been omitted.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 176

diagram). Second, the number of requests and the phase type of the activity initiating

the asynchronous RPC is not constrained, unlike the speci�cation based on asynchronous

messages. (The latter must send exactly one request through the server back to the client.)

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 177

G "async-rpc-a" 1e-06 50 5 0.9 -1

P 2
p p1 f
p p2 f

-1

T 2
t t1 r e1 -1 p1
t t2 n e2 -1 p2

-1

E 2
A e1 a1
s e2 1.5 -1

-1

A t1
s a1 0.75
s b1 0.0
f b1 1
s c1 1.0
s d1 0.25
y b1 e2 1.0

:
a1 � > b1 & c1;
b1 & c1 � > d1

-1

(a) Fork-Join with a remote procedure call.

G "async-rpc-b" 1e-06 50 5 0.9 -1

P 3
p p0 f
p p1 f
p p2 f

-1

T 3
t t0 r e0 -1 p0
t t1 n e1 e3 -1 p1
t t2 n e2 -1 p2

-1

E 4
s e0 0.0 -1
y e0 e1 1.0 -1
A e1 a1
A e3 b2
s e2 1.5 -1
f e2 1 -1
z e2 e3 1.0 -1

-1

A t1
s a1 0.75
s b1 0.0
f b1 1
z b1 e2 1.0
s b2 0.0
s c1 1.0
s d1 0.25

:
a1 � > b1;
b1 � > c1;
c1 & b2 � > d1;
d1[e1]

-1

(b) Asynchronous messages with a join.

Figure 7.19: Input speci�cation for the Asynchronous Remote Procedure Call activity dia-
grams shown in Figure 7.11.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 178

7.4.6 Inter-task Fork-Join

Figure 7.20 shows the input speci�cation for the inter-task fork-join example shown earlier

in Figure 7.12. The path through the intermediate server t2 is by way of asynchronous

messages while the path through t3 consists of a forwarded remote procedure call. This

structure complicates the input speci�cation somewhat. First, the remote procedure call

must be done last as it will block the client t1. To guarantee that the remote procedure

call is done after the asynchronous send, the request is placed in a separate following phase.

Second, there must be exactly one message generated along each path per cycle of the client.

Consequently, all phases that generate messages must be marked as being deterministic

(using the f record for an entry).

&e4

a

c[e5]

b

e5

e1

t1

t3

t4

e3

t2

e2

(a) Activity Diagram

E 5
s e1 0.5 0.5 -1
f e1 1 1 -1
z e1 e2 1.0 0.0 -1
y e1 e3 0.0 1.0 -1
s e2 1.5 -1
f e2 1 -1
z e2 e4 1.0 -1
s e3 2.25 -1
F e3 e5 1.0 -1
A e4 a1
A e5 b1

-1

A t4
s a1 0.75
s b1 1.25
s c1 1.0

:
a1 & b1 � > c1;
c1[e5]

-1

(b) Activity Speci�cation

Figure 7.20: Input speci�cation for the Inter-task Fork and Join from Section 7.1.5. The
general, processor and task speci�cations have been omitted.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 179

7.4.7 Chu, Sit and Leung Example

Chu et. al. [21] described a hypothetical distributed system consisting of eight \modules"

running on two processors. The modules execute independently from each other except

that four of the eight share a common resource. Results are passed from one module to the

next through messages. The module interactions are shown in Figure 7.21; the parameters

for the model are shown in Table 7.2. The solved the model by a combination of queueing

models and a complex fork-join delay approximation (See Section 2.4.3).

M3

M5

&

M6

q 2q 1

M1

+

M8

+

R
es

po
ns

e
T

im
e

M7

&

M2

M4

resource pool

Resource Flow

Resources

Data Flow

Figure 7.21: A task control-
ow graph of the Chu, Sit and Leung model (from [21]).

Figure 7.22 shows the layered queueing network model for the Chu et. al. design. The

model is divided up into three sections outlined with boxes in the �gure these are:

� the tra�c source,

� the original system and

� the resource pool.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 180

pool

tCPU2tCPU1

Resource pool

Original System

Traffic Source

m7a

&

M3

m7

m7b

M7

m8

M8

m3b

m1a m2a

m5

m3a

M5

&

m1b m2b

M2

m4b m8b

m3
m2

m1

m4

M4

m8am4a

M6

m6

M1

Figure 7.22: Layered queueing network for Chu, Sit and Leung model.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 181

Module Execution Processor
Time Assignment

m1 5.0 CPU1
m2 1.0 CPU2
m3 1.0 CPU2
m4 5.0 CPU2
m5 5.0 CPU2
m6 1.0 CPU1
m7 5.0 CPU1
m8 1.0 CPU2

Table 7.2: Model parameters for module assignment 1. The branching probabilities are:
q1 = 0:6 and q2 = 0:2.

The \tra�c source" box consists of a task pool and generates RPC requests to the

original model. It converts the open model of Chu et. al. into a closed model.

The \original system" box consist of the modules from the original model. To mimic the

original open system design, RPC requests are forwarded from M1 to M8 by way of either

M2 orM3. No special features from this chapter are needed to specify taskM1 because the

paths are selected based on the forwarding probabilities for the arcs from m1 to m2 and

m3. However, a minor di�culty does arise because of the forking that takes place at module

M3. Forwarding can only follow one branch from the fork point. To solve this problem,

the other branch is made up of asynchronous messages that are spawned each time m3 is

invoked. These messages are \joined" with the forwarded requests from the other path at

m7. Finally, m8 is called by either m4 or m7 and issues the reply back to the tra�c source.

The last component of the model is the resource pool; it models the tokens in the

resource pool ellipse in Figure 7.21. The resource itself is modelled using the transformation

technique by Woodside [150]. The shared resource proper is modelled using a multi-server

task; the number of instances of the multiserver corresponds to the number of tokens in the

resource pool. Acquisition of resources is modelled by making rendezvous requests to the

resource multi-server; blocking at the resource will only arise once all instances are acquired.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 182

The service time parameters for the users of the resource pool are modi�ed by moving the

demand from the user to the corresponding entry on the resource pool multi-server; the

service time at the original task is then set to zero. However, the user will continue to see

the delay for this demand because of the blocking nature of the remote procedure call.

Additional auxiliary tasks are needed to model the resource pool because the tasks

that share the common resource do not all execute on the same processor. The multi-

server task labeled pool itself pushes the user's demand down to lower level servers, labeled

tCPU1 and tCPU2 in Figure 7.22. This pair of servers models the demand at the CPU

of the corresponding module in the original model. Further, as the pool task models the

resource limit, these tasks are simply in�nite servers in the layered queueing network model.

Table 7.3 shows the parameters of the �nal model.

\Original Model" part \Resource Pool" part
Module Execution Processor Module Execution Processor
(Entry) Time Assignment (Entry) Time Assignment

m1 0.0 | m1a 0.0 |
m2 0.0 | m2a 0.0 |
m3 1.0 CPU2 m4a 0.0 |
m4 0.0 | m8a 0.0 |
m5 5.0 CPU2 m1b 5.0 CPU1
m6 1.0 CPU2 m2b 1.0 CPU2
m7 5.0 CPU1 m4b 5.0 CPU2
m8 0.0 | m8b 1.0 CPU2

Table 7.3: Parameters for the layered queueing network model. Tasks with zero service
time do not need a processor to execute upon.

The input model de�nition, complete with extensions for fork-join behaviour, is shown

in Figure 7.23. Of all the tasks in this model, the only one that needs the extended notation

is M7 because it is synchronizing two streams. The fork operation, performed by M3 does

not need an explicit fork because the route by way of M5 is invoked using asynchronous

messages (see 7.1.5). Also, tasks that reference the shared resource pool, M1, M2, M6

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 183

and M8, and the resource pool task itself all run on an \in�nite processor" called NIL. As

these tasks do not consume CPU time, they can be assigned to any processor at all, the

NIL processor is added simply to highlight this fact. Finally, the number of tokens in the

resource pool is de�ned by the number of instances of the task pool.

7.5 Activity Aggregation

An activity graph may contain a combination of the various subgraphs types shown in

Figures 7.24 { 7.27. In the solver, each of the subgraphs is aggregated to a single activity

whereupon aggregation once again takes place. Aggregation continues until only one or

two activities remain which represent the average behaviour of the original graph. The

aggregated activities will then be used as phases in the layered queueing network model to

solve for contention delays. The sections that follow describe the standard formulations to

aggregate the subgraphs.

7.5.1 Sequential Activities

Activities that execute sequentially, shown in Figure 7.24, are aggregated to a single activity

by summing the service times of each individual activity. The service times of each of the

activities are assumed to be independent random variables, so the variance of the aggregate

is the sum of the variances of each of the activities contained therein.

7.5.2 OR Fork-Join

The aggregate service time for an OR fork-join activity graph is the sum of the weighted

services times for each activity, shown in Figure 7.25. The aggregate variance is found using

(7.4) [131, p 178]. In this expression, I is an index set consisting of all unique pairings for

the set f1; 2; :::; ng.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 184

G "" 0.000010 100 10 0.9 -1

P 0
p clients f i
p CPU1 f 0.5
p CPU2 f 0.5
p NIL f i

-1

T 0
t clients r clients -1 clients 0 m 10
t M1 n m1 -1 NIL 0
t M2 n m2 -1 NIL 0
t M3 n m3 -1 CPU2 0
t M4 n m4 -1 NIL 0
t M5 n m5 -1 CPU2 0
t M6 n m6 -1 CPU1 0
t M7 n m7a m7b -1 CPU1 0
t M8 n m8 -1 NIL 0
t pool n m1a m2a m4a m8a -1 NIL 0 m 1
t tCPU1 n m1b -1 CPU1 0 i
t tCPU2 n m2b m4b m8b -1 CPU2 0 i

-1

E 0
s clients 0.0 16.0 -1
y clients m1 0.0 1.0 -1
s m1b 5.0 0.0 -1
s m2b 1.0 0.0 -1
s m4b 5.0 0.0 -1
s m8b 5.0 0.0 -1
s m1 0.0 0.0 -1
y m1 m1a 1.0 0.0 -1
F m1 m2 0.6 -1
F m1 m3 0.4 -1
s m2 0.0 0.0 -1
y m2 m2a 1.0 0.0 -1
F m2 m4 1.0 -1

s m3 1.0 0.0 -1
F m3 m5 1.0 -1
z m3 m6 1.0 0.0 -1
f m3 1 0 -1
s m4 0.0 0.0 -1
y m4 m4a 1.0 0.0 -1
F m4 m8 1.0 -1
s m5 5.0 0.0 -1
F m5 m7a 1.0 -1
s m6 1.0 0.0 -1
z m6 m7b 1.0 -1
f m6 1 0 -1
A m7a m7a
F m7a m8 1.0 -1
A m7b m7b
s m8 0.0 0.0 -1
y m8 m8a 1.0 0.0 -1
s m1a 0.0 0.0 -1
y m1a m1b 1.0 0.0 -1
s m2a 0.0 0.0 -1
y m2a m2b 1.0 0.0 -1
s m4a 0.0 0.0 -1
y m4a m4b 1.0 0.0 -1
s m8a 0.0 0.0 -1
y m8a m8b 1.0 0.0 -1

-1

A M7
s m7a 0.0
s m7b 0.0
s m7 5.0

:
m7a & m7b � > m7;
m7[m7a]

-1

Figure 7.23: Input speci�cation for Chu, Sit and Leung model.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 185

S

s1

s2

sn

S =
nX
i

si (7.1)

�2 =
nX
i

�2i (7.2)

Figure 7.24: Sequential activity aggregation.

S

+

+

s1 s2 sn

p1 pnp2

S =
nX
i

pisi (7.3)

�2 =
nX
i

pi�
2
i +

X
i;j2I

pipj(si � sj)
2 (7.4)

Figure 7.25: OR fork-join activity aggregation.

7.5.3 Repetition

The mean service time for an activity which is repeated n times on average is the product of

the average activity time multiplied by the average number of times the activity is executed.

The aggregate variance is found using (7.6) [131, p 178]. �2n is the variance of the random

*S si
n S = nsi (7.5)

�2 = n�2i + s2i �
2
n (7.6)

Figure 7.26: Repeated activity aggregation.

variable n.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 186

7.5.4 AND Fork-Join

AND fork-join subgraphs, shown in Figure 7.27, consist of activities that are invoked by a

common parent, synchronize on a common child, and execute concurrently with one and

another.

&

&

S s1 s2 sn

S = max(s1; s2; :::; sn) (7.7)

Figure 7.27: AND fork-join activity graph aggregation.

The aggregate mean service time for an AND fork-join subgraph is max(s1; sn; :::sn)

where si is the mean service time for activity i. If the distribution functions F (si) are

known, then then

Fmax(S) =
nY
i=1

Fi(si) (7.8)

The moments can then be found from Fmax(S).

The distribution functions for activities is not known, so (7.8) cannot be applied directly.

An approximation, using the mean and variance, is described in Section 8.2.2.

7.5.5 \Non-Regular" Graphs

Figure 7.28 shows a graph which cannot be aggregated using the rules above. More complex

graph analysis will be required.

CHAPTER 7. GENERAL PRECEDENCE EXTENSIONS 187

c d e

&
f

&
b

&
a

&
g

Figure 7.28: Graph which is di�cult to aggregate.

7.6 Conclusions

This chapter describes a new grammar for incorporating activities into the layered modelling

framework. Activities are components in the performance model that represent the lowest

level of detail necessary and can be connected together with forks and joins.

A simulator has been written which executes the full semantics of the activity graph

notation described here. The analytic solver LQNS can solve systems with hierarchical

intra-task fork joins; described in the next chapter. Further research is needed to capture

accurately the correlation of arrivals at joins for systems with inter-task fork-joins.

Chapter 8

Queueing Networks with Fork-Join

Interactions

The preceding chapter introduced the concept of activities to layered queueing networks.

This chapter describes approximations for solving systems with intra-task fork-joins. A

\compensated complementary delay" approximation is described which exploits layered

queueing approximations for layered resources which occur in client-server architectures,

based on synchronization delay estimates and adjusted levels of contention. The new ap-

proximation uses the overlap of parallel branches and a new fast calculation of join delays.

It gives acceptable errors (averaging about two percent), and has an enormously lower

computational cost compared to the competing approach based on decomposition.

The material in this chapter was mostly published in [42].

8.1 Performance Implications of Parallel Operations

Processes in a distributed system use services over a network, and may have serious delays

when blocked waiting for a service to complete. To reduce the impact of blocking, or to

simply speed up a set of operations, a process that needs several operations could request

188

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 189

them in parallel, by forking parallel threads that then make the service requests. Figure 8.1

illustrates a database application with this kind of internal parallelism, sending requests to

three separate databases and then combining the results. The right hand side shows how a

user request is broken into three requests at the fork and sent to the three databases. At

the join the application waits for all the replies. These server systems with parallelism may

occur in business data processing, world wide web servers [55], and in geographic information

systems, among others. Notice that in a multi-level system there can be parallel steps in

servers at any level. For example, there might also be a parallel operation within one of

the databases, issuing parallel requests to disks or �le servers (such an example will be

described later).

User 2 User nUser 1

DataBase1 DataBase2 DataBase3

Application

Parallel

Disk1 Disk2 Disk3 Disk4

(a) System Architecture

Join

Request

Fork

Reply

User n

User 2

User 1

DataBase1

DataBase2

DataBase3

Disk 1
Disk 2
Disk 3
Disk 4

Application

(b) Interaction Timeline

Figure 8.1: An example representing a business client-server system. The client workstations
each make requests to a server running a parallel application. The application, in turn,
makes requests to the three lower-level database servers. Figure 8.1(b) shows a sample
interaction between User 1 and the parallel application.

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 190

Other performance optimizations are logically equivalent to parallel threads even if the

threads are hidden from the programmer. For instance for prefetching a �le, a �le access

thread is forked at the prefetch and joined when the data is used.

Since parallelism is a performance optimization, a way to estimate the performance ben-

e�t would be helpful. We would like to employ analytic modelling for speed, but the models

are complex to create because they combine parallelism e�ects with resource contention and

(in many cases) with simultaneous resource possession that arises when a server or thread

blocks to wait for a reply. Furthermore, practical systems may be quite large, so the method

must scale up well. The approach taken here is to add the parallelism e�ects to an exist-

ing modelling framework, the layered queueing model or \rendezvous network" [152, 110],

which is scalable and which assists the model-builder in representing the resource contention

and the simultaneous resources. Layered models have been validated against simulations

on hundreds of cases and in a variety of practical and laboratory applications [126, 148, 30].

The common characteristics of service systems with parallelism are:

� random unsynchronized requests to a server from multiple clients,

� heterogeneous operations on the parallel paths, including perhaps requests to other

servers,

� multiple layers of servers having resource constraints at all layers, such that a request

may hold resources at higher layers while executing a low level service,

� a substantial element of uncertainty or randomness in the duration of the parallel

paths,

� no system-wide synchronization between workload components. Rather, parts of the

workload are due to separate users who compete for resources. This is di�erent from

massively parallel computing in which the parallel paths all execute the same instruc-

tions and there may be frequent global synchronizations.

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 191

8.1.1 Previous Work

Several authors have developed analytic models for parallel service systems. Heidelberger

and Trivedi [51] considered a simple computational loop executed by each user, alternating

between a sequential section and a parallel section. They did consider contention between

the parallel subtasks, but only one layer of resources. They compared two modelling ap-

proaches, called \decomposition" and \complementary delays" (CD). Decomposition re-

quires a separate performance model for each possible state of parallelism, as the number

of independent users increases the algorithm su�ers combinatorial explosion. It does not

scale up to large systems. CD determines an equivalent delay for the synchronization at

the join point and scales up well.

In later papers the decomposition approach was extended. Thomasian and Bay [138]

developed a way to apply it to larger task graphs with a general structure of parallel and

sequential parts. Petriu et. al. [99] applied it to layered systems with any number of layers of

servers (that is, with complex simultaneous resources). In both cases the cost is prohibitive

if the number of independent users is even moderately large.

The CD approach has also been extended. Chu, Sit and Leung [21] modelled the join

delay more carefully by considering the distribution of delay on each parallel path, and

included one additional upper-layer resource (equivalent to a middle layer of service). Mak

and Lundstrom [84] improved the accuracy by accounting for the overlap in time of synchro-

nized parallel sub-paths. However their development was limited to one set of forked jobs

at a time, and also did not include simultaneous resources. Both these papers assumed that

the branches of a parallel operation have an exponentially-distributed delay, to calculate

join delay based only on mean value.

Another class of models for these systems is based on Markov Chains derived from Petri

nets or Process algebras. Models in this class represent all the states of parallelism in a

single model, together with the contention in each state. However they su�er even worse

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 192

from state explosion than the decompositions above, so we must regard them as unscalable

in their present form.

If decomposition and state-based approaches do not scale up, then we must see if the

delay-based approach can be made more accurate. To do so, this chapter extends the

calculation of the overlap in contention given in [84], to make it apply to layered systems

with multi-threaded servers. It also exploits the variance of the delay on the parallel paths,

by using a \three-point" approximation for the join delay. This gives a \Compensated

Complementary Delay" (CCD) approach described in section 5.2.

The CCD analysis is applied in Section 8.3 to several examples, showing that:

� the approach scales up to systems with many servers having parallel sections and to

many independent users,

� approximation errors are limited to a few percent,

� from the 228 examples studied in [51], the CCD errors are about three times as large

as errors from decomposition (CD errors are about ten times as large).

It is concluded that the delay approximation combines usable accuracy with scalable com-

plexity.

8.1.2 The Example System as a Layered Model

Figure 8.2 shows a simpli�ed version of the system of Figure 8.1 (i.e., without the disks)

as a layered queueing model, showing parallel requests from the Application Server in the

middle to the Database servers at the bottom. The parallelism is de�ned by the little activity

graph nested inside the ParApp service in the Application Server. An activity graph de�nes

precedence among its activities.

In a layered model, each task is a resource; a multi-threaded task is a set ofM resources

with a single queue. At the top of Figure 8.2 is a set of N Client tasks which cycle,

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 193

M

[1.0] [1.0]

N

[1.0]

Client
Procs.

[1.0]

Clients Z=50

(1.0)

DataBase2

[0.05]
b1

[0.08]
b2

[0.01]
b3

[0.1]
c1

DataBase3

(1.0)

Proc.

(1.0)

DB1

(0.2)

[0.3]
a1

DB2
Proc.Proc.

DB3
Proc.

AppDataBase1

(1.0) (1.0)

(α)

[0.1]

SeqApp

Server
ParAppApplication

Figure 8.2: Layered Queueing Network for the business client-server system shown in Fig-
ure 8.1. The Application task has two di�erent service types, labelled SeqApp and ParApp.
The ParApp service type consists of a single thread of control that forks into three indepen-
dent threads, then joins again. The notation developed in the previous chapter is simpli�ed
(the AND forks and joins are implied) to save space.

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 194

executing a unit of work in each cycle. In each cycle there is 1.0 seconds of CPU demand on

the client's local processor, � requests for the �rst service, labelled SeqApp, and one request

for the second service, labelled ParApp, which has internal parallelism. Each request for

service is blocking, so the Client waits for it to be completed. The SeqApp service of

the Application Server is a typical sequential program. It demands 0.1 seconds of CPU

time on its processor, and makes an average of 1.0 and 0.2 requests to Databases 1 and 2,

respectively. The number of requests is geometrically distributed.

The service ParApp of the Application Server makes requests in parallel to the three

Database servers, and this is represented in the model as follows. When a request arrives

at the Application Server for ParApp, it triggers the �rst activity at the top of the activity

graph (indicated by a rectangle named a1 in Figure 8.2 and labelled with a CPU demand

of 0.3 units). It then forks three parallel threads, indicated by the arcs coming out of the

bottom of the �rst rectangle and the rectangles labelled b1, b2 and b3 with CPU demands of

0.05, 0.08, and 0.01 respectively; these threads make requests to the three Database servers,

indicated by the arrows going from the boxes to the servers. When the parallel parts are

completed they join and execute the last activity, labelled c1 with 0.1 unit of CPU demand.

The Application Server is also multi-threaded in the sense that it can initiate additional

services for other clients, while its busy threads are waiting for responses from Databases,

up to a limit of M concurrent threads. These M main threads all run on the single App-

Proc processor, and execute whichever service (SeqApp or ParApp) is requested next. The

Database servers are assumed here to be single threaded servers on a single processor each,

which is simplistic but focuses attention on the parallelism issue; the model can instead ac-

commodate any con�guration of multithreaded, parallel and multiprocessor database servers

as well, as will be shown in Section 8.3.

The performance is governed by a complex combination of resource contention and

parallelism. When the Application Server is multithreaded its threads may contend for

access to the Databases; threads executing SeqApp make a di�erent pattern of Database

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 195

accesses, than those of ParApp. Conversely, when it is single threaded, the Application

Server is held as a simultaneous resource during a Database server access. A larger value

of � increases the contention for Databases 1 and 2, so the duration of parallel branches b1

and b2 increases also through contention. This delays the synchronization, and keeps the

Application Server threads busy longer, waiting.

8.2 Solutions for Parallelism

Parallelism a�ects the solution of the layered queueing model in two ways. First, if a server

has parallel branches, its service time includes the delay from the fork to the join, denoted

tFJ . Second, in the layers below the parallel server, the parallel part creates an additional

customer entity for each active branch. The response times of these entities provides the

branch delays used to calculate the join synchronization delay. If we just solved these layered

models using standard queueing algorithms, we would have the CD approach of [51]; this

technique is called CD0 when it includes the three-point delay approximation.

There is an overlap e�ect on contention that was not considered in the CD method

of [51], which has motivated the \Compensation" aspect of Compensated Complementary

Delays (CCD) developed here. The sibling parallel sub-threads of a single server thread are

all launched at once at a fork operation, and this increases their contention at the beginning

of the operation. Then as they complete one by one the contention level drops until the last

one has no contention from its siblings. The contention will be adjusted for the amount by

which the sibling sub-threads overlap each other in time.

The probability of having to contend with one of these sibling sub-threads will be multi-

plied by a compensation factor re
ecting the probability that sub-threads are active at the

same time. Since it is only the sibling sub-threads which are synchronized to begin with,

there is no compensation for overlaps coming from other parallel sections or from other

threads executing the same service. The impact on accuracy will be probably be greatest

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 196

where a single parallel section in a single-threaded server dominates a system.

8.2.1 Contention Generated by Parallel Activities

Figure 8.3 shows the activities and their interaction timeline of the ParApp service from

Figure 8.2 along with their temporal relationship to the chains and active threads used by

the MVA solution.

When an application service forks a set of parallel branches, each branch is represented

by a separate customer chain in the lower layer submodel. For example, Figure 8.3(c) shows

chain 1 representing the main thread, which executes activities a1 and c1 of the ParApp

service and also executes the SeqApp service when requested, together with chains 2, 3, and

4 representing the threads that fork and execute activities b1, b2 and b3. The delay time

(think time) of these chains is the mean time from the join to the next fork, for each main

thread instance. This is a complementary delay. The chain populations are the same as the

population of chain 1, which is the number M of main threads in the server.

The mean-value equations of contention by members of chains 2, 3 and 4 at queues in

a lower level of servers must be adjusted to account for their synchronization at the fork.

Mak and Lundstrom did this in [84] by �nding the overlap between the active phases of

chains 2, 3, and 4. The overlap fraction �kj is the probability that, when chain k is active,

sibling chain j is active also. This fraction is

�kj = dkj=Wj (8.1)

where Wj is the mean active lifetime of sub-path j and dkj is the mean overlap time from

the fork point, given by

dkj =
1

W�1
j +W�1

k

: (8.2)

When there are two related fork-joins, one nested in the other, then a branch of one also

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 197

d) Active threads

c) Active routing chains

b) Timeline

a) Activity Diagram

Sequential
Main thread

Parallel
Subthreads

Number of Active Threads

t

11

t

t

a1 c1b2

b3

b1

3

4

2

Fork

Reply

Join

Request

Figure 8.3: Activity graph - customer chain relationship for the parallel application from
Figure 8.2. Note that even though there are four distinct chains, at most three are active
at any time.

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 198

has an overlap with a branch of the other. This is calculated by determining the probability

pkj of any overlap at all, given by [84]:

pkj = 1� Pr(Ej < Sk)� Pr(Ek < Sj): (8.3)

This calculation is based on the delay from the common synchronization point at the out-

ermost fork; Sj denotes the time when j can start executing and Ej denotes the time when

j �nishes. Then

�kj =
pkjdkj
Wj

: (8.4)

Mak and Lundstrom considered only a queueing network with one customer in each

chain. Since this work has servers with multi-threaded servers, there can be additional

members of chain j which are not siblings of the member of chain k. For these others, the

overlap is di�erent. For example, a particular active member of chain 2 from Figure 8.3

is synchronized only with one member of chain 3 and one of chain 4, its own siblings

that were forked with it from the same chain-1 parent. Other chain-1 customers fork at

unrelated moments and spawn members of chains 1, 2 and 3 which have no special temporal

relationship to this particular member of chain 2. Assuming the forking times of non-sibling

chains j and k are independent, the unsynchronized overlap fraction for members of chain

j and k, which we can call ��kj , is just the fraction of time chain j is active:

��kj = �kWk (8.5)

where �k is the throughput for chain j.

Over the Nj members of chain j, the average overlap fraction is found from 8.4 and 8.5.

�kj =
�kj + (Nj � 1)��kj

Nj
: (8.6)

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 199

In MVA [107] a mean number Lmj of chain j customers is found in queue m at an arrival

instant of a chain k customer. MVA assumes no temporal relationships between thread

activations, and therefore corresponds to an unsynchronized overlap probability of ��kj . If

the average overlap is �kj instead, we assume that the mean number of customers increases

in proportion to �kj ; the mean number Lmj then is replaced by (�kj=�
�
kj)Lmj . With multiple

chains j = 1::K we obtain

Wmk(N) = Dmk

2
41 + KX

j=1

�kj
��kj

Lmj(N� ek)

3
5 (8.7)

where Wmk(N) is the total residence time per response cycle of chain k at station m, in a

system with a chain population vector N, Dmk is the total service demand of chain k at m,

and Lmj(N� ek) is the mean number of chain-j customers found at an arrival instant (as

computed by the usual MVA method [107]). Lmj is further approximated in the solver in

the Linearizer algorithm.

Finally, there are pairs of customers that have zero overlap such as the parent customer

in chain 1 with any of its children in chains 2, 3 and 4. For these pairs of customers pkj = 0,

and thus �kj = 0.

8.2.2 Approximation for Join delays

The di�culty with �nding join delays is that an accurate calculation requires the full proba-

bility distribution for the branch lifetimes, which is not available from a mean value analysis

(MVA). The usual approximation, made for instance by Mak and Lundstrom [84] and by

Heidelberger and Trivedi [51], is that branch delays are exponential, in which case there is

a simple analytic formula for the join delay which depends only on mean values. However

this may give quite large errors. To eliminate these, Chu, Sit and Leung [21] demonstrated

a gamma-distribution approximation which requires �tting several distributions and then

integrating numerically over the �nal distribution to obtain the mean and variance. This

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 200

works well but is computationally expensive.

This work used a new \three-point" approximation due to Jiang [62] to compute the

mean and variance of the join delays, based on the mean and variance of the branch delays.

The distribution for each branch delay is approximated by three point probabilities which

match the mean and variance, and the rest of the analysis is exact. The algorithm for

determining the locations tij of the three points and the values a(tij) for the probabilities

(from the mean and variance of a delay ti) is given in [62]. Figure 2.4 illustrates the

point probabilities ai(t) for one branch and the approximation Ai(t) for the probability

distribution function for that branch. For the overall delay it is A(t), the product of the

Ai(t). The probabilities a(tk) for the fork-join delay are found for the points tk where A(t)

jumps, and the mean and variance follow. The discrete approximation makes the calculation

fast.

The three-point approximation was tested in [62] with hundreds of randomly generated

test cases. When the squared coe�cient of variation of each of paths involved in the join

was less than or equal to one, the mean absolute error in overall delay was less than one

percent, and when the squared coe�cient of variation was between one and nine, the mean

absolute error was less than four percent. In larger task graphs the errors tended to be

smaller. This accuracy is adequate for practical predictions.

8.2.3 Complexity

The layered model algorithms are described as \scalable" because their computational de-

mands and storage go up as low-order polynomials in the size parameters of the model,

such as the number of tasks, services and request arcs [152]. Each of the layer submod-

els is solved using the Linearizer approximate MVA algorithm, therefore the dominating

complexity parameter is cubic in the number of chains [12] in a given submodel.

With parallel services there is an additional parameter B, the largest number of parallel

branches in any one server. B enters the time complexity through the overlap and the

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 201

branch and join delay calculations, (which are linear in B) and through the increase in the

number of chains in some submodels by a number proportional to B. Similar arguments

apply to the space requirements. Thus the layered solution algorithm incorporating the

fork-join approximations remains scalable.

8.3 Results

A useful robust approximation must be su�ciently accurate (a few percent error), and

also be scalable to large systems. This section considers three examples, �rst to illustrate

accuracy using a small example, second an example with greater system complexity and

third to compare the accuracy to [51]. Each of the systems were compared to detailed

simulations which modeled the semantics of the layered queueing networks.

8.3.1 Application Server Example

The example given in Figure 8.2 was analyzed with one thread and four threads in the

Application Server, and with variations in the relative frequency of requests to the sequential

service SeqApp and the parallel service ParApp, as determined by the SeqApp request rate

�. The results in Tables 8.1(a) and 8.1(b) show the client throughput values by simulation,

with con�dence intervals, and the predicted throughput values and errors by CD0 and CCD

methods. The prediction error is measured by the percentage relative error in the predicted

client throughput, � = sim.�approx.
sim. � 100.

With only one thread in the server, CCD is roughly four to eight times better. The

advantage becomes large as the tra�c levels increase (� increases) and the Application

Server becomes more of a bottleneck. However with four threads, CCD is only a little

better and only for small �. The di�erence is that with one thread all the sub-paths in

the Application Server are synchronized and have overlap factors which are di�erent from

the default, while with four threads the unrelated and unsynchronized sub-paths dominate.

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 202

Also, as � increases, a bottleneck appears at Database1 and this dominates the system

solution.

Simulation Analytic Approximations
CD0 CCD

� � �95% � �(�) � �(�)

1 0.48 0.0020 0.43 -10.06 0.50 2.76
2 0.55 0.0034 0.49 -11.48 0.56 1.82
4 0.62 0.0016 0.56 -9.97 0.63 1.52
7 0.67 0.0051 0.62 -7.95 0.68 0.96
10 0.69 0.0067 0.65 -6.12 0.70 1.10

(a) M = 1 thread

Simulation Analytic Approximations
CD0 CCD

� � �95% � �(�) � �(�)

1 0.90 0.0030 0.87 -4.38 0.88 -2.96
2 0.96 0.0047 0.93 -3.02 0.93 -2.58
4 0.98 0.0036 0.97 -0.76 0.97 -0.74
7 0.99 0.0019 0.99 0.37 0.99 0.37
10 0.99 0.0025 1.00 0.46 1.00 0.46

(b) M = 4 threads

Table 8.1: Results for the Application Server with M threads (throughput, predicted
throughput and its percentage error).

8.3.2 Extended Client-Server Example

To show how the solution behaves in a larger client-server model, parallelism was incorpo-

rated into the lower level server, Database 3 in the previous example, as shown in Figure 8.4.

It now has parallel paths within it, and additional disks are accessed in parallel. This sys-

tem was then analyzed by simulation and by the CD0 and CCD solvers over a range of

client population N from 10 to 100, and a range of threads in Application Server from 10

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 203

to 30. The computing time for each solution was about 20 seconds each for CD0 and for

CCD (independent of the number of customers), and ranged from 20 to 140 minutes for

simulation

The CCD results in Figure 8.5 show the Client throughput and response time rising

as the number of clients is increased. The additional Application Server threads (beyond

10) make no di�erence until the clients approach 100. At this point, ten threads give a

bottleneck at the Application Server, while 30 threads push the bottleneck down to its

processor.

4 threads4 threads 4 threads

[0.4][0.4]

threads

N

M

[0.03]

(1.0)

Disk5

(1.0)

Disk6

(0.2)

Disk7

(1.0)

Disk8

(1.0)

[0.03]

(1.0)

[0.03]

(1.0)

Disk3 Disk4
[0.03] [0.03]

Disk2
[0.03]

Disk1
[0.03] [0.03]

DataBase1 DataBase2

[0.01][0.05]
[0.1]

ParAppSeqApp [0.3]

[0.08]

[0.1]

Clients

[1.0]

Z=50

[0.1][0.1] [0.1] [0.1]

[0.1]

[0.1]

Parallel

Server

Application

DataBase3

Figure 8.4: Layered Queueing Network for an extended business client-server system with
parallelism in one of the databases.

When we compare the CD0 and CCD prediction errors in Tables 8.2 through 8.4 we �nd

that they are much the same. In this system with so many threads the e�ect of overlap is

buried by the large number of unsynchronized chains due to the other threads. The errors

are largest at the bottom of Table 8.2, due to errors in the fork-join delay approximation,

which clearly still needs to be improved. The mean error over all the runs, �0:79% is within

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 204

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t

Number of Clients

"m=10"
"m=20"
"m=30"

(a) Throughput

5

10

15

20

10 20 30 40 50 60 70 80 90 100

R
es

id
en

ce
 T

im
e

Number of Clients

"m=10"
"m=20"
"m=30"

(b) Waiting Time.

Figure 8.5: Results for the extended example, with varying threads in Application Server.

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 205

the 95% con�dence intervals of �2% of the \true" simulation results.

N Simulation Analytic Approximations
cust CD0 CCD

� �95% � �(�) � �(�)

10 0.19 0.0007 0.19 -0.07 0.19 -0.07
20 0.38 0.0025 0.38 -0.74 0.38 -0.75
30 0.57 0.0028 0.57 -0.73 0.59 -0.73
40 0.76 0.0037 0.75 -0.93 0.75 -0.94
50 0.94 0.0012 0.93 -1.45 0.93 -1.45
60 1.12 0.0030 1.10 -1.78 1.10 -1.76
70 1.28 0.0054 1.25 -2.40 1.25 -2.35
80 1.42 0.0032 1.34 -5.12 1.35 -4.99
90 1.52 0.0065 1.37 -9.75 1.37 -9.59
100 1.55 0.0055 1.37 -11.64 1.37 -11.54

Table 8.2: Throughput and mean relative error results for the extended example, with 10
threads in Application Server. Simulation results had 95% con�dence intervals of �2%.

The value of CCD is now clear. Compared to CD0, CCD gives much better accuracy

in certain cases, and in all cases, it contributes a negligible extra cost. It gives the extra

accuracy when there is a small number of threads that can fork in parallel in the same

server, and when this server is limiting the performance of the system.

8.3.3 Comparison to Decomposition

The 228 test cases described in Heidelberger and Trivedi [51] were recast as layered models

to compare the new algorithm to the decomposition method of [51]. The test cases have

one to �ve client tasks which cycle. Each client task has a single parent activity which forks

either two or three child sub-paths and waits for the children to complete, then cycles again.

All the sub-paths make requests to a set of disks. For the two-child test, 108 di�erent cases

were analyzed with one or two CPUs, 1, 3, or 5 clients, and di�erent visit and service time

values. For the three-child test, 120 cases were analyzed with one or three CPUs, 1, 3 or 5

clients, and di�erent values of other parameters, as described in [51].

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 206

N Simulation Analytic Approximations
cust CD0 CCD

� �95% � �(�) � �(�)

10 0.19 0.0007 0.19 -0.07 0.19 -0.07
20 0.38 0.0030 0.38 -0.41 0.38 -0.41
30 0.57 0.0027 0.57 -0.49 0.57 -0.49
40 0.76 0.0033 0.75 -1.16 0.75 -1.17
50 0.94 0.0037 0.93 -1.61 0.93 -1.60
60 1.12 0.0022 1.09 -2.53 1.09 -2.52
70 1.28 0.0025 1.24 -3.10 1.24 -3.07
80 1.42 0.0039 1.36 -4.01 1.36 -3.96
90 1.51 0.0040 1.44 -4.81 1.44 -4.73
100 1.55 0.0044 1.46 -6.25 1.46 -6.15

Table 8.3: Throughput and mean relative error results for the extended example, with 20
threads in Application Server. Simulation results had 95% con�dence intervals of �2%.

N Simulation Analytic Approximations
cust CD0 CCD
� � �95% � �(�) � �(�)

10 0.19 0.0007 0.19 -0.07 0.19 -0.07
20 0.38 0.0010 0.38 -0.36 0.38 -0.36
30 0.57 0.0029 0.57 -0.74 0.57 -0.74
40 0.76 0.0028 0.75 -1.28 0.75 -1.28
50 0.94 0.0039 0.92 -1.68 0.92 -1.68
60 1.12 0.0047 1.09 -2.56 1.09 -2.56
70 1.28 0.0012 1.24 -3.44 1.24 -3.43
80 1.42 0.0016 1.35 -4.48 1.35 -4.47
90 1.51 0.0019 1.44 -5.09 1.44 -5.04
100 1.55 0.0044 1.48 -4.88 1.48 -4.82

Table 8.4: Throughput and mean relative error results for the extended example, with 30
threads in Application Server. Simulation results had 95% con�dence intervals of �2%.

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 207

Table 8.5 shows the mean absolute percentage error, the 90th percentile and the largest

sample of j�j, denoted by Ave, 90% and Max respectively over the 108 cases in each of the

two-child (Ch = 2) reports and the 120 cases in each of the three-child (Ch = 3) reports.

The columns labelled \Dcmp" and \CD" list the results given in [51] for decomposition and

for CD respectively. The results in the columns labelled \CD0" and \CCD" were found by

comparing simulations (with con�dence intervals of 0.5% at the 95% level) to predictions

made with CCD and with CD0. The comparisons between results for Ave, 90% and the

maximum observed j�j are very similar so they will be discussed together.

The results for CD and CD0 di�er slightly because the simulations were redone, and

because CD0 used the three-point approximation to �nd the join delays. On these tests

they are about the same, with some errors larger in one column, some larger in the other.

The last column describes the new CCD results. Compared to decomposition in column

one, the errors are three to four times greater for CCD. While this is disappointing, CCD

still has quite good accuracy for practical purposes (about 2%{3% in the Ave measure).

Compared to CD0 (without the overlap compensation), CCD is two to three times better,

and this improvement can be valuable. Thus, the compensation is a big gain.

The second table (8.5) gives more detail on the comparison between CD0 and CCD

from the new results, by showing the mean and standard deviation of � (without taking the

absolute value). Here �(�) stands for errors in the throughputs calculated for all servers in

the models. Now we can see that most of the throughput error is due to systematic bias

which depends on the number of CPUs or parallel branches. The spread, indicated by �,

for CCD is much smaller.

8.4 Conclusions

The examples demonstrate the power of the layered modelling framework to provide a

convenient platform for de�ning models with parallelism. They can have parallelism in

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 208

Ch From [51] New Approx
CPU Act Meas Dcmp CD CD0 CCD

1 2 Ave 0.5 5.8 5.83 2.74
90% 1.0 10.0 10.01 5.08
Max 2.7 12.7 17.63 11.5

2 2 Ave 0.6 4.9 3.98 2.10
90% 1.2 8.7 7.92 3.84
Max 2.2 10.3 11.64 11.5

1 3 Ave 0.7 5.6 5.19 2.86
90% 1.4 7.4 8.58 4.37
Max 4.2 15.3 11.39 7.07

3 3 Ave 1.0 2.5 4.07 2.15
90% 2.0 8.6 7.53 3.53
Max 6.8 10.7 9.12 8.34

Table 8.5: Magnitudes of percentage throughput errors in the 228 test cases studied by
Heidelberger and Trivedi [51]. Ave is the mean of the absolute relative errors, stated as
percentages; 90% is a 90th percentile and Max is the maximum error in a group of samples.

Child �(�)
CPUs Activites Measure CD0 CCD

1 2 Mean -5.84 1.84
� 0.21 0.04

2 2 Mean -3.65 1.97
� 0.19 0.05

1 3 Mean -4.49 1.44
� 0.23 0.01

3 3 Mean -2.47 1.51
� 0.28 0.01

Table 8.6: Bias and spread of the percentage errors in throughput from the same cases as
Table 8.5.

CHAPTER 8. QUEUEING NETWORKS WITH FORK-JOIN INTERACTIONS 209

di�erent servers and in di�erent parts of the system, and can represent layered contention

e�ects and the e�ects of multi-threading.

Compared to decomposition, CCD has adequate (though worse) accuracy combined with

a manageable cost which remains feasible for large numbers of threads and branches, while

the cost of decomposition rises exponentially. We can describe this as a robust combination

of accuracy and cost.

The CCD approximation has been found to give quite good accuracy for practical sys-

tems, typically with errors of a few percent. It was tested over many hundreds of examples

with di�erent parameters. CCD is intermediate in accuracy between decomposition and a

CD approximation which is uncompensated for chain overlap. Unlike decomposition, it can

be economically scaled up to large systems, in the sense that its time and storage demands

are low-order polynomials in the size parameters of a model. CCD is robust in cost and

accuracy, in that it avoids both the larger errors of complementary delay methods and the

exponential cost escalation of decomposition.

Compensation in CCD was found to give an error reduction of up to a factor of two in

the throughput prediction over CD0. The greatest advantage occured in those cases where

the parallel server has few threads and is a bottleneck to the system.

In other cases complementary delays (CD0) is almost as good. Therefore it may also

have a place as a technique giving useful accuracy in many practical cases.

The examples do not exhaust the possible applications of the CCD approximation. For

instance they do not include asynchronous RPCs and prefetches, but these can be modelled

by forking one thread to execute the remote request while the main computation goes on in

a second parallel child thread, up to a join where the result is needed. Similarly, the models

do not consider network latencies, but these delays can be added easily.

The evaluation has been restricted to intra-task fork-joins. Some experiments with inter-

task fork-joins had unacceptably large errors, likely caused by the correlation of arrivals at

the join.

Chapter 9

Case Study of the Linux 2.0 NFS

Implementation

One of the most commercially successful and widely used available remote �le system pro-

tocol is the Network File System (NFS) [135, 83, 121, 141], designed by Sun Microsystems.

It was designed as a client-server application; the client imports �le systems from server

machines and makes remote procedure calls to perform operations such as read() and

write().

This chapter uses the layered queueing network model to study the performance of the

Network File System as implemented in the Linux Version 2. kernel. This implementation

of NFS uses the NFS-V2 protocol [135] over UDP.

First, the layered queueing network model of NFS is described and validated against a

live system consisting of several 200 MHz Pentium II processors interconnected with a 100

Mb ethernet. Then, the model is perturbed to study the e�ects of a higher speed network,

a di�erent workload, and e�ciency improvements to the implementation.

The material in this chapter was mostly published in [43].

210

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 211

9.1 The Network File System

The standard NFS server was designed to be stateless so that server operations could be

simpli�ed. The server need not keep track of what each client is doing and, in the event

of a crash, no special recovery operations are needed. Because of this design each NFS

RPC operation is idempotent. If a client detects a failure, it simply re-issues the request.

For operations which modify the data on the server, the server's reply denotes success or

failure. This behaviour implies that modi�cations to �les are committed to stable storage

before a reply is generated. Because disks are relatively slow devices, this behaviour has

also led to performance problems. Solutions to this problem include write gathering [67],

battery-backed disk RAM caches [87] and not performing synchronous writes at all.

9.1.1 Linux NFS operation

Figure 9.1 shows \use case maps"1 [9] of the NFS operations used to derive the model in

this paper. (The maps shown here are simpli�ed in the sense that many of the operations

may loop; only one occurrence is shown here.) These use cases are then parameterized and

turned into a layered queueing network model.

Only three NFS operations were modelled: lookup, read and write. Lookup and read

dominate the workload. Write, while not a large component of the workload, is also modelled

because it has been a major source of performance problems. The sections that follow

describe these operations more detail. Section 9.2 describes the actual layered queueing

network model.

Lookup

The lookup operation, shown in Figure 9.1(a), is used to locate a �le on the server and

return a \�le handle" to the client. The �le handle is used by the client for subsequent �le

1A use case map shows an execution trace of a program.

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 212

Server

Client

hit
done

miss

lookup

read

lookup() done

rpc.nfsd

Kernel

Disk

User
application

(a) Lookup

Client

Server

hit

done

read

clean

read() hit

doneread()

send

miss

miss

nfsiod

application

rpc.nfsd

User

Disk

Kernel

(b) Read

Server

Client

donewrite()

done

application

rpc.nfsd

User

write()

Disk

write

Kernel

(c) Write

Figure 9.1: Use Case Map of the primary NFS operations. Processes and disks are shown as
parallelograms. The �lled circle represents the start of the operation and the �lled rectangles
the end. The arc between the start and end symbols represents the temporal ordering of
the operations, shown as diamonds in the �gure.

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 213

operations such as read() and write().

On the server side of the lookup operation, the rpc.nfsd daemon will check its internal

cache to determine whether a �le handle exists for the requested �le. If not, the daemon

will attempt to create a new �le handle by looking for the requested �le in the server's �le

system. Searching for the �le may result in several disk accesses as directories are read

while searching for the �le.

Read

Figure 9.1(b) shows the UCM for an NFS read operation. When the application issues a

read, the client �le system checks its cache to determine if the requested data is already

present. If not, the �le system requests blocks in 4K byte pages from the �le server. Each

read request blocks the client process while the server processes the request. Since each read

request sent to the server blocks the requester, four nfsiod processes are used as proxies.

If an nfsiod process is available, the client can issue the read request to the server by way

of the proxy and continue to execute itself. Typically, nfsiod 's are invoked when the client

issues a read request larger than the system's page size so that multiple read requests can

be issued in parallel.

When a read request arrives at the server, the server's bu�er cache is checked to see if

the page is present. If so, the server immediately replies to the client with the data. If the

page is not present, the server makes a blocking read request to the disk; once the data is

read, the server can reply.

The server's �le system also issues read-ahead requests asynchronously to the disk. A

subsequent read request may then �nd the data in the bu�er cache, in which case the server

replies immediately, or the server may �nd the read request pending, in which case the

server will block.

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 214

Write

Figure 9.1(c) shows the UCM for a write request. When the client application writes to an

NFS �le system, the request is immediately forwarded to the server, shown by the AND-

Fork in the UCM. This write occurs asynchronously; the client does not wait for the server

to reply. Rather, the client's �le system waits for the reply and then frees the bu�er2.

At the server, write requests are also forwarded to the disk immediately. Again, the write

occurs asynchronously so that the rpc.nfsd process can reply immediately to the client.

Note that this approach, while having signi�cant performance bene�ts as demonstrated

later, does not obey NFS semantics.

9.1.2 Related Work

The performance of NFS has been studied extensively in the past, both empirically [95,

47, 46] and using performance models [144, 96]. These studies have shown that network

delays (in particular, when UDP packets are lost resulting in RPC timeouts and retries)

and synchronous writes at the server both impact performance. Improvements to the pro-

tocol [95], the use of TCP instead of UDP, performance optimizations at the server [67, 68],

and special hardware [87] have all been used for signi�cant performance improvements.

9.2 Layered Queueing Model of NFS

This section describes a Layered Queueing Network model of the Linux 2.0 NFS implemen-

tation, shown in Figure 9.2. The throughput predicted by the model is compared against

a live system. The model is divided into four parts: the client, the server, the disk on the

server, and the network. The model is solved both analytically using the layered queueing

network solver, and with simulation. The analytic results are compared to simulation and

2The bu�er is not freed until the reply arrives in case the client must re-issue the write request due to a
server crash or a dropped UDP packet.

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 215

to the live system to show the accuracy of the model and of the analytic technique. The

execution time of the benchmark, the analytic solver, and the simulator are also compared.

To speed �le operations, Linux uses a bu�er cache to store pages of recently accessed

�les. During read operations, the �le system reads ahead so that read requests from the

user access the data from the bu�er cache without waiting for the disk. Write operations

are processed asynchronously so that the user process does not have to wait for the disk to

complete its operation.

To incorporate the asynchronous read and write e�ects, the LQN model incorporates

two-phase multi-servers [41] to model the bu�er cache. The number of copies of the multi-

server denotes the number of bu�ers in the system. The utilization of the multi-server

denotes the minimum number of bu�ers needed. If the multi-server is fully utilized, the

queueing delay represents the time needed for the bu�er cache to acquire a free bu�er.

The asynchronous reads and writes can also be modelled as an open class in a mixed

queueing network model. However, this method would not incorporate contention delays

for bu�ers.

The sections that follow describe the workload and each of the four parts of the model

in detail.

Workload

The workload for this performance study was generated by the nfsstones benchmark [127].

Other NFS benchmarks exist such as LADDIS [145] and SPECsfs [137]), but these bench-

marks execute the NFS protocol directly, thus bypassing the the client's �le system alto-

gether. As the intent of this study is to include both the client's and the server's behaviour,

benchmarks like LADDIS are not satisfactory.

Table 9.1 shows the workload measured by Sun Microsystems, the workload generated

by the nfsstone and LADDIS benchmarks, and the workload used here generated by a

modi�ed nfsstones (the �le size parameter was increased by a factor of ten). This change

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 216

Client

(4.0)

(0,7.0)

(0.62)

(0.496)

(0.110)(0.124)

(0.31) (0.06)(0.63)

(0,1.0)(1.0)

(1.0)(1.0)(0.5)

(A) (B) (D)(C)

A=(0.00133,0.0350)
B=(0.00084,0.0222)
C=(0,0.0558)
D=(0,0.0061)

Sm_Rd
[10560]

Sm_Wr
[2440]

Big_Wr
[11780]

Big_Rd
[6910]

ether
[208.0]

ether

main
[95.7]

nfsstone

read
[50.9]

write
[76.1,2]

Buffer Cache

read
[11.8]

nfsiod
{4}

{60}

{4000}

User
Kernel

rpc.nfsd

User
Kernel

lookup
[415.9]

read
[410.4]

write
[410.4]

read
[20.8,2]

write
[39.1,2]

{4000}
Buffer Cache

Server

Network

Disk

Figure 9.2: Layered Queueing Network of principle NFS operations. The large parallelo-
grams represent tasks and resources. The smaller parallelograms within the tasks are entries
and serve to di�erentiate service. The shaded boxes group the tasks by processor.

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 217

was necessary because main memory sizes are much larger today than they were in 1989;

without the change the benchmark would only exercise the client's cache.

NFS Percentage of Total
Op. Sun nfsstone LADDIS LQN

[120] [127] [145] Model

lookup 50 53:0 34 26:3
read 30 32:0 22 63:2
readlink 7 7:5 8 3:7
getattr 5 2:3 13
write 3 3:2 15 6:4
create 1 1:4 2
readdir 3
statfs 1
remove 1
setattr 1

Table 9.1: NFS Operation Mix.

Nfsstones works by forking 60 clients that perform write, then a set of reads. Operations

on disk are not uniformly distributed, which may skew results.

Client Submodel

Table 9.2 shows the mean user and system times and their standard deviations of the

nfsstones and nfsiod processes for twenty runs on the live system. The service time for

nfsstones was found using the Linux time utility. Service times for nfsiod were found by

examining the process information found in the /proc �le system. The system times for

nfsstones and rpc.nfsd was further re�ned by using the strace utility to trace the number

of request and the fraction of total system time used by each system call. All of the system

time for read and write requests were allocated to the bu�er cache LQN tasks.

The request rates from nfsstones to the client's bu�er cache and to the server's rpc.nfsd

were set based on the work load found in Table 9.1. The request rate to the ether task

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 218

Process Calls Time
Function N t �t % of per call

(S) Total (�S)

nfsstones user 95010 0:617 0:0557 100:00 6:494
system 12:232 0:3436 100:00
access 25003 7:267 59:41 290:633
read 60000 3:052 24:95 50:873
readlink 3498 1:025 8:38 293:122
write 6001 0:469 3:83 78:136
open 508 0:196 1:61 386:486
lseek 18048 0:108 0:88 5:966
getpid 25003 0:080 0:65 3:188
other 1344 0:035 0:28 25:673

nfsiod system 0:0784 0:0036

Table 9.2: Client Service Times.

representing the network is set to twice the value of the request rate to the lookup entry

of rpc.nfsd because one ethernet packet is needed for both the request and the reply to the

server.

The request rates from the client's bu�er cache to its lower-level servers for read requests

was set by �nding the product of the bu�er cache miss ratio, the fraction of requests handled

by the nfsiod processes and the number of 4K pages read per 8K read request issued by

the client. This information was found by instrumenting the kernel and later veri�ed by

comparing the strace data from the nfsstones and rpc.nfsd processes. Read requests to

rpc.nfsd are issued by way of the ethernet. Each 4K read request made directly from the

bu�er cache, or indirectly from the nfsiod process, results in four packets on the ethernet;

one for the request and three for the reply.

Each write request made by the client is passed directly to the server by way of the

bu�er cache. However, unlike reads, writes take place from phase 2 so that the client does

not block waiting for the request to complete. Further, write requests occur in 8K chunks,

thereby requiring seven packets on the ethernet.

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 219

Server Submodel

The server process rpc.nfsd is modelled as a single threaded, single phase, multiple entry

server. Reads and writes are modelled using their own entries. All other functions are

modelled by lookup.

The aggregate service time for the server was found by examining the process data in the

/proc �le system after each run; the mean and standard deviation are shown in Table 9.3.

User time is assumed to be distributed equally among the requests (the bulk of this time is

in the common RPC code). The system times was further partitioned from the service time

information collected by strace. System times for reads and writes are pushed down to the

bu�er cache multi-server task. The remaining system time is assigned to the rpc.nfsd task.

Process Calls Time
Function N t �t % of per call

(S) Total (�S)

rpc.nfsd user 44670:2 7:859 0:1113 100:00 175:934
system 10:962 0:195 100:00
select 44547:1 8:0620 73:54 180:979
lstat 42078:3 1:012 9:23 24:050
sendto 48666:6 0:740 6:75 15:210
recvfrom 44670:2 0:360 3:29 8:069
read 13518:6 0:309 2:82 22:845
write 6000:2 0:247 2:25 41:101
time 24735:7 0:108 0:99 4:372
readlink 3498 0:046 0:42 13:204
lseek 19519:2 0:035 0:32 1:812
truncate 492 0:028 0:26 57:348
other 353 0:014 0:13 40:236

Table 9.3: Server Service Times.

Each read and write request results in one nested request to bu�er cache. The rpc.nfsd

task is blocked during this interval. Some of these requests will result in further nested

requests to the disk. These requests are described in the next section. It is assumed that

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 220

requests to lookup reference the bu�er cache 50% of the time.

Disk Submodel

The parameters for the disk submodel are based on:

1. the number of requests to the disk for each request made to the server's bu�er cache,

2. the mean request size from the bu�er cache, and

3. the mean service time for each request.

For reads, the �le system tries to read ahead ; in some cases more blocks are read than are

actually required (i.e. during random read requests). In most instances, the read ahead

operations are asynchronous; they are treated as phase-two requests. For writes, all opera-

tions are treated as phase two; the write system call returns as soon as the data is written

to the bu�er cache. The bu�er itself is \busy" until it is written to disk.

Equations (9.1) through (9.3) are used to determine the request rates from the server's

bu�er cache to the disk. The variables are:

L Logical reads,

B Blocking reads,

R all Read aheads,

A Asynchronous read aheads,

S disk sectors read (1K Blocks), and

P Page size (4K).

� = 1� B=L (9.1)

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 221

� = A=R

� = S � PB

Ph1 =
(1� �)� + PB

PL
(9.2)

Ph2 =
��

PL
(9.3)

Equation (9.1) is the bu�er cache hit ratio. Equations (9.2) and (9.3) are the number

of requests made to the disk from phase 1 and phase 2 of the bu�er cache respectively for

each read request received. These results are further modi�ed by the mean request size,

described next. Table 9.4 shows the measured values and the results.

Reads Read Ahead Sectors � Rate
L B R A S Ph1 Ph2

14117:6 65:5 672:0 650:3 59179:9 0:9953 0:0383 1:0097

Table 9.4: Disk Request Rates.

Disk modelling is complex because of seek times, rotational latency and local caching [117].

For this study a simpler model in which the operation times were grouped in `buckets' is

used instead. The disk service time was measured by adding performance monitoring coun-

ters to the kernel and polling these counters while nfsstones was running. Figure 9.3 shows

disk service times and the histograms of requests. The histograms in Figure 9.3 show that

there are a number of requests of less than 4K bytes in size, and a second grouping of

requests around 42K for reads and 140K for writes. The wide-range of request sizes arises

from the I/O system merging adjacent read and write requests into one big request.

For this performance study, two buckets were used: one for requests less than 4K bytes

in size and the other for all other requests. Table 9.5 shows the mean request sizes and

service times found from the measurement data. The mean service time for each bucket is

used as the entry service time in the performance model. The request rates are found by

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 222

0

5

10

15

20

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20
A

ve
ra

ge
 S

er
vi

ce
 T

im
e

(m
S)

Pe
rc

en
ta

ge
 o

f
R

eq
ue

st
s

Read Request Size (1K Blocks)

Reads

Service Time
Percentage of Requests

(a) Read Service Times

0

5

10

15

20

0 40 80 120 160 200 240 280
0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 S
er

vi
ce

 T
im

e
(m

S)

Pe
rc

en
ta

ge
 o

f
R

eq
ue

st
s

Write Request Size (1K Blocks)

Writes

Service Time
Percentage of Requests

(b) Write Service Times

Figure 9.3: Disk Service Times Scatter Plots.

multiplying the phase 1 and 2 rates from Table 9.4 by the fraction of requests made to each

bucket, then dividing by the mean bucket size.

Parameter Service Time Size Requests Calls
(mS) (1K Blocks) (%)

t �t size �size Ph 1 Ph 2

Small Read 10:56 1:99 2:05 0:15 7:1 0:00133 0:0350
Big Read 6:91 2:15 42:33 16:07 92:9 0:00084 0:0222

Small Write 2:44 0:36 2:49 1:82 13:9 0:0558
Big Write 11:78 2:33 140:66 56:00 86:1 0:0061

Table 9.5: LQN Model Parameters.

Network Model

The network model used here is from [75, pg. 341], and modi�ed slightly to account for the

fact that an ethernet with large packets is about 83% e�cient [142]. The following set of

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 223

equations are solved for n = 2:

X(n) =

�
1�

1

n

�n�1
(9.4)

C(n) =
1X
i=1

iX(n)(1�X(n))i

=
1�X(n)

X(n)
(9.5)

E(n) = P=B + SC(n) (9.6)

where B is the network bandwidth in bits per second (100� 106), P is the packet size in

bits (1518� 8) and S is the slot duration and is assigned the value 0:0000512 (from [86]).

For this model, each lookup operation needs 2 packets, one for the request and one for

the reply. Reads are 4K bytes in size, therefore each request requires 4 packets. Finally,

writes are 8K bytes in size and require 8 packets.

9.3 Results

9.3.1 Model Validation

This section compares the results found by solving the model both analytically using

LQNS [40], and from simulation. The predicted throughputs are compared against each

other and against the results from the \live" system to compare the accuracy of the model,

and to compare the accuracy of the approximation. The run times of the three techniques

are also compared.

The live system consists of an isolated network of 200MHz Pentium processors running

on a 100Mb switched ethernet. The analytic solutions and simulations were also performed

on the same hardware.

The results from the base model shown in Figure 9.2 are presented �rst. Next, the e�ect

of di�erent service time distributions are described. Finally, the sensitivity of the ethernet

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 224

model and cache ratios is shown.

Sources of Error

Errors in the results may arise from a number of sources:

1. the service times may be incorrect from measurement error,

2. the visits from rpc.nfsd to the bu�er cache and disk may be incorrect because it is

not known how many disk requests are made for each lookup operation,

3. the ethernet model may not be correct, and

4. the distribution of requests from the client to the server is not random.

Base Model

The model in Figure 9.2 was solved analytically using LQNS and by simulation to �nd the

throughput at the client. The results are compared to the average of twenty live runs in

Table 9.6 for both accuracy and run time. The run time given for the live run is the sum

of the twenty runs.

Method NFSstones Solution
� �� (%) Run Time

Live 2820 N/A 11:15.00
LQNS 2984 5:82 11.98
Sim. 2883 2:23 2:02:56.80

Table 9.6: Base model results. The simulations were run with a 95% con�dence interval of
� 5:0% for each of the entry's service times.

Table 9.7 shows the utilization of all of the four principle components in Figure 9.2. The

performance model clearly shows that the ethernet is the bottleneck in the system.

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 225

Component Utilization
Live LQNS

client 0:36 0:40
server 0:59 0:67
disk 0:53
network 1:00

Table 9.7: Base model component utilizations.

Sensitivity to Non-exponential Service Times

The base model assumes that all of the service times are exponentially distributed. To study

the e�ect on the variance of service times, the coe�cient of variation, t=�t, was calculated

from the measured means and standard deviations found in Tables 9.2, 9.3 and 9.5. No

data is available for the ethernet, so it is assumed that its service time is exponentially

distributed. The results in Table 9.8 show that the change in predicted throughput is

minimal. However, the run time of the simulation increased by a factor of four.

Method NFSstones Solution
� �� (%) Run Time

Live 2820 N/A 11:15.00
LQNS 2994 6:17 22.68
Sim. 2910 3:19 7:59:13.75

Table 9.8: Results for near-deterministic service times. Simulations were run with a 95%
con�dence interval of � 5:0% for each of the entry's service times.

Sensitivity to Disk Classes

Figure 9.3 shows the disk service time is highly variable. The base model assigns service

time into two buckets to accommodate this variability. Two other cases are considered here:

1. a case with only one disk class, shown in Figure 9.4(a). The service time is simply

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 226

the mean service time for the read or write request.

2. a case with four disk classes, shown in Figure 9.4(b). The �rst bucket consists of all

requests less than or equal to 4K bytes in size. The remaining three buckets are based

on the mean and standard deviation of all of the requests larger than 4K bytes in size

(i.e., the \big" read/write bucket in the base model). The buckets used are shown in

Table 9.9.

The changes to the base model for both cases are shown in Figure 9.4.

Parameter Service Time Size
(mS) (1K Blocks)

t �t size �size

Read 7:17 2:34 39:47 18:63

Write 10:16 4:29 117:48 72:67

(a) Single Read/Write Class

Parameter Service Time Size Requests
(1K Blocks) (mS) (1K Blocks) (%)
Start End t �t size �size

Read1 0 4:0 10:56 1:99 2:05 0:15 7:1
Read2 4:0 26:26 3:99 2:16 18:79 6:46 11:1
Read3 26:26 58:40 6:97 8:34 40:33 8:34 67:6
Read4 58:40 1 8:97 1:41 70:18 9:81 14:2

Write1 0 4:0 2:49 1:83 2:44 0:37 13:9
Write2 4:0 84:66 7:82 2:59 40:28 27:30 14:5
Write3 84:66 196:66 12:51 1:19 152:81 28:15 62:1
Write4 196:66 1 13:07 0:86 214:82 15:83 9:5

(b) Four Read/Write Classes

Table 9.9: Measured Disk Parameters for one and four class disk models.

Table 9.10 shows the results from using 1, 2 and 4 classes to represent disk service times.

Despite the odd distribution of time, a model with only one class is only marginally less

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 227

(0.00033,0.00859)
(0,0.00711)

Kernel
write

[39.1,2]

Read

{4000}

[7170]

read
[20.8,2]

Buffer Cache

[10160]
Write

Server

Disk

(a) Single Read/Write Class

(C) (D) (E)(A) (B) (F) (G) (H)

A=(0.00133,0.03497)
B=(0.00022,0.00569)
C=(0.00064,0.01692)
D=(0.00008,0.00204)
E=(0,0.0558)
F=(0,0.00348)
G=(0,0.00393)
H=(0,0.00042)

Write1
[2440]

Read4
[8970]

Read2
[3900]

Read1
[10560]

Write4
[13070]

Write2
[7820]

Read3
[6970]

Write3
[12510]

read
[20.8,2]

write
[39.1,2]

{4000}

Kernel

Buffer Cache

Server

Disk

(b) Four Read/Write Classes

Figure 9.4: Vary the number of disk classes.

accurate than the more complex models. The more complex four-class model also takes

signi�cantly more time to simulate.

Method c nfsstones Solution
� �� (%) Run Time

Live na 2820 N/A 11:15.00

LQNS 1 3002 6:45 11.98
Sim. 2927 3:79 2:02:56.80

LQNS 2 2985 5:85 10.28
Sim. 2883 2:23 2:00:27.01

LQNS 4 2984 5:82 9.92
Sim. 2880 2:13 4:30:50.42

Table 9.10: Results for c classes of disk service. The simulations were run with a 95%
con�dence interval of � 5:0% for each of the entry's service times.

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 228

Sensitivity to Ethernet Service Time

Figure 9.7 shows that the bottleneck for NFS performance in the test system is the ether-

net. The ethernet's service time was estimated using (9.6), and adjusted to account for a

maximum e�ciency of 83%. Figure 9.5 shows the e�ect on throughput when the ethernet

service time is varied by � 20%. This �gure shows a di�erence of 45% between the highest

and lowest throughput values; the model (and the live system) are very sensitive to ethernet

performance.

2400
2600
2800
3000
3200
3400
3600
3800

0.8 0.9 1 1.1 1.2

N
fs

st
on

es

 Fraction of base ethernet service time

lqns
sim

Figure 9.5: E�ect on ethernet service time on Throughput.

Sensitivity to Client Cache Hit Ratio

The amount of tra�c seen by the bottleneck in the base model is dependent on the client's

cache miss ratio. Figure 9.6 shows the e�ect on throughput when the miss ratio is varied

from 0.04 to 0.16 (a hit ratio of 0.96 to 0.84). This �gure shows a di�erence in throughput

of 21% as a result of a 14% di�erence in the hit ratio.

Server Cache Hit Ratio Sensitivity

Figure 9.7 shows the e�ect on throughput when the phase 1 visit ratio from the server's

bu�er cache to the disk is varied by � 20%. The �gure shows that blocking reads at the

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 229

3300
3400
3500
3600
3700
3800
3900
4000
4100
4200

0.04 0.06 0.08 0.1 0.12 0.14 0.16
N

fs
st

on
es

Client cache miss ratio

lqns
sim

Figure 9.6: E�ect of Client Cache miss ratio on Throughput.

server do not have a large e�ect on the client's throughput.

2860
2880
2900
2920
2940
2960
2980
3000

0.8 0.9 1 1.1 1.2

N
fs

st
on

es

Fraction of base phase 1 visits

lqns
sim

Figure 9.7: E�ect of Server Cache miss ratio on Throughput.

Sensitivity to Multiple Clients

Figure 9.8 shows the e�ect of adding additional client nodes on the throughput of the NFS

Server; Figure 9.8(a) is the results of running up four client nodes, each with 60 clients, on

one server and Figure 9.8(b) shows the corresponding results from the analytic model.

The results in Figure 9.8 compare favourably for one to three clients. However, the live

system shows a noticeable drop in throughput and CPU utilization when there are four

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 230

0

600

1200

1800

2400

3000

1 2 3 4
0

20

40

60

80

100
N

FS
st

on
es

U
til

iz
at

io
n

(%
)

Number of Client Nodes

Live System

Nfsstones
U CPU
U Disk

(a) Live System

0

600

1200

1800

2400

3000

1 2 3 4
0

20

40

60

80

100

N
FS

st
on

es

U
til

iz
at

io
n

(%
)

Number of Client Nodes

LQNS Solution

Nfsstones
U CPU
U Disk

(b) Analytic Model

Figure 9.8: Varying the number of clients.

clients. Figure 9.9 shows a possible explanation. As the number of client nodes is increased,

the number of collisions also increases.

0

500

1000

1500

2000

2500

3000

4000 6000 8000 10000 12000 14000 16000

N
FS

St
on

es

Collisions

1 Client

2 Clients

3-4 Clients

Figure 9.9: Ethernet collisions.

9.3.2 Performance Predictions

The base model described earlier in Section 9.3.1 was varied in a number of ways to study

the e�ect of possible changes in the system. The changes were analyzed using the workload

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 231

described here (labelled \Base" in the tables follow), the Laddis workload (\Laddis"), and

with the Laddis workload using a network which is ten times faster than the 100Mb one

analyzed here (\Fast").

Synchronous Writes

The NFS protocol speci�cation states that writes are to be committed to stable storage

before the server replies to the client. The Linux NFS implementation simply waits for

the write request to complete then replies; the disk block is actually written a short time

afterwards. Write gathering [67] has a similar e�ect, though the latter follows the NFS

semantics whereas the Linux NFS implementation does not.

(0.00133,0.0350)
(0.00084,0.0222)

(1.0)
(1.0)

Kernel

[10600]
Sm_Rd

[2500]
Sm_Wr

[10600]
Big_Wr

[6900]
Big_Rd

read
[20.8,2]

write
[39.1,2]

{4000}
Buffer Cache

Server

Figure 9.10: Synchronous Writes.

To properly implement NFS, rpc.nfsd was modi�ed to perform synchronous writes on

the live system. The LQN model was modi�ed as follows and shown in Figure 9.10.

1. All writes from the server's bu�er cache were moved to phase 1 from phase 2.

2. Each write is assumed to take the same time as a 4K Read. The extra time allows for

seeking and rotational delays.

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 232

3. Each 8K write results in two write requests: one for the meta data in the inode, and

one for the actual data. Both writes must complete synchronously.

The results, shown Table 9.11, show a signi�cant degradation in performance. Even

though writes make a small fraction of the workload, their behaviour has a signi�cant e�ect

on the performance of NFS.

Client Method NFSstones (�) Change
Model Base Synch. (%)

Base Live 2820 1072 �61:99
LQNS 2984 538 �81:97
Sim. 2883 848 �70:59

Laddis LQNS 1947 254 �86:95
Sim. 1906 406 �78:67

Fast LQNS 2566 254 �90:10
Sim. 2653 406 �84:66

Table 9.11: Comparison of Synchronous Writes to Base model.

Synchronous Write Gathering

Write gathering [67] is a technique used to improve NFS performance while retaining the

synchronous write semantics. Writes to the disk, and replies to the client, are delayed by

rpc.nfsd in the hope that additional write requests will arrive a short time later. The goal

is to merge the requests into one large operation thus saving signi�cant amounts of disk

activity from meta data updates intermixed with data updates.

To model synchronous writes, the base model was modi�ed by moving the write requests

at the server's bu�er cache from phase 2 to phase 1. The write performance from the base

model is retained.

The results, shown in Table 9.12, show that write gathering has signi�cant performance

bene�ts. However, when the network performance is improved to the point where it is no

longer the bottleneck, synchronous writes still impact performance.

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 233

Client Method NFSstones (�) Change
Model Base Gather (%)

Base LQNS 2990 2977 �0:44
Sim. 2884 2787 �3:35

Laddis LQNS 1947 1940 �0:36
Sim. 1906 1895 �0:57

Fast LQNS 2566 2214 �13:72
Sim. 2653 2213 �16:55

Table 9.12: Comparison of Synchronous Writes with Gathering to Base model.

Big Reads

The Linux 2.0 NFS implementation performs reads in chunks no larger than 4K bytes, even

if the rsize mount parameter is larger than this value. This behaviour is an artifact of

the �le system implementation because the virtual �le system makes read requests on a

4K page basis. Conversely, the largest write request is limited only by the wsize mount

parameter. Larger requests can improve performance by reducing network tra�c.

To study the performance impact of RPC read requests which are twice as large, the

model was modi�ed as follows (shown in Figure 9.11):

1. The call rates from the client's bu�er cache read to nfsiod and rpc.nfsd were halved

to re
ect the larger reads. The number of requests to the ethernet was changed to

re
ect the larger read size.

2. The call rates from the client bu�er cache's read to ether was changed from four

packets per request to seven packets per request.

3. The request rates from the server's bu�er cache read to the disk were doubled because

each read request is now twice as large.

Table 9.13 shows the estimated performance improvement from this change. The base

model shows the biggest performance improvement because the ethernet is the bottleneck

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 234

(7.0)

(0,7.0)

(0.434)

(0.052)(0.062)

(0,1.0)(1.0)

(1.0)(1.0)

(0,0.0558)
(0,0.0061)

(0.5)

C=(0.00238,0.0702)

D=(0.00148,0.0444)

A=(0.00119,0.0351)

B=(0.00074,0.0222)

[10600]
Sm_Rd

[2500]
Sm_Wr

[11800]
Big_Wr

[6900]
Big_Rd

read
[50.9]

write
[76.1,2]

Buffer Cache

read
[11.8]

nfsiod
{4}

{4000}

Kernel

rpc.nfsd

User
Kernel

lookup
[415.9]

read
[410.4]

write
[410.4]

read
[20.8,2]

write
[39.1,2][20.8,2]

read2

{4000}
Buffer Cache

(A)
(B) (C)

(D)

ether
[238.6]

ether

Network

Client

Server

Disk

Figure 9.11: 8K Read.

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 235

and the workload is skewed towards reads. When the Laddis workload mix is used with

the 100Mb ethernet, there is very little di�erence between the base and 8k-read throughput

results because this workload has less read activity. However, with a faster ethernet, the

larger read request size shows more improvements.

Client Method NFSstones (�) �
Model Base 8K Read (%)

Base LQNS 2990 3173 6:10
Sim. 2884 3054 5:89

Laddis LQNS 1947 1973 1:34
Sim. 1906 1930 1:25

Fast LQNS 2565 2654 3:43
Sim. 2653 2733 3:01

Table 9.13: Comparison of 8K Read Requests to Base model.

Implementing rpc.nfsd as a Kernel Process

The current NFS server is a user mode process that uses the existing kernel interface to

interact with the server's �le system. Performance improvements are possible by making the

rpc.nfsd process a kernel-mode-only process because less context switching will occur, and

because the process can access the �le system data structures in a more e�cient manner.

To study this change, the service time at the rpc.nfsd process was decreased by 30%.

This change to the base model is shown in Figure 9.12.

Table 9.14 shows the results of the change. Since the ethernet is the bottleneck for the

Base and Laddis con�gurations, no signi�cant improvement in throughput is seen. How-

ever, when the network performance is improved (the fast case), moving the performance

bottleneck to the rpc.nfsd process, NFS performance improves signi�cantly.

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 236

[287.3]
write

[287.3]

User

read
[291.1]
lookup

rpc.nfsd

Server

Figure 9.12: Kernel-based rpc.nfsd.

Client Method NFSstones (�) �
Model Base knfsd (%)

Base LQNS 2990 3008 0:61
Sim. 2884 2887 0:14

Laddis LQNS 1947 1950 0:15
Sim. 1906 1907 0:06

Fast LQNS 2566 3400 32:50
Sim. 2653 3475 31:00

Table 9.14: Comparison of Kernel-Based nfsd to Base model.

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 237

Multiple rpc.nfsd Threads

For this con�guration, rpc.nfsd was updated to version 2.2beta37 to allow multiple processes

to handle NFS requests. Figure 9.13(a) shows the change to the base LQN model, and

Figure 9.13(b) shows the results for 1 to 16 server processes.

[410.4]
readlookup

rpc.nfsd
{4}

User

write
[410.4][415.9]

Server

(a) Model

live
LQNS

Multiple rpc.nfsd daemons

Number of rpc.nfsd daemons

�
(N
F
S
st
o
n
es
)

16151413121110987654321

3000
2500
2000
1500
1000
500
0

(b) Results

Figure 9.13: Multiple rpc.nfsd threads.

From Figure 9.13 multiple server threads do not improve performance. Rpc.nfsd only

blocks on a physical read to the disk, which happens infrequently. Table 9.15 shows the

results for the LADDIS workload and for the Fast network. Multiple threads appear to be

bene�cial only in the Fast network con�guration.

9.4 Conclusions

This chapter has presented a layered queueing network model of the Linux Version 2. Net-

work File System. The throughput error of the analytic model was about 6% when compared

to the system under test. When the results of the analytic model are compared to the sim-

lations, the results are typically within 3% of each other. The solution run time of the

analytic model was roughly 50 times faster than the run time of the nfsstone benchmark

CHAPTER 9. CASE STUDY OF THE LINUX 2.0 NFS IMPLEMENTATION 238

Client Method NFSstones (�) �
Model Base 4 Servers (%)

Base Live 2656 2581 �2:84
LQNS 2990 3016 0:88
Sim. 2884 2927 1:52

Laddis LQNS 1947 1904 0:15
Sim. 1906 1908 0:08

Fast LQNS 2566 2821 9:94
Sim. 2653 2783 4:93

Table 9.15: Comparison of Multiserver rpc.nfsd to Base model. The standard deviation in
throughput for the live run is about 130 for the base and 4 servers cases.

and about 600 times faster than the simulation.

The performance model described here shows that that the network is the bottleneck for

performance. Performance can be improved by reducing the number of packets used for read

requests by increasing the request size from 4096 to 8192 bytes. The model suggests that

other proposed improvements, such as a kernel-based implementation of the NFS server,

rpc.nfsd, will not yield signi�cant improvements unless network performance is improved.

The Linux V2. implementation of NFS violates the semantics of NFS because writes

are not committed to stable storage before the server replies to the client. However, using

synchronous writes at the server severely degrades performance, even though writes are

not signi�cant portion of the workload. Write-gathering, where replies are deferred and

batched, can ameliorate much of the overhead of synchronous writes while retaining full

NFS semantics.

Finally, since the network is the bottleneck for NFS performance, more accurate analytic

models are needed in the layered queueing network approximation. In particular, the current

approximation techniques fail to accurately account for ethernet contention.

Chapter 10

Conclusions

The contribution of this thesis is to extend a modeling tool (layered queueing) in several

important ways which are needed to meet the challenge of distributed systems. To do this

the author has created new approximations, and integrated together known approximations

that had not previously been used in combination. He has evaluated competing approaches

to some of these approximations, and he has created a tool which allows a wide range of

combinations to be selected by the user. Finally he has evaluated many of these combi-

nations on many examples. The result is a new solver, called LQNS (Layered Queueing

Network Solver).

The contributions will be summarized under the headings of accuracy improvements,

modeling extensions, and case studies.

10.1 Accuracy Improvements

The accuracy of analytic solutions to layered queueing networks has been improved by

changes to the interlocking and overtaking calculations.

239

CHAPTER 10. CONCLUSIONS 240

10.1.1 Interlocking Calculation

The solution technique used to solve layered queueing networks in this work uses hierar-

chical decomposition to break the input model into a set of submodels. Parameters are

exchanged between adjacent submodels during their solution. However, there are often

tra�c dependencies (referred to as \interlocking") between non-adjacent submodels which,

if unaccounted for, can introduce errors of up to 50% or more in the solution. Accounting

for interlock reduces the solution error to about 1 to 2% for the cases described here.

The algorithms incorporated into LQNS improve upon previous approaches by handling

a broader range of situations where interlocking arises by generalizing the earlier algorithms

and by searching more exhaustively through the model for interlocking relationships.

10.1.2 Overtaking Calculation

Previous analytic solutions for servers with two phases of service were overly simpli�ed

resulting in solutions with errors in throughput of over 60% for some cases. Two improve-

ments have been described in this work which have signi�cantly improved accuracy. First,

a more detailed analysis of the overtaking probabilities takes place which improves the ac-

curacy for cases where a two-phase client calls a two-phase server. Second, an improved

expression for �nding the waiting time at a two-phase server is included. This enhancement

is particularly noticeable for models with multiple customers in the routing chains of the

underlying MVA submodel. Both improvements together have reduced the solution error

by over to no more than 10% in some of the worst cases described here.

10.2 Modelling Power Enhancements

The thesis introduces four enhancements to broaden the modelling power of the layered

queueing networks, described in the sections below.

CHAPTER 10. CONCLUSIONS 241

10.2.1 Forwarding

The �rst extension to the model is forwarding. Forwarding defers the reply to a client from

an intermediate level server and forwards it to a lower level server. In distributed systems,

forwarding improves performance by reducing network tra�c by eliminating one or more

replies. Forwarding can also be used to close open systems and to model systems built using

asynchronous messaging with synchronous interactions.

10.2.2 Two-Phase Multiservers

The technique of early replies is used in distributed systems to improve performance by

reducing the time a client spends blocked at a server (it is most e�ective when the server is

not heavily utilized). This research extends two-phase service to multiservers. Two phase

multiservers can be used to model distributed systems with multiservers that make early

replies and they can be used to model resource pools such as �le system bu�ers as was

shown in Chapter 9.

10.2.3 Activities

Heterogeneous threads and other non-sequential patterns of execution were previously

largely outside the capabilities of the model. To model them, new model constructs were

introduced using activities. Activities are the lowest level of detail necessary in the per-

formance model and can be connected together in a variety of patters. A simulator has

been created which can solve model with any form of activity connection. Unfortunately,

analytic techniques do not exist to handle the entire interconnection space.

10.2.4 Intra-task Fork-Join

One important subset of activity interconnection is fork and join within a task (intra-task

fork-join). This type of interaction is found in transaction monitors for distributed databases

CHAPTER 10. CONCLUSIONS 242

and in disk arrays (e.g. RAID). This research extends the work of Mak and Lundstrom to

incorporate heterogeneous threads into single and multiservers. While this approach is

not as accurate as approximations based on decompositions with
ow-equivalent servers, it

is su�ciently accurate for practical purposes. Further, it is computationally e�cient and

scales well to very large systems.

10.2.5 Summary

Extensions to the model can be used with simulation even if the analytic approximations

are inadequate. The contribution of the thesis is the model extension itself. Features for

which simulation is still the preferred method include priorities and inter-task fork-join.

10.3 Case Study

An analytic model of the Linux V2.0 NFS implementation was constructed and solved

using LQNS. The performance model showed that performance was limited by the 100Mb

ethernet connnection between the client and the server. Linux acheives its high performance

by performing writes at both the client and the server asynchronously; this was modelled

using a two-phase multiserver. The model was then used to explore changes in the system

such as synchronous writes and large reads. In some cases, the test system was also changed

to verify the predictions.

Compared to the test system, throughput error from the analytic solution were about

6%, and roughly twice that of a simulation of the same model. Run times for the model

were 50 times faster than run times of the test system, and more than 600 times faster than

the run times of the simulation.

CHAPTER 10. CONCLUSIONS 243

10.4 Future Research

The activity notation introduced in LQNS can be used to solve analytically models with a

broad variety of interactions. At present, only intra-task fork-join works well. Research is

needed to capture accurately the correlation of arrivals at joins for systems with inter-task

fork-joins.

The analytic solution of models with intra-task fork-joins is restricted to models that

can be hierarchically decomposed. The algorithms that aggregate the threads that arise

in these models needs to be extended to incorporate non-hierarchical (or spaghetti like)

interactions.

The current solver uses a �xed point iteration scheme to solve the interconnected sub-

models. This technique works well in the vast majority of cases solved to date, but some-

times either converges slowly or fails altogether when two or more servers saturate at approx-

imately the same rate. Research is needed to identify the causes of convergence problems

and to correct it when it occurs.

Bibliography

[1] ACM Sigmetrics. Proceedings of the First International Workshop on Software and

Performance (WOSP '98), Santa Fe, NM, oct 1998. Association for Computing Ma-

chinery.

[2] The Programming Language Ada: Reference Manual, volume 155 of Lecture Notes in

Computer Science. Springer-Verlag, Berlin, 1983.

[3] Yonathon Bard. Some extensions to multiclass queueing network analysis. In Matyas

Arato, Alexandre Butrimenko, and E. Gelenbe, editors, Performance of Computer

Systems. North Holland, Amsterdam, 1979.

[4] Forest Baskett, K. Mani Chandy, Richard R. Muntz, and Fernando G. Palacios. Open,

closed, and mixed networks of queues with di�erent classes of customers. Journal of

the ACM, 22(2):248 { 260, April 1975.

[5] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM

Transactions on Computer Systems, 2(1):39{59, February 1984.

[6] Grady Booch. Object-Oriented Analysis and Design with Applications. Ben-

jamin/Cummings, 2nd edition, 1994.

244

BIBLIOGRAPHY 245

[7] S. C. Bruell, G. Balbo, and P. V. Afshari. Mean value analysis of mixed, multiple

class BCMP networks with load dependent service centers. Performance Evaluation,

4:241{260, 1984.

[8] Raymond M. Bryant, Anthony E. Krzesinski, M. Seetha Lakshmi, and K. Mani

Chandy. The MVA priority approximation. ACM Transactions on Computer Sys-

tems, 2(4):335{359, November 1984.

[9] R. J. A. Buhr and R. S. Casselman. Use CASE Maps for Object-Oriented Systems.

Prentice Hall, Upper Saddle River, NJ, 1996.

[10] Je�ery P. Buzen. Computational algorithms for closed queueing networks with expo-

nential servers. Communications of the ACM, 16(9):527{531, September 1973.

[11] K. Mani Chandy, John H. Howard, Jr, and Don Towsley. Product form and local

balance in queueing networks. Journal of the ACM, 24(2):250{263, April 1977.

[12] K. Mani Chandy and Doug Neuse. Linearizer: A heuristic algorithm for queueing

network models of computing systems. Communications of the ACM, 25(2):126{134,

February 1982.

[13] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A.

Patterson. RAID: high performance reliable secondary storage. ACM Computing

Surveys, 36(3):145{185, August 1994.

[14] D. R. Cheriton. The V kernel: A software base for distributed systems. IEEE Software,

1(2):19{42, April 1984.

[15] D. R. Cheriton. The V distributed system. Communications of the ACM, 31(3):314{

333, March 1988.

BIBLIOGRAPHY 246

[16] David R. Cheriton, Michael A. Malcolm, Lawrence S. Melen, and Gary R. Sager.

Thoth, a portable real-time operating system. Communications of the ACM,

22(2):105{115, February 1979.

[17] G. Chiola. A graphical Petri net tool for performance analysis. In Serge Fdida and Guy

Pujolle, editors, Modelling Techniques and Performance Evaluation. Elsevier Science,

Amsterdam, March 1987.

[18] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN-1.7 { graphical

editor and analyzer for timed and stochastic Petri nets. Performance Evaluation,

24(1{2):47{68, November 1995. special issue on Performance Modeling Tools, S.S.

Lavenberg and E.A. MacNair guest editors.

[19] Wesley W. Chu and Kin K. Leung. Task response time model and its applications for

real-time distributed processing systems. In Real-Time Systems Symposium, Austin,

TX, December 1984. IEEE Computer Society Press.

[20] Wesley W. Chu and Kin K. Leung. Module replication and assignment for real-time

distributed systems. Proceedings of the IEEE, 75(5):547{562, May 1987.

[21] Wesley W. Chu, Chi-Man Sit, and Kin K. Leung. Task response time for real-time

distributed systems with resource contention. IEEE Transactions on Software Engi-

neering, 17(10):1076{1092, October 1991.

[22] Gianfranco Ciardo. Manual for the SPNP package version 1.0. Technical Report

DUKE{TR{1988{27, Duke University, January 1, 1988.

[23] A. E. Conway and D. O'Brien. Validataion of an approximation technique for queueing

network models with chain-dependent FCFS queues. Computer Systems Science &

Engineering, 6(2):117{121, April 1991.

BIBLIOGRAPHY 247

[24] Adrian E. Conway. Fast approximate solution of queueing networks with multi-server

chain-dependent FCFS queues. In Ramon Puigjaner and Dominique Potier, editors,

Modeling Techniques and Tools for Computer Performance Evaluation, pages 385{

396. Plenum, New York, 1989.

[25] Adrian E. Conway, Edmundo de Souza e Silva, and Stephen S. Lavenberg. Mean

value analysis by chain of product form queueing networks. IEEE Transactions on

Computers, 38(3):432{442, March 1989.

[26] John R. Corbin. The Art of Distributed Applications: Programming Techniques for

Remote Procedure Calls. Springer-Verlag, New York, 1991.

[27] E. de Souza e Silva and E. E. Lavenberg. Calculating joint queue-length distributions

in product-form queueing networks. Journal of the ACM, 26(1):194{207, January

1989.

[28] E. de Souza e Silva and Richard R. Muntz. A note on the computational cost of the

linearizer algorithm. IEEE Transactions on Computers, 39(6):840{842, June 1990.

[29] Edmundo de Souza e Silva and Richard R. Muntz. Approximate solutions for a class

of non-product form queueing network models. Performance Evaluation, 7:221{242,

1987.

[30] John Dilley, Rich Friedrich, Tai Jin, and Jerome Rolia. Measurement tools and

modeling techniques for evaluating Web server performance. In Raymond Marie,

Brigitte Plateau, Maria Calzarossa, and Gerardo Rubino, editors, Computer Perfor-

mance Evaluation Modelling Techniques and Tools, volume 1245 of Lecture Notes in

Computer Science, pages 155{168. Springer-Verlag, St. Malo, France, June 1997.

[31] C. I. Dimmer. The Tandem Non-Stop system. In T. Anderson, editor, Resilient

computing systems, pages 178{196. Collins, London, 1985.

BIBLIOGRAPHY 248

[32] Bharat Doshi. Single server queues with vacations. In Hideaki Takagi, editor, Stochas-

tic Analysis of Computer and Communication Systems, pages 217{265. North Holland,

Amsterdam, 1990.

[33] Derek L. Eager and John N. Lipscomb. The AMVA priority approximation. Perfor-

mance Evaluation, 8:173{193, 1988.

[34] George J. Febish and David E. Y. Sarna. Building three-tier client-server business

solutions. White paper, Object Soft. Corp., Englewood, NJ, March 1995.

[35] Michael L. Fontenot. Software congestion, mobile servers, and the hyperbolic model.

IEEE Transactions on Software Engineering, SE-15(8):947{962, August 1989.

[36] Open Software Foundation. Introduction to OSF DCE. Prentice Hall, �rst edition,

1992.

[37] B. Francis. Client/server: the model for the 1990s. Datamation, 36(4):34{36, 38, 40,

February 1990.

[38] Greg Franks. Layered queueing network solver software design.

�le:/home/greg/srvn/linearizer/doc/lqns 1.html.

[39] Greg Franks. Tra�c dependencies in client-server systems and their e�ect on perfor-

mance prediction. In IEEE International Computer Performance and Dependability

Symposium, pages 24{33, Erlangen, Germany, April 1995. IEEE Computer Society

Press.

[40] Greg Franks, Alex Hubbard, Shikharesh Majumdar, Dorina Petriu, Jerome Rolia,

and Murray Woodside. A toolset for performance engineering and software design of

client-server systems. Performance Evaluation, 24(1{2):117{135, November 1995.

[41] Greg Franks and Murray Woodside. Multi-threaded software servers with asyn-

chronous and deferred operations. Submitted for publication., July 1998.

BIBLIOGRAPHY 249

[42] Greg Franks and Murray Woodside. Performance of multi-level client-server systems

with parallel service operations. In Proceedings of the First International Workshop

on Software and Performance (WOSP '98) [1], pages 120{130.

[43] Greg Franks and Murray Woodside. A re-usable plug-in performance model of the

Linux 2.0 Network File System. Submitted for publication., 1999.

[44] E. Gelenbe and Mitrani I. Analysis and Synthesis of Computer Systems. Computer

Science and Applied Mathematics. Academic Press, Toronto, 1980.

[45] Geo�rey Gordon. System Simulation. Prentice Hall, Englewood Cli�s, N.J., 2 edition,

1978.

[46] James Hall, Roberto Sabatino, Simon Crosby, Ian Leslie, and Richard Black. Counting

the cycles: a comparative study of NFS performance over high speed networks. In

Proceedings of the 22nd Conference on Local Computer Networks (LCN '97), pages

8{19, Minneapolis, MN, November 1997. IEEE Computer Society Press.

[47] James Hall, Roberto Sabatino, Simon Crosby, Ian Leslie, and Richard Black. A

comparative study of high speed networks. In INFOCOM '98, volume 2, pages 774{

782, San Francisco, CA, March 1998. IEEE Computer Society Press.

[48] Paul Harmon. Objects In Action: Commercial Applications of Object-Oriented Tech-

nologies. Addison-Wesley, January 1993.

[49] �ystein Haugen. MSC methodology. Technical Report L-1313-7, SISU II, Oslo,

Norway, December 1994.

[50] Carl Hauser, Christian Jacobi, Marvin Theimer, Brent Welch, and Mark Weiser. Us-

ing threads in interactive systems: A case study. In Proceedings of the 14th ACM

Symposium on Operating Systems Principles, pages 94{105, Ashville, NC, USA, De-

cember 1993. Published in ACM Operating Systems Review Vol.27, No.5, Dec. 1993.

BIBLIOGRAPHY 250

[51] Philip Heidelberger and Kishor S. Trivedi. Analytic queueing models for programs

with internal concurrency. IEEE Transactions on Computers, 32(1):73{82, January

1983.

[52] John Holm, Antonio Lain, and Prithviraj Banerjee. Compilation of scienti�c pro-

grams into multithreaded and message driven computation. In Proceedings of the

1994 Scalable High Performance Computing Conference, pages 518{525, 1994.

[53] M. Homewood, D. May, D. Shepherd, and R. Shepherd. The IMS T800 transputer.

IEEE Micro, 7(5):10{26, October 1987.

[54] C. Hrischuk, J. Rolia, and C. M. Woodside. Automatic generation of a software perfor-

mance model using an object-oriented prototype. In Proceedings of the International

Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunica-

tion Systems (MASCOTS'95), pages 399{409. IEEE Computer Society Press, 1995.

[55] James C. Hu, Sumedh Mungee, and Douglas C. Schmidt. Techniques for developing

and measuring high performance web servers over high speed networks. In INFOCOM

'98, San Francisco, CA, March 1998. IEEE Computer Society Press.

[56] Chien-Yuan Huang, Shi-Chung Chang, and Chern-Lin Chen. Performance evaluation

of a cache-coherent multiprocessor by iterative mean-value analysis. Performance

Evaluation, 23(1):31{52, July 1995.

[57] J.R. Jackson. Jobshop-like queueing systems. Management Science, 10(1):131 { 142,

October 1963.

[58] Patricia A. Jacobson and Edward D. Lazowska. Analyzing queueing networks with si-

multaneous resource possession. Communications of the ACM, 25(2):142{151, Febru-

ary 1982.

BIBLIOGRAPHY 251

[59] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for Ex-

perimental Design, Measurement, Simulation, and Modeling. John Wiley & Sons,

1991.

[60] Bao Chyuan Jenq, Walter H. Kohler, and Don Towsley. A queueing network model for

a distributed database testbed system. IEEE Transactions on Software Engineering,

14(7):908{921, July 1988.

[61] Minwen Ji, Edward W. Felten, and Li Kai. Performance measurements for multi-

threaded programs. In Proceedings of the ACM SIGMETRICS '98/PERFORMANCE

'98 Joint International Conference on Measurement and Modeling of Computer Sys-

tems, pages 161{170. ACM SIGMETRICS and IFIP Working Group 7.3, June 1998.

Also as Performance Evaluation Review 26(1).

[62] Xianghong Jiang. Evaluation of approximation for response time of parallel task graph

model. Master's thesis, Department of Systems and Computer Engineering, Carleton

University, Canada, April 1996.

[63] H. Jonkers. Probabilistic performance modelling of parallel numerical applications.

In G. R. Joubert, D. Trystram, F. J. Peters, and D. J. Evans, editors, Parallel Com-

puting; Trends and Applications, volume 9 of Advances in Parallel Computing, pages

707{711. North Holland, Amsterdam, 1994.

[64] H. Jonkers, A. J. C. van Gemund, and G. L. Reijns. A probabilistic approach to

parallel system performance modelling. In Edward A. Stohr, editor, Proceedings of

the Twenty-Eigth Annual Hawaii International Conference on System Sciences, vol-

ume II (Software Technology), pages 412{421, Wailea, Hawaii, January 1995. IEEE

Computer Society Press.

[65] Henk Jonkers. Queueing models of parallel applications: The Glamis methodology.

In G�unter Haring and Gabriele Kotsis, editors, Computer Performance Evaluation,

BIBLIOGRAPHY 252

volume 794 of Lecture Notes in Computer Science, pages 123{138. Springer-Verlag,

Berlin, May 1994.

[66] Henk Jonkers and Gerard L. Reijns. Predicting the performance of general task graphs

with underlying queueing model. In Proceedings of the 1st Annual Conference of the

Advanced School for Computing and Imaging, pages 293{302, May 1995.

[67] Chet Juszczak. Improving the write performance of an NFS server. In Proceedings

of the Winter 1994 USENIX Conference, pages 247{259, San Francisco, CA, January

1994. USENIX Asscociation.

[68] Olaf Kirch. Linux NFS performance and security. http://www.lunetix.de/kongress/

abstracts/okir, February 1996. Talk from Internationale Linux Kongre�, May 1996,

Berlin, Germany.

[69] R. L. Klevans, , and W. J. Stewart. From queuing-networks to Markov-chains -

the XMARCA interface. Performance Evaluation, 24(1{2):23 { 45, November 1995.

special issue on Performance Modeling Tools, S.S. Lavenberg and E.A. MacNair guest

editors.

[70] A. Krzesinski and J. Greyling. Improved linearizer methods for queueing networks

with queue dependent service centers. In Proceedings of Performance '84 and 1984

ACM SIGMETRICS on Measurement and Modeling of Computer Systems, Cam-

bridge, MA, August 1984. ACM SIGMETRICS.

[71] Toshiyasu Kurasugi and Issei Kino. Approximation methods for two-layer queueing

models. Performance Evaluation, 36{37:55{70, August 1999. Performance '99.

[72] Stephen S. Lavenberg, editor. Computer Performance Modeling Handbook, volume 4

of Notes and Reports in Computer Science and Applied Mathematics. Academic Press,

Toronto, ON, 1982.

BIBLIOGRAPHY 253

[73] Stephen S. Lavenberg and Charles H. Sauer. Analytical results for queueing models. In

Stephen S. Lavenberg, editor, Computer Performance Modeling Handbook, number 4

in Notes and Reports in Computer Science and Applied Mathematics, pages 56{172.

Academic Press, 1983.

[74] R. Greg Lavender and Douglas C. Schmidt. Active object { An object behavioral pat-

tern for concurrent programming. In John M. Vlissides, James O. Coplien, and Nor-

man L. Kerth, editors, Pattern Languages of Program Design 2, chapter 27. Addison-

Wesley, 1996.

[75] Edward D. Lazowska, John Zhorjan, Scott G. Graham, and Kenneth C. Sevcik. Quan-

titative System Performance; Computer System Analysis Using Queueing Network

Models. Prentice Hall, Englewood Cli�s, NJ, 1984.

[76] Louis-Marie Le Ny and C. Murray Woodside. Performance modelling of queues with

rendezvous service. Technical Report 941, Institut National de Recherche en Infor-

matique et en Automatique (INRIA), Domaine de Voluceau, Rocquencourt, B.P.105,

78153 Le Chesnay Cedex, France, December 1988.

[77] Doug Lea. Concurrent Programming in Java: Design Principles and Patterns. The

Java Series. Addison-Wesley, 1997.

[78] Edward K. Lee and Randy H. Katz. An analytic performance model of disk arrays.

In Proceedings of the 1993 ACM SIGMETRICS Conference on Measurement and

Modeling of Computer Systems, pages 98{109, Santa Clara, CA, May 1993. ACM

SIGMETRICS. Also as Performance Evaluation Review 21(1).

[79] J.D.C. Little. A proof for the queueing formula: L = �W . Operations Research,

9:383{387, 1961.

BIBLIOGRAPHY 254

[80] Jay Littman. Applying threads. In Proceedings of the Winter 1992 USENIX Technical

Conference and Exhibition, pages 209{221, San Francisco, CA, USA, January 1992.

USENIX Asscociation.

[81] Y. C. Liu and H. G. Perros. Approximate analysis of a closed fork/join model. Euro-

pean Journal of Operational Research, 53(3):382{392, August 1991.

[82] Y. C. Liu and H. G. Perros. A decomposition procedure for the analysis of a closed

fork/join queueing system. IEEE Transactions on Computers, 40(3):365{370, March

1991.

[83] B. Lyon, G. Sager, J. M. Chang, D. Goldberg, S. Kleiman, T. Lyon, R. Sandberg,

D. Walsh, and P. Weiss. Overview of the sun network �le system. Technical report,

Sun Microsystems, Inc., January 1985.

[84] Victor W. Mak and Stephen F. Lundstrom. Predicting performance of parallel compu-

tations. IEEE Transactions on Parallel and Distributed Systems, 1(3):257{270, July

1990.

[85] Victor W. K. Mak. Queueing network models for parallel processing of task systems:

An operational approach. Technical Report CSL-TR-86-306, Stanford University,

September 1986.

[86] Daniel A. Menasc�e, Virgilio A. F. Almeida, and Larry W. Dowdy. Capacity Planning

and Performance Modeling: From Mainframes to Client-Server Systems, chapter 7:

Performance of Client-Server Architectures, pages 205{233. Prentice Hall, Englewood

Cli�s, NJ, 1994.

[87] J. Moran, R. Sandberg, D. Coleman, J. Kepecs, and B. Lyon. Breaking through the

NFS performance barrier. In Proceedings of the 1990 Spring European UNIX Users

Group, pages 199{206, Munich, Germany, April 1990.

BIBLIOGRAPHY 255

[88] Sape Mullender, Guido von Rossum, Andrew Tanenbaum, Robbert von Renesse, and

Hans von Staveren. Amoeba: a distributed operating system for the 1990's. Computer,

23(5), May 1990.

[89] John E. Neilson, C. Murray Woodside, Dorina C. Petriu, and Shikharesh Majum-

dar. Software bottlenecking in client-server systems and rendezvous networks. IEEE

Transactions on Software Engineering, 21(9):776{782, September 1995.

[90] Randolph Nelson, Don Towsley, and Asser N. Tantawi. Performance analysis of par-

allel processing sytems. IEEE Transactions on Software Engineering, 14(4):532{539,

April 1988.

[91] Randolph D. Nelson. The mathematics of product form queuing networks. ACM

Computing Surveys, 25(3):339{369, September 1993.

[92] E. Neron and C. M. Woodside. A performance model for rendezvous based systems

with processor-shared service. Technical report, Department of Systems and Com-

puter Engineering, Carleton University, Ottawa, Ontario, Canada, September 1986.

[93] Object Management Group, 492 Old Connecticut Path, Framingham, MA 01701,

U.S.A. The Common Object Request Broker: Architecture and Speci�cation, 2.2 edi-

tion, 1998.

[94] Amy M. Pan. Solving stochastic rendezvous networks of large client-server systems

with symmetric replication. Master's thesis, Department of Systems and Computer

Engineering, Carleton University, September 1996. OCIEE-96-06.

[95] Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, and Dave

Hitz. NFS version 3: Design and implementation. In USENIX Association, editor,

Proceedings of the Summer 1994 USENIX Conference, pages 137{151, Boston, MA,

June 1994. USENIX Asscociation.

BIBLIOGRAPHY 256

[96] Odysseas I. Pentakalos, Daniel A. Menasc�e, Milt Halem, and Yelena Yesha. An ap-

proximate performance model of a Unitree Mass Storage System. In IEEE Symposium

on Mass Storage Systems (MSS '95), pages 210{224, Monterey CA, September 1995.

IEEE Computer Society Press.

[97] Dorina C. Petriu. Approximate Solution for Stochastic Rendezvous Networks by

Markov Chain Task-Directed Aggregation. PhD thesis, Carleton University, Ottawa,

Ontario, Canada, 1991.

[98] Dorina C. Petriu. Approximate mean value analysis of client{server systems with

multi-class requests. In Proceedings of the 1994 ACM SIGMETRICS Conference

on Measurement and Modeling of Computer Systems., pages 77{86, Nashville, TN,

U.S.A., May 1994. A.C.M. SIGMETRICS.

[99] Dorina C. Petriu, Shikharesh Majumdar, Jing-Ping Lin, and Curtis Hrischuk. Ana-

lytic performance estimation of client-server systems with multi-threaded clients. In

V. Madisetti, E. Gelenbe, and J. Walrand, editors, Proceedings of the Second Interna-

tional Workshop on Modeling, Analysis and Simulation of Computer and Telecommu-

nication Systems (MASCOTS'94), pages 96{100, Durham, NC, January 1994. IEEE

Computer Society Press.

[100] Dorina C. Petriu and C. Murray Woodside. Approximate MVA for software

client/server models by markov chain task-directed aggregation. In The Third IEEE

Symposium on Parallel and Distributed Processing, Dallas, Texas, December 1991.

I.E.E.E.

[101] Dorina C. Petriu and C. Murray Woodside. A new mean value analysis of client{server

software by task-directed aggregation of markov models. Technical Report SCE-93-

29, Department of Systems and Computer Engineering, Carleton University, Ottawa,

Ontario, Canada, October 1993.

BIBLIOGRAPHY 257

[102] D. Potier, editor. Modelling Techniques and Tools for Performance Analysis. North

Holland, Amsterdam, 1984.

[103] S. Ramesh and H. G. Perros. A multi-layer client-server queueing network model with

synchronous and asynchronous messages. In Proceedings of the First International

Workshop on Software and Performance (WOSP '98) [1], pages 107{119.

[104] M. Reiser. Mean value analysis of queuing networks, a new look at an old problem.

In Matyas Arato, Alexandre Butrimenko, and E. Gelenbe, editors, Performance of

Computer Systems, pages 63{77. North-Holland, Amsterdam, 1979.

[105] M. Reiser and H. Kobayashi. On the convolution algorithm for separable queuing

networks. In P. P. S. Chen and Mark Franklin, editors, International Symposium

on Computer Performance Modeling, Measurement and Evaluation, pages 109{117,

Cambridge, Massachusetts, March 1976. ACM-Sigmetrics. IFIP Working Group 7.3

on Computer System Modelling., Association for Computing Machinery.

[106] M. Reiser and S.S. Lavenburg. Mean value analysis of closed multichain queueing

networks. Technical Report RC 7023, IBM T.J. Watson Research Center, Yorktown

Heights, NY 10598, March 1979.

[107] M. Reiser and S.S. Lavenburg. Mean value analysis of closed multichain queueing

networks. Journal of the ACM, 27(2):313{322, April 1980.

[108] Martin Reiser. A queueing network analysis of computer communication networks

with window
ow control. IEEE Transactions on Communications, COM-27(8):1199

{ 1209, August 1979.

[109] Martin Reiser. Mean-value analysis and convolution method for queue-dependent

servers in closed queueing networks. Performance Evaluation, 1(1):7{18, 1981.

BIBLIOGRAPHY 258

[110] J. A. Rolia and K. A. Sevcik. The method of layers. IEEE Transactions on Software

Engineering, 21(8):689{700, August 1995.

[111] Jerome A. Rolia and Kenneth C. Sevcik. Fast performance estimates for a class of

generalized stochastic Petri nets. In Computer Performance Evaluation '92: Modelling

Techniques and Tools, pages 21{33. Edinburgh University Press, August 1993.

[112] Jerome Alexander Rolia. Performance estimates for systems with software servers:

The lazy boss method. In Ignacio Casas, editor, VIII SCCC International Conference

On Computer Science, pages 25{43, Santiago, Chile, July 1988. Chilean Computer

Science Society.

[113] Jerome Alexander Rolia. Predicting the Performance of Software Systems. PhD thesis,

Univerisity of Toronto, Toronto, Ontario, Canada. M5S 1A1, January 1992.

[114] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M Guillemont, F. Her-

rmann, C. Kaiser, S. Langlois, P. L�eonard, and W. Neuhauser. Overview of the cho-

rus distributed operating systems. Technical Report CS/TR-90-25, Chorus Syst�emes,

February 1991.

[115] Ekkart Rudolph, Jens Grabowski, and Peter Graubmann. Tutorial on message se-

quence charts (MSC'96). In Tutorial of the FORTE/PSTV'96, Kaiserslautern, Ger-

many, October 1996.

[116] Ekkart Rudolph, Peter Graubmann, and Jens Grabowski. Tutorial on message

sequence charts. ftp://ftp.win.tue.nl/pub/techreports/sjouke/msctutorial.ps.Z, Jan-

uary 1996.

[117] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. Computer,

27(3):17{28, March 1994.

BIBLIOGRAPHY 259

[118] James Rumbaugh, Blaha Michael, William Premerlani, Frederick Eddy, and William

Lorensen. Object-Oriented Modeling and Design. Prentice Hall, Englewood Cli�s, NJ,

1991.

[119] A. R�uth. Entwicklung, Implementierung und Validierung neuer Approximationsver-

fahren f�ur die Mittelwertanalyse (MWA) zur Leistungsberechnung von Rechner-

systemen. Diplomarbeit am IMMD der Friedrich-Alexander-Universit�at Erlangen-

N�urnberg, 1987.

[120] Russel Sandberg. The sun network �le system: Design, implementation and experi-

ence. Technical report, Sun Microsystems Inc., Palo Alto, California, 1985.

[121] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. De-

sign and implementation of the Sun Network Filesystem. In Proceedings of the 1985

Summer USENIX Conference, pages 119{130, Portland OR, June 1985. USENIX

Asscociation.

[122] W. H. Sanders, W. D. Obal, M. A. Qureshi, and F. K. Widjanarko. The UltraSAN

modeling environment. Performance Evaluation, 24(1{2):89{115, November 1995.

[123] Charles H. Sauer and Edward A. MacNair. The evolution of the research queueing

package. In Potier [102], pages 5{24.

[124] Rainer Schmidt. An approximate MVA algorithm for exponential, class-dependent

multiple servers. Performance Evaluation, 29:245{254, 1997.

[125] P. Schweitzer. Approximate analysis of multiclass closed networks of queues. In

Proceedings of the International Conference on Stochastic Control and Optimization,

Amsterdam, 1979.

[126] Fahim Sheikh and Murray Woodside. Layered analytic performance modeling of a dis-

tributed database system. In 17th International Conference of Distributed Computing

BIBLIOGRAPHY 260

Systems (ICDCS '97), pages 482{490, Baltimore, ME, May 1997. IEEE Computer

Society Press.

[127] Barry Shein, Mike Callahan, and Paul Woodbury. NFSSTONE: A network �le server

performance benchmark. InUSENIX Summer 1989 Technical Conference Proceedings,

pages 269{275, Baltimore, MD, June 1989. USENIX Asscociation.

[128] M. Sherman. Open distributed transaction processing with encina. In Proceedings of

the Second International Conference on Parallel and Distributed Information Systems

(PDIS-93), San Diego, CA, January 1993.

[129] Christiane Shousha, Dorina Petriu, Anant Jalnapurkar, and Kennedy Ngo. Applying

performance modelling to a telecommunication system. In Proceedings of the First

International Workshop on Software and Performance (WOSP-98) [1], pages 1{6.

[130] David Simpson. Cut costs with client/server computing? Here's how! Datamation,

41(18):38, October 1 1995.

[131] Connie U. Smith. Performance Engineering of Software Systems. The SEI Series in

Software Engineering. Addison-Wesley, 1990.

[132] Connie U. Smith and Lloyd G. Williams. Software performance engineering: A case

study including performance comparison with design alternatives. IEEE Transactions

on Software Engineering, 19(12):720{741, July 1993.

[133] William J. Stewart. MARCA: Markov chain analyzer - a software package for Markov

chain modelling. In William J. Stewart, editor, Numerical Solutions to Markov Chains,

pages 37{82. Marcel Dekker, New York, 1991.

[134] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 2 edition,

1991.

BIBLIOGRAPHY 261

[135] Sun Microsystems, Inc. RFC 1094: NFS: Network File System Protocol speci�cation,

March 1989. See also RFC1813.

[136] Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren, Gregory J. Sharp,

Sape J. Mullender, Jack Jansen, and Guido van Rossum. Experiences with the

Amoeba distributed operating system. Communications of the ACM, 33(12):46{64,

December 1990.

[137] The Standard Performance Evalulation Corporation (SPEC). SPEC SFS97 bench-

marks. http://www.spec.org/osg/sfs97/, 1997.

[138] Alexander Thomasian and Paul Bay. Queueing network models for parallel processing

of task systems. In H. J. Siegel and Leah Siegel, editors, Proceedings of the 1983 Inter-

national Conference on Parallel Processing, pages 421{428, Columbus, OH, August

1983. IEEE Computer Society Press.

[139] Alexander Thomasian and Paul F. Bay. Analytic queueing network models for parallel

processing of task systems. IEEE Transactions on Computers, 35(12):1045{1054,

December 1986.

[140] Elizabeth Varki. Mean value technique for closed fork-join queues. In Proceedings of

the 1999 ACM SIGMETRICS International Conference on Measurement and Model-

ing of Computer Systems, pages 103{112, Atlanta, GA, May 1999. ACM SIGMET-

RICS. Also as Performance Evaluation Review 27(1).

[141] Dan Walsh, Bob Lyon, Gary Sager, J. M. Chang, D. Goldberg, S. Kleiman, T. Lyon,

R. Sandberg, and P. Weiss. Overview of the Sun network �le system. In Proceedings

of the Winter 1985 USENIX Conference, pages 117{124, Dallas, TX, January 1985.

USENIX Asscociation.

BIBLIOGRAPHY 262

[142] Jia Wang and Srinivasan Keshav. E�cient and accurate ethernet simulation. Tech-

nical Report TR99-1749, Computer Network Research Group, Cornell University,

Ithaca, NY, May 1999.

[143] James E. White. A high-level framework for network-based resource sharing. In

National Computer Conference, New York, NY, June 1976. AFIPS Press. See also:

RFC 707.

[144] Dirk Wisse. Measuring and modeling a distributed �lesystem. http://cardit.et.

tudelft.nl/DNPAP/Research/Dirk/asci/asci.html, May 1995.

[145] Mark Wittle and Bruce E. Keith. LADDIS: The next generation in NFS �le server

benchmarking. In USENIX Summer 1993 Technical Conference Proceedings, pages

111{128, Cincinnati, OH, June 1993. USENIX Asscociation.

[146] C. M. Woodside, J. E. Neilson, J. W. Miernik, D. C. Petriu, and Constantin R. Perfor-

mance of concurrent rendezvous systems with complex pipeline structures. In Ramon

Puigjaner and Dominique Potier, editors, Modeling Techniques and Tools for Com-

puter Performance Evaluation, pages 307{322, New York, September 1988. Plenum

Press. International Conference on Modeling Techniques and Tools for Computer

Performance Evaluation (4th : 1988 : Palma, Spain).

[147] C. M. Woodside, E. Neron, E. D.-S. Ho, and B. Mondoux. An \active server" model

for the performance of parallel programs written using rendezvous. Journal of Systems

and Software, pages 844{848, 1986.

[148] C. M. Woodside and C. Schramm. Scalability and performance experiments using

synthetic distributed server systems. Distributed Systems Engineering, 3:2{8, 1996.

[149] C. Murray Woodside. Throughput calculation for basic stochastic rendezvous net-

works. Performance Evaluation, 9:143{160, 1989.

BIBLIOGRAPHY 263

[150] C. Murray Woodside, Xianghong Jiang, and Alex Hubbard. A fast approximation for

mean fork-join delays in parallel programs. DRAFT PAPER, October 1997.

[151] C. Murray Woodside, John E. Neilson, Dorina C. Petriu, and Shikharesh Majum-

dar. The stochastic rendezvous network model for performance of synchronous multi-

tasking distributed software. Technical Report SCE-89-8, Department of Systems and

Computer Engineering, Carleton University, April 1991. Originally released March 6,

1989 as \The Rendezvous Network Model for Performance Synchronous Multi-tasking

Distributed Software.".

[152] C. Murray Woodside, John E. Neilson, Dorina C. Petriu, and Shikharesh Majum-

dar. The stochastic rendezvous network model for performance of synchronous client-

server-like distributed software. IEEE Transactions on Computers, 44(8):20{34, Au-

gust 1995.

[153] ITU-T Recommendation X.901. Information technology - open distributed processing

- reference model: Overview. Technical Report X.901, International Telecommunica-

tions Union, August 1998.

[154] Recommendation Z.120. Message Sequence Chart (MSC). International Telecommu-

nication Union, Geneva, mar 1993.

[155] John Zahorjan, Derek L. Eager, and Hisham M. Sweillam. Accuracy, speed, and

convergence of approximate mean value analysis. Performance Evaluation, 8:255{

270, 1988.

Appendix A

Input File Grammar

This appendix gives the formal description of SRVN input �le grammar in BNF form. For

the nonterminals the notation hnonterminal idi is used, while the terminals are written

without brackets as they appear in the input text.

The notation

f� � �gmn , where n � m

means that the part inside the curly brackets is repeated at least n times and at most m

times. If n = 0, then the part may be missing in the input text.

A.1 General Information

hSRVN input �lei ! hgeneral infoi hprocessor infoi htask infoi hentry infoi

fhactivity infoig�0

hgeneral infoi ! G hcommenti hconv vali hit limiti hprint intiopt

hunderrelax coe� iopt hend listi

hcommenti ! hstringi =�comment on the model�=

hconv vali ! hreali =�convergence value�=

264

APPENDIX A. INPUT FILE GRAMMAR 265

hit limiti ! hintegeri =�maximum number of iterations�=

hprint inti ! hintegeri =�intermediate result print interval�=

hunderrelax coe� i ! hreali =�under relaxation coe�cient�=

hend listi ! -1 =�end of list mark�=

hstringi ! " htexti "

A.2 Processor Information

hprocessor infoi ! P hnpi hp decl listi

hnpi ! hintegeri =�total number of processors�=

hp decl listi ! fhp declignp0 hend listi

hp decli ! p hproc idi hscheduling
agi hquantumi
opt

hmulti server
agiopt hreplication
agiopt hproc rateiopt

hproc idi ! hintegeri j hidenti�eri

=�processor identi�er�=

hscheduling
agi ! f =�First come, �rst served�=

j p =�Priority, premeptive�=

j h =�Head Of Line�=

j r =�Random�=

j s =�Processor sharing�=

hmulti server
agi ! m hcopiesi =�number of duplicates�=

j i =�In�nite server�=

hreplication
agi ! m hcopiesi =�number of replicas�=

hquantumi ! hreali =�CPU quantum for RR sched.�=

hproc ratei ! R hratioi =�Relative proc. speed�=

hcopiesi ! hintegeri

hratioi ! hreali

APPENDIX A. INPUT FILE GRAMMAR 266

A.3 Task Information

htask infoi ! T hnti ht decl listi

hnti ! hintegeri =�total number of tasks�=

ht decl listi ! fht declignt0 hend listi

ht decli ! t htask idi href task
agi hentry listi hproc idi

htask priiopt hmulti server
agiopt hreplication
agiopt

htask idi ! hintegeri j hidenti�eri

=�task identi�er�=

href task
agi ! r =�reference task�=

j n =�non-reference task�=

j f =�non-reference task�= =� FITO scheduling �=

j h =�non-reference task�= =� HOL scheduling �=

j p =�non-reference task�= =� PPR scheduling �=

hentry listi ! fhentry idignet1 hend listi

=�task t has net entries�=

hentry idi ! hintegeri j hidenti�eri

=�entry identi�er�=

htask prii ! hintegeri =�task priority, optional�=

A.4 Entry Information

hentry infoi ! E hnei hentry decl listi

hnei ! hintegeri =�total number of entries�=

hentry decl listi ! fhentry decligne�91 hend listi

=�k = maximum nb of phases�=

hentry decli ! a hentry idi harrival ratei

hentry decli ! A hentry idi hactivity idi =� Initial activitiy �=

APPENDIX A. INPUT FILE GRAMMAR 267

j c hentry idi fhcoe� of variationigk1 hend listi

j f hentry idi fhph type
agigk1 hend listi

j F hfrom entryi hto entryi hp forwardi hend listi

j i hfrom entryi hto entryi fhfanin
agigk1 hend listi

j o hfrom entryi hto entryi fhfanou
agigk1 hend listi

j s hentry idi fhph serv timeigk1 hend listi

j y hfrom entryi hto entryi fhph RNV nbigk1 hend listi

j z hfrom entryi hto entryi fhph SNR nbigk1 hend listi

j Z hfrom entryi hto entryi fhthink timeigk1 hend listi

harrival ratei ! hreali =�open arrival rate to entry�=

hph serv timei ! hreali =�mean phase service time�=

hph type
agi ! hintegeri =�0 { stochastic phase�=

=�1 { deterministic phase�=

hfanin
agi ! hintegeri =� Fanin for replication �=

hfanout
agi ! hintegeri =� Fanout for replication �=

hcoe� of variationi ! hreali =�serv.time coe�. of variation�=

hph RNV nbi ! hreali =�mean number of RNVs/ph�=

hph SNR nbi ! hreali =�mean nb.of non-blck.sends/ph�=

hp forwardi ! hreali =�probability of forwarding�=

hthink timei ! hreali =�entry think time�=

hfrom entryi ! hentry idi =�Source of a message�=

hto entryi ! hentry idi =�Destination of a message�=

A.5 Activity Information

hactivity infoi ! A htask idi hactivity defn listi : hactivity conn listi

hend listi

APPENDIX A. INPUT FILE GRAMMAR 268

=� Activity de�nition. �=

hactivity defn listi ! fhactivity defnigna1

hactivity defni ! s hactivity idi hph serv timei =� Service time �=

j c hactivity idi hcoe� of variationi =� Sqr. Coef. of Var. �=

j f hactivity idi hph type
agi =� Phase type �=

j y hactivity idi hto entryi hph RNV nbi =� Rendezvous �=

j z hactivity idi hto entryi hph SNR nbi =� Send-no-reply �=

j Z hactivity idi hthink timei =� Think time �=

=� Activity Connections. �=

hactivity conn listi ! hactivity conni f; hactivity connigna1

hactivity conni ! hjoin listi

j hjoin listi -> hsplit listi

j hrepeat listi -> hsplit listi

hjoin listi ! hreply activityi

j hand join listi

j hor join listi

hsplit listi ! hactivity idi

j hand split listi

j hor split listi

hand join listi ! hreply activityi f& hreply activityigna1

hor join listi ! hreply activityi f+ hreply activityigna1

hand split listi ! hactivity idi f& hactivity idigna1

hor split listi ! hprob activityi f+ hprob activityigna1

hrepeat listi ! hreali * hactivity idi hnext activityi
opt

hprob activityi ! (hreali) hactivity idi

hreply activityi ! hactivity idi hreply listi
opt

hnext activityi ! , hactivity idi

APPENDIX A. INPUT FILE GRAMMAR 269

hreply listi ! [hentry idi f, hentry idi gne0]

Appendix B

Marginal Probabilities

The following equations give the marginal probabilities of �nding i customers (of any class)

at a station j for a customer population N. They are found recursively from an initial

condition of zero customers in the network.

Pm(i;N) =
1

i

KX
k=1

Umk(N)Pm(i� 1;N� ek); 0 < i < Jm

PBm(N) =
1

Jm

KX
k=1

Umk(N)[PBm(N� ek) + Pm(Jm � 1;N� ek)] (B.1)

Pm(0;N) = 1�
Jm�1X
i=1

Pm(i;N)� PBm(N)

The following equations give the marginal probabilities of �nding n customers at a

station j for a customer population N. They are found recursively from an initial condition

of zero customers in the network.

Pm(n;N) =
KX
k=1

Umk(N)

�mk(n)
Pm(n� ek;N� ek) 8n; 0 < n � N (B.2)

Pm(0;N) = 1�
X

0<n�N

Pm(n;N)

270

APPENDIX B. MARGINAL PROBABILITIES 271

When using approximate MVA, the marginal probabilities at a customer population

N � ek are found by assigning Pm(i;N� ek) = Pm(i;N). This assignment often leads to

infeasible probabilities if (B.1) or (B.2) is used.

Krzesinski and Greyling [70] developed the following set of equations to �nd the marginal

probabilities of �nding i customers at a station when using Linearizer approximate MVA.

Pm(0;N) is set to 1, then used in (B.1) to �nd pseudo-probabilities Pm(i;N) and PBm(N).

The sum of these expressions is then used to re-normalize the probabilities, yielding:

Pm(0;N) =

1 +

Jm�1X
i=1

Pm(i;N) + PBm(N)

!�1

Pm(i;N) =
U i
m(N)Qi

l=1 �m(l)
; 0 < i < Jm (B.3)

PBm(N) =
UJm
m (N)QJm
l=1 �m(l)

�
Um(N)

Jm � Um(N)

Schmidt also found that (B.2) frequently needed renormalization [124]. He assumed that

customers were distributed binomially within a queue at a multiclass FCFS multiserver:

Pm(n;N) =
KY
k=1

0
B@ Nk

nk

1
CA�Lmk(n)

Nk

�nk �
1�

Lmk(n)

Nk

�Nk�nk

8n; 0 � n � N (B.4)

This equation is perfectly suited for approximate MVA because the marginal probabilities

with one customer from chain k removed are not needed at all.

