
A Framework For Automated Performance
Engineering of Distributed Real-Time

Systems

by

Hesham M. El-Sayed, B.Sc., M.Sc.

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements of the degree of

Doctor of Philosophy

Ottawa-Carleton Institute for Electrical Engineering
Faculty of Engineering

Department of Systems and Computer Engineering
Carleton University

Ottawa, Ontario
CANADA, K1S 5B6

October 13, 1999

 1999, Hesham M. El-Sayed

ii

The undersigned recommend to the Faculty of Graduate Studies
and Research the acceptance of the thesis

 A Framework For Automated Performance
Engineering of Distributed Real-Time Systems

submitted by Hesham M. El-Sayed, B.Sc., M.Sc. in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

Chair, Department of Systems and Computer Engineering

Thesis Supervisor

External Examiner

Carleton University
October 13, 1999

 iii

ABSTRACT

Software Performance Engineering (SPE) is a systematic approach that uses performance

models to assess requirements, design and hardware alternatives, starting early in the life-cycle

while a wide range of options exists, and continuing through the life-cycle. Despite documented

successes of SPE it still faces technical barriers that hinder its widespread use. The first barrier

is, that modeling often has a prohibitive cost in time and effort. The second barrier is, that

analyzing model results to diagnose problems and recommend design alternatives for

performance improvement is not an easy task, as it requires special expertise.

 The research proposed here is intended to attack both of these difficulties. It proposes a

practical performance engineering framework that provides designers with automated

performance assistance for high-level software design. The framework provides assistance to

designers by: (1) facilitating the process of building and evaluating performance models, and (2)

interpreting model results and recommending design changes to improve designs. The

framework integrates several components together to implement a performance engineering

toolset which enables practitioners (designers/developers/architects) with little training to

establish and maintain performance baselines for complex, real-time distributed systems.

The applicability of the framework to real systems has been tested by an industrial example,

and its effectiveness has been evaluated by comparing it with recently published and completely

different approaches. The experimental results show that the framework is scalable, in the sense

that it can model simple as well as complex systems, robust and has potential to find feasible

solution efficiently.

iv

Acknowledgements

I am deeply indebted to my supervisor, Professor Murray Woodside, for his encour-

agement and friendship throughout this research. His consistent support and guidance

have been integral to the success of this work.

I would like to thank Don Cameron for being an excellent mentor and good friend. I

wish also to express my gratitude to my friends at the Design Effectiveness group and the

members of the Software Engineering and Analysis Lab in Nortel Networks, as well as my

colleagues at Carleton University for providing a friendly and encouraging environment.

I am very grateful to my wife, Rania, for her moral support and constant encourage-

ment. She did every sacrifice to cope with my thesis. My daughters, Farah and Rana, have

always been my source of great joy and pleasure. My family has been very supportive for

me through the years. It is time to let you know how special you all are. Ayman, Sherine,

grand mother, uncles, aunts, and cousines. Thank you all.

Financial assistance provided by the Communications and Information Technology of

Ontario (CITO), Nortel Networks and Carleton University was greatly appreciated.

Finally, to the soles of my parents, your love and support has made this thesis your

accomplishment as much as it is mine. I dedicate my thesis to you.

v

Table of Contents

Chapter 1: Introduction . 1

1.1 The Problem . 1

1.2 The Software Performance Engineering solution. 1

1.3 The barriers that hinder the use of SPE . 2

1.4 Implementing Performance Engineering . 3

1.5 Origins . 6

1.6 Research contributions . 7

1.6.1 Automation of performance model-building . 8
1.6.2 Optimization strategy . 9
1.6.3 Integration of techniques . 9

1.7 Thesis organization. 9

Chapter 2: Background (related work) . 11

2.1 Scenario-Driven Software Design . 11

2.1.1 The use of scenarios in existing software design methods. 14
2.1.2 Software Design Synthesis from Scenarios . 17

2.2 Integrated design and performance model development . 19

2.2.1 Execution graph (scenario) based methods . 20
2.2.2 Trace-based methods . 21
2.2.3 Language-based methods . 22
2.2.4 SDL-based methods . 22
2.2.5 Frameworks for performance modeling . 24

2.3 Layered Queueing Modeling . 24

2.4 Design decisions that affect the performance. 27

2.4.1 Process partitioning . 29
2.4.2 Process allocation . 33
2.4.3 Priority Assignment (RT-Scheduling) . 44

Chapter 3: Design Specification by Scenarios and SDL . 49

3.1 Introduction to SDL . 51

3.1.1 An SDL system and its structure . 52
3.1.2 The SDL process . 53
3.1.3 Communication in SDL . 58
3.1.4 Signals and data . 60
3.1.5 The SDL Queueing Mechanism . 61

3.2 Design Specification by Scenarios and the Scenario Design Paradigm (SDP) . 64

3.2.1 SDL models that are supported by the model-builder . 67
3.2.2 Specifying models with join and fork-join patterns . 68

 vi

3.2.3 Examples of scenario codes that describe fork-join patterns . 71

Chapter 4: The Model Builder . 76

4.1 Introduction. 76

4.2 Define scenarios and capture SDT traces . 79

4.3 Building Skeletal LQN submodels from traces . 80

4.4 Merging the submodels and completing the model . 91

4.5 Algorithms . 94

Chapter 5: The Optimization Strategy . 98

5.1 Introduction . 98

5.2 Finding an Initial Design Configuration. 100

5.2.1 Finding an initial task allocation using MULTIFIT-COM. 101
5.2.2 Finding an initial priority assignment. 103

5.3 Evaluating a System Design . 103

5.4 Estimating the Solution Quality . 104

5.5 Design Optimization. 106

5.5.1 Design improvement using priority adjustment . 106
5.5.2 Design reshaping . 108
5.5.3 Summary of the design optimization process. 112

5.6 A Tutorial Example . 115

5.6.1 Experiment #1 . 116
5.6.2 Experiment #2 . 117
5.6.3 Experiment #3 . 117

Chapter 6: Evaluation of the Framework . 121

6.1 The Automatic Protection Switching Case Study . 121

6.1.1 Automatic Protection Switching at the network level . 122
6.1.2 Automatic Protection Switching on a node by node level . 123
6.1.3 Modeling and Evaluation . 129

6.2 Comparing with other methods . 133

6.2.1 Tindell’s Example . 133
6.2.2 Etemadi’s Example. 136

6.3 The Optimization Method: Robustness on Random Examples . 139

Chapter 7: Conclusions . 145

7.1 Discussion. 145

7.2 Summary of Contributions . 149

7.3 Future Work . 150

References 152

vii

List of Figures

Figure 1.1 Performance Engineering Framework . 5
Figure 2.1 An Example of an LQN model . 25
Figure 3.1 An SDL system . 52
Figure 3.2 An example on the Save concept . 56
Figure 3.3 The sequence of actions performed by the state machine in Figure 3.2 56
Figure 3.4 Example of a complex SDL diagram with numerous inputs and saves 62
Figure 3.5 Operation of queueing mechanism in the system of Figure 3.4 63
Figure 3.6 An example of three scenarios (a) request-response, (b) chain of requests,

(c) request-forward-reply . 66
Figure 3.7 A sample scenario code that models the MSCs shown in Figure 3.6 66
Figure 3.8 A typical model of an asynchronous process. (a) SDL diagram. (b) conventional

event/action form . 67
Figure 3.9 A library of C functions that supports modeling the “join” events 70
Figure 3.10 An example scenario code of Inter_Process Fork_Join . 74
Figure 3.11 An example scenario code of Intra-Process Fork-Join . 75
Figure 4.1 The Model-Builder . 77
Figure 4.2 An example of three LQN submodels for the interactions shown in Figure 3.6 . 78
Figure 4.3 The merged model . 78
Figure 4.4 MSC of the example scenario to be modeled . 81
Figure 4.5 The normalization step . 83
Figure 4.6 The angio trace corresponds to the SDT trace in Figure 4.5 (a) 84
Figure 4.7 Dye-id assignments to messages in Figure 4.4 . 85
Figure 4.8 Message type identification . 86
Figure 4.9 Services associated with each process, and activities within each service 88
Figure 4.10 Software architecture with activity precedence information 89
Figure 4.11 An LQN-submodel for the of the software architecture depicted in Figure 4.10 . 92
Figure 4.12 The BNF of the textual interface . 93
Figure 5.1 A procedure for building feasible real-time systems . 100
Figure 5.2 The behavior of the Criticality metric . 105
Figure 5.3 An illustration of the priority inversion problem during the execution of multiple

scenarios (a), or a single scenario (b) . 111
Figure 5.4 The 4 main stages of the optimization strategy . 113
Figure 5.5 A detailed flow chart for the design optimization . 114
Figure 5.6 A tutorial example . 115
Figure 6.1 A 16-node 2-fiber BLSR network . 122
Figure 6.2 Software Architecture of The Automatic Protection Switching System 124
Figure 6.3 Scenario1: Sequence of actions that take place at Node 1 when faults occurs . . 126
Figure 6.4 Scenario 2: Sequence of actions that take place at an intermediate node 128
Figure 6.5 Scenario 3: Sequence of actions that take place at Node 1 after receiving the

long_path request from Node 16 . 128
Figure 6.6 LQN model of the automatic protection switching system 130
Figure 6.7 The 11 transactions of Tindell’s example . 135
Figure 6.8 The 12 transactions of Etemadi’s example . 138

viii

Figure 6.9 The software Architecture of the random application1 141
Figure 6.10 The software Architecture of the random application2 141
Figure 6.11 Optimization results: success ratio vs. average CPU utilization 143
Figure 6.12 Optimization results: average # of steps vs. average CPU utilization 144

ix

List of Tables

Table 2.1 Heuristic options for the Parameters of MULTIFIT-COM [Woodside93] 38
Table 2.2 Candidates for the reduced-heuristic policy list from [Woodside93] 39
Table 5.1 The optimization steps of Experiment #1 . 116
Table 5.2 Optimization steps of Experiment #2 . 119
Table 5.3 Optimization steps of Experiment #3 . 120
Table 6.1 Sequence of activities and service times associated with each process in the protection

switching case study . 131
Table 6.2 The optimization steps of the protection switching case study 132
Table 6.3 Optimization experiments using Tindell’s example . 135
Table 6.4 Optimization experiments using Etemadi’s example . 138

 Page 1

Chapter 1: Introduction

1.1 The Problem

Traditional software-design methodologies relegate performance evaluation to the last

stages of software design, after the system is operational. For performance-critical systems it is

desirable to predict and anticipate performance problems in an early stage of system design,

where proper actions can be easily made. Aggressive development schedules, coupled with the

inherent complexity of such systems, generally result in inadequate analysis, modeling,

specification and tracking of the system’s performance properties. Too often the development

process proceeds without any real performance baseline. The many design and development

decisions are made relatively blind to their performance impact. As the development project

matures, performance problems sometimes snowball. The development project then degenerates

into an “interactive firedrill” between a waiting customer, systems engineering and the

development groups [Strosnider96]. Connie Smith has termed this the “fix-it-later” approach

and documented the seriousness of the problems it creates [Smith90]

1.2 The Software Performance Engineering solution

To counter this reactive pattern, Software Performance Engineering (SPE) evolved

[Smith90], attempting to understand the performance of software earlier in the life-cycle --

thereby giving designers the opportunity to see the effect on performance of design changes

while they are able to do something about it. With SPE, developers build performance into

system rather than (trying to) add it later. The SPE techniques use performance models to

 Page 2

provide data for the quantitative assessment of the performance characteristics of software

systems as they are developed. Performance modeling of early designs can reduce the risk of

performance-related failures by giving an early warning of problems. Performance models

provide performance predictions under varying environmental conditions or design alternatives

and these predictions can be used to detect problems.

A performance model contains the specification of activities taking place during system

responses together with the cost of those activities in terms of execution time as well as the

frequency of events requiring response. Solving the performance model yields the total

execution time for each concurrent system response together with a utilization number for each

CPU in the system. The performance model solution is compared with the requirements for CPU

utilization and response deadlines. If the design does not meet requirements, design parameters

are changed, the performance model is regenerated and resolved. This cycle continues until

requirements are met.

1.3 The barriers that hinder the use of SPE

SPE has evolved over the last 15 years and has been demonstrated to be effective during the

development of many large systems [Smith97]. Despite SPE documented successes it still faces

technical barriers that hinder its widespread use. The principal problem is the gap between

software developers who need the techniques (to have their designs evaluated for performance)

and the performance specialists who have the skill to conduct comprehensive performance

engineering studies using current modeling tools. Thus, extra time and effort is required to

coordinate the design formulation and the design analysis. This limits the ability of designers

(developers) to explore the design alternatives.

The primary reason for having this gap has been the lack of a simple, scalable technique for

 Page 3

facilitating modeling of the performance properties of systems design. In the current practice,

constructing performance models of complex systems design is labor-intensive, can require

significant effort and thus is expensive. To construct performance models, analysts inspect,

analyze and translate software descriptions (e.g. design documents or source code) into a model

format, which might be a simulation model, queueing model, or a Petri-Net model;

consequently, performance models can be expensive to develop and validate, and keeping

models up to date with the current state of evolving software systems is also problematic.

Accordingly, the models tend to become unwieldy, become insufficiently maintained, so that

models are often not used (discarded) and performance is addressed only in the final product.

Automated aids are therefore required to ease the process of building performance models.

Apart from the cost of constructing performance models, analyzing performance model

results to diagnose performance problems and recommend design alternatives for performance

improvement is also not an easy task. Many factors that influence performance are well

understood. In practice, however, it can be difficult to interpret the results of performance

models to determine which factors are the primary sources of deficient performance, and to find

design changes to rectify performance problems. For non-trivial problems, the number of

possible design alternatives that must be searched to arrive at an acceptable solution is far too

large to be performed manually. It is therefore essential to automate this task. Even if this task

were automated, exhaustive search of all possible design changes becomes computationally

intractable. Some intelligence must therefore be built into the automation process to guide the

search through this potentially enormous solution space for the design improvement problem.

1.4 Implementing Performance Engineering

The research proposed here is intended to overcome some of the difficulties of applying

 Page 4

software performance engineering. It proposes an implementable performance engineering

framework that provides designers with automated performance assistance for high-level

software design. The framework provides assistance to designers by: (1) facilitating the process

of building and executing performance models, and (2) interpreting model results and

recommending design changes to improve designs.

The components and interfaces of the framework are depicted in Figure 1.1. The framework

has five key components, of which the third and fifth are contributions of this thesis.

1) Scenario Design Paradigm (SDP), a prototype software design technology

developed inside Nortel Networks [Jedrysiak94,96], used to speed up the process of

constructing SDL functional models.

2) SDT case tool, a commercial design tool [Telelogic96], used to execute SDL

functional models and record traces.

3) The Model Builder, a prototype tool produced by this research, used to extract

performance models automatically from the execution traces of functional models.

4) The Model Solver, a research tool developed at Carleton University [Franks95],

used to solve the performance models and provide performance metrics.

5) The Optimizer, a prototype tool produced by this research, used to interpret

performance model results and recommend design changes to improve the design.

The framework integrates all these components together to implement a performance

engineering toolset which enables practitioners (designers/developers/architects) with little

training to establish and maintain performance baselines for complex, real-time distributed

systems.

 Page 5

Figure 1.1 Performance Engineering Framework

To connect performance analysis to the software design, the design is first specified in SDL,

which may in turn be created from a scenario specification. SDL [ITU93a] is a standardized

formal description technique defined for telecom systems and software, based on extended finite

state automata. The SDL (functional) model defines the interconnection of operating system

processes, the allocation of activities to processes and, when executed, the sequence of activities

Simulation
traces

LQN Model

Solver

Complete

Resource

Performance
Predictions

Model Builder

Scenarios

Resource functions: give resource demands of activities.

SDL

Configuration info.: gives process allocation, process priority,
 arrival rates of events.

Functions

Configuration
Information

Perf. model

Scenario Design

Paradigm
SDT Case Tool

Design

Performance
requirements Optimizer

Recommend design changes
(mainly changes in priority
assignment, process allocation,
and process structuring)

If Adequate Performance
EXIT

If no design change works, designer assistance is needed.
e.g. to change the software architecture, increase the
processing power, improve execution time of individual
responsibilities.

Performance Requirements: give the end-to-end deadlines of scenarios.

 Page 6

for each system response (scenario). The activities of the system are modeled as resource

functions that return the cost of doing the activity in terms of execution time. The SDL model is

then executed and its traces are analyzed to extract a performance model. The performance

model can be solved to get the required performance metrics.

The optimization process includes interpretation of model results, assessment of compliance

with user specified performance requirements, identification of suspects of performance

problems and recommendation of design changes to alleviate problems. Performance

requirements that are considered in this research are the end-to-end response time (deadline) of

scenarios. A design is considered to be compliant to all requirements (and thus, feasible) if, for

every scenario, the probability that response time exceeds deadline is less than some threshold;

this threshold can be set to zero in hard real-time systems.

In this research, the design optimization process is formulated as a global optimization

problem and an incremental heuristic technique is proposed to solve it. At each step, the design

is evaluated. If the design is non-compliant with any of the requirements, possible contributing

factors are analyzed, a key factor is determined and some priority changes are recommended.

The new configuration is then evaluated and the quality of the solution is estimated. This is

repeated until either a feasible solution is found or some stopping criteria are satisfied. If the

search on priorities converges without obtaining feasibility, then a structural change is

introduced (a design reshaping), and the search is restarted for priorities.

1.5 Origins

From the earlier work in [Hrischuk95], the proposed model builder of this research has

retained the concept of angio traces and the goal of model building as well as the outline of the

model-building process in the sense that it constructs a performance submodel for each scenario

 Page 7

trace, then merges all these submodels into one model, and finally completes the model by

populating it with the information from environment. However, the machinery described here is

different from what is reported in [Hrischuk95] and in Hrischuk’s later work [Hrischuk99,

Woodside98]. In this work the traces are found without building any instrumentation into the

CASE tool. So, some important changes have had to be made to the trace processing because of

the limited information available in the traces. In addition, the proposed model builder has

broaden the target from processes based on RPCs to a system (that is, SDL) based entirely on

asynchronous messages, with additional types of execution paths (e.g. parallel execution) and

interactions. To deal with the broader problem, considerable extensions to the semantics of the

model builder have had to be made. Accordingly, the model-building algorithms have been

reconstructed from the ground up, beginning with the trace capture and interpretation. Only the

term “angio trace” and the outline of the steps have been retained.

 Following the paper of [Hrischuck95], the work of Curtis Hrischuk and the author’s were

carried out independently. Hrischuk extended the technique in a formal way, applied it to model

building based on traces from ObjecTime and described some similar achievements to ours in

[Hrischuck99]. The author independently extended the capability of the model-building process

to handle asynchronous communications with forks and joins (using different methods),

integrated it with a CASE tool (SDP and SDT) and continued into automated design

improvements. In any case, the model builder is only the starting point of the thesis, which goes

on to tune and/or optimize the design.

1.6 Research contributions

The contributions of this thesis fall into the heads of automation of model-building,

optimization, and integration of techniques.

 Page 8

1.6.1 Automation of performance model-building

The first contribution of this research is automation of model-building to make the

performance model a simple adjunct to the design (functional) model. The following

contributions are particularly notable:

• Inferred angio traces from standard SDL traces (no special instrumentations were built

into the design tool).

• Constructed algorithms for trace reduction, including forks and joins (in parallel with C.

Hrischuk)

• Demonstrated the use of the model-builder on a number of examples including analysis

of Automatic Protection Switching (with 252 processes)

 Given the scenarios and the SDL specification, the model can be produced without

intervention. This means that it corresponds precisely to the design and can track the

development of the design over time. In the SDL tool we use, a final application program can be

generated directly from the SDL specification, giving rapid development which is also tracked

end-to-end by a performance model.

Automating the performance model-building process gives several advantages: it ensures

that the model tracks the design, reduces errors, creates less work for the design team and makes

it economically feasible (in terms of developer effort) to do early performance analysis. The cost

of constructing functional model is low because of the smaller number of entities represented

(processes and responsibilities) and the level of abstraction (amount of information kept for each

entity).The construction and solution of the performance model is automatic and thus quicker,

cheaper and very low cost.

 Page 9

1.6.2 Optimization strategy

The second contribution of this research is a strategy for optimizing LQN performance

models. The following contributions are particularly notable:

• Proposed special diagnostic measures to identify and rank the sources of performance

problems.

• Designed an incremental optimization strategy based on identifying critical

performance factors and recommending design changes.

• Demonstrated that the optimization strategy is as good as other techniques on standard

problems.

• Evaluated the strategy on a large set of randomly generated examples of LQNs.

Automating the interpretation of performance models has several advantages. From the

viewpoint of an inexperienced performance engineer or system engineer, the recommendations

appear as if provided by a performance specialist. For the experienced performance engineer, the

utility of the optimization strategy (the optimizer) lies in its automation of time-consuming data

interpretation tasks, freeing the experienced user for higher level tasks.

1.6.3 Integration of techniques

The third contribution is the integration of the above steps with other existing tools to specify

scenarios (SDP), to model designs (SDL and the SDT tool), and to solve performance models

(LQNS).

1.7 Thesis organization

The rest of the thesis is organized as follows. Chapter 2 briefly presents the background and

related work to this research. Chapter 3 describes the approach for specifying designs using

 Page 10

scenarios and SDL and the type and structure of SDL models that are supported by the

framework. Chapter 4 describes the proposed methodology for extracting performance models

automatically from design specifications. Chapter 5 proposes an optimization strategy for

improving a design to meet its performance requirements. Chapter 6 demonstrates the

applicability of the complete framework to model and characterize the performance of real

industrial systems. It also evaluates the efficiency of the optimization method and compare it

with other approaches in the literature which attack similar problems. Finally, the main

conclusions of the work presented in this thesis are summarized in Chapter 7 and suggestions

for future work are described.

 Page 11

Chapter 2: Background (related

work)

The related work to this thesis can be roughly classified into four main areas:

• Scenario-Driven Software Design

• Methodologies which consider performance modeling and analysis early during the

design phase (i.e. that integrate design and performance model development)

• The Layered Queueing Network Model, which is the model used for performance

analysis discussed in this thesis

• Aids for design decisions that affect the performance of systems. This includes

techniques for process partitioning, process allocation, priority assignment.

2.1 Scenario-Driven Software Design

 Scenario-driven software design is an emerging idea that has the potential to dramatically

improve software-system design [Sherman95]. Scenarios are sequences of activities (actions)

that specify the desired behavior of a software system. They are slices of the system behavior,

which can be considered one at a time in terms of the system model. A scenario diagram (event

trace diagram, message sequence chart, interaction diagram) is a graphical formulation of a

scenario, specifying how objects communicate with each other and with external actors during

the scenario. Each object participating in a scenario is represented by a vertical line; an event is

shown as a horizontal arc from the sender object to the receiver(s). Time flows from top to

bottom. An example of scenario diagrams (message sequence charts) is shown in Figure 3.6.

 Page 12

Early in the software design process, scenarios are useful for specifying what the designer

wants the system to do. They help designers to focus attention on a particular behavior or

function thread of the system. Scenarios provide an alternative to trying to mentally juggle the

complex interactions of the entire system at once. Scenarios also offer a number of specific

benefits over a project’s lifetime [Sherman95]:

"• Requirements tracking and tracing: Scenarios are based on requirements. They illustrate

how the proposed system will meet the requirements. It is therefore possible to track the

requirements during the various phases of a development project by using scenarios.

• Communication: Scenarios offer an excellent vehicle for communication. They are

useful for design reviews, customer training, and maintenance. Newcomers to a project

can learn about the system with minimal drain on experienced personnel.

• Documentation: Scenarios document the desired behavior. When a design is changed or

migrated to another environment, the behavioral description provided by the collection

of scenarios directly supports these efforts.

• Design iteration: When a scenario is being defined, the designer’s thought processes are

stimulated into thinking about what is being presented. Alternative paths, missing parts,

and different abstractions are always being considered by creative designers. This may

lead to modification of the design when better representations are identified. Scenarios

can be refined and expanded as the design evolves.

• Failure cases: Expressing the desired behavior of the system includes situations when

incorrect data arrives, resources are consumed, or a time out occurs. Scenarios can be

used to illustrate the fail-safe actions of the system under unusual circumstances. This

kind of documentation is particularly important in safety-critical or highly dependable

applications.

• Test-case definition: Each scenario potentially can serve as the basis for one or more test

cases. Depending on the level of abstraction, the scenario details a thread of system

activity that’s desired and should therefore be tested to verify that it occurs.

 Page 13

• Behavior verification: The scenarios defined at the beginning of the project can be used

to compare with event traces captured during simulation runs or actual program

execution. Comparison will show areas of mismatch that can be analyzed to determine

if any corrections need to be made. Such dynamic testing verifies that the requirements

are being met by the implementation. This emphasizes the linkage between the code

modules and the requirements.

• Performance improvement: Analyzing a collection of scenarios may reveal paths and

nodes that are referenced quite often. This can identify potential bottlenecks that could

negatively impact the system performance. The designers are able to use this

information to make decisions about rerouting messages traffic or replicating functions

to improve the system’s overall throughput or performance.

• Impact analysis: Maintainers can take advantage of scenarios by analyzing the

interactions between the various parts of the system. They can determine what the

overall impact will be if part of the system is modified. This will encourage alternative

approaches to be considered, especially if the proposed changes will affect more of the

system than anticipated.”

The research literature offers an increasing number of scenario-related methods, models and

notations. The consideration of concrete system descriptions from a usage oriented perspective

- prior to abstract conceptual modeling of function, data, and behavior - has been highlighted in

software engineering in the form of use cases within object-oriented analysis and design

[Jacobson92]. A number of extensions and alternatives have been proposed, which, e.g., focus

on adding structure to use cases [Regnell95,96], on the formal treatment of scenarios [Hsia94],

on the use of scenarios during documentation, discussion and evolution of requirements

[Potts94] etc. In addition, scenarios are also popular in other fields, most notably human-

computer interaction (e.g. [Carroll95]) and strategic planning (e.g. [Blanning95, Bui96]).

Scenario use is also becoming a pervasive phenomenon in industrial practice, but

comprehensive and expressive studies on the practical relevance of the techniques proposed by

 Page 14

research are still rare. A good survey on scenario usage in system development is reported in

[Widen98], and a framework for scenario classification is proposed in [Rolland98].

2.1.1 The use of scenarios in existing software design methods

Use of scenarios is gaining momentum among software methodologists and designers for

supporting a number of different design methods. Some of these methods are summarized

below:

Object Modeling Technique (OMT): OMT [Rumbaugh91] employs three modeling

techniques in software development: object modeling for describing the static relations and

properties of objects, dynamic modeling for describing the dynamic behavior of objects and

functional modeling for describing the data flow between the processes of the system. Of these

models, OMT emphasizes the role of the object model.

Dynamic modeling starts with the construction of scenarios. A scenario is presented

graphically as a trace diagram describing the order in which certain events are sent from one

object to another. Scenarios are given first for ‘normal’ behavior, and then for ‘exceptional’

behavior. Based on the understanding of the mutual interaction of the objects achieved through

scenarios, a state machine (a state diagram in OMT terminology) is constructed for active

objects appearing in the scenarios. The OMT method gives no exact procedure for constructing

the state machines, but only some informal hints.

Object Oriented Software Engineering, a Use Case Driven Approach (OOSE):

Jacobson introduces so called use-case driven design [Jacobson92]. This is software design

process based on the idea that the architecture of a system is controlled by what the users want

to do with the system. The user’s requirements are modeled by use cases, which roughly

 Page 15

correspond to OMT’s scenarios: a use case is a specific way of using a system to accomplish an

identified task, consisting of possibly several scenarios. After all of the users (actors) that

interact with the system are identified, use cases are defined in words. Emphasis is placed on

defining each actor’s interaction with the system. Use cases describe how the system performs

the requested functions. These scenarios are always depicted from the external user’s point of

view.

Concurrent Design Approach for Real-Time Systems (CODARTS): CODARTS is an

object-oriented software design method for concurrent and real-time systems that emphasizes

the structuring of a system into concurrent tasks (active objects). The method uses scenarios and

provides support for information hiding (passive objects). In CODARTS, scenarios are included

as part of the state-dependent behavioral analysis as described in [Gomaa93]. The main steps are

to:

• Build the scenarios, using the state-transition diagram and list of external events.

• Execute each scenario by manually walking through the state transitions for each

external event.

• Complete the scenarios, by ensuring that the executed scenarios have driven the state-

transition diagram through every state.

The Unified Modeling Language (UML): UML is a general-purpose modeling language

for specifying, visualizing, constructing and documenting the artifacts of software systems (in

particular object-oriented and component-based systems), as well as for business modeling and

other non-software systems [UML99]. It includes many concepts and notations useful for the

description and documentation of multiple models, and it enjoys a strong support from academic

and industrial communities. UML specifications represents the convergence of best practices in

the object-technology industry.

 Page 16

UML allows the description of complex software-driven systems and models through the

use of nine different diagram techniques. Each diagram provides a view of a model from the

aspect of a particular stakeholder, and each diagram must be semantically consistent with all the

others. These diagrams are categorized into two sets. The first set, called behavioral diagrams,

focuses mainly of functional and dynamic aspects of systems. It is comprised of five types of

UML diagrams:

• Use case diagrams: Show actors and use cases together with their relationships. They

describe system functionalities from the user’s point of view.

• Sequence diagrams: Describe patterns of interaction among objects, arranged in a

chronological order. They originate from Message Sequence Charts [ITU93b].

• Collaboration diagrams: Show generic structure and interaction behavior of the system.

• Statechart diagrams: Show the state space of a given context, the events that cause the

transitions of one state to another, and the actions that result.

• Activity diagrams: Capture the dynamic behavior of a system in terms of operations.

They focus on flows driven by internal processing.

The second set, called structural diagrams, relates more to components and static

characteristics of systems. It includes the following four types of UML diagrams:

• Class diagrams: Capture the vocabulary of a system. They show the entities in a system

and their general relationships.

• Object diagrams: Snapshots of a running system. They show object instances (with data

values) and their relationships at some point in time.

• Component diagrams: Show the dependencies among software components.

• Deployment diagrams: Show the configuration of run-time processing elements and the

software components, processes, and objects that live on them.

 Page 17

2.1.2 Software Design Synthesis from Scenarios

Scenario-driven design is one step along the path toward achieving design synthesis. The

goal of design synthesis is to automate the activities within the software lifecycle. In other

words, it should turn requirements into designs and then designs into code, and do so reliably

and at low cost. Several attempts have been made in universities and industry to achieve

automated software design. Some examples are given below.

Scenario Tool: the scenario tool is a a prototype tool for defining and animating scenarios

for both structured and object oriented methods [Sherman95], developed at Siemens Corporate

Research in Princeton, N.J. The tool was designed so that scenarios can be defined and animated

using standard notations (e.g. dataflow diagrams). The tool extends the capabilities of dataflow

CASE tools that output files in CASE Data Interchange Format (CDIF) format. The interface to

the tool acts as a repository of design diagrams generated by existing CASE tools. These

diagrams are read into the tool, and then are displayed in a way in which the scenarios can be

annotated and animated. The outputs of the tool are the scenarios that describe the behavior of

the system. Animating the scenarios improves scenario communication for purposes of review

and training. An area of future research for the authors of [Sherman95] is design synthesis. The

idea is to use state-transition information together with a set of scenarios to achieve a semi-

automated generation of the state-transition table.

Scenario Design Paradigm (SDP): SDP is a prototype software design technology which

has been developed inside Nortel Networks [Jedrysiak94,96]. The Scenario Design Paradigm

supports an iterative, incremental, top-down style of system development. It allows designers to

express the behavior of a real-time system as a set of concurrent scenarios using a scenario

language. Each scenario is a system response to an external event. The active components in the

scenarios are messaging entities and the form of their interaction is asynchronous messages. The

 Page 18

scenario language is like a Message Sequence Chart language in textual form but with extended

structural syntax that facilitates the translation of the scenario language into SDL. The scenario

language compiler performs a kind of state machine synthesis at the process level. It constructs

a state machine for each active system component by extracting the behavior of that component

from each scenario in which it appears. The state machine language is SDL (Specification and

Description Language), a formal description language which is the subject of the International

Telecommunication Union Standard Z.100. The compiler produces SDL Graphical

Representation (GR) files. These files contain graphical representations of the block architecture

as well as the process state machines. Once the system is synthesized into a set of SDL state

machines, it can be executed in an SDL CASE tool simulator or on the target product platform.

Designers can add scenarios incrementally to the system specification, recompile and execute.

SDP has been used in this research to specify scenarios and speed up the process of constructing

SDL models. A more complete description with examples will be given in Section 3.2

SCenario EDitor (SCED) [Koskimies94]: SCED is a tool that assists in writing scenario

diagrams and producing a state machine that describes the behavior of a particular object, or

some method of an object. The tool has been developed at the University of Tampere and

Tampere University of Technology, Finland. SCED consists of two CASE components, a

scenario editor and a state diagram editor, and a state machine synthesizer, called a generator,

integrating scenarios and state machines with various mechanisms.

A cornerstone of SCED is the algorithm that synthesizes a state machine on the basis of a set

of scenario diagrams. This algorithm is based on a known machine learning result by Biermann

et al. [Biermann76]. SCED has also a number of other features: automated construction of

scenario diagrams, automated simplification of state machines using OMT notation, automated

layout of state machines, ability to visualize existing systems and produce their abstract behavior

 Page 19

as state machines of their components.

2.2 Integrated design and performance model development

It is a standard concept in engineering to use models to analyze designs. Nevertheless, the

integration of performance modeling in the software system design process has not been well

studied. Instead, systems design and performance evaluation are often considered as two rather

independent areas. As a result of this, each of the two worlds has its own specialists and uses its

own models, methods and tools. The major drawback of the use of disjunct models is the extra

efforts needed to derive and maintain a separate performance model in addition to the design

(functional) model. This effort is often avoided by putting off performance issues as long as

possible in the design process. As a result, decisions made blind to their performance impact and

problems, and developments ends in an “interactive firedrill” between the customer, systems

engineering, and the development groups. The costs of this “fix-it-later” approach have been

documented by C.U. Smith [Smith90].

A few authors have considered ways to build a model as part of the design development. The

idea of integrating simulation models with system design was used by Zurcher and Randell

[Zurcher68] to develop a methodology for the design of computer systems, and was explored by

Parnas and Darringer [Parnas67]. Sanguinetti [Sanguinetti79] describes a technique for

performance prediction by integrating simulation and software system design using PPML

[Riddle72], a system modeling language. Bagrodia and Shen [Bagrodia91] extended the

applicability of the integrated approach in significant directions. They proposed an approach,

called MIDAS, that supports the design of distributed systems via iterative refinement of hybrid

models. A hybrid model is a partially implemented design where some components exist as

simulation models and others as operational subsystems. It is an executable model and may be

 Page 20

used to determine the stochastic performance characteristics of a partially elaborated design.

The following subsections presents some recent methods and approaches for integrating

design and performance model development. These methods are categorized in the following

three groups and discussed in Section 2.2.1 through Section 2.2.4

1) Execution graph-based methods

2) Trace-based methods

3) Language-based methods

4) SDL-based methods

Finally, in Section 2.2.5. a framework for connecting software performance engineering to

software design and resource scheduling is discussed.

2.2.1 Execution graph (scenario) based methods

Connie Smith proposed a systematic way to use quantitative methods to asses requirements,

design and hardware alternatives, starting early in the life-cycle while a wide range of options

exists, and continuing through the life-cycle [Smith90]. The method derives a model of software

execution patterns (called an execution graph) from the design, constructs a second model to

solve for performance predictions, and then uses the predictions to guide the modification of the

design.

Mazzeo et al. [Mazzeo97] described an approach to the specification of concurrent systems

which enables a Petri net model of a system to be built up in a systematic way starting from a

trace-based specification. The traces are derived manually from system requirements

(documents) in the form of CSP specification. A set of rules is then applied to transform the

trace-based specifications into a complete Petri net model.

 Page 21

C. Scratchley [Scratchley99] described an approach called PERFECT which evaluates the

feasibility of proposed software concurrency architectures for a set of scenarios and a set of

quality-of-service requirements. The method first specifies and captures the scenarios using Use

Case Maps [Buhr96], which represent paths of execution against a background of the software

components that execute them, and annotates the quality-of-service requirements on the

scenarios. Then the method allocates subpaths in the specification to processes and decide

whether each process will be single or multi-threaded. Finally, an evaluation is performed by

constructing and simulating a virtual implementation of the system, which conforms to the

specified behavior and the specified concurrency architecture.

2.2.2 Trace-based methods

Automated performance model-building from design prototypes has been tried in

[Hrischuck95,99; El-Sayed98]. Hrischuck et al. [Hrischuk95,99] proposed a methodology,

called Trace-Based Load Characterization (TLC), for the automatic construction of Layered

Queueing Network performance models for message passing distributed and concurrent

systems. The basis for this technique are angio traces, which are causal traces of system

execution. Model construction in TLC has three steps. It begins by recording angio traces. The

trace is analyzed to produce Layered Queueing Network (LQN) sub-model that characterizes the

involved processes, their individual activities, and interactions with each other. Lastly, a

performance model is generated by merging several LQN sub-models and adding configuration

information such as process allocation, the workload on the system, etc.

El-Sayed et al. [El-Sayed98] proposed another method for automated performance modeling

from traces. The starting point is a design (in an asynchronous style) expressed in SDL

processes, and a set of scenarios. To build a performance model, the SDL model is executed for

a set of scenarios, traces are recorded for each scenario, and the model structure and data is

 Page 22

extracted from the traces. A layered queueing model is then constructed.

2.2.3 Language-based methods

D. Menasce and H. Gomaa proposed a methodology to integrate software design and

performance modeling [Menasce98, 99]. The methodology is based on a software performance

engineering language, CLISSPE. Use Cases were developed and mapped to a performance

modeling specification using the language. A compiler for CLISSPE generates an analytic

performance model for the system. Service demand parameters at servers, storage boxes, and

networks are derived by the compiler from the system specification. A detailed model of DBMS

query optimizers allow the compiler to estimate the number of I/Os and CPU time for SQL

statements.

2.2.4 SDL-based methods

Several approaches for integrating performance evaluation and formal specification

techniques have also been reported in the literature. However, in this thesis, we will focus on

approaches to performance evaluation in the context of SDL and MSC. A good survey on these

methods is reported in [Thiel99].

Bause et al. proposed an extension of SDL, called Timed SDL [Bause91,93]. The principle

is to extend SDL transitions with stochastic and time information. Timed SDL is designed for

the examination of qualitative and quantitative system aspects within a single model description.

A program package transforms a Timed SDL model into an internal representation of an

equivalent finite state machine that can be treated by algorithms for quantitative and qualitative

analysis. The solution algorithms employed for performance analysis are of Markovian type.

Martins et al. [Martins95] proposed to extend SDL descriptions by constructs describing

 Page 23

delays, processing resources and workload descriptions. A translation to a performance model

that is executable by the tool OPNET (Optimized Network Engineering Tool) is done manually.

However, the authors stated that the mapping process from augmented SDL to OPNET can be

easily automated. The performance evaluation by discrete event simulation is done in the

OPNET environment.

Researchers at University of Essen developed a queuing SDL tool, called QUEST

[Diefenbruch95,98]. QUEST is based on the adjunction of time consuming machines that model

the congestion of processes due to limited resources. By adding workload models after defining

a mapping of workload to machines, an assessable performance model is automatically

generated. The description and construction of performance models and their evaluation is

supported by the language QSDL (Queuing SDL) and the tool QUEST. The language QSDL

provides means for the specification of load, machines and their binding. Load is modeled by

QSDL processes by issuing time-consuming requests that are referred for execution to adjunct

machines given by queuing stations. QSDL processes are bound to the machines via links and

pipes. Processes and machines within the same block are connected with a link. The translation

of the QSDL description to an executable simulation program is done automatically.

 Mitschele-Thiel et al. [Thiel96a, Thiel96b] described a toolbox called DO-IT toolbox to

support performance engineering of SDL/MSC-based systems including model derivation,

model-based performance evaluation and optimization. The performance evaluation within the

DO-IT toolbox is based on MSC rather than on SDL. An annotated extension of MSC is used to

define the performance requirements including the workload, and the resource requirements for

specific execution of the system. The performance evaluation techniques provided by the DO-

IT toll-box are rather simple and based on deterministic service times. The proposed techniques

include bottleneck analysis, critical path analysis and deterministic simulation.

 Page 24

2.2.5 Frameworks for performance modeling

To connect together the various kinds of data relating to performance and design of

concurrent software, C.M. Woodside [Woodside95b] proposed a framework called Maps, Paths,

and Resources (MPR). It includes a “Core model” which is a kind of conceptual skeleton for the

data describing the system, and three views (Maps, Paths, and Resources) which provide the

View models. The role of the Core model is to capture the information in each view which is

needed for performance engineering in the other views, and to support interview relationships.

The role of each separate view is to support engineering analysis of some aspect of the system.

The map view shows the structural description of the software; it shows the software

components and their interfaces, data, and invocation patterns. The path view shows behavior;

it describes the execution path corresponding to various scenarios. Finally the resource view

describes the hardware and logical resources for which the software components compete.

2.3 Layered Queueing Modeling

The Layered Queueing Network (LQN) model, proposed by Woodside et al. [Woodside89,

Woodside95a, Rolia95], is the model used for performance analysis discussed in this thesis.

Layered modeling is a new adaptation of queueing models for systems with software servers

and software resources, capable of modeling most of the features which are important for

performance (e.g. multi-threaded processes, devices, locks, communications). It represents

software resources in a natural way so that special approximations do not have to be developed

for every system; they are part of the framework. The model is closely linked to software

descriptions and provides a transparent representation of the software architecture, which makes

models easy to develop and understand. The model is well-suited for systems with parallel

processes running on a multiprocessor or on a network, such as a client-server system.

 Page 25

In Layered Queueing Models, processes represent hardware or software objects which may

execute concurrently, and are classified into three categories: (a) client processes: only send

messages (requests), and are used to model actual users and other input sources, (b) pure server

processes: only receive requests and are generally used to model hardware devices such as

processors or disks, and (c) active server processes: can receive requests as well as make their

own. They are used to model typical operating system processes.

Figure 2.1 An Example of an LQN model

Process1 Process2

entry1 entry2

Process3
Entry

Request

Process

Activity

Task/process: program in execution, resource

entries: different service request

activities: units of execution

requests:

forwarded messages
Asynchronous messages
RPCs

CPU2

CPU3

CPU1

a1 a3a2

a4

Process4

 Page 26

An example of an LQN model is shown in Figure 2.1. In the Figure, software processes are

shown as parallelograms and requests from one process to another are made to service “entries”,

which are ports or addresses of particular services offered by a process. An entry executes

activities with precedence relationships, and activities have resource demands and can make

requests to other processes. For each activity, a resource consumption value (for CPU

consumption, storage operations, and any other operations of the process to carry out the

execution step) must be made available from a repository of “resource functions”. Resource

functions are not considered in detail in this thesis, but they are an important part of the

information, and in this work they are assumed to be available from previous measurements, or

estimated from experience. Requests for service, from one process to another, can be made via

three different kinds of interactions:

• RPC or synchronous: sender blocks waiting for a response of its service request and it

resumes execution once it receives a reply message from the process that provided the

service.

• Asynchronous: sender does not wait for a response from the responding process. No

reply message is needed.

• Forwarding: A forwarding request is a special case of an asynchronous request. It occurs

when the responding process of an RPC request asynchronously sends the request to

another responding process; not to the initiating blocked thread. Each responding

process can continue to forward the request further to other responding processes until

the last responding process in the series sends a reply directly to the blocked thread.

In a LQN model, there may be several layers of processes interacting with processes from

various other layers. The top layer of processes consists of pure client processes referred to as

reference processes. Reference processes do not receive requests but only initiate requests.

Contrary to reference processes, pure server processes do not initiate requests but only receive

 Page 27

requests. The processes of the middle layers may act as servers and clients.

LQN performance models are used to calculate the throughput of processing, the maximum

capacity of service system, and response delays at any level in the system. Analytic tools exist

to calculate the mean and variance of delays, and simulation-based tools which can also

determine delay distributions and percentiles [Franks95].

2.4 Design decisions that affect the performance

Before we start discussing the design decisions that affect the performance of real-time

distributed systems, we will first define the notations used to describe real-time applications

(systems).

Real time applications are usually modeled as a set of cooperating transactions (also known

as jobs or scenarios). These transactions can be classified, according to their timing

requirements, as hard real time (HRT), soft real time (SRT), and not real time (NRT)

transactions. A HRT transaction is a transaction whose timely (and logically correct) execution

is deemed as critical for the operation of the entire system. Hence, hard real time systems are

designed in such a way that deadlines must not be missed. A SRT transaction, instead, is

characterized by an execution deadline whose achievement is indeed desirable, although not

critical, for the functioning of the system. Hence, soft real time systems are usually not designed

to guarantee every single deadline. Instead, the performance of the system is generally measured

by the percentage of deadlines it meets which must achieve some specified level. NRT

transactions are those transactions which exhibit no real-time requirements.

Application transactions can be further classified as periodic and aperiodic. Periodic

transactions are invoked at fixed time intervals. Aperiodic transactions are those whose

 Page 28

invocation can not be anticipated. In either case, the transaction attributes, such as the required

resources, the execution time, the invocation period or probability of arrivals, and the end-to-end

timing constraints are usually known a priori.

Each transaction can be decomposed into smaller units, called activities. Each activity

demands a certain amount of execution time. The execution time of an activity could be its

worst-case execution time or its exact execution time if known. The execution order of activities

imposes precedence constraints among them. Accordingly, the completion of an activity may

enable another activity of the same transaction to be ready for execution. The completion of an

activity may also enable multiple activities to run in parallel and this is known as a fork. In

addition, an activity may require the completion of several other activities before it can be ready

for execution, and this is know as a join.

In the literature, activities are often called processes or tasks and activity graphs are called

task graphs. This implicitly implies that, at run time, each activity will be executed by (or

mapped to) a different process. In this work, the terms process and task will be used for operating

system processes which execute group of activities.

If two processes are assigned to the same processor, communication between them can be

achieved via shared memory. Overheads of such communications are usually much smaller than

those when the processes reside on different processors, and use interprocessor communication

(IPC). IPC introduces processor overhead as well as a communication delay which is a function

of inter communication volume and the worst case link delay between the two communicating

processors.

The rest of this section will discuss three design decision that can affect the performance of

distributed real-time systems, namely:

 Page 29

• Process partitioning, which is concerned with packaging software activities into

processes or tasks. Process partitioning has a great impact on performance. It affects the

degree of parallelism that can be achieved and also has an effect on priority assignment

and process allocation. More importantly, a wrong design decision on process

structuring, namely packaging critical and non-critical activities into one shared

process, can introduce (bring into existence) a phenomenon that is similar to the priority

inversion problem

• Process allocation, which is concerned with the assignment of processes and data files

to processors. Alternative assignment schemes may affect many different performance

indicators, including response times, device utilizations, and interprocess

communication overheads.

• Priority assignment, which is concerned with assigning priorities to processes.

Alternative assignment schemes may affect transaction response times.

2.4.1 Process partitioning

The issue of process partitioning, also called software partitioning, deals with defining

concurrent processes from activity graphs. Process partitioning is routinely performed in the

development of sophisticated systems. It is necessary, since software processes need to be

defined before coding and some other system design activities, such as process allocation, can

begin. A process is defined here as the smallest processing entity that is dispatchable by an

operating system.

The central problem in process partitioning is that there are at least three objectives which

the software architect may require an architectural unit to achieve [Mok86]. The process often

serves as an architectural unit for: (1) resource allocation, e.g., the scheduling unit for the CPU,

(2) atomicity/recovery management, e.g., a guardian of shared data, and (3) process definition,

e.g., to track an airplane in an air traffic control system. These three different aspects may require

 Page 30

the computational requirements of an application to be broken up in different granularity and

thereby impose a difficult trade-off in process decomposition. Any one process decomposition

may be suboptimal with respect to some of the design objectives, hence the conflicts.

For systems with hard deadlines, A. Mok [Mok84] proposed three strategies for

decomposing the computational requirements into a set of processes, and determining their

constraints. In the first strategy, which he calls decomposition by critical timing constraints, one

process is created to perform the computation associated with each timing constraint. The period

and deadline attributes of each process are set to the corresponding parameters of the timing

constraint, and a monitor is created to enforce mutual exclusion on the execution of any module

called by two or more processes. Decomposition by this strategy is straightforward and the

resulting design should be easy to understand. However, this decomposition strategy may yield

an inefficient design owing to the unnecessary duplication of some computations in two or more

processes with compatible time constraints. This loss in efficiency may be significant since it

incurs not only extra computation time but also communication costs for enforcing mutual

exclusion.

In the second strategy, which he calls decomposition by centralizing concurrency control, he

suggested to group together periodic timing constraints that are compatible with one another and

create a periodic process for each equivalence class of compatible periodic timing constraints,

and a sporadic process for each asynchronous timing constraint. By clustering as many timing

constraints as possible in a single process, both redundant computation and interprocess

communication costs can be substantially reduced. The resulting process design can be highly

efficient, but difficult to understand or modify. In the third strategy, which he calls

decomposition by distributing concurrency control, a periodic process is created for each

functional element (activity) in the communication graph, and a sporadic process is created for

 Page 31

each asynchronous timing constraint. Moreover, if a functional element occurs in both a periodic

timing constraint and an asynchronous timing constraint, then a monitor is created to enforce

mutual exclusion. By assigning a separate process to each functional element, this

decomposition strategy has the advantage of maximizing the computations that can be

performed in parallel. However, it imposes a higher cost for inter-process communication and

context switching. In conclusion, Mok pointed out that there is no single most efficient

decomposition strategy. In general, a feasible solution will depend on the trade-off between

computation and communication costs. When interprocess communication costs are relatively

low, decomposition by maximizing concurrent processes is more likely to succeed. When

interprocess communication overhead is predominant, there may be at most one process in a

viable design. In between the two extremes lie a wide range of alternatives.

James Huang [Huang85] has done some initial work on software partitioning for distributed

hard real-time applications. The objective for software partitioning, in his work, was to satisfy

the response time requirements. He points out that it is extremely difficult and perhaps

unfeasible to try to measure the quality of software partitioning solutions by means of their

potentially achievable response time performance. For instance the response times of a

distributed system can not be meaningfully estimated without the processes being allocated, and

before the processes can be allocated, they are to be defined first through software partition,

leading to a circular dependency, which is not easy to resolve. Accordingly, Huang suggested to

approach the software partitioning problem from “the efficient resource utilization” direction to

circumvent the difficulty associated with response time estimation. He modeled the software

partitioning problem as one that maximizes the partitioning efficiency (efficiency in resource

utilization) while observing the constraints on CPU throughput, memory space available,

maximally allowed process execution time, and the order of activity execution. The partitioning

efficiency (objective) was defined as the ratio of total process execution cost to the sum of total

 Page 32

process execution cost plus total overhead cost. The drawbacks in Huang’s model can be

summarized as follows: (1) a proper selection of the maximal allowed process execution time

can be a difficult task. Process execution time constraint and the partitioning efficiency represent

two conflicting requirements. By constraining the process execution time, one can generate

more processes. That condition in turn potentially allows a better balanced system load

arrangement to be found through the process allocation process. However, with more processes,

the overhead costs in process scheduling/dispatch and process communications will increase. (2)

The constraint on the order of activity execution is very restrictive. According to this constraint,

each activity pair with the preceding as well as succeeding precedence relation is required to be

included in the same process. This can lead to an undesirable software partitioning solution.

H. Xin et al. [Xin88] relaxed some of the constraints in Huang’s model and presented two

heuristic algorithms with different local optimal strategies to find a good solution to the

partitioning problem in reasonable amount of time.

V. Iyer et al. [Iyer89] proposed a methodology for structuring software for sequential,

pipelined real-time distributed systems. The real-time application was initially represented as an

acyclic graph, where the nodes denote the software activities, and the arcs represent the data

transmission from a node to its successor nodes. Acyclic graphs are then transformed into trees

by replicating nodes that are shared by alternative (decision) paths. The application graph

therefore contains only alternative paths, and any single path from the start to the end node may

be considered an instance of the application. The application invocation rate is the arrival rate of

messages at the start node. Messages are serviced at each node, and sent over a communication

link to other nodes. The following information was assumed to be known a prior and must be

supplied by the user.

1) Global parameters: number of nodes, link capacity (bytes/second), required

 Page 33

throughput (invocations/second), arrival coefficient of variation, maximum desired

node processing power.

2) Node parameters (for each node): input message size, expected execution time

(assuming dedicated proc., i.e. no contention), required execution time, coefficient

of variation, input flow, message multiplier, number of successor node, flow into

successor nodes.

Given the application graph, nodal performance parameters and requirements, the

partitioning problem was defined to find the set of node-merged graphs which satisfy the

performance requirements while minimizing the total processing power. The partitioning of the

application actually involved the coalescence of the nodes of the application graph into a

minimum number of clusters (processes). The coalescence of the nodes was carried out by

successively combining sequential nodes starting from the start or first node. The size of each

process, in time units, was limited by the application execution rate required and the maximum

processing power available.

2.4.2 Process allocation

The allocation problem can be stated formally as the problem of allocating processes of an

application among processors to achieve some objective, under defined constraints. Based on

different objectives, the literature on the allocation problem can be classified into three

categories; performance-oriented allocation, schedulability oriented allocation and reliability-

oriented allocation. For example, the performance-oriented objective may be to minimize the

sum of execution costs and inter-process communication costs, while reliability-oriented

objective could be to maximize the system reliability. In each category, the allocation strategy

can be static or dynamic. In static allocation all processes are allocated before the application

starts to execute. In dynamic allocation the processes are allocated/reallocated at the run time

 Page 34

based on system conditions. In this section we present significant results in the first two

categories, but we will focus our attention on the static allocation strategies.

2.4.2.1 Performance-Oriented Allocation

The performance-oriented allocation problem arises when the objective is to minimize (or

optimize) a performance-oriented cost function. The strategy chosen to carry out the allocation

depends on the performance-oriented cost function. Any values which are measurable in the

system can be used as performance indices. For the static allocation problem, the objective

functions mostly used are [Hou92]:

• Minimization of total computation and communication times in the system; i.e

minimization of the total cost incurred by executing the application on a multiprocessor

system. [Stone77, Ma82, Lo88, Houstis90]. In the case of homogeneous system, the

objective function reduces to the minimization of the total interprocessor

communication time.

• Load Balancing by minimizing the statistical variance of processor utilizations

[Bannister83,Tantawi85]. The less the variance, the better the load balance.

• Minimization of the maximum computation and communication times on a processor.

The objective function of which was termed the bottleneck processor time in [Chu87],

maximum turnaround time in [Shen85], and the system hazard in [Peng89].

• Maximization of an application’s bottleneck throughput [Woodside93].

In a general-purpose distributed system, the problem of process assignment is NP-complete

[Bokhari81, Lo88]. Hence, the problem of finding a minimum-cost assignment is

computationally intractable for all but small systems. Accordingly, several researchers focused

on the special cases of the general assignment problem. Stone [Stone77] suggested an efficient

optimal algorithm for the problem of assigning processes to two processor (two-processor

 Page 35

problem) by making use of the well-known network flow algorithm in two-terminal network

graphs. He showed how the network model can be extended to systems made up of three or more

processors. For the three-processor case, Stone and Bokhari [Stone78b] developed an algorithm

that finds an optimal assignment. This algorithm works in most cases, but there are pathological

cases for which it fails to find an optimal assignment. Stone [Stone78a] also developed an

efficient algorithm for the two-processor problem in which the load on one of the two processors

is varied. Bokhari [Bokhari79] analyzed the problem of dynamic assignments for two-processor

systems and transformed it into a network flow problem under the assumption that all the system

characteristics are known for each phase of a distributed application. If the distributed

application structure is constrained in a certain way, one can find the optimal assignment in a

system of any number of processors in polynomial time. When the structure is constrained to be

a tree, the shortest-tree algorithm developed by Bokhari [Bokhari81] yields an optimal

assignment. Towsley [Towsley86] generalized Bokhari’s results to the case of series-parallel

structures. All of the above work is well documented in [Bokhari87] and implicitly assumes the

computing system to be fully connected, i.e., there exists a communication link between any two

processors. Sager [Sager89] also surveyed other sub-optimal techniques which exploit the

shortest path approach. Lee et al. [Lee92] proposed an optimal algorithm to solve the problem

of interacting processes to a linear array network of an arbitrary number of processors. A linear

array network is composed of linearly-arranged processors, i.e., when any two nonadjacent

processors are to communicate with each other, the intermediate processors between them must

participate in the communication. Thus, the communication cost per unit information transferred

between any two processors increases linearly with the distance between them. The process

assignment problem in a linear array network is first transformed into a two-terminal network

flow problem, and then solved by applying the network flow algorithm on the related two-

terminal network flow graph. This was a direct extension to Stone’s network flow approach for

the two-processor problem to the case of a linear array of N processors. Also, Lee and Shin

 Page 36

[Lee97] investigated the assignment problem in homogeneous networks in the presence of

attached processes. They showed that the assignment problem in an N-processor homogeneous

network may be tractable for certain interconnection topologies and not be tractable for others.

Their investigation of the problem has led to the development of a modeling technique that is

sensitive to the interconnection topology, and transforms the assignment problem to a minimum-

cut maximum-flow problem. They applied the modeling technique successfully to solve the

problem of assigning M processes in an n-dimensional array and an N-processor tree.

As the general N-processor problem (N>3) in a fully-connected system is NP-complete

[Bokhari81]. Hence, several heuristic methods have been proposed to solve the problem. Ma et

al. [Ma82] exploited a branch-and-bound method which took into consideration the allocation

constraints. Every generated solution was checked first to see whether the allocation constraints

are satisfied. If yes, the cost of the solution was evaluated; otherwise, the solution was discarded

and future expansion from the solution was eliminated. Arora and Rana [Arora80] considered a

heuristic approach to solve the general process assignment problem. The solution was based on

the repetitive reassignment of processes, one process at a time. The algorithm terminates when

it is not possible to do any further improvement over the current solution.

Chu and Lan [Chu87] proposed a heuristic algorithm to assign processes in distributed

systems taking into account precedence relations, communication costs and execution costs.

Their algorithm first performed some clustering, following by an exhaustive search for

assignments of individual clusters such that the bottleneck (the most heavily utilized processor)

is minimized. Lin and Hsu [Lin91] applied the simulating annealing technique to the process

assignment problem to minimize the turnaround time.

Sarje and Sagar [Sarje91] considered the minimization of interprocessor communication

cost and load balancing as the objective function for process allocation. A heuristic approach

 Page 37

was proposed to find a near optimal solution in polynomial time. Initially, processes that can

only be executed on certain processors are assigned. During the assignment process, if a

processor was found to be under-loaded, it was favored for the target of the next unassigned

process. The algorithm terminates when all processes are assigned.

Woodside and Monforton [Woodside93] proposed the MULTIFIT-COM algorithm, which

is a generalized version of the MULTIFIT bin-backing algorithm for allocating processes on a

bus-based multiprocessor, taking into account the expected execution and interprocessor

communication requirements of the software on the given hardware architecture. The objective

of the algorithm is to find an allocation that offers a high system throughput. Throughput was

evaluated by an asymptotic bound for saturated conditions and under an assumption that only

processing resources are required. The algorithm generalized MULTIFIT in several ways: it

uses four heuristic policy choices for initial process sizes, process ordering, intermediate bin

weights and process placement. For each of these choices a number of alternatives have been

proposed, as shown in Table 2.1, giving 36 potential variations on the algorithm. An evaluation

was made on 680 small randomly generated examples. Using all search options, the mean

increase in saturation throughput, compared to exact optima found by exhaustive search, was

just 1%. Using a carefully chosen subset of just four variations gave almost as good performance

as the full set (within 2%).

In this thesis, the MULTIFIT-COM allocator was used to find an initial process allocation

to the optimization method, as will be described in Section 5.2 and later in Chapter 6. Although

the algorithm can be applied with 36 different policies, only eight policies have been used in this

research. The list of these eight policies is shown in Table 2.2. It represents the seven candidates

for the reduced-heuristic policy list, which gives about 1.5% degradation [Woodside93], and an

additional policy (policy #4), which was recommended by another set of experiments.

 Page 38

Parameters Options

1. Initial Task Size S (ITS) 1 : Upper Bound ,

• execution time plus all potential communications

2 : Lower Bound ,

• execution time only

3 : Communication Based

• only the potential interprocess communication costs.

2. Task Ordering Technique (TOT) 1 : Absolute (A)
• decreasing order according to task size

2 : Communication-Directed (C)
• special heuristic algorithm [Woodside93]

3. Intermediate Bin Weights (IBW) 1 : Upper Bound

• special heuristic algorithm [Woodside93]

2 : Lower Bound

• special heuristic algorithm [Woodside93]

3 : Processing Based

• special heuristic algorithm [Woodside93]

4. Placement Criteria (PC) 1 : Greedy (G), or Largest Fit
• calculate the intermediate bin weights for all possible

placements of the task in question. Choose the
placement which, to date, satisfies the goal of
minimizing the bottleneck workload.

2 : First Fit (F)
• starting at the first bin, calculate the intermediate bin

weights. If they are all below the capacity, choose this
processor (bin); otherwise move on to the next
processor and repeat.

Table 2.1 Heuristic options for the Parameters of MULTIFIT-COM [Woodside93]

Su()

Sl()

Sc()

Wu()

Wl()

Wp()

 Page 39

2.4.2.2 Schedulability-Oriented Allocation

 The schedulability-oriented allocation problem arises in real-time systems in which the

objective is to find an allocation in which the scheduling of the processes meets the specified

timing constraints. The problem has been studied by many researchers using different

formulations. These formulations represent the different types of real-time systems and the

different requirements of the systems. Except for the most trivial cases, the underlying problems

of finding an optimal assignment of processes to processors is known to be NP-hard in the strong

sense [Garey79]. Since finding an optimal assignment is usually impractical, most researchers

have adopted heuristic approaches, which find satisfactory suboptimal process assignments in a

reasonable amount of time.

Process allocation in the context of preemptive priority-based Run-time Scheduling.

 The problem of process assignment schemes for homogeneous multiprocessor systems

Policy No.
Policy Options

PO = (PC, TOT, ITS, IBW)

2

4 (added)

6

8

10

12

13

19

Table 2.2 Candidates for the reduced-heuristic policy list from [Woodside93]

G A Su Wl, , ,()

G A Sl Wl, , ,()

G A Sc Wl, , ,()

G C Su Wl, , ,()

G C Sl Wl, , ,()

G C Sc Wl, , ,()

F A Su Wu, , ,()

F C Su Wu, , ,()

 Page 40

where each processor executes the Rate-Monotonic1 (RM) scheduling algorithm has been

addressed in a number of studies[Dhall78, Davari85]. Typically, the process assignment

schemes apply variants of bin-packing algorithms where the set of processors is regarded as a

set of bins. The bin-packing problem is concerned with packing different-sized items into fixed

sized bins using the least number of bins [Coffman78]. The decision whether a processor is full

is determined by a schedulability condition. All of the above assignment schemes are based on

the sufficient schedulability conditions for uniprocessor systems derived in [Liu73, Dhall77],

and differ mainly in the choice of the bin-packing heuristic.

Dhall and Liu [Dhall78] were the first to propose heuristic algorithms to the problem of

assigning a set of independent periodic processes to a minimal number of processors. They

proposed two heuristic algorithms, called the Rate-Monotonic First-Fit (RMFF) and Rate-

Monotonic Next-Fit (RMNF) algorithms. The schemes are based on the next-fit and first-fit bin-

packing heuristic, respectively. In both schemes, processes are sorted in decreasing order of their

periods before the assignment is started. Processes are assigned to a so-called current processor

until the schedulability condition is violated, in which case the current processor is marked full

and a new processor is selected. RMFF first tries to accommodate a process in a processor

marked as full before assigning it to the current processor. Dhall and Liu showed that in the

worst-case, the assignment produced by the RMFF algorithm uses no more than 2.33 times the

optimal number of processors, while RMNF uses no more than 2.67 times. Davari and Dhall

[Davari86a] considered another variation of the heuristic, called First-Fit Decreasing-Utilization

Factor (FFDUF) algorithm, which improves the worst-case performance to 2 times the optimal

number of processors. The FFDUF method sorts the set of processes in non-increasing order of

utilization (load) factor. Davari and Dhall [Davari86b] then devised an on-line algorithm, called

Next-Fit-M algorithm which has a worst-case performance ratio of 2.2838. The Next-Fit-M

1. The Rate Monotonic algorithm is described in details in Section 2.4.3

 Page 41

algorithm classified processes into M classes with respect to their utilizations. Processors are

also classified into M classes, so that a processor in k-class executes processes in k-class

exclusively.

Storch and Liu [Storch93] proposed five heuristics for assigning periodic processes with

communication costs. Their heuristics are also based on clustering and bin-packing techniques.

The goal is to find an assignment of processes to processors such that the total communication

cost is minimized, under the constraints that every process is assigned to exactly one processor

and the sum of the utilization factors of all processes on any one processor is less than the

maximum utilization factor U.

[Buchard94, Buchard95, Oh95] took a different approach for developing process assignment

schemes for homogeneous multiprocessor systems where individual processors execute the RM

scheduling algorithm. Rather than increasing the level of sophistication of the bin-packing

heuristic, they focused on developing tighter schedulability conditions that allow to assign more

processes to each processor. They showed that the maximum achievable load on each processor

is significantly higher than that suggested by previous work.

Mutka and Li [Mutka95] used a branch-and bound algorithm for periodic process allocation.

They also assumed that each processor would serve the processes assigned to it using the RM

algorithm. The algorithm traverse the process assignment tree in a depth-first fashion to allocate

the processes to the processors and to determine if the given allocation can meet the periodic

deadlines. If the algorithm determines that a process assignment exceeds the bounding

condition, then it backtracks up the tree one level and searches depth-first with a new untested

branch. If it is determined at one level that the bounding conditions are not exceeded, the search

continues down the current path. When the search has successfully traversed to a leaf of the tree,

a feasible process assignment is found. The algorithm begins searching for feasible schedules

 Page 42

using the single inequality test [Liu73] as the bounding condition at each node in the process

assignment tree. If no feasible schedules can be found, then the algorithm uses a less pessimistic

test, the multiple inequality test [Mutka95], as the bounding condition. Likewise, if no feasible

schedules are found, then the algorithm uses the least pessimistic test, the numerical test

[Lehoczky89], as the bounding condition.

Tindel et al. [Tindel92] used a simulated annealing algorithm to solve the allocation and

scheduling problem combined. In this study, a distributed rate-monotonic algorithm was also

used as the scheduling scheme.

Process allocation in the context of Pre-run-time (static table driven) Scheduling.

While run-time scheduling has the virtues of dynamic reconfiguration and high processor

utilization, the goal of satisfying the critical timing constraints can not be guaranteed. One

feasible approach to solve such a problem is to schedule every process a priori using the table-

driven approach. In table-driven scheduling paradigm, a table is constructed for each processor,

using some heuristic, to identify the start and completion time of each process.

Ramamritham [Ram95] proposed an algorithm for allocating and scheduling periodic real-

time transactions across sites in a distributed system. The algorithm takes as input the graphs

depicting each periodic transaction in the system, and produces as output process allocations and

a schedule on each processor. The algorithm consists of two parts. The first part of the algorithm

decides whether a cluster of communicating activities of a transaction should be assigned to the

same site. This decision is based on the computation times of the activities in a cluster and the

amount of communication between them. More specifically, if the fraction

 is lower than a tunable parameter called
sum of the computation time of the activities

cost of communication

 Page 43

communication factor, CF, then the activities should be assigned to the same site. Given the

clustering done in the first part, the second part assigns the clusters of activities to the sites in a

system and also determines a feasible schedule, if possible. Since the first part of the algorithm

eliminates some of the communication (by deciding that certain activities should be assigned to

the same site), the search space in the second part is considerably reduced.

Several authors have used branch-and-bound techniques to solve the assignment (allocation

and scheduling) problem. Peng and Shin [Peng89] considered the problem of assigning and

scheduling a set of communicating periodic transactions to a set of heterogeneous processors so

that the maximum transaction response time is minimized (i.e. minimize the system hazard).

They proposed two branch-and-bound algorithms, one for process assignment and the other for

scheduling. Hou and Shin [Hou92] addressed the problem of assigning and scheduling the

activities of periodic transactions, subject to precedence and timing constraints, in a distributed

real-time system. Their branch-and-bound technique finds an assignment that maximizes the

probability of meeting transaction deadlines.

Coli and Palazzari [Coli95] described a method to map (i.e. allocate and schedule) an

application with some real-time constraints into a parallel system. They formulated the mapping

problem as a minimization problem, defining a cost function whose minimization leads to the

optimal mapping of the application into the parallel system. The searching space over which the

minimization must be carried out was defined; this space encloses all the feasible allocation and

scheduling modalities for the application in the parallel system. The minimization was carried

out through a simulated annealing algorithm. The presented algorithm ignored the

interprocessor communication costs and the topology of the parallel system.

 Page 44

2.4.3 Priority Assignment (RT-Scheduling)

According to priority-driven scheduling, every released but not completed process instance

has a priority. At any time, the process instance with the highest priorities gets to execute. A

process instance will not give up the processor until it completes or is preempted by another

process instance with a priority higher than the current executing one.

Among priority-driven scheduling schemes, fixed-priority scheduling has gained popularity

due to the simplicity in implementation, the ease of schedulability analysis and its predictable

behavior during transient overload situations. According to fixed-priority scheduling, all the

instances of the same process have the same priorities, and the priority of each process instance

never changes from its release until its completion (i.e. the priority of a process remains fixed

once it is assigned). Because of this reason, it is often said that a priority is assigned to a process

rather than to process instance. The schedule of the execution of the processes is determined by

assigning different priorities to processes. If a set of processes can be scheduled such that all

process deadlines can be met by some algorithms, then the process set is said to be feasible. In

this section, we focus our attention to fixed-priority scheduling algorithms.

The solution to the problem of optimizing the assignment of priorities is well known for

uniprocessors. Liu and Layland [Liu73] proposed the Rate-Monotonic algorithm (RM). The RM

algorithm assigns priorities to processes according to their periods, where the priority of a

process is in inverse relationship to its period. In other words, a process with a shorter period is

assigned a higher priority. They also proved the optimally of rate monotonic priorities for sets

of independent periodic processes with the deadline of each process equal to its period. The

algorithm is optimal in the sense that no other fixed priority assignment algorithm can schedule

a process set which can not be scheduled by the RM algorithm. Leung and Whitehead [Leung82]

proposed the deadline monotonic policy for processes having deadlines less than or equal to their

 Page 45

respective periods. With this policy, priorities are assigned in a similar manner to rate-

monotonic: the shortest deadline process is assigned the highest priority; processes with

successively longer deadlines are assigned successively lower priorities. The deadline-

monotonic priority assignment is equivalent to rate-monotonic priority assignment when, for all

processes deadline equals to period. Deadline-monotonic priority assignment is optimal in a

similar manner to rate-monotonic: if there exists a feasible priority ordering over a set of

processes, a deadline-monotonic priority ordering over those processes will also be feasible.

Audsley [Audsley91] provided an algorithm that was capable of finding a solution (if one

existed) to the problem of assigning priorities when one or more of the deadlines were larger

than the process periods.

Rate-monotonic and deadline-monotonic priority assignments assume that all processes

share a critical instant (i.e. common release time). If processes are permitted to have arbitrary

offsets then this condition may not hold. Under these circumstances neither priority assignment

policy is optimal. Indeed, whilst rate-monotonic and deadline-monotonic priority assignments

can be achieved in polynomial time, Leung et al questioned whether the same applied to priority

assignments for processes with no common release time [Leung82]. Later, Audsley showed that

optimal priority assignment can be achieved by examining a polynomial number of priority

orderings over the process set, assuming an exact (pseudo-polynomial) feasibility test

[Audsley93]. In 1990, Lehoczky et al showed that neither rate-monotonic nor deadline-

monotonic priority assignments are optimal if process deadlines exceed their periods

[Lehoczky90]. However, the optimal priority assignment algorithm given by Audsley also

applies to such processes.

In multiprocessor or distributed systems the problem of priority assignment is much more

complicated, because of the strong interaction between the response times of actions in the

 Page 46

different resources. The problem was proved to be an NP-hard problem [Betatti94]. Since no

efficient optimal algorithms have been found for any NP-hard problem and exhaustive solutions

are impractical for all but extremely small systems, most researchers focused on heuristic

solutions to the priority assignment problem. Heuristic solutions to the priority assignment

problem can be classified into three categories: rate-based methods, deadline-based methods and

optimization-based methods [Sun96].

2.4.3.1 Rate-based methods

The rate-monotonic priority assignment for single processor systems can be

straightforwardly applied to end-to-end systems, by assigning to every process a priority

inversely proportional to the period of its parent transaction. Obviously, this method is not

optimal. As a matter of fact, the performance of this method is in general inferior to other

heuristic methods [Sun96].

2.4.3.2 Deadline-based methods

Kao and Garcia-Molina [Kao93] have studied the deadline-based priority assignment in the

context of a soft real-time system. They presented multiple strategies for distributing end-to-end

deadlines over sequential [Kao93] and sequential/parallel [Kao94] transactions. The impact of

priority assignment in real-time databases was investigated in [Lam96, Purimetla94]. Jun Sun

[Sun96] adopted some of Kao’s strategies and proposed two more strategies for priority

assignment in hard real-time systems.

According to (based on) the deadline-based methods, a relative deadline is first assigned to

each process, then a priority is assigned to a process inversely proportional to its relative

deadline. This means, a higher priority is assigned to a process with lower relative deadline.

 Page 47

Different priority assignment methods compute the relative deadlines in different ways. For

example:

• In the Global-Deadline method [Sun96], also called Ultimate-Deadline in [Kao93,94]

the relative deadline of the process is the end-to-end (global) deadline of the parent

transaction, to which the process belongs.

• In the Effective-Deadline method [Sun96, Kao93,94], the effective deadline of a process

is equal to the global deadline of the transaction minus the total execution time of its

successors.

• In the Proportional-Deadline (PD) method [Sun96], the proportional deadline of a

process is obtained by dividing the global deadline of its parent transaction among its

processes proportionally to their execution times.

• In the Normalized-Proportional-Deadline (NPD) method [Sun96], the relative deadline

assignments is similar to that of the PD method, except that the processor utilization is

taken into account. In the PD assignment, if two processes of the same transaction have

equal execution times, they will have equal proportional deadlines. In the NPD

assignment, however, if one process executes on a more heavily utilized processor than

the other, it is assigned a relatively longer deadline.

2.4.3.3 Optimization-based methods

Tindel et al. [Tindel92] treated the problems of priority assignment and process allocation

combined, as a discrete optimization problem. They used a simulated annealing technique to

find a feasible priority assignment and a feasible load partition at the same time.

Garcia et al. [Garcia95] proposed a heuristic iterative algorithm, called HOPA, that given an

initial local deadline assignment, finds an improved solution in reasonable time. For each

iteration a new deadline assignment is calculated based on a metric that measures by “how

much” schedulability failed. The HOPA algorithm is based on the distribution of the end-to-end

 Page 48

or global deadlines of each transaction among the different processes that compose that

transaction. Once each process is assigned an artificial local deadline, deadline monotonic

priorities are assigned in each resource and an analysis of the whole system is carried out. As a

result of the analysis, new intermediate deadlines are calculated. The iteration proceeds until a

suitable solution is found or some stopping criterion is reached.

Saksena and Hong [Saksena96] proposed a deadline distribution technique based on a

critical scaling factor that is applied to the process execution times. The end-to-end deadline is

expressed as a set of local deadline assignment constraints. Given a set of local deadline

assignments, they calculated the largest value of the scaling factor that still makes the processes

scheduable. The local deadline assignment is then chosen to maximize the largest value of the

scaling factor.

Jonsson and Shin [Jonsson97] presented a heuristic approach that performs deadline

distribution prior to process assignment. The deadline distribution problem is presented in the

context of large distributed hard real-time systems with relaxed locality constraints, where

schedulability analysis must be performed off-line, and only a subset of the processes are

constrained by predetermined assignments to specific processors. The strategy used for deadline

distribution uses the concept of critical path. For each transaction graph in the system, first it

determines the critical path that minimizes the maximum transaction lateness, then distribute the

end-to-end deadline over the processes in the critical path.

 Page 49

Chapter 3: Design Specification

by Scenarios and SDL

The increasing complexity of parallel and distributed systems make the development of

these systems a complex and labor intensive process. To facilitate and speed up the development

process, appropriate and effective techniques must be used during all phases of development life

cycle. These should include methods and tools that support the development process from

requirement analysis to coding.

Standardized formal description techniques like LOTOS (ISO 8807), Estelle (ISO 9074),

and SDL (ITU Z.100) provide a unifying theoretical basis for the construction of dedicated

CASE tools that support all phases in the software development and life cycle, namely

requirement analysis, design, specification, implementation, test and monitoring of the real

system. Modern object-oriented specification languages like SDL’92 supports the software

engineering process from object-oriented design down to the generation of executable code.

Formalization provides a model which aim is to understand the problem independently of a

particular implementation. This model includes the information that is meaningful from a real-

world perspective and it represents the external view of the system. The model abstracts from

design details in order to give an overview of the system, to postpone implementation decisions,

and to allow all valid implementations. It makes use of neither design nor implementation

concepts; it defines rather a model that represents the significant properties and functionality of

the system.

Formal description techniques describe the structure and the behavior of a system. Their

 Page 50

purpose is to produce correct and unambiguous descriptions, that should ultimately produce

efficient implementations. Writing a formal specification consists in understanding and

modeling the system and the domain within which it operates. It includes abstracting important

real-world features, focusing on what needs to be done, independently of how it is done. The

input to the formal specification is a set of requirement statements and a conceptual overview of

the proposed system. The output is a formal representation that captures the functional

description of the proposed system.

There are many formal methods available nowadays, however, the most common ones are

those standardized: SDL (ITU), LOTOS (ISO) and Estelle (ISO). LOTOS [ISO87a] is based on

process algebra, both Estelle [ISO87b] and SDL [ITU93a] are based on extended finite state

machines.

The methodology and framework we propose in this thesis, for performance modeling and

optimization, is generic enough to be applied to any of the standard specification languages. It

does not depend on the use of SDL. It does, however, require that the software design description

technique used describes the dynamic behavior of the system. This means that the design method

shall have concepts for modeling parts of the system and their communication. In this thesis, we

focus on SDL and provide further steps of the methodology according to the features of SDL.

SDL was selected as an intermediate specification and design language because it is a well

established industry standard (SDL-Z.100 and MSC-Z.120). It is specially aimed at the

development of telecommunication systems which is the main concern of this research. SDL has

evolved to the point where commercial CASE tools are available for graphical editing,

simulation, automatic translation to C and C++, and high performance code generation for

established real-time kernels.

The rest of this chapter is organized as follows. Section 3.1 gives an introduction to SDL,

 Page 51

which briefly addresses the basic concepts of SDL and the SDL queueing mechanism. Section

3.2 presents the process of design specification using scenarios and SDL/SDP, as well as the

type and structure of SDL models that are supported by the proposed performance engineering

framework.

3.1 Introduction to SDL

The Specification and Description Language (SDL), was first defined in 1976, then it has

been standardized by ITU in 1993 [ITU93a]. The latest version of SDL, SDL’92 supports the

software engineering process from object-oriented design down to the generation of executable

code. In conjunction with Message Sequence Sharts (MSCs) [ITU93b], system simulation and

testing is supported too.

 SDL is intended to be well-suited for all systems whose behavior can be effectively modeled

by Extended Finite State Machines (EFSM) and where the focus is to be placed especially on

interaction aspects. In conjunction with tools, SDL is used by many companies in the

telecommunication industry, mainly to design communications software. In addition, it has been

employed for the design of real-time and safety critical systems.

There are two main providers of commercial tools for SDL, namely Telelogic with SDT

[Telelogic96] and Verilog with GEODE [Verilog96]. The tools support formal specification,

validation, simulation, code generation and testing.

Because of the complexity of SDL only an overview of the most important language

constructs is presented. For a detailed discussion of all SDL features and language definition,

the ITU-T Recommendation Z.100 [ITU93a], or text books on SDL like [Saracco89, Braek93,

Oslen94] should be consulted.

 Page 52

3.1.1 An SDL system and its structure

An SDL specification describes an abstract machine which is called an SDL system, and

composed of a set of extended finite state machines (EFSMs), called processes. An SDL system

communicates with its environment by exchanging signals via communication links called

channels, as shown in Figure 3.1. The channels form the logical interface to the system

environment. From the viewpoint of the system, the objects in the environment behave like

processes. Inside the SDL system, the EFSMs communicate asynchronously via communication

links by exchanging signals.

Figure 3.1 An SDL system

SDL specifications are fully hierarchically structured as a tree. The root of the tree refers to

the SDL system specification which typically consists of a set of blocks. Blocks themselves can

be refined by other blocks or by SDL processes. However, each leaf of the tree has to be an SDL

process. The communication structure between SDL processes is static and all potential

communication channels have to be given in the SDL specification.

SDL System

C
ha

nn
el

s

System environment

 Page 53

3.1.2 The SDL process

An SDL process is defined by an Extended Finite State Machine and defines the dynamic

behavior of a system.

• A Finite State Machine is an abstraction for the control of a process, with a limited

number of states and can perform transitions between those states.

• Communicating FSMs exchange information via stimulus and response. The receipt of a

stimulus causes an FSM to perform a transition possibly resulting in the transmission of

a response.

• Extended FSMs include variables which record secondary state information that can be

used in a transition to decide the next state, i.e. an EFSM is a finite state machine (FSM)

which additionally to its states can hold and manipulate data.

According to the EFSM model, an SDL process is either in a state transition or is waiting for

an event which triggers the next state transition. The state defines what actions a process is

allowed to take, which events it expects to happen, and how it will respond to those events. A

process remains in a state until an event, such as signal instance, that is handled by that state

occurs; if a signal instance is not handled in that state a null transition back to the same state is

performed (i.e. the signal is discarded). Once a signal instance arrives that can be handled, the

transition actions are performed and the process enters its next state. During a state transition a

process can manipulate data, set and reset timers, call procedures and send signals to other

processes or to system environment. A state transition can be triggered by a signal from another

process, by a timer signal, or by a specific data value. Additionally, SDL allows to specify

spontaneous transitions (spontaneous transitions allow to describe nondeterminism on process

level).

A process can contain many different states, to allow the process to perform different actions

 Page 54

when a signal is received. A process can be in only one state at a time and a signal handled by a

state can have only one transition. Processes can only disappear from an SDL system through

self-termination.

 A process definition represents the specification of a type of a process; several instances of

the same type may be created and exist at the same time; they can execute independently and

concurrently. Each process instance has its own unbounded FIFO input queue, which is initially

empty. An input signal is placed in the input queue of a process instance as it arrives. The input

queue can retain any number of input signals ordered according to their arrival time. Signals in

the input queue can be discarded, consumed or saved. Signals are discarded, consumed or saved

by a process instance only when it is waiting in a state.

3.1.2.1 Signals and signal queue of an SDL process.

In SDL, inputs and outputs are related to signals which are exchanged between the processes

of an SDL system. For communication purposes an infinite FIFO signal queue is associated with

every process. All signals arriving at an SDL process are put into its signal queue. If in a given

state the signal queue is not empty, the first signal (in FIFO order) is removed from the queue.

It is checked whether this signal can initiate a state transition. If yes, the transition is performed

(the signal is consumed); if no, the signal is discarded.

3.1.2.2 Process Wake Up

SDL has four constructs that introduce the transitions.

Input signal. An input symbol attached to a state means that if the signal named within the input

symbol arrives while the process is waiting in this state the transition which follow the input

symbol should be interpreted. When a signal has triggered the interpretation of a transition, the

 Page 55

signal no longer exists and is said to have been consumed.

Input with enabling condition. Enabling conditions allow conditional reception of signals

based on the specified enabling condition. If the condition is true, the signal is consumed and the

transition is interpreted. If the condition is false, the signal is saved and the process remains in

the state until either another signal arrives or until the condition changes from being false to

being true

Continuous Signal. Represents a transition selected by a boolean expression only when there

are no signal instances to consume (i.e there can be no signal instance consumption). If there are

no consumable signals then if the boolean expression is True, the transition will be selected.

Saves. Sometimes a signal should not be discarded even if it can not be consumed next by the

process (due to the process state). Instead, the signal should be saved for future use, after the

following signals have been processed. In SDL this can be achieved by means of the save

construct. The save concept allows the consumption of a signal to be delayed until one or more

other signals, which arrive subsequently, have been consumed. Unless the save concept is used,

signals are consumed in the order in which they arrive. The concept of save can be used to

simplify processes in cases where the relative arrival order of some signals are not important and

the actual arrival order is indeterminate. The save construct introduces a second signal queue for

a process. This second queue is prioritized over the normal signal queue. For a state transition a

process will first look into the prioritized queue. Only if this queue is empty or if all the

remaining signals already have been saved in the current state, the signals in the normal queue

will be consumed.

An example that demonstrates the save concept is presented in Figure 3.2. In this example,

it is assumed that the finite state machine is in state S and the input queue has the three signals

 Page 56

Z, W and X. In each state, the queue is traversed from front to back. The sequence of actions

performed by this machine is summarized in Figure 3.3.

Figure 3.2 An example on the Save concept

Figure 3.3 The sequence of actions performed by the state machine in Figure 3.2

3.1.2.3 Internal Actions

Activities. An activity is used in a transition to represent operations on variables or to represent

special operations by means of informal text. In the context of SDL, activities are called tasks.

The decisions. SDL offers the decision construct to specify value driven state transitions.

Outputs. An output is the sending of a signal from one process instance to another (or to itself).

S2

S1

S1

W
X W

S1

S2

A1
A2

X ZW

FIFO Queue

(state)

(activity/
task)

(save)

(input)

S1 The first signal in queue, Z, will be discarded

Curr. state Event

S1 The first signal in queue, W, appears in a save symbol and
remains in queue.

S1

S2

The second signal, X, will be consumed (explicit input),
action A1 will be executed and state S2 will be entered

The saved signal W will be consumed, action A2 will be
executed and state S1 will be entered

 Page 57

Because control over the consumption of the signal is associated with the receiving process the

semantics directly relating to the output is relatively simple. From the point of view of the

sending process an output can often be regarded as an instantaneous action which, once

completed, has no further direct effect on the sending process, which will not be directly aware

of the fate of the signal.

Create a process. Processes (i.e. process instances) can be created as a result of an explicit

request or at the system creation. The explicit create request may be issued only by another

process in the same block of the process being created and allows the specification of actual

parameters for transferring information to the new instance created.

Timer instructions (set/reset). The need to measure time and request time-outs in a system is

met by timers and a set of operations performed upon them. In the SDL model “a timer” is a

meta-process (object) which is associated with a process. A timer can be active or inactive. If it

is active, after a predefined time it will put a timer signal into the signal queue of the process.

The timer signal can be consumed and trigger state transition like any other signal. A timer has

to be declared in an SDL process definition. During a state transition a timer can be set and reset

by means of “set” and “reset” instructions which are written in “activity” symbols. The set

operation requests a time-out to occur at a specified time, and the reset operation cancels the

specified time-out. For defining a point of time in future, the expression “now” can be used, now

always denotes the current time at which the set instruction is evaluated. By means of a now it

is possible to define the expiration of a timer relative to the corresponding set instruction. After

expiration, the timer produces a timer signal, which has the same name as that of the timer, and

puts it into the signal queue of the associated process. Once a timer has been set, it can be

canceled with the reset instruction. In this case the process behaves as if the timer never had been

set. Any timer signal still located in the signal queue will be deleted.

 Page 58

3.1.2.4 The declaration and manipulation of data

The base model of an SDL process is an extended finite state machine which can hold and

manage data. The data is local to the process and exists in the form of values and variables. The

variable and its type must be declared. During a state transition an SDL process can manipulate

its local data. Data manipulation is specified within an “activity” symbol. An activity can only

include assignment statements.

3.1.3 Communication in SDL

In SDL communication is based on three sets of constructs:

• explicit signal communication (sending of a signal to receiver).

• communication via shared data (sharing of information).

• communication via instance activation (creation of a receiver).

3.1.3.1 Explicit Signal Communication.

The SDL processes communicate by exchanging signals. For this purpose each SDL process

has its own infinite FIFO signal queue. The signal queues and the corresponding SDL processes

operate independently and in parallel. Processes which want to communicate with a certain

partner process have to put their signals into the queue of the partner. A sender may produce

infinitely many signals without waiting for the receiver to consume them. If two signals reach a

process simultaneously, they are buffered in random sequence.

Communication takes place via communication links which in SDL are called signal routes

and channels. The channels are typed; meaning that they can only convey signals of certain

types.

 Page 59

3.1.3.2 Communication via shared data

Any information in SDL is always owned by a certain process instance and this instance is

the only one that has the right to change the value of the information. However the process

definition of a process instance may grant access right to the environment of the instance so that

the information can be visible to other process instances (of the same or other process

definitions). The sharing of information is obtained by using the pairs of constructs.

REVEALED-VIEW and EXPORT-IMPORT. The first pair can only be used within a block

boundary, the later does not impose any limitation.

In the Reveal/View communication the senders declares that an information associated with

a variable is disclosed to other viewers. Once an information is disclosed through a

REVEALED, any process instance within that block definition can access it. The access to the

information is instantaneous, and does not take any time. More viewers can view the same

information concurrently. The competition between the owner changing the information and

viewers is solved by the assumption that the change of an information takes no perceivable time.

In the Export/Import communication, a process can declare one or more of its variables as

“exportable” which has the effect that all other processes (no matter the block they belong) can

import a copy of the value of the variable upon request. Any subsequent change of information

is hidden from the importers that continue to access the exported value. In this way there is no

concurrency problem between the exporter and the importers. The import of information may

involve time, even though this time is assumed to be negligible from a specification viewpoint.

3.1.3.3 Creation of a receiver

Communication may also occur through the creation of the receiver by the sender. The

 Page 60

creation takes no time and therefore the information associated with the create clause is

immediately available to the receiver. In this way of communication a synchronization between

the creating process instance and the created process instance is established. However,

immediately after the creation the two instances (the creating and the created one) continue their

processing asynchronously.

The creation can only occur within a block boundary, therefore this way of communication

can only occur within a block boundary. Once a receiver exists the only possible forms of

communication are via signals and through shared variables.

3.1.4 Signals and data

The communication between different processes, and the communication between processes

and the environment is realized by means of signals. Signals can be defined at system level,

block level, or in the internal part of process definition. Signals defined at system level represent

signals interchanged with the environment and between system blocks. Signals defined at block

level represent signals interchanged between processes of the same block. Signals defined

within a process definition can be interchanged between instances of the same process type or

between services in the process.

Signals can also be used for transmitting data from one process to another. In this case a

signal has one or several assigned values which are called parameters. The parameters are

assigned to a signal in an output symbol. When the signal is consumed, its parameters can be

assigned to variables for further processing. This is specified in a corresponding input symbol.

The types of the transmitted parameters must correspond with the types of variables in the input

symbol at the responder.

 Page 61

Signals are sent along signal routes between processes and on channels between blocks or

when interchanged with the environment. Signals traveling along a communication channel can

experience a nondeterministic delay. Once inside a block, a signal is routed immediately to the

appropriate process instances. Once at a process instance the signal is put in a FIFO queue for

that instance, and held there until it is consumed by the instance.

Channels. Channels are the communication media between different blocks of the system or

between blocks and environment. SDL Channels have FIFO semantics, i.e. a signal will never

overtake a signal which is previously sent. They can be unidirectional or bi-directional.

Transmission of signals by channels can experience a nondeterministic delay. This means that a

signal A sent before another signal B on a different channel, may arrive later than B at its

destination endpoint. This is intended to model the real behavior of communication channels,

where re-ordering occurs with finite probability. Furthermore, an SDL channel is safe, i.e. no

signal will get lost or be modified during transmission. SDL allows to specify whether a channel

may delay the signal transmission or not.

Signal Routes. Represents the routing of signals from communication channels to processes or

between processes in the same block. Signals presented to the origination endpoint are delivered

to the destination endpoint in the same order with no delay. This reflects the fact that signal

routes are only used to specify routing and not transmission along communication channels.

Signalroutes can be unidirectional or bidirectional. They are very similar to channels, except that

a signal route can not delay the transmission of signals.

3.1.5 The SDL Queueing Mechanism

At every state, every signal is treated in one of the following ways: (i) it is shown as an input,

(2) it is shown as a save, as was discussed in Section 3.1.2.2, or (3) it is covered by an implicit

 Page 62

input leading to an implicit null transition, that is the signal is consumed without any action

being performed. It is discarded.

On arrival, signals enter the queue and when the process reaches a state, the signals in the

queue are reviewed one at a time in the order in which they arrived. A signal covered by an

explicit, or implicit, input is consumed and the related transition executed. A signal shown in a

save is not consumed and remains in the queue in the same sequential position and the next

signal in the queue is considered. No transition follows a save. An example of how the (logical)

queueing mechanism of the process works is shown in Figures 3.4 and 3.5 [Wohlin91].

Figure 3.4 Example of a complex SDL diagram with numerous inputs and saves

State_1

State_3

State_2

State_4

State_4

State_6

State_5

F

GC

A

D

E

B

D

D B

E

State_1

B

State_1

 Page 63

Figure 3.5 Operation of queueing mechanism in the system of Figure 3.4

State_1 (Process arrives at State_1 with signals A,B,C,D and E in
queue) The first signal in queue, A, is consumed and
transition to State_2 triggered.

Curr. state Event Queueing

State_2 The first signal in queue, B, appears in a save symbol and
remains in queue.

State_2

State_3

State_3

State_3

State_5

The second signal,C, is consumed (explicit input) and
transition to State_3 is triggered.

The first signal in queue, B, is consumed (implicit input).

Signal F arrives and enters queue.

(On reaching State_3 again) the first signal in queue,D,
appears in a save symbol and remains in queue.

The second signal, E, appears in save symbol and remains
in queue.

A B C D E F

order of arrival

The third signal, F, is consumed (explicit input) and
transition to state_4 is triggered.

The first signal in queue, D, appears in a save symbol and
remains in queue.

The second signal, E, is consumed (explicit input) and
transition to state 5 is triggered.

The first (and only) signal in queue,D, is consumed
(explicit input) and transition to state_1 is triggered.

State_3

State_4

State_4

 Page 64

3.2 Design Specification by Scenarios and the Scenario

Design Paradigm (SDP)

Our designs are derived from scenarios which can be expressed for the present purposes by

Message Sequence Charts (MSCs) showing sequences of activities executed by different

processes. An example of three scenarios is shown in Figure 3.6. The first scenario, illustrated

in Figure 3.6(a), represents a request-response interaction pattern between the environment

(ENV) and process A. The second scenario depicts a chain of requests from ENV to process A

then to process C. While, the third scenario describes a request-forward-reply interaction pattern

between Env, process B and process C.

SDL processes which execute these activities are constructed using a prototype software

design technology, developed inside Nortel Networks, called Scenario Design Paradigm (SDP)

[Jedrysiak94, Jedrysiak96, Cameron97], and was described in Section 2.1.2. SDP allows

designers to express the behavior of a real-time system as a set of concurrent scenarios using a

scenario language. Each scenario is a system response to an external event. The scenarios are

specifications of the actions the system must take to generate the required outputs given the

inputs. The actions are processes sending messages to one another and invoking functions. The

active components in the scenarios are messaging entities and the form of their interaction is

asynchronous messages.

The scenario language is like a Message Sequence Chart language in textual form but with

extended structural syntax that facilitates the translation of the scenario language into SDL. A

sample scenario code that implements the MSCs shown in Figure 3.6 is presented in Figure 3.7.

The scenario language uses operating system semantics to specify scenarios. The abstractions

are system, scenarios, messaging entities and messages. A system is a set of scenarios. A

 Page 65

scenario is a sequence of entities sending messages to each other. A scenario always begins with

a message reception event. A system response may be contained within one scenario, or it may

be expressed by a set of scenarios. A system response always begins with receiving a message

from the environment; it may or may not require a message being sent to the environment.

Scenario synthesis is defined as the generation of component state machines from a set of

scenarios [Cameron97]. The scenario language compiler performs a kind of state machine

synthesis at the process level. The compiler constructs a state machine for each active system

component by extracting the behavior of that component from each scenario in which it appears.

The state machine language is SDL. In addition, the scenario language compiler generates

structural definitions to satisfy the requirements of a compilable SDL specification. The relevant

structures are blocks for the containment of processes, channels for the connection of blocks to

the system boundary or to each other, and signal routes for the connection of processes to a block

boundary or to each other. The scenario language contains syntax for declaring blocks and

channels but no syntax for declaring signal routes. In the absence of explicit structural

declarations the compiler will generate default block and channel declarations. The defaults are

one block per process and one channel per message. A signal route is created for each message.

Each compile produces SDL Graphical Representation (GR) files. These files contain

graphical representations of the block architecture as well as the process state machines. Once

the system is synthesized into a set of SDL state machines, it can be executed in an SDL CASE

tool simulator or on the target product platform. It can be analyzed to verify its behavior.

 Page 66

Figure 3.6 An example of three scenarios (a) request-response, (b) chain of requests, (c)
request-forward-reply

Figure 3.7 A sample scenario code that models the MSCs shown in Figure 3.6

m1

m2

ENV A

a1

m5

m7

m6

B C

b1

c2

(a) (c)

m3

ENV A

a2

(b)

m4

c1

ENVC

a3

System example

Scenario SysRespOne
step 1: ENV sends m1 message to processA(a1)
step 2: processA sends m2 message to ENV

end scenario

scenario SysRespTwo
step 1: ENV sends m3 message to processA (a2)
step 2: processA sends m4 message to processC(c1)
step 3: processA(a3)

end scenario

scenario SysRespThree
step 1: ENV sends m5 message to processB (b1)
step 2: processB sends m6 message to processC (c2)
step 3: processC sends m7 message to ENV

end scenario

end system

 Page 67

3.2.1 SDL models that are supported by the model-builder

The Scenario Design Paradigm approach to design is based on an asynchronous process

model. Whenever a process receives a message, it processes the message to completion. Every

time an event is received, it is processed by calling the same sequence of transition code.

Complexities arising out of combinations of input events and state variables are hidden in the

transition code. This is a common design style in telecommunications; any message can be

received at any time, and is then processed to completion. Accordingly, in SDP the SDL

processes are designed with one state, which follow a simple receive-execute loop, as shown in

Figure 3.8. That is, the process receives and handles any message at any time; it never blocks

waiting for a particular message. However the process may retain state data about messages it

expects to receive, which allow it to resume processing on some partially completed response.

Figure 3.8 A typical model of an asynchronous process. (a) SDL diagram. (b)
conventional event/action form

The Scenario Language has constructs for specifying states and state changes. Accordingly,

SDP can synthesize SDL processes with general finite state machines. However, SDP does not

have constructs to support the save mechanism. So, it does not guarantee the successful

Transition 1

*

ready

Transition 3

Event m1 Event m3Event m2

Transition 2

(a) (b)

ready

T1 T2 T3

m1/T1 m2/T2

m3/T3

 Page 68

consumption of all messages exchanged in the system. Because of the lack of support of the save

concept, some messages may be unintentionally discarded at some states.

The current version of the model builder supports both styles of system design in principle.

It can model systems designed with the asynchronous process model as well as systems designed

with the general process model that can have many states but do not use the save concept. More

general state-machine structure also can be modeled, but would require additional machinery for

interpreting the SDL traces. This research has concentrated on designs that use the asynchronous

process model.

3.2.2 Specifying models with join and fork-join patterns

The scenario language semantics, in its present form, includes forking of a thread, but not

joining. For this research, we wanted to include systems with parallel parts including joins, so

the scenario language was extended, with the aid of some functions written in the C language,

to implement (simulate) the semantics of the join events. An example implementation of these

functions is shown in Figure 3.9. The goal of these functions is to log, during run time, some tags

in the simulation traces that allow the model-builder to identify the threads that need to be joined

and the location of the join events. These functions can be referenced in the scenario code using

the procedure call syntax.

The purpose of the function “init_conditions()” is to initialize the status of all conditions

involved in all “join” events in the model to FALSE, i.e. to initially indicate that all conditions

has not been satisfied yet. The purpose of the function “set_condition(cond)” is to set the status

of the condition specified by the argument “cond” to TRUE, i.e to indicate that the specified

condition has been completed. The function “checkJoin(cond1, cond2, &status)” returns TRUE

(i.e. sets its status argument to TRUE) if both conditions specified in its argument list are found

 Page 69

to be completed, otherwise it returns FALSE.

The purpose of the function printGotoJoin(join_name) is to record a message “GOTO_JOIN

<join_name>” in the simulator output indicating that the current thread will go to wait at the

specified join point. While the purpose of the function printEndJoin(join_name) is to record a

message “END_JOIN <join_name>” in the simulator output indicating the completion of the

last thread of the specified join point. Examples of scenario codes that implement (model)

several patterns that fork-and-join [Franks97] are depicted in Figure 3.10 through Figure 3.11

Using these functions, the proposed structure and semantic of a process that has multiple

threads running in parallel which need to be joined, before the process can resume its operation,

is described as follows. Whenever a thread ends, it first declares its completion using the

function “set_condition(cond_name)”. Then using the function “checkJoin <join_name>”, it

checks the completion status of the other threads which are involved in the same join event. If

the thread finds that all conditions of the joint events have been satisfied, it records the message

“END_JOIN <join_name>”, and continues executing the activities after the join point.

Otherwise, it records the message “GOTO_JOIN <join_name>” and blocks.

Note that the current implementation of the checkpoint function assumes that join point has

only two incoming threads (branches). To model join points with more than two incoming arcs,

new extended versions of the checkjoin function need to be added to the library.

 Page 70

Figure 3.9 A library of C functions that supports modeling the “join” events

/* join_lib.c */

#include <scttypes.h>

#define TRUE 1
#define FALSE 0

/* declare all conditions that are involved in join events */
int m1_rcvd, m2_rcvd, a1_completed, a2_completed ;

/* initialize all conditions that are involved in join events to FALSE */
int init_conditions(void)
{

 m1_rcvd = FALSE;
 m2_rcvd = FALSE;
 a1_completed = FALSE;
 a2_completed = FALSE;
 return(0);

}
int set_condition(int *cond)
{

 *cond = TRUE ;
 return(0);

}

int checkjoin(int cond1, int cond2, int *status)
{

 *status = FALSE;
 if ((cond1==TRUE) && (cond2==TRUE)) *status=1;
 return(0);

}

int printGotoJoin(char *s)
{

 char string[100];
 sprintf(string, “**** GOTO_JOIN %s\n”, s);
 xPrintString(string);

}

int printEndJoin(char *s)
{

 char string[100];
 sprintf(string, “**** END_JOIN %s\n”, s);
 xPrintString(string);

}

 Page 71

3.2.3 Examples of scenario codes that describe fork-join patterns

There are two forms of fork-join behavior which can occur within an application. The two

forms are based on whether the fork and join take place within the same process, or in two

separate processes [Franks97].

1) Inter-Process Fork-Join occurs when messages originate from a common client

process, follow independent routes, then join at a common server process.

2) Intra-Process Fork-Join occurs when the fork and join take place within the same

process.

Figure 3.10 (a) shows an example of inter-process fork-join behavior expressed by MSC,

and Figure 3.10 (b) shows the scenario language code which models that behavior. The scenario

code sets up a system that does the following.

• When process t1 receives message m1 from the environment, it responds by executing

activity a then sends message m3 to process t3.

• When process t2 receives message m2 from the environment, it responds by executing

activity b then sends message m4 to process t3.

• When process t3 receives message m3, it will do the following actions.

i) execute activity c

ii)declare that activity c has been completed, by setting its associated completion flag

to TRUE.

iii)check the completion status of activity d. If process t3 finds that activity d has been

completed, it will call the function “printEndJoin”, execute activity g then send

message m5 to environment. Otherwise, it will call the function “printGoToJoin”

and block.

• Similarly, when process t3 receives message m4, it will do the following actions.

 Page 72

i) execute activity d

ii)declare that activity d has been completed, by setting its associated completion flag

to TRUE.

iii)check the completion status of activity c. If process t3 finds that activity c has been

completed, it will call the function “printEndJoin”, execute activity g then send

message m5 to environment. Otherwise, it will call the function “printGoToJoin”

and block.

Figure 3.11 (a) shows an example of intra-process fork-join behavior expressed by MSC,

and Figure 3.11 (b) shows the scenario language code which models that behavior. The scenario

code sets up a system that does the following.

• When process t1 receives message m1 from the environment, it responds by performing

the following activities:

i) execute activity a

ii)sends message m2 to process t2

iii)execute activity b

iv)declare that activity b has been completed, by setting its associated completion flag

to TRUE.

v) check the reception status of message m3. If process t1 finds that message m3 has

been received, it will call the function “printEndJoin”, execute activity d then send

message m4 to environment. Otherwise, it will call the function “printGoToJoin”

and block.

• When process t2 receives message m2, it responds by executing activity c then sends

message m3 to process t1.

 Page 73

• When process t1 receives message m3 from the process t2, it responds by performing

the following activities:

i) declare that message m3 has been received, by setting its associated reception flag

to TRUE.

ii)check the completion status of activity b. If process t1 finds that activity b has been

completed, it will call the function “printEndJoin”, execute activity d then send

message m4 to environment. Otherwise, it will call the function “printGoToJoin”

and block.

 Page 74

Figure 3.10 An example scenario code of Inter_Process Fork_Join

d

c

b

c

g

d

a

t1 t2 t3ENV
m1
m2

m3
m4

m4

m3

m5

(b) Scenario code

al
te

rn
at

iv
es

(a) MSC diagram

system Inter_process_Fork_Join

library
 join_lib
endlibrary

scenario s1
 step 1: ENV sends m1 to t1(a)
 step 2: ENV sends m2 to t2(b)
 step 3: t1 sends m3 message to t3
 step 4: t2 sends m4 message to t3
end scenario

scenario s2
 step 1: message m3 received

t3 (c)
 t3(set_condition(&c_completed))
 t3(checkJoin(c_completed,d_completed,&status))
 step 2: if (status == 1) then
 t3(printEndJoin(“join1”))
 t3(g) sends m5 message to ENV
 endif
 step 3: if (status == 0) then
 t3(printGotoJoin(“join1”))
 endif
end scenario

scenario s3
 step 1: message m4 received
 t3 (d)
 t3(set_condition(&d_completed))
 t3(checkJoin(c_completed,d_completed,&status))
 step 2: if (status == 1) then
 t3(printEndJoin(“join1”))
 t3(g) sends m5 message to ENV
 endif
 step 3: if (status == 0) then
 t3(printGotoJoin(“join1”))
 endif
end scenario
end system

 Page 75

Figure 3.11 An example scenario code of Intra-Process Fork-Join

system Intra_process_Fork_join

library
 join_lib
endlibrary

scenario s1
 step 1: ENV sends m1 to t1(a)
 step 2: t1 sends m2 message to t2(c)
 step 3: t1(b)
 step 4: t1(set_condition(&b_completed))
 t1(checkJoin(m3_received,b_completed,&status))
 step 5: if (status == 1) then
 t1(printEndJoin(“join1”))
 t1(d) sends m4 message to ENV
 endif
 step 6: if (status == 0) then
 t1(printGotoJoin(“join1”))
 endif
 end scenario

scenario s2
 step 1: message m3 received
 t1(set_condition(&m3_rcvd))
 t1(checkJoin(m3_received,b_completed,&status))
 step 2: if (status == 1) then
 t1(printEndJoin(“join1”))
 t1(d) sends m4 message to ENV
 endif
 step 3: if (status == 0) then
 t3(printGotoJoin(“join1”))
 endif
end scenario

scenario s3
 step1: message m2 received
 t2 sends m3 message to t1
end scenario
end system

d

cb

a

t1 t2ENV

m2

m3

m4

m1

(a) MSC diagram

(b) Scenario code

 Page 76

Chapter 4: The Model Builder

4.1 Introduction

This chapter describes an approach for constructing LQN performance models automatically

from design specifications which are defined in a standard design environment based on SDL.

The software design is assumed to be expressed in an executable SDL model, and to conform to

a certain asynchronous style. The designer must supply scenarios [Jedrysiak94,96] which are

used to drive the design model in an execution mode to produce traces, as well as additional

information in the form of resource functions and the configurations to be evaluated as described

later. The traces are interpreted to extract the structure and some of the parameters of a

performance model, in a way extended from that described for “angio traces” in [Hrischuk95].

The procedure used in this work is outlined in Figure 4.1. To build an LQN model from

traces, the traces are post-processed into “angio traces” which describe the history of the trace

in a structured fashion, and then into performance sub-models (one per trace). These, the

resource functions, and some necessary configuration data (such as processors or nodes, task

allocation, task priorities and rates of events) are finally merged into the model and used to make

evaluations. Figure 4.2 shows an example with submodels (a), (b) and (c) created from scenarios

(a), (b) and (c) of Figure 3.6, and the final model that combines them is shown in Figure 4.3.

 Page 77

Figure 4.1 The Model-Builder

The approach is implemented in a tool called “The Model Builder”, using Perl. The Model

Builder takes as input:

1) traces of the representative scenarios of the design.

2) resource demands of activities.

3) environment (configuration) information which is not in SDL specification such as:

process allocation, priorities, and workload parameters (traffic load).

The output of the tool is an LQN performance model, of the design that has been traced.

The rest of this chapter is organized as follows. Section 4.2 describes the process for defining

scenarios and collecting their SDT traces. Section 4.3 describes the process for extracting LQN-

submodels from traces. The process of merging the submodels and completing the LQN model

Simulation
traces

LQN Model
Solver

Skeletal
LQN Model

Skeletal (LQN)
Sub-Models

Complete

Resource

Performance
Predictions

Model Builder

Scenarios

Resource functions: give resource demands of activities.

SDL Design

Configuration info.: gives task allocation, task priority,
 arrival rates of events.

Angio Traces

Functions

Configuration
Information

Perf. model

Model

 Page 78

is described in Section 4.4. Finally, the algorithms used to implement the approach are presented

in Section 4.5.

Figure 4.2 An example of three LQN submodels for the interactions shown in Figure 3.6

Figure 4.3 The merged model

ENV

Process A

m1

entry A1

RPC request

Forwarded RPC

Asynchronous message

ENV

Process A

m3

c1

ENV

m4

m5

m6

m7

m2

Process B

ProcessC

entry A2

entry C1

entry B1

entry C2

Process C

(a)

(c)(b)

Legend

(To ENV)

a3

c2

a1 b1

x Computation activity

Communication activity

Reply message

(To ENV)

a2

ENV

Process A

m1

entry A1

ENV

m3

c1

ENV

m4

m5

m6

m7

m2

Process B

Process C

entry A2

entry C1

entry B1

entry C2

(To ENV) a3a2

c2

a1 b1

(To ENV)

 Page 79

4.2 Define scenarios and capture SDT traces

The design evaluation process described here is based on scenarios, as was discussed in

Section 3.2. Scenarios are sequences of activities (actions) that specify the desired behavior of

a software system. They are slices of the system behavior, which can be considered one at a time

in terms of the system model. Each scenario describes the behavior of the system in response to

an external event.

In this work, the choice of scenarios relies on the experience and judgment of domain

experts. It is possible that some important scenarios may be overlooked, due to the complexity

of the system. However, a well defined set of scenarios will reveal enough of the important

behavior to give a useful performance model. Some guidelines for choosing scenarios were

discussed in [Smith90]. The adequate coverage of behavior by scenarios is a very important

issue for model building but beyond the scope of this research.

For model building, the set of scenarios that describe the system is first defined using the

Scenario Language [Jedrysiak94] and then compiled to an SDL model using the Scenario

Design Paradigm [Jedrysiak94, Cameron97]. The SDL model is then simulated using SDT and

its traces are recorded.

To automate and speed up the process of stimulating the scenarios and collecting their SDT

traces, an SDT command script “run_collect_traces” was developed. The script can be invoked

at the command line as follows.

model.sct < run_collect_traces

Where, model.sct is the name of the executable version of the SDL design (which could be

 Page 80

generated automatically from the scenario specifications using the scenario compiler).

The script “run_collect_traces” first initializes the system then injects the triggering stimuli

to the system. Each triggering stimulus initiates the execution of one scenario. Every time the

script injects a stimulus into the system, it simulates the system and records the traces of the

simulation into a special file called “model.traces”. The commands of the script are listed below.

output-v init - //sends the initialization message to the system.
go //simulate (initialize) the system
set-trace 6 //set simulator to record all events
log-on model.traces //set simulator to record traces in model.traces
output-v stim1 - //inject message stim1 to the system
go // simulate the system
output-v stim2 - //inject message stim2 to the system
go // simulate the system
quit

4.3 Building Skeletal LQN submodels from traces

For each scenario in the SDL model, an LQN submodel is extracted from its SDT trace in

six steps:

• Step 1: convert the SDT trace into an angio trace.

• Step 2: identify the types (roles) of messages in the trace (Synchronous, Asynchronous,

Reply, Forwarding).

• Step 3: identify the different services provided by each process.

• Step 4: find the precedence relationship between activities in each service.

• Step 5: handle the join events

• Step 6: map the software architecture model into an skeletal LQN submodel.

Figure 4.4 shows an example scenario trace, expressed for the present purpose by Message

 Page 81

Sequence Charts, which will be used to explain the above steps. The following sections walk

through the model building process (the steps) as applied to the example.

Figure 4.4 MSC of the example scenario to be modeled

 Step 1: Convert an SDT trace into angio trace

The SDL tool we used, SDT [Telelogic96], can execute the specification and create an

execution trace. For model building, the trace must record the sending and receiving of messages

and the triggering of activities which consume resources such as CPU time. Each event must be

associated with the process that executed it. Further, each message reception event must be

traceable back to the event and the process that sent the message, so a chain of messages and

execution can be captured in the model.

m1

m2

A B

b1

m5

m7

m6

m3

ENV D

a2

m4

C

c1

b2

c2
a3

d1

a4

m0

m8

a1

 Page 82

In SDT, trace messages are identified in such a way that the sending and receiving events

could be matched up and activities are associated with the process that executed it. However,

what is missing from the traces is the necessary information that specifies the end-to-end path

of a response through the system and the causal relationship between activities in the system.

This information is not recorded in the trace but it is possible to infer it. So, we post-process the

traces in order to extract the required (missing) information and convert the traces into a form

similar to angio traces, as described in [Hrischuk95].

An SDT trace is converted into a form similar to an angio trace in two steps. First the SDT

trace is normalized. Then, the system actions are tagged with special identifiers, called

“dye_ids”, that show their interconnection and relation to the trigger event.

 Normalizing SDT traces

 At the normalization step, the state-based SDT traces are converted to an activity_based

intermediate trace form, as shown in Figure 4.5. The motivation for doing this is to record all

attributes related to each activity in just one place (one record or one line). This will greatly

simplify the model-building machinery.

For each activity the following attributes are identified. (1) activity name (e.g. send, receive,

compute), (2) activity cost code that reflects the execution cost of the activity, (3) the active

process that performed the activity, for example the sender process in case of a send activity, (4)

the partner process, i.e the destination process in case of a send activity and the origin in case of

a receive activity, (5) the name of the incoming message in case of a receive activity and the

name of the outgoing message in case of a send activity.

 Page 83

Figure 4.5 The normalization step

 Assignment of “dye_ids” to messages

Dye_ids are defined and assigned to messages in such a way that allows processes to link the

messages they send to the messages they have received. Dye_ids are defined using the following

formula:

 <dye_id> := <identifier> | /* if the message is a triggering stimulus*/

 <input dye_id><separator><no. of msgs sent since input dye was received +1>

 <separator> := .

The process of dye-id assignment starts with the assignment of some identifier (the initial

dye_id) to the stimulus that initiated the trace. Then, to keep the causality across process

boundaries, the process that receives the stimulus will use its dye_id as a base to construct the

dye_id of the messages that it will send. Subsequent processes follow the same procedure for

dye-ids assignment to causally link the message they send to the messages they have received.

This allows us to infer dye_ids.

active

process

activity

name

msg

name

partner

process

activity

A1 RECEIVE m0 env1

a1

activity

type

NEW_RCV

A1 COMPUTE

SENDA1 ASY

B1 RECEIVE NEW_RCV

m2

m1

m1 B1

A1

B1

COMPUTE b1B1

SEND ASY A1

*** TRANSITION START
* PID : A:1
* State : ready
* Input : m0
* Sender : env:1
* Now : 0.0000
* TASK “a1”
* OUTPUT of m1 to B:1
*** NEXTSTATE ready

*** TRANSITION START
* PID : B:1
* State : ready
* Input : m1
* Sender : A:1
* Now : 0.0000
* TASK “b1”
* OUTPUT of m2 to A:1
*** NEXTSTATE ready

(a) SDT state-based trace (b) activity-based trace

code

 Page 84

To implement the approach, we assign a counter to each process in the system to keep track

of number of messages sent by the process. Each time a process receives a message, it resets its

counter to zero, and stores the dye_id of the message received in a data structure called

“current_dye”. To construct the dye_id of an output message, the process first increments its

counter, then concatenates the current_dye with the content of the counter and uses this construct

as the new dye_id of the output message. The angio-trace corresponds to the SDT trace shown

in Figure 4.5 (a) is given below in Figure 4.6. It is identical to the activity-based trace shown in

Figure 4.5 (b) but with dye_ids.

Figure 4.6 The angio trace corresponds to the SDT trace in Figure 4.5 (a)

The result of applying the dye_id assignment technique to the trace shown in Figure 4.4 is

depicted in Figure 4.7. In Figure 4.7, message m0 is assigned a dye_id of (1) because it is the

first message sent from the environment (ENV). Upon receiving message m0, process A resets

its counter to zero and assigns the dye_id of the incoming message, which is (1), to its

current_dye. Then, to construct the dye_id of message m1, process A increments its internal

counter and concatenates it with its current_dye to form the dye_id of m1 (1.1). When process

B receives message m1, it resets its counter and use the dye_id of m1 as its current_dye. To,

construct the dye_id of message m2, process B increments its counter and concatenates it to its

current_dye and use this construct as the dye_id of m2 (1.1.1). The rest of the dye_ids are

active

process

activity

name

msg

name

partner

process

activity

A1 RECEIVE m0 env1

a1

activity

type

NEW_RCV

A1 COMPUTE

SENDA1 ASY

B1 RECEIVE NEW_RCV

m2

m1

m1 B1

A1

B1

COMPUTE b1B1

SEND ASY A1

code
dye_id

1

1.1

1.1

1.1.1

 Page 85

generated in the same fashion. So, according to our technique for dye_id construction, a message

is considered to be causally derived from another message appeared earlier in the trace if the

dye_id of the earlier message is a prefix of the dye_id of the message.

The algorithm of dye_id assignment is listed in Section 4.5, algorithm

“generate_message_id”.

Figure 4.7 Dye-id assignments to messages in Figure 4.4

 Step 2: Identify the message types (Sync., Async., Reply, Forwarding)

This step distinguishes between three types of messages sent by an SDL process; RPC-like,

asynchronous and reply messages. A message is considered to be RPC-like if the process that

sends the message, later on, receives another message that is causally derived from the message

m1 (1.1)

m2 (1.1.1)

A B

b1

m5 (1.1.1.2)

m7 (1.1.1.2.1.1)

m6 (1.1.1.2.1)

m3 (1.1.1.1)

ENV D

a2

m4 (1.1.1.1.1)

C

c1

b2

c2
a3

d1

a4

m0 (1)

m8 (1.1.1.2.1.1.1)

a1

 Page 86

that was sent. In this case, the received message will be identified as a Reply to the previous

request. On the other hand, if the process does not receive any message that is causally derived

from the message that was sent, the message sent is considered to be an Asynchronous message

(ASY). RPC-like interactions are divided in step 4 into RPCs and Asynchronous RPCs.

Consider for example the scenario depicted in Figure 4.8. Message m1 is interpreted as an

RPC-like message and m2 is identified as its Reply because process A, which sends message

m1, later on, receives message m2 which is causally derived from m1. Causal linkage is detected

by matching the dye-ids of the two messages (m1 and m2) and realizing that the dye-id of the

message sent (m1) is a prefix of the dye-id of the message received (m2). On the other hand,

message m3 is considered to be asynchronous because process A, which sent this message,

doesn’t receive any message that is causally derived from it.

Figure 4.8 Message type identification

m1 (1.1) RPC-like

m2 (1.1.1) Reply

A B

b1

m5 (1.1.1.2) RPC-like

m7 (1.1.1.2.1.1) Reply

m6 (1.1.1.2.1) FWD

m3 (1.1.1.1) ASY

ENV D

a2

m4 (1.1.1.1.1) ASY

C

c1

b2

c2
a3

d1

a4

m0 (1) RPC-like

m8 (1.1.1.2.1.1.1) Reply

a1

 Page 87

Some asynchronous messages play a forwarding role. To identify them we track each RPC

request till the response returns to the sender. Then, we consider the asynchronous messages that

belong to the path to be forwarding messages except the last message, that returns the response

to the sender, which is the Reply message. In Figure 4.8, message m5 is an RPC-like request,

m6 forwards it and m7 is the reply.

The notion of RPC used here does not block the process. Instead we assume that an RPC

forks a thread which waits for the reply, leaving the process free (optionally) to do other things

in the mean time.

The algorithm used to identify the type of messages is listed in Section 4.5, algorithm

“identify_messge_types”.

 Step 3: Identify the different services provided by each process

To identify the different services provided by each process and the group of activities

associated with each service, we post-process the trace of each process separately. Each time a

process receives a new request for service (RPC, Async. or Forwarding), we identify a new

service for that process, and map all subsequent activities in the trace, till the reception of

another service request, into this service. Note that the reception of a reply message does not

begin a new service entry, it is a continuation of a previous service.

Once we partition processes into services, we update the attributes of the send activities in

the traces so as to point to the proper target service. The algorithm for identifying and naming

the different services of a process and updating the attributes of send activities is listed in Section

4.5, algorithm “identify_process_services”. Figure 4.9 shows the services associated with each

process, with a dashed box corresponding to each service. It also shows the group of activities

 Page 88

within each service. The execution of a process is also shown as terminating at the end of each

service.

Figure 4.9 Services associated with each process, and activities within each service

 Step 4: Find the precedence relationship between activities in each service

Within each service the precedence relationship among the activities is now recorded. Also,

RPC-like interactions are separated into RPCs (in which the reply message immediately follows

the request) and asynchronous RPCs (all other cases).

To describe an asynchronous RPC, we fork a subprocess to wait for the reply and let the main

thread continue up to the event before the reply is received, where it terminates. The new sub-

m7 (1.1.1.2.1.1) Reply

m3 (1.1.1.1)ASY

m5 (1.1.1.2) RPC-like

Process A

a4

a2

m2 (1.1.1) Reply

m4 (1.1.1.1.1) ASY

m6 (1.1.1.2.1) FWD

a3

m1 (1.1) RPC-like

m0 (1) RPC-like

a1

c1

c2

d1

Process D

Process C

Process B

m8 (1.1.1.2.1.1.1) Reply

b1

b2

communication event (send/receive)

x computation event

 Page 89

process receives the reply and takes over the role of the main thread. For example, in Figure 4.9,

message m5 is identified as an asynchronous RPC request and message m7 is identified as its

reply. So, to model the semantic of this asynchronous RPC pattern, we fork a new subprocess at

the location of the send activity. Activities that follow the send request (a3) remain connected to

the current process, while the activity that receives the reply (m7) and the activities that follows

it (a4 and the send activity of m8) are assigned to the new subprocess, as shown in Figure 4.10.

Figure 4.10 Software architecture with activity precedence information

 Step 5: handle the join events

 As we discussed in Chapter 3, the location of the join points and the threads to be joined are

m7 (1.1.1.2.1.1) Reply

m3 (1.1.1.1)ASY

m5 (1.1.1.2) RPC

Process A

a4

a2

m2 (1.1.1) Reply

m4 (1.1.1.1.1) ASY

m6 (1.1.1.2.1) FWD

a3

m1 (1.1) RPC

m0 (1) RPC-like

a1

c1

c2

d1

Process D

Process C

Process B

m8 (1.1.1.2.1.1.1) Reply

b1

b2

communication event (send/receive)

fork event

x computation event

 Page 90

identified using two special designer specified events “GOTO_JOIN” and “END_JOIN”. These

events are recorded in the traces the same way as any other SDL standard event. The

“GOTO_JOIN <join_name>” event is used to indicate that the current thread, which performed

the event, will wait until all the requirements of the specified join point are satisfied. The

“END_JOIN <join_name>” event is used to indicate that all requirements of the specified join

point have been met. And as a result, all waiting threads will be merged into one thread which

will continue the execution after the join point.

The mechanism for handling the join events in a process works as follows. First, we traverse

the precedence graphs of the process, which we have constructed in the previous section, one at

a time. Each time we encounter a “GOTO_JOIN <join_name>” event, we make a note of the

location of that event and the name of the join point which it will be waiting at. Then when we

detect an “END_JOIN <join_name>” event, we connect all activities that are waiting at this

particular join point to it.

 To keep the illustrating diagrams simple, there are no join points in our example scenario.

However, some example traces that contain join events and their corresponding LQN models are

shown in Chapter 3, Figure 3.10 and Figure 3.11.

 Step 6: Map the software architecture into a skeletal LQN-submodel

Once we identify the different services associated with each process, and determine the

precedence graph that describes their execution, mapping the software model into a LQN-

submodel can be done straightforwardly by mapping each process in the software model into a

process in the performance model and each group of activities in a service into a separate entry

in that process. Each service precedence graph gives the activity precedence graph description

of an entry. Within a service precedence graph, each activity is still an activity node in the

 Page 91

activity precedence graph. An activity node is inserted for each receive event, RPC pair,

asynchronous send, and forwarding send. No nodes are inserted for reply events. Reply events

are made to the entries in which they belong. Precedence relationships between the nodes follow

from the flow of execution within the activities in the service precedence graphs. Figure 4.11

shows the LQN-submodel that models the software architecture depicted in Figure 4.10.

4.4 Merging the submodels and completing the model

If there is more than one LQN submodel, we merge these submodels into one LQN model

by grouping the entries that have the same process identifier together as illustrated earlier in

Figure 4.3. Then, to complete the performance model, the model user must populate it with

additional information, which is not in the SDL specification, such as process allocation,

workload parameters, resource demands for the activities identified in the traces and process

priorities; some of these were illustrated in Figure 2.1. A textual interface has been designed to

provide straightforward input of this information to the model, using the following sections.

i) Processor - allows user to describe the system’s hardware components, and their

scheduling discipline.

ii) Process - allows user to specify the allocation of processes to processors and define

their priorities.

iii) Workload - allows the definition of the arrival rates of scenarios (stimulus).

iv) Performance Requirements - allows the user to specify the deadlines associated with

critical scenarios (stimulus).

v) Resource functions (demands) - allows user to parametrize the activities available in the

system by providing execution costs (in msec.) to them.

Resource demands of step (v) above can be found in several ways. They may be budget

values assigned by a system planner, measured values from previous projects, or expert

estimates of probable demand. Finding resource demands can require significant effort

 Page 92

[Menasce99]; however, this step is not considered here.

The formal description of the interface file in BNF form is shown in Figure 4.12.

This completes the construction of the performance model, which can now be solved to give

performance evaluations. For example, the model in Figure 4.11 can provide predictions of the

delay to receive a response to a request made by ENV to process A, of the probability of

exceeding a deadline at this interface, of the mean waiting time of a message going to process

B, or of the utilization of the processors on which the software runs.

Figure 4.11 An LQN-submodel for the of the software architecture depicted in Figure 4.10

a4

a1 a2

a3

d1

c2c1

ENV

Process A

Process C

Process D

m0

m1

m2 (to A1)

m6

m8 (to ENV)

m7 (to A1)

entry A1

entry C1 entry C2

entry D1

b2b1

Process B

m3

entry B1 entry B2
m4

m5

RPC request

Forwarded RPC

Asynchronous message

Legend

x

Reply message

Computation activity

Communication activity

Fork event

 Page 93

Figure 4.12 The BNF of the textual interface

<interface_file> == <processor_section> <task_section> <workload_section>
<perfRequirement_section> <resDemans_section>

<processor_section> == <proc_sectionID> <proc_decl_list>

<proc_sectionID> == <proc_section_keyword> <end_line>

<proc_section_keyword> == “Processor_Section”

<end_line> == <CR><LF>

<proc_decl_list> == <proc_decl> | <proc_decl> <proc_decl_list>

<proc_decl> == <proc_id> <sheduling_flag> <end_line>

<proc_id> == <identifier>

<scheduling_flag> == f /* First come, first served */

| p /* Priority, premptive */

| h /* Head Of Line */

| r /* Random */

| s /* Processor sharing */

<task_section> == <task_sectionID> <task_decl_list>

<task_sectionID> == <task_section_keyword> <end_line>

<task_section_keyword> == “Task_Section”

<task_decl_list> == <task_decl> | <task_decl> <task_decl_list>

<task_decl> == <task_id> <task_priority> <proc_id><end_line>

<task_id> == <identifier>

<task_priority> == <integer> /* higher value for higher priority */

<workload_section> == <workload_sectionID> <workload_decl_list>

<workload_sectionID> == <workload_section_keyword> <end_line>

<workload_section_keyword> == “Workload_Section”

<workload_decl_list> == <load_decl> | <load_decl> <workload_decl_list>

<load_decl> == <stimulus_id> <arrival_rate> <end_line>

<stimulus_id> == <identifier>

<arrival_rate> == <real> /* arrivals per second */

<perfRequirement_section> == <perReq_sectionID> <perfReq_decl_list>

<perReq_sectionID> == <perfReq_section_keyword> <end_line>

<perfReq_section_keyword> == “PerformanceRequirement_Section”

<perfReq_decl_list> == <perfReq_decl> | <perfReq_decl> <perfReq_decl_list>

<perfReq_decl> == <stimulus_id> <max_response_time> <end_line>

<max_response_time> == <real>

<resDemands_section> == <resDem_sectionID> <resDem_decl_list>

<resDem_sectionID> == <resDem_section_keyword> <end_line>

<resDem_section_keyword> == “ResourceDemands_Section”

<resDem_decl_list> == <resDem_decl> | <resDem_decl> <resDem_decl_list>

<resDem_decl> == <activity_id> <execution_cost> <end_line>

<activity_id> == <identifierl>

<execution_cost> == <real>

 Page 94

4.5 Algorithms

The following algorithms implement the steps described in the previous sections.

 Definitions:

traceFile = the file that stores the activities that took place during the execution of one
scenario. Each activity is stored in one record.

actIndex = an index that identifies the location of activities in the trace file

actName(actIndex) = the name of the activity indexed by “actIndex”.

actType(actIndex) = the type of the activity indexed by “actIndex”.
• Activity RECEIVE can have two types (i) NEW_RCV, if the incoming message

is a request for service (RPC, Asynchronous or Forwarding) (ii) REP_RCV, if the
incoming message is a reply. Initially, the type of activity RECEIVE is set to
NEW_MSG.

• Activity SEND can have four types: (1) ASY, if the message is an asynchronous
message (2) RPC, if the message is an RPC message (3) FWD, if the message is a
forwarding message, and (4) REP, if the message is a reply message. Initially, the
type of activity SEND is set to UN_DEFINED.

activeProcess(actIndex) = the name of the process that performed the activity. For
example, the sender process in case of a send activity and the receiver process in
case of a receive activity.

partnerProcess(actIndex) = the destination process in case of a send activity and the origin
process in case of a receive activity.

msgName(actIndex) = the name of the incoming message in case of a receive activity or
the name of the outgoing message in case of a send activity.

msgDyeId(actIndex) = the dyeID of the incoming message in case of a receive activity or
the name of the outgoing message in case of a send activity.

entryName(actIndex) = the name of the target entry in case of a send activity and the name
of the new entry in case of a receive activity with type NEW_RCV.

 Page 95

Algorithm 1 Generate_message_id

Define: msgCount(p) = a counter for all messages sent out by process p.
 dyeRcvd(p) = the dyeId of the last message received by process p

Begin
Initialize msgCount(p) = 0; for every process p in the system
for actIndex =1 to LastActivity(traceFile)

define currActivity = actName(actIndex)
if currActivity is SEND

sender = activeProcess(actIndex) //define the sender process
msgCount(sender) = msgCount(sender) + 1 // increment message counter.
if (sender) is ENV

then msgDyeId(actIndex) = msgCount(sender)
else msgDyeId(actIndex) = dyeRcvd(sender)+’.’+msgCount(sender)

endif
endif
if currActivity is RECEIVE

receiver = activeProcess(actIndex) // define the receiver process
find in the trace-table the send activity, with an activity index

 “SendActIndex”, that satisfies the following condition:
((msgName(SendActIndex) == msgName(actIndex)) &&
(partnerProcess(SendActIndex) == activeProcess(actIndex)) &&
(activeProcess(SendActIndex) == partnerProcess(actIndex)))

if (no match was found)
then report an error “inconsistent trace” and exit
else dyeRcvd(receiver) = msgDyeId(SendActIndex)

msgDyeId(actIndex) = msgDyeId(SendActIndex)
endif

endif
endfor

End

 Page 96

Algorithm 2 Identify_message_types
Begin

Initialize DyesSent to {}
for actIndex =1 to LastActivity(trace_file)

Let currActivity = actName(actIndex)
if currActivity is SEND then

Let currDyeId = msgDyeId(actIndex)
actType(actIndex) = UN_DEFINED
append currDyeId to DyesSent
senderIndex(currDyeId) = actIndex //store the index of the current activity

endif
if currActivity is RECEIVE then

currDyeId = msgDyeId(actIndex)
actType(actIndex) = NEW_RCV // the default type of activity receive is NEW_RCV
let receiver = activeProcess(actIndex)
search the set of DyesSent for a “sourceDyeId” that satisfies the following condition:

 ((sourceDyeId is is a prefix of currDyeId) &&
 (receiver == activeProcess(senderIndex(sourceDyeId)) &&
 (actType(senderIndex(sourceDyeId)) has not been defined yet)).

If (match was found)
then // the message received is a REPLY. So. an RPC pattern is detected.

//Update the type of the receive activity to REP_RCV, and send activity to RPC//
actType(actIndex) = REP_RCV
actType(senderIndex(sourceDyeId)) = RPC
// Update the type of the intermediate send activities along the RPC path
// to type FWD except the type of the last send activity, update its type to REP.
Repeat for every “dyeId” in the set of DyesSent

if ((sourceDye is a prefix of dyeId) && (dyeId is a prefix of currDyeId) &&
(actType(senderIndex(dyeId)) has not been defined yet))

then // dyeId belongs to the the RPC pattern.
if (dyeId = currDyeId)

then // last message in the RPC pattern.
// Change the type of the send activity to REP.
actType(senderIndex(dyeId)) = REP

else // an intermediate msg. in the RPC pattern.
// Change the type to the send activity to FWD
actType(senderIndex(dyeId)) = FWD

endif
endif

endRepeat
endif

endif
endfor

set the type of all UN_DEFINED send activities to ASY
End

 Page 97

Algorithm 3 Identify_process_services(entries)

Begin
Initialize serviceCount(p) = 0; for every process p in the system
for actIndex = 1 to LastActivity(trace_file)

if ((actName(actIndex) is RECEIVE) && (actType(actIndex) is NEW_RCV))
then // assign a new service to the current process.

receiver = activeProcess(actIndex) //define the receiver process
currDyeId = msgDyeId(actIndex)
++serviceCount(receiver)
serviceName(actIndex) = receiver + “_”+serviceCount(receiver)
targetService(currDyeId) = serviceName(actIndex)

endif
endfor
for actIndex = 1 to LastActivity(trace_file)

if (actName(actIndex) is SEND)
then serviceName(actIndex) = targetService(msgDyeId(actIndex))
endif

endfor
End

 Page 98

Chapter 5: The Optimization

Strategy

5.1 Introduction

This chapter describes an optimization technique for obtaining compliance with response

deadlines. A design is considered to be compliant to all requirements (and thus, feasible) if, for

every scenario, the probability that its response time exceeds its deadline is less than some

threshold; this threshold can be set to zero in hard real-time systems.

The technique improves a non-compliant design by making incremental changes to the

design. The approach taken is to identify the factors that might contribute to the problem, rank

them, and from the ranking generate a design change. The candidate factors to be considered are

the task priorities, the task allocations to processors, and the constraints imposed by the task

structures (which will be altered only to a limited degree).

The proposed methodology consists of two phases: An initialization phase and an

optimization (refinement) phase. The goal of the initialization phase is to efficiently find a good

initial configuration or solution (task allocation and priority assignment) for the design. The goal

of the optimization phase is to improve the initial design in a series of steps, and make it

compliant with all requirements.

To improve the performance of a non-compliant design, the contributor(s) for performance

problems must first be identified so that proper design change(s) can be recommended. The

 Page 99

possible contributors considered here are wrong design decisions on task priority, task allocation

and/or task structuring,

Identifying the most significant contributor, and consequently the recommended design

change, is difficult because of the close interaction and trade-offs between these design

decisions. For example, reallocating a task T to a processor P will increase the computational

load on P, but may reduce the communication overheads (if T communicates with tasks on P),

hence reducing the response time. The trade-offs can become very complex as the real-time

architecture becomes more expressive; so a simple and scalable approach is required.

In this research, the design optimization process is formulated as a global optimization

problem and an incremental heuristic technique is proposed to solve it. At each step, the design

is evaluated. If the design is non-compliant with any of the requirements, possible contributing

factors are analyzed, a key factor is determined and some priority changes are recommended.

The new configuration is then evaluated and the quality of the solution is estimated. This is

repeated, as shown in Figure 5.1, until either a feasible solution is found or some stopping

criteria are satisfied. If the search on priorities converges without obtaining feasibility, then a

structural change is introduced (a design reshaping), and the search is restarted for priorities.

 Page 100

Figure 5.1 A procedure for building feasible real-time systems

5.2 Finding an Initial Design Configuration

The goal of this phase is to determine a good task allocation and priority assignment for the

design. The task allocation subproblem is solved first, then the priority assignment subproblem.

However, instead of attempting to find the “best solution” for each subproblem, we focus on

efficiently determining a reasonably good initial solution to the combined problem.

We use the MULTIFIT-COM allocator [Woodside93] to solve the task allocation

subproblem, and a simple deadline-based priority assignment method to assign priorities to tasks

Begin // Procedure for building feasible real-time systems.
Phase1: Initialization

- Find an initial task allocation and priority assignment
- Evaluate the initial design (solve LQN model)
- If all scenarios are compliant with performance requirements then STOP
- Estimate solution quality.

Phase2: Optimization
- Repeat // Refine design configuration.

- Identify key factor.
- Recommend a configuration change.
- If (no configuration change can be generated) reshape design
- Evaluate recommendation (solve new LQN model)
- If recommendation leads to a compliant system EXIT.
- Estimate solution quality.
- If (solution quality improves)

- save current (best) design configuration.
 else
 - if (the search converged without obtaining feasibilities)
 - restore best design configuration.
 - reshape design.

 endif
 endif
 - Until (some predefined stopping criterion has been met)
End // Procedure

 Page 101

[Sun96]. In the deadline-based methods, a priority is assigned to a task inversely proportional to

its relative deadline as was discussed in Section 2.4.3.2.

5.2.1 Finding an initial task allocation using MULTIFIT-COM

The MULTIFIT-COM algorithm allocates a single application system in such a way to

maximize system throughput (minimize the computational and communication resource

requirements for tasks in the system), by reducing bottlenecks. Although the allocator does not

consider schedulability issues during allocation, we use it based on the observation that faster

systems (i.e., ones which maximize system throughput), or systems that have balanced load, are

more likely schedulable [Chu89], [Santos97], [Houstis90].

As MULTIFIT-COM is designed to allocate a single application system, it assumes that all

tasks in the system have the same invocation rate and each task is visited only once during the

application cycle. Hence, it uses the computation time of tasks as estimate for task sizes, and the

total communication cost between two tasks as an estimate for the communication overheads. In

the case of LQN models, however, a model can include several applications (scenarios), with

different invocation rates, that can run concurrently. So it is very possible to find tasks in LQN

models that are involved in many scenarios (each scenario may have a different invocation rate).

Moreover, the number of visits to tasks are not the same in the model, some tasks may be visited

more than others. Accordingly, to be able to allocate LQN models using MULTIFIT-COM, we

need to use a different measure for task sizes and communication overheads between tasks

This work uses the total workload on a task as an estimate for its size and the total overheads

due to message exchange between any two tasks as an estimate to the communication overhead

between them. The metric for estimating the size of task T is given below in equation (5.1) and

the metric for estimating the communication overheads between tasks T1, T2 is given in

 Page 102

equation (5.2).

In equations (5.1) and (5.2), the set of entries of task T is , and an entry e is

regarded as a set of activities . The invocation rate of an external entry

, which is triggered by an external event, is set equal to the arrival rate or 1/period

of the event (message) that triggers the entry. The invocation rate of an internal entry, which is

triggered by a message sent by other entry(ies) in the model, is determined by a special recursive

equation as shown in equation (5.1). The term represents the

executionDemand e() executionTime activity()
activity∀ activities e()∈

∑=

taskSize T() executionDemand e() invocRate e()× (5.1)
e entries T()∈∀

∑=

invocRate e()

arrivalRate e() if e has an open arrival

1 peroiod e()⁄ if e is periodical

NoMsgs e0 e,() invocRate e0() ×
e0∀ predecessor(e)∈

∑

=

where predecessor(e) is the set of entries that calls e

CommOV T1 T2,() CommOV e T2,()
e entries T1()∈∀

∑ +=

where CommOV e T,() commCost m() invocRate e()×
m∀ messages from e to T∈

∑=

CommOV e T1,()
e entries T2()∈∀

∑ (5.2)

entries T()

activities e()

invocRate e()

executionTime activity()

 Page 103

execution cost (demand) of the activity in msec. The term represents the

overhead (cost) in msec. associated with sending and/or receiving message m.

Once the task size and CommOV values are obtained, MULTIFIT-COM can be applied with

one of the eight policies discussed in Section 2.4.2.1. The MULTIFIT-COM allocator was used

here because it is efficient as well as available.

5.2.2 Finding an initial priority assignment

Initial priorities are assigned to tasks using a simple deadline-based method, called

“Proportional-Deadline” [Sun96], which assigns priorities to tasks according to their

proportional deadline. The longer the proportional deadline of a task, the lower the priority of

the task. The proportional deadline of a task is obtained by dividing the global deadline of its

parent transaction among its tasks proportionally to their execution times.

The “Proportional-Deadline” method was used here because it is efficient as well as simple

to implement.

5.3 Evaluating a System Design

 In this step the performance model of the design is solved by simulation. In this work the

models are all layered resource models, and the simulation component of the Layered Queueing

Network Solver (LQNS) [Franks95] was used to get the performance metrics. Then the

probability that the estimated response time of each scenario (thread) exceeds the corresponding

end-to-end requirement value is checked; the end-to-end performance requirements (deadlines)

of scenarios are specified by the system users using the textual interface of the model-builder

tool, as was described in Chapter 4. The probability of exceeding deadline is estimated for each

commCost m()

 Page 104

scenario to a specified percentage accuracy (given as a 95% confidence interval).

A system is asserted to be non-compliant if at least one scenario in the system is non-

compliant. A scenario is considered to be non-compliant with its performance requirements if

the probability that the computed scenario response time exceeds the scenario response time

requirement is greater than the pre-specified threshold value. The threshold value would be set

to zero in hard real-time systems.

5.4 Estimating the Solution Quality

In many systems, a design can be evaluated by the magnitude of a single number, for

example the total execution time of all scenarios. Here, however, performance can not always

be characterized by a single number, since there can be several responses, each with its own

deadline to meet and the satisfaction of these deadlines is more important than shorter overall

average delays.

In this thesis, we propose a penalty measure (criterion) which estimates how far the entire

design is from being feasible. The measure is used at each step by the search algorithm to

determine whether it is moving in the direction of performance improvement or not. The penalty

is zero for a feasible design.

The penalty measure is calculated by summing up the criticality metric of all scenarios in the

system as shown in equation (5.3), in which the criticality of a scenario defines the penalty

assigned to the scenario when it does not comply with its deadline requirement. The behavior of

the criticality metric is shown in Figure 5.2. The exponential power is used to emphasize the

penalty assigned to scenarios with bigger probabilities of exceeding deadline. The bigger the

probability that a scenario response time exceeds its deadline, the higher the value (penalty) that

 Page 105

will be assigned to its criticality metric. Furthermore, the parameter is used to further

emphasize the penalty assigned to scenarios with bigger probabilities of exceeding deadline. On

the other hand, if the probability that a scenario response time exceeds its deadline is found to

be zero, the scenario will be identified as an uncritical scenario and its criticality metric will be

set to zero.

Figure 5.2 The behavior of the Criticality metric

The penalty measure tells how far the design (solution) is from being feasible. The smaller

the penalty measure the closer the solution is to the optimal solution. A penalty measure of zero

indicates a feasible (compliant) design.

β

SolutionPenalty CriticalityS (5.3)
S Scenarios∈()∀

∑=

CriticalityS

0 probExceedDeadline α≤

e
β ProbExceedDeadline×

probExceedDeadline α>

=

α β, are design decision parameters. For examplewhere α 0.05= β 15=

α 1

e
β

e
αβ

ProbExceedDeadline

CriticalityS

 Page 106

5.5 Design Optimization

As we discussed earlier an unfortunate design decision on assignment of task priority, task

allocation and/or task structuring could be the possible contributor for performance problems.

In this work, first we will concentrate on diagnosing and improving performance problems by

adjusting priority assignment until the solution converges without obtaining feasibility. Then use

the other two design decisions (i.e. task allocation and structuring) to reshape the design, and the

search is restarted again for priorities. The motivation for doing this is that improving on an

existing priority assignment will not affect the decisions made earlier on task allocation and/or

task structuring. This non-interacting property will allow us to easily isolate the bottlenecks due

to priority assignment and make our adjustment accordingly.

The following subsections discusses the various steps in the optimization strategy, namely

the priority adjustment process and the reshaping strategy.

5.5.1 Design improvement using priority adjustment

To adjust priorities to improve the value of SolutionPenalty, this work identifies a task whose

priority can usefully be raised. A trivial strategy, to consider every task, would be wasteful. A

random choice would make slow progress. The strategy we propose here for identifying the

tasks, whose priorities need to be changed, is to concentrate on the tasks that were involved in

performing the non-compliant scenarios and consider them as contributors for problem failures.

To further identify the most significant task, a metric () is defined in Equation

(5.4) below to estimate the significance of task T. The metric combines values of

, which measure the delays and overheads in T during the execution

of scenario S, including a weighting factor which emphasizes scenarios with deadlines misses.

TaskMetricT

TaskScenarioMetric
T
S

 Page 107

The metric is also normalized by task utilization to emphasize the impact on tasks with low

utilization.

The measured values, per scenario in task T, are the total waiting time at activities in T, along

the critical path of the scenario () and the communication overhead excess

due to inter-processor communication ().

The () is the difference between two components. The

UT

* Activities
T
S

set of activities of task T that are on the critical path of scenario S≡

TaskMetricT
1

UT
------- TaskScenarioMetric

T
S

CriticalityS×
S Scenarios∈∀

∑×= (5.4)

TaskScenarioMetric
T
S

TaskWaitMetric
T
S

TaskCommOVExcessMetric
T
S

+=

* nonLocalMsgs
T
S

set of non local messages of task T that are on the critical path of scenario S–≡

* LocalMsgs
T
S

set of local messages of task T that are on the critical path of scenario S≡

* noT etCPUsarg
T
S

no of CPUs that task T communicates with during the execution of the critical path of S≡

TaskWaitMetric
T
S

WaitingTimea

a Activities
T
S∈()∀

∑=

TaskCommOVExcessMetric
T
S

CommOVm

m nonLocalMsgs
T

S∈()∀
∑

noT etCPUsarg
T
S

---=

CommOVm

m LocalMsgs
T

S∈()∀
∑–

Where

TaskWaitMetric
T
S

TaskCommOVExcessMetric
T
S

TaskCommOVExcessMetric
T
S

 Page 108

first component is the average cost of communication by task T with all CPUs other than the one

which is already assigned to, and represents the maximum amount that the communication costs

of T can decrease if the task is reassigned to another CPU. The second component represents the

cost of communications by T with all tasks currently assigned to the same CPU as T, and

represents additional communication costs that T will incur if moved to another CPU.

The taskMetric characterizes the impact of the weight of task T (i.e. waiting delays and

communication overheads) on the response time of scenarios. The higher the value of the metric,

the worse (the more significant) is the effect of task T on scenarios response times. Accordingly

the critical performance factors are the tasks that ranked high according to the task metric, and

the recommendation that gives the highest reward towards performance improvement is to

increase the priority of the most significant (critical) task. This recommendation was chosen

after performing some exploratory work with more tasks from the ranking without observing

obvious benefit.

There is no proof that this technique always work; however, extensive experience gives

some confidence as will be seen in Chapter 6.

5.5.2 Design reshaping

Once you have done your best with priorities, if more improvement is needed, other factors

must be changed to reshape the design. In this work, the design was “reshaped” by reallocating

and/or splitting up some tasks and the priority search was restarted. Design reshaping was

needed in two situations: (1) when the candidate (most significant) task identified for priority

adjustment was already the highest priority task on the CPU, or (2) when the solution quality did

not improve after N priority adjustment steps, where N is a design decision parameter. N was

assigned the value 6 in this research.

 Page 109

The strategy we propose here to reshape the design is shown in Figure 5.5. First we try to

reallocate the most significant task to another CPU. If the reallocation process is not feasible

because of some allocation constraints or if the task has been reallocated before then we try to

split the task. If task splitting strategy is not feasible, because for example the candidate task has

only one entry, then we consider the next candidate task. The reshaping phase iterates between

these steps, as shown in Figure 5.5, until a reshaping step is made or until there is no more

candidate task to consider.

5.5.2.1 Reshaping using task allocation

Task allocation is concerned with the assignment of tasks to processors. Alternative

assignment schemes may affect many different performance attributes, including thread service

times, processor utilizations, and intertask communication overheads.

The task that will be selected for reallocation (the candidate task) is the one that ranks first

according to the TaskMetric criterion (equation 5.4), does not have any allocation constraint, and

has not been reallocated before. This task will be allocated to the CPU which ranks last

according to CPU metric, which is defined in equation (5.5).

The CPU metric for CPU “C’ is based on the summation of the TaskMetric (equation 5.4) of

all tasks on “C”, weighted by the current utilization of “C’, . Accordingly the higher the

value of the CPU metric, the higher the risk of missing deadlines if the candidate task is allocated

on the CPU. Thus, the candidate task is always allocated to the CPU which rank last according

CPUMetricC TaskMetricT

T allocated on C()∀
∑ UtilC× (5.5)=

UtilC

 Page 110

to the CPU metric, provided that it is not prevented by an allocation constraint.

5.5.2.2 Reshaping using task restructuring

Task structuring is concerned with packaging software functions into tasks. Task structuring

has a great impact on performance. It affects the degree of parallelism that can be achieved and

also has an effect on priority assignment and task allocation. More importantly, a wrong design

decision on task structuring, namely packaging critical and non-critical functions into one shared

task, can introduce a phenomenon that is similar to the priority inversion. In priority inversion,

a higher priority task is forced by some mechanism to wait for a lower priority task to complete.

Priority inversion can happen where multiple scenarios, with different real-time

requirements, share a common task as shown in Figure 5.3(a). Suppose the path leading from

event e1 is critical and all the tasks along that path are high priority tasks. However, the path can

still suffer from an excessive queueing delay at task T5, if task T5 is busy serving less critical

requests submitted earlier by other tasks in the system. Priority inversion can also happen within

the execution of a single scenario, when multiple threads with various real-time requirements

share a common task. Consider for example the design shown in Figure 5.3(b). Because the

request to entry c1 in task C is sent before the request to entry c2, entry c1 will always be called

before entry c2. Accordingly, entry c2 will always suffer from waiting times at task C regardless

of its priority level. So, a good design decision to be considered in such cases is to restructure

(split) the shared task C into two or more sub-tasks and give a high priority to the more critical

subtask(s).

 Page 111

Figure 5.3 An illustration of the priority inversion problem during the execution of
multiple scenarios (a), or a single scenario (b)

The strategy proposed for task structuring tries to eliminate the situations that may cause the

priority inversion problem to appear. It splits a candidate task into two subtasks such that the first

subtask contains the entry that suffers the most from waiting time (i.e. ranked first according to

entry metric, equation (5.6)) while the second subtask contains the remaining entries.

The priorities of the generated subtasks are derived from the priority of the original (parent)

task as follows. If the priority level of the parent task is p, assign a priority level of p+1 to the

first subtask, that includes the critical entry that experiences excessive waiting, and a priority

level p to the second subtask.

By splitting a suspect task and adjusting the priority of the generated subtasks as was

e1 e2 e3

T1 T2 T3

T5

T4

T6
e51 e52 e53

ENV

Task A

Task C

stim1

m1 m2

m3

entry C1 entry C2

c2

a1

c1

b1

Task B

CPU

(a) (b)

entryMetric
e
S

WaitingTimea CriticalityS×
a Activities

e

S∈()∀
∑= (5.6)

 Page 112

described above, waiting times at critical entries will be eliminated if they were due to queueing

at the original task. Also, even if this was not the case, the finer granularity of the generated

subtasks will enhance the degree of parallelism that can be achieved. In addition, it will give

more flexibility to the search technique in finding a good task allocation and priority assignment.

5.5.3 Summary of the design optimization process

 Figure 5.4 shows the 4 main stages of the optimization strategy as well as the interaction

between them. A more detailed flowchart of the optimization process is shown in Figure 5.5.

The purpose of each stage is given below.:

• The “Initialization” stage. This is an optional stage and used to find a good initial task

allocations and priority assignmnets if they were not specified in advance.

• The “Evaluate Model” stage. This stage solves the LQN model and checks its

feasibility. If it finds the solution feasible, it terminates the optimization process with

success. Otherwise, it estimates the solution quality. If it finds that the solution quality

has improved over that of the last step, it transfers control to the “Recommend Config.

Change” stage. Otherwise, depending on some criteria, control may be transferred to

the “Reshape Design” or “Recommend Config. Change” stage.

• The “Recommend Config. Change” stage. This stage sorts tasks according to taskMetric

(equation 5.4) and increases the priority level of the most significant “candidate” task.

• The “Reshape Design” stage. This stage first tries to reallocate or split the candidate

task. If it succeeds, it switches control to the “Evaluate Model” stage. Otherwise, it will

consider the next task in the sorted list. This process is repeated until one task is

reallocated or splitted. If the sorted list is exhausted without success, the optimization

strategy will be terminated with Failure.

 Page 113

Figure 5.4 The 4 main stages of the optimization strategy

Stop
Success

 Recommend Config. Change
• rank tasks according to the

Significance Metric
• increase the priority of the most

sign. (candidate) task

Initialization (optional)
(task alloc. and priority assignment)

 Reshape Design
• reallocate/split one of

the significant tasks

Start

Stop
Failure

• candidate task has the highest priority,
OR

• priority adjustment has been tried n
times (e.g. 6) without success

no. of trials
exceeded
some limit

no more
significant
tasks

 Evaluate Model
• Solve LQN Model
• Interpret Results
• Estimate solution quality

 Compliant
 design

 Page 114

Figure 5.5 A detailed flow chart for the design optimization

worseSolnCounter Yes

Yes

Start

Yes

Solve new Model

Estimate solution quality

 feasible
solution?

 better
solution?

save current (best) config.
reset worseSolnCounter
rest all allocationFlags

++worseSolnCounter

Reshape
Design

No

 Candidate Task
has been reallocated
 before?

Yes

reallocate candidate task
set task allocation flag

try to split
candidate task

Stop

Evaluate
Model

Reshape
 Design

Recom
Config
Change

Succeded

Evaluate
Model

Yes

increment trialsCounter

 trialsCounter >
 MaxNoTrials

Stop
Failure

Success

 < 6

no more
tasks?

Yes

restore Best Config

Legend

Stage entry/label

Stop

Initialization

Stop
Failure

• Sort tasks according to
TaskMetric

• Set Candidate task to be
the most significant task

 CandidateTask has
the highest priority?

Yes

Increase the priority
of candidateTask

Evaluate
Model

Reshape
Design

Succeded

Yes

consider next
candidate task

 Page 115

5.6 A Tutorial Example

In this section we will demonstrate the application of the optimization steps in Figure 5.5 on

the application example shown in Figure 5.6. In this example, the initial task allocation and

priority assignment were done manually in such a way to illustrate some features in the

improvement steps. For example, the priorities were assigned to processes in the reverse order

of criticality which represents the worst case scenario as far as the priority assignment is

concerned.

Figure 5.6 A tutorial example

ENV

Process A

Process C

stim1

m1 m2

m3

entry C1 entry C2

c2

a1

c1

b1

Process B

CPU1

m4
d1

ENV

Process D
stim2

Process E

entry E1

e1

Work Load

CPU2

prio(A) = 1
prio(B) = 1
prio(C) = 1
prio(D) = 2
prio(E) = 2

a1=12
b1=15
c1=30
c2=15
d1=18
e1=10

period(stim1) = 70
period(stim1) = 70

 Perf. Requirements

deadline(stim1) = 60
deadline(stim2) = 70

Prio. Assignment

RPC request

Forwarded RPC

Asynchronous message

Legend

a1 Computation activity

Communication activity

Activity Cost Message Cost
stim1=0
stim2=0
m1=0
m2=0
m3=0
m4=0

 Page 116

5.6.1 Experiment #1

In this experiment, the model (shown in Figure 5.6) was solved using the LQN solver. The

results are given as step 0 in Table 5.1, and show a response time to stim1 of 70 msec, which is

non-compliant because it exceeds its requirements of 60 msec. The response time to stim2 is

compliant. The optimization strategy was applied to the non-compliant design and managed to

find a feasible design in 6 steps as shown in Steps 1 to 6 in Table 5.1, using only changes in

priority. The algorithm did not apply re-allocation or task restructuring because the number of

steps that gave no improvement did not exceed the threshold (set at 10 steps).

step
Candidate

task
Action

Resp.
times to

stim1 & stim2

Prob. of
missing
deadline

Solution
penalty

metric Eqn
(5.3)

0 70.004
28.000

1.000
0.000

3269017

1 A Adjust Priority
current Priority order: D > A = B
new priority order : D > A > B

70.004
28.000

1.000
0.000

3269017

2 A Adjust Priority
current Priority order: D > A > B
new priority order : D = A > B

70.004
28.011

1.000
0.000

3269017

3 A Adjust Priority
current Priority order: D = A > B
new priority order : A > D > B

67.000
40.000

1.000
0.000

3269017

4 B Adjust Priority
current priority order : A > D > B
new priority order : A > D = B

67.000
40.000

1.000
0.000

3269017

5 B Adjust Priority
current priority order : A > D = B
new priority order : A > B > D

67.000
55.000

1.000
0.000

3269017

6 C Adjust Priority
current priority order : E > C
new priority order : E = C

57.000
67.000

0.000
0.000

0

Table 5.1 The optimization steps of Experiment #1

 Page 117

5.6.2 Experiment #2

In this experiment the problem of achieving feasibility is made more difficult than in

Experiment #1, by increasing the execution demands along the critical path of one scenario (or

in other words to reduce the laxity of the scenario) on the behavior of the optimization method.

The cost of activity c2, in the model shown in Figure 5.6, is increased to 20 to reduce the

laxity of the stim1 scenario. When the model was solved, the results were found not compliant

with the performance requirements, as shown in Step 0 in Table 5.2, because the response time

of stim1 exceeds its deadline requirement. The optimization strategy was applied to the non-

compliant design and managed to find a feasible design in 10 steps as shown in Steps 1 to 10, in

Table 5.2. During the first 7 steps, the optimization procedure was mainly applying the priority

adjustment strategy. However, at step 8, a reshaping step was required because the candidate task

selected for priority adjustment (task C) is already the highest priority task on its CPU (CPU2).

The reshaping mechanism tried first to reallocate the task to CPU1, however it did not

implement this option because it will increase the utilization on CPU1 beyond the threshold limit

(set at 95%). So, the reshaping mechanism chose to split task C instead into two tasks C_1, C_2,

and assign task C_1, which contains the most critical entry “entry C2”, a higher priority than

C_2. After the reshaping step, the optimization procedure iteratively applied the priority

adjustment strategy until it found a feasible solution as shown in Steps 9 and 10 in Table 5.2.

5.6.3 Experiment #3

This experiment has communication overheads when sending and receiving messages. An

overhead cost of 0.1ms is included for each message, at both the sending and the receiving

process. Table 3 shows the results. Again, the model was initially found not compliant with the

performance requirements. The optimization procedure applied the priority adjustment strategy

 Page 118

during the first 4 steps. At Step 5, a reshaping step was required because the candidate task

selected for priority adjustment (task E) was already the highest priority task. The design was

then adjusted, by reallocating task E, and the optimization procedure iteratively applied the

priority adjustment procedure until a feasible design was found.

 Page 119

Step
Cand.
task

Action
Resp. times
to stim1 &

stim2

Prob. of
missing
deadline

Solution
penalty

metric Eqn
(5.3)

0 70.00
28.00

1.000
0.000

3269017

1 A Adjust Priority
current Priority order: D > A = B
new priority order : D > A > B

70.00
28.00

1.000
0.000

3269017

2 A Adjust Priority
current Priority order: D > A > B
new priority order : D = A > B

70.004
28.011

1.000
0.000

3269017

3 A Adjust Priority
current Priority order: D = A > B
new priority order : A > D > B

72.41
32.61

1.000
0.000

3269017

4 B Adjust Priority
current priority order : A > D > B
new priority order : A > D = B

72.34
34.52

1.000
0.000

3269017

5 B Adjust Priority
current priority order : A > D = B
new priority order : A > B > D

72.34
41.26

1.000
0.000

3269017

6 C Adjust Priority
current priority order : E > C
new priority order : E = C

62.00
69.14

1.000
0.001

3269018

7 C Adjust Priority
current priority order : E = C
new priority order : C > E

62.00
69.14

1.000
0.001

3269018

8 C Adjust Priority
Candidate task has highest priority
===> RESHAPE design
1) reallocating candidate task
if Candidate is reallocated to CPU1, new
utilization will exceed 0.95.
===> try split candidate task
2) splitting candidate task
current priority order : C > E
new priority order : C_1 > C_2 > E

47.00
69.14

0.000
0.001

1.013

9 E Adjust Priority
new priority order : C_1 > C_2 >E
new priority order : C_1 > C_2 = E

47.00
69.14

0.000
0.001

1.013

10 E Adjust Priority
new priority order : C_1 > C_2 = E
new priority order : C_1 > E > C_2

47.00
57.00

0.000
0.000

0.000

Table 5.2 Optimization steps of Experiment #2

 Page 120

step
Cand.
task

Action
Resp.

times to stim1
& stim2

Prob. of
missing
deadline

Solution
penalty

metric Eqn
(5.3)

0 70.00
30.00

1.000
0.000

3269017

1 A Adjust Priority
current Priority order: D > A = B
new priority order : D > A > B

70.00
30.00

1.000
0.000

3269017

2 A Adjust Priority
current Priority order: D > A > B
new priority order : D = A > B

71.36
30.30

1.000
0.000

3269017

3 C Adjust Priority
current priority order : E > C
new priority order : E = C

70.02
36.54

1.000
0.000

3269017

4 C Adjust Priority
current priority order : E = C
new priority order : C > E

77.50
77.51

1.000
1.000

6538034

5 E Adjust Priority
current priority order : C > E
new priority order : E = C
Current priority order has been visited
befor ===> Adjust priority
new priority order : E > C
Current priority order has been visited
befor ===> Adjust priority
Candidate task has highest priority
===> RESHAPE design
 reallocate candidate task to CPU1
new priority order: E = D = A > B

70.02
40.00

1.000
0.000

3269017

6 A Adjust Priority
current Priority order: E = D = A > B
new priority order : A > E = D > B

70.00
41.00

1.000
0.000

3269017

7 B Adjust Priority
current Priority order: A > E = D > B
new priority order : A > E = D = B

70.00
56.00

1.000
0.000

3269017

8 B Adjust Priority
current Priority order: A > E = D = B
new priority order : A > B > E = D

59.00
57.00

0.000
0.000

0

Table 5.3 Optimization steps of Experiment #3

 Page 121

Chapter 6: Evaluation of the

Framework

This chapter evaluates the framework developed in the thesis, in three ways:

1) Its applicability to real systems is tested by an industrial example. Section 1

describes the use of the framework to model and evaluate the performance of a real-

life system: Automatic Protection Switching in a 2-fiber Bidirectional Line

Switching Ring (BLSR) network [Bellcore95].

2) Its effectiveness, compared to other recently published and completely different

approaches. Section 2 describes its application to two examples from the literature.

3) Its effectiveness over a large number of randomly generated problems of varying

degree of difficulty. Section 3 describes how these problems were generated, and

the results of the optimization method applied to 3000 systems.

6.1 The Automatic Protection Switching Case Study

In this case study, the framework was used to model and evaluate the performance of an

automatic protection switching scenario in a 2-fiber BLSR network. The network has up to 16

nodes connected in a ring with each pair of adjacent nodes connected by a pair of fibers (one in

each direction). Each node in the network consists of a pair of subnodes, corresponding to the

two sides of the node. A 16-node 2-fiber BLSR network is shown in Figure 6.1

Protection capability, against network failure, is provided by having one of the subnodes

being in standby mode while the other is the active traffic carrying subnode. When the active

 Page 122

subnode fails, the standby subnode will take over automatically as the active subnode and carry

on the traffic.

For a single failure on a ring with less than 1200 KM of fiber, the protection operation is

required to complete within 50 msec. An appropriate part of the 50 msec will be allocated to each

node in the network based on the nature of the operations performed by the node during

protection switching.

The next two subsections illustrate how protection switching is accomplished in response to

a Loss of Signal (LOS) failure condition. The first subsection describes the high level behavior

at the network level and shows the actions taken by each node. In the second subsection, a

detailed sequence of actions on a node by node basis will be discussed.

Figure 6.1 A 16-node 2-fiber BLSR network

6.1.1 Automatic Protection Switching at the network level

This section illustrates how protection switching reacts to a Loss Of Signal (LOS) failure

condition. For the purpose of this discussion, the network is assumed to be idle and a uni-

Node 1
Node 2

Node 3

Node 16

Node 15

 Page 123

directional fiber cut occurs on the fiber from node 16 to node 1. The failure is described as

occurring on the fiber from node 16 to node 1, but the 31 other possible fiber failures are all

symmetrical with this one and lead to essentially the same scenario, with just a node

renumbering.

As soon as the failure occurs, the adjacent subnode on node 1 detects the failure as a LOS

condition and initiates the following sequence of events:

Step1: Upon detecting the LOS failure, Node 1 sends a protection request message to
Node 16 over the short and long path and enters the switching state. The short
path request is sent directly to node 16, where as the long path request is sent
to node 16 through node 2, 3,.... and 15.

Step 2: Upon receiving the short path request, node 16 sends a long path request
indirectly to node 1 through node 15, 14,.... and 2.

Step 3: As the long path request sent by node 1 in Step 1 is traversing node 2 through
15, each of these nodes sees that the request is not addressed to it. So, each
node immediately acts as an intermediate node, enters full-passthrough state
and forwards the request on to its destination

Step 4: Similarly, as the long path request sent by node 16 in Step 2 is traversing node
15 through 2, each of these node will become intermediate node.

Step 5: Upon receiving the long path request sent by node 1, node 16 executes the
bridge and switch operations and updates the protection status field in its K1 and
K2 bytes (The K1 and K2 bytes are included in every SONET frame and used to
transport protection switch requests to the appropriate nodes on the ring).

Step 6: Upon receiving the long-path request, node 1 performs the traffic bridge and
protection switch operation and updates its K1 and K2 bytes.

 Protection Switching is now complete.

The result of the protection switching operation is that the failed fiber segment, between

node 1 and node 16, has been isolated and the traffic has been switched away from that.

6.1.2 Automatic Protection Switching on a node by node level

Figure 6.2 shows the SDL processes that participate in the automatic protection switching

 Page 124

scenario, as well as the way they interact. A brief description of the role of each process is given

below.

• Fault Handler (FH): responsible for detection and handling of faults.

• Protection FSM (PFSM): responsible for implementing the BLSR protection protocol.

• Protection Controller (CTRL)

• Switching Manager (SM): responsible for control of the switch ASICs during normal and
protection operations.

• Squelch Manager (SQM): responsible for traffic squelching to ignore further alarms.

• Auditing Manager (AM): responsible for traffic auditing.

• Mate Handler (MH): responsible for sending and receiving messages to and from the
mate protection handler over the M2M link.

• Report Generator (RT)

Figure 6.2 Software Architecture of The Automatic Protection Switching System

Depending on the type of message which a node receives during automatic protection

switching, one of the following three scenarios can take place on the node.

FH PFSM C TR L SM

SQ M

AM

M H
M H

A M

SQ M

SM C TR L PFSM FH

R T R T

Su b-node A S ub-nod e B

N ode 1
N ode 2

Node 3

Node 16

N ode 15

S how s flow of m essages if protection request com es from left (I.e . from N ode 16)

S how s flow of m essages if protection request com es from right (I.e . from N ode 2)

 Page 125

1) The first sub-scenario describes the behavior of a node when it receives a LOS

signal (For example, Node 1 in our case), or a “short_path” request (For example,

Node 16 in our case). This scenario is shown in Figure 6.3.

2) The second scenario describes the behavior of an intermediate node (For example,

Node 2 - Node 15 in our case), when it receives a “long path” request. This scenario

is shown in Figure 6.4.

3) The last scenario describes the behavior of Node 1 and Node 16, when it receives a

“long path” request. This scenario is depicted in Figure 6.5.

 Scenario 1: Loss of signal scenario on node 1 after receiving the fault signal

Figure 6.3 describes the interactions among the processes and the sequence of actions that

takes place on node 1, when it receives a fault signal. A similar scenario is also executed on node

16 when it receives the short_path request sent by node 1. A brief description of the scenario is

given below.

Step 1: LOS is detected by the Fault Handler (FH_1_A) of node 1, subnode A.

Step 2: FH_1_A sends a Signal Failure Ring (SF-R) message to the Protection FSM
process (PFSM_1_A).

Step 3: PFSM_1_A processes the message and sends the resulting actions to the
protection Controller process (CTRL_1_A).

Step 4:

i) CTRL_1_A instructs the Mate Handler on the other subnode of node 1
(MH_1_B), over the M2M link, to take the actions required for the SF-R request.

ii) CTRL_1_A sends a “short path” request message to the Fault Handler (FH_1_A)

iii)CTRL _1_A instructs the Switch Manager (SM_1_A) to perform a traffic bridge
operation.

iv)CTRL_1_A sends a message to the Squelch Manager (SQM_1_A) to replace
traffic by the appropriate path Alarm Indication signal (AIS), to prevent
misconnection in the BLSR ring configuration.

Step 5: FH_1_A forwards the “short_path” request message to process FH_16_B on
Node 16.

Step 6: SQM_1_A inserts the appropriate path AIS instead of the traffic destined to the
failed node and/or the traffic expected from the failed node.

 Page 126

Step 7: SM_1_A updates the switching hardware with the Bridge map and sends a
message to the Audit Manager (AM_1_A).

Step 8: At Subnode B, the Mate Handler (MH_1_B) receives a message from its mate
(MH_1_A in step 4 above) and forwards it to PFSM_1_B.

Step 9: PFSM_1_B sends a message to CTRL_1_B

Step 10: CTRL _1_B sends a “long_path” request (destined to Node 16) to FH_1_B

Step 11: FH_1_B forwards the “long_path” request to next node (Node 2, process
FH_2_A)

Figure 6.3 Scenario1: Sequence of actions that take place at Node 1 when faults occurs

 Scenario 2: Loss scenario on an intermediate node (node 2 - node 15).

The sequence of actions that take place on an intermediate node in response to receiving a

“long_path” request from its neighbor node is shown in Figure 6.4. This scenario is explained

below in the context of node 2 when it receives a “long_path” request from node 1.

Step 1: Fault Handler (FH_2_A) receives a “long_path” request message from Node 1
and forwards it to PFSM_2_A.

Step 2: PFSM_2_A processes the message and sends the resulting actions to the
protection Controller process (CTRL_2_A).

Step 3:

F H

P F S M C T R L S M

S Q M

A M

M H M H

C T R LP F S M
F H1 2 3 4 iii

4 iv

7

4 i4 ii

9
1 0

L o n g P a th

re q u e s t

S h o rtP a th

 re q u e s t

fa u lt

N o d e 1
N o d e 2

N o d e 3

N o d e 1 6

N o d e 1 5

L o n g P a th

re q u e s t

S h o rtP a th

re q u e s t

fa u lt

5 8

1 1

6

 Page 127

i) CTRL_2_A instruct the mate handler on the other subnode (MH_2_B), over the
M2M link, to take the actions required for the SF-R request.

ii) CTRL_2_A sends a message to the Squelch Manager (SQM_2_A) to replace
traffic by the appropriate path AIS to prevent misconnection in the BLSR ring
configuration.

iii)CTRL_2_A instructs the Switch Manager to perform a traffic paththrough
operation.

iv)CTRL_2_A sends a “protection_status_update” message to Report Generator
(RT)

Step 4: SQM_2_A inserts the appropriate path AIS instead of the traffic destined to the
failed node and/or the traffic expected from the failed node.

Step 5: SM_2_A update the switching hardware with the appropriate map and sends a
message to the Audit Manager (AM_2_A)

Step 6: At Subnode B, the mate handler (MH_2_B) receives a message from its mate
(MH_2_A in step 3 above) and forwards it to PFSM_2_B.

Step 7: PFSM_2_B sends a message to CTRL_2_B

Step 8: CTRL_2_B sends a “long_path” request message to FH_2_B

Step 9: FH_2_B forwards the “long_path” request to next node (i.e. Node 3 process
FH_3_A)

 Scenario 3: Loss scenario after receiving the long_path request

The sequence of actions that take place on Node 1 when it receives the long_path request

sent by node 16 is shown in Figure 6.5, and is explained below. A similar scenario is also

executed on node 16 when it receives the long_path_request sent by node 1.

Step 1: Fault Handler (FH_1_B) receives a “long_path” request from Node 2 (process
FH_2_A) and forwards it to PFSM_1_B.

Step 2: PFSM_1_B processes the message and sends the resulting actions to the
protection Controller process (CTRL_1_B).

Step 3:

i) CTRL_1_B sends a message to the Squelch Manager (SQM_1_B) to replace
traffic by the appropriate path to prevent misconnection in the BLSR ring
configuration.

ii) CTRL_1_B instructs the Switch Manager to perform a traffic switch operation.

Step 4: SQM_1_B inserts the appropriate path AIS instead of the traffic destined to the
failed node and/or the traffic expected from the failed node.

Step 5:

 Page 128

i) SM_1_B update the switching hardware with the appropriate map. Protection is
now completed and signalling reaches steady state.

ii) SM_1_B sends a message to the Audit Manager (AM_1_B)

Figure 6.4 Scenario 2: Sequence of actions that take place at an intermediate node

Figure 6.5 Scenario 3: Sequence of actions that take place at Node 1 after receiving the
long_path request from Node 16

FH PFSM CTRL SM

SQM

AM

MH M H

CTRLPFSM FH

1

2 3iii

3ii

5

3i

3iv

6

7 8

RT

LongPath
request

LongPath
request

Node 2

Node 3Node 15

Node 16
Node 1

LongPath
request

LongPath
Request

4

9

N o d e 1
N o d e 2

N o d e 3

N o d e 1 6

N o d e 1 5

F H

P F S MC T R LS M

S Q M

A M 1
23 i i

3 i

5 i i

L o n g P a t h
 r e q u e s t

L o n g P a t h
r e q u e s t

E n d o f P r o t e c t i o n
S w i t c h i n g S c e n a r i o

5 i

4

 Page 129

6.1.3 Modeling and Evaluation

In the previous sections, the various scenarios that took place during automatic protection

switching were described. Using the proposed Performance Engineering Framework, these

scenarios were captured in the Scenario Language (SL), then used to build a LQN model, as was

described in Chapter 4.

Figure 6.6 shows the generated LQN model. If you compare the diagram to the scenarios in

Section 6.1.2, you can verify that it has captured all the processes that participated in the system

as well as their interactions. It also captures the end-to-end behavior of the automatic protection

switching scenario. For example, once a fault is detected by the FH process on Node 1, Subnode

A, a signal is sent to FSM process which in turn forwarded it to the CTRL process. After the

CTRL process has processed the fault message, it directly informs its neighboring node (which

is Node 16 in this case) about the fault, and initiates the propagation of the fault message,

indirectly to Node 16 through the network, via the mate handler (MH) process. Once the

message sent to Node 16 is propagated back to Node 1, through Node 15-2, and processed by

the switching manager process on Subnode-B of Node 1, the scenario is said to be complete.

This end-to-end behavior is captured in the model by the chain of Forwarding messages, which

are shown as dashed arrows. The end of the forwarding chain is shown in the figure by a heavy

arrow attached to the process SM of Subnode B, Node 1, indicating a reply to the fault generator

and the end of the response.

The parameters of the model were determined by the demand and behavior shown in Table

6.1. Process priorities on each subnode have been assigned as follow (where MH stands for the

priority of process MH): MH = FH > PFSM = CTRL > SM = SQM > AM. The model was solved

using the LQN solver and the response time was found to be 47.16 msec, which is compliant

with its requirement of 50 msec.

 Page 130

To test the optimization strategy, the model was made unfeasible by lowering the priority of

the FH process (on subnode A, node 1) 2 levels, then the model was solved again. The results

are given as step 0 in Table 6.2, and show a response time of 63.2 msec, which is non-compliant

because it exceeds the requirements of 50 msec. The optimization was applied to the non-

compliant design and managed to find a feasible solution in 3 steps as shown in Steps 1 to 3, in

Table 6.2, using only changes in priority.

Being able to automatically capture the structure and behavior of the Automatic Protection

Switching system in an LQN model, this demonstrates that the framework can produce a model

which accurately represent the original scenario, automatically without user intervention. By

being able to transform the infeasible design to a feasible one in only 3 steps, this shows that the

proposed framework is robust and able to find feasible solutions efficiently.

Figure 6.6 LQN model of the automatic protection switching system

Fault
Generator

FH T1FH

CTRL

SM

AM

SQM

FH

CTRL

SM

AM

SQM

MH MH

T1FH

CTRL

SM

AM

SQM

MH MH

Node1 Node2 - Node15 Node16

Subnode A Subnode ASubnode A Subnode BSubnode BSubnode B

Legend

Synchronous message

Asynchronous message

Forwarding message

PFSM PFSM

FHFH

CTRL CTRL CTRL

MH MH

SM SM SQMSQMSQM

AM AM AM

SM
RT RT

Reply message

PFSM PFSM PFSM PFSM

 Page 131

Process Sequence of activities and their service times

FH • executes for 0.1 msec

CTRL • executes for 0.1 msec.

• sends two messages to FH, MH

• executes for 1 msec

• sends two messages to SQM and SM

• on an intermediate node, it further executes for 4

msec then sends one message to RT

PFSM • executes for 1.5 msec., when it receives a message

from FH. However, it executes for 0.02 msec when

it receives a message from MH.

MH • executes for 0.1 msec.

SM • executes for 10 msec.

SQM • executes for 2 msec.

AM • executes for 100 msec.

RT • executes for 20 msec.

Table 6.1 Sequence of activities and service times associated with each process in the
protection switching case study

 Page 132

Step
Candidate

process
Action

Response
time

(msec.)

Prob. of
missing
deadline

0 63.2 1.0

1 FH_1_A Adjust Priority
Current priority order:

MH_1_A > PFSM_1_A = CTRL_1_A
> SQM_1_A = SM_1_A = FH_1_A >
AM_1_A

New priority order:
MH_1_A > PFSM_1_A = CTRL_1_A
> FH_1_A> SQM_1_A = SM_1_A >
AM_1_A

63.2 1.0

2 FH_1_A Adjust Priority
Current priority order:

MH_1_A > PFSM_1_A = CTRL_1_A
> FH_1_A > SQM_1_A = SM_1_A >
AM_1_A

New priority order:
MH_1_A > PFSM_1_A = CTRL_1_A
= FH_1_A > SQM_1_A = SM_1_A >
AM_1_A

52.36 1.0

3 FH_1_A Adjust Priority
Current priority order:

MH_1_A > PFSM_1_A = CTRL_1_A
= FH_1_A> SQM_1_A = SM_1_A = >
AM_1_A

New priority order:
MH_1_A > FH_1_A > PFSM_1_A =
CTRL_1_A > SQM_1_A = SM_1_A >
AM_1_A

47.16 0

Table 6.2 The optimization steps of the protection switching case study

 Page 133

6.2 Comparing with other methods

The purpose of this section is to compare the optimization approach with other approaches

in the literature. Since we do not know of any heuristic algorithm that finds a feasible process

allocation, structuring and priority assignment for the type of software architectures and designs

addressed in this research (i.e. which support servers with multi-services and various

communication paradigms), straight comparison with other heuristics is difficult. However,

since Tindell et al. [Tindell92], Santos et. al [Santos97] and Etemadi [Etemadi96] proposed

several heuristic methods to solve a problem similar to the one treated here, they can be used as

a reference mark.

6.2.1 Tindell’s Example

Tindel et. al. [Tindell92] and Santos et. al. [Santos97] proposed two heuristic algorithms for

solving the problem of process allocation and priority assignment combined. Figure 6.7 Shows

the system of 11 real-time periodic transactions and 43 activities used as illustrative example in

[Tindell92], and then in [Santos97]. The figure also shows the period, worst case execution time,

communication load and, if it is defined, the pre-allocated processor for each activity. The

number within square brackets in an activity represents the execution time of the activity. The

number within a square besides an activity indicates the processor to which the activity is

preallocated. The number besides an arrow indicates the size of message in bytes.

To model this system using our framework, first the transactions were represented as

scenarios, using the Scenario Language, with every activity mapped to a separate process. Then

the corresponding SDL model was generated and executed. Finally the LQN model was

extracted (as was described in Chapter 4), and the optimization strategy was applied (as was

described in Chapter 5).

 Page 134

For comparison purposes, the optimization method was first applied on the original problem

reported in both papers, which uses 8 CPUs and has 1 msec. for propagation delay. Then, to

show the flexibility and superiority of our approach, the complexity of the problem was

increased in different ways and four more experiments were conducted to solve the more

complex problems.

Table 6.3 summarizes the results of all experiments. In each experiment, the problem was

solved 8 times, each time a different allocation strategy in MULTIFIT-COM was used, as

described in Section 5.2, to give a new initial solution to start with. Success ratio is defined here

as the fraction of the eight attempts which found a feasible solution.

• The first experiment (Experiment # 1) shows the results of the original problem with 8

CPUs, along with the success ratio and average number of steps taken by the

optimization method to find a feasible solution.

• In Experiment #2, a computation overhead of 0.001 msec/byte was included each time a

message was sent or received. Although this overhead causes an increase of 15% in the

execution demand of some processes, it does not affect the success ratio of the

optimization method. Only the average number of steps to find a feasible solution was

increased.

• In Experiment #3, a computation overhead of 0.003 msec/byte was included each time a

message was sent or received. This overhead causes an increase of 30% in the execution

demand of some processes; however, it only degraded the success ratio from 8/8 to 7/8.

• In Experiment # 4, the number of CPUs was reduced to 7 CPUs but the overhead due to

message sending and reception was not considered. This new configuration reduced the

success ratio to 6/8.

• In Experiment #5 with 7 CPUs, an overhead of 0.001 msec/byte sent and received was

included and this further reduced the success ratio to 5/8.

For Tindell and Santos’s problem (Experiment #1), the present method was as good as theirs,

 Page 135

that is it also found feasible solutions for all 8 starting points. For more stressful problems, with

communication overhead costs and/or less number of CPUs (Experiments #2 to #5), the present

method succeeded for most but not all starting points.

Figure 6.7 The 11 transactions of Tindell’s example

Exp. #
No. of
CPUs

Propagation
Delay
(msec)

Overhead per
byte sent or

received

Success
Ratio

Avg. No.
Of steps for
successful

cases

1 (original) 8 1 0 8/8 4

2 8 1 0.001 8/8 16

3 8 1 0.003 7/8 23

4 7 1 0 6/8 26

5 7 1 0.001 5/8 51

Table 6.3 Optimization experiments using Tindell’s example

T7 [2]

T8 [2]
T11 [4]

T10 [14]T9 [8]

T16 [2]

T17 [2]

T20 [1]

T21 [2]

T18 [1]

T19 [1]

T15 [2]

T13 [2] T14 [2]

T12 [2]

T25 [1]

T24 [1]

T23 [1]

T22 [1]

T29 [1]

T28 [1]T27 [1]

T26 [2]

T32 [2]

T31 [2]

T30 [1]

T42 [2]T41 [2]

T40 [2]

T39 [2]T38 [3]

T37 [2]T36 [2]

T35 [2]

T34 [2]T33 [3]

1

1

T0 [4]

T2 [2]T1 [4]

T5 [4]
T3 [2]

T4 [2]

T6 [6]

Period =60

0

2

1

0

1

P eriod =35 Period =35

Period =35Period = 14 Period = 14
Period = 14

Period = 14

Period = 20 Period = 20

Period = 14

3

2

2

3 1

1 3

6

7

7

2,3 2,3

2,3

3,2 1,0

7,6

50

70

150

60
30

6080

20

40 90 250

40

20

40

20

20

20

50 30

50

70

5050

6060

50 50 40

50 50

60 60

5050

150150

 Page 136

6.2.2 Etemadi’s Example [Etemadi96]

In Etemadi’s Ph.D. thesis, three heuristic algorithms were proposed to calculate process

priorities for a given process allocation. The algorithms were applied to the sonar signal

processing component of a towed array sonar system with 12 transactions, shown in Figure 6.8.

In this figure, the number within square brackets in an activity represents the execution time of

the activity. The number within a square besides an activity indicates the processor to which the

activity is preallocated. The number besides an arrow indicates the size of message in bytes.

In the basic configuration, where the system has 12 transactions, all three algorithms

succeeded to find a feasible priority assignmnet. However, when a second copy of transaction 1,

with a period of 1125 time units, was added to the basic configuration, only two of Etemadi’s

algorithms succeeded to find a feasible priority assignment.

To model this system using our framework, first the transactions were represented as

scenarios, using the Scenario Language, with every activity mapped to a separate process. Then

the corresponding SDL model was generated and executed. Finally the LQN model was

extracted (as was described in Chapter 4), and the optimization strategy was applied (as was

described in Chapter 5).

To compare the optimization method with the algorithms proposed in [Etemadi96], the

present method was applied to his extended sonar system which has two copies of transaction 1.

The method managed to find a feasible priority assignment in the initialization stage without

performing any optimization steps. Two experiments were then conducted on a more

challenging version of the problem, with fewer CPUs, after removing the original preallocation

constraints. The results of these experiments are summarized in Table 6.4. In each experiment,

the problem was solved 8 times, each time a different allocation strategy in MULTIFIT-COM

 Page 137

was used, as described in Section 5.2, to give a new initial solution to start with. Success ratio is

defined here as the fraction of the eight attempts which found a feasible solution.

• Experiment #1 shows that for 8 CPUs the initial allocation is feasible.

• In Experiment #2, the number of CPUs was reduced to 7. Although, this reduction in

available resources does not affect the success ratio, two steps were now required to

find a feasible solution.

• In Experiment #3, the number of available CPUs was reduced to 6. However, the

optimization method managed to find many feasible solutions with a success ratio of

7/8.

In conclusion, the proposed method handled the original examples successfully. Also, after

the examples were made more difficult, it still succeeded in finding feasible solutions.

 Page 138

Figure 6.8 The 12 transactions of Etemadi’s example

Exp. #
No. of
CPUs

Success
Ratio

Avg. No.
Of steps for

successful cases

1 8 8/8 0

2 7 8/8 2

3 6 7/8 60

Table 6.4 Optimization experiments using Etemadi’s example

7

2

5

5

6

3

6

4

3 8T C
[1 3 0]

N B 1
[2 1 0]

N B 3
[2 1 0]

A 1 [5 0]

R D C
 [1 3 0]

B 3 [9 0]B 2 [9 0]

A 3 [5 0]

B B D E

 [1 2 0]

A 2 [5 0]

N B 2
[1 2 0]

P e r io d = 7 5 0

1

2

B 1 [9 0]

D S 1 [4 0]

P e r i o d = 7 5 0

2

S t i m 2

D S 2 [4 0]

P e r i o d = 7 5 0

3

S t i m 3

D S 4 [1 0]

P e r i o d = 7 5 0

8

S t i m 5

D S 3 [4 0]

P e r io d = 7 5 0

7

S t i m 4

P C 1 [1 0]

P e r i o d = 1 0 0 0

2

S t i m 7

P C 2 [1 0]

P e r i o d = 1 0 0 0

3

S t i m 8

P C 3 [1 0]

P e r i o d = 1 0 0 0

7

S t i m 9

P C 4 [1 0]

P e r i o d = 1 0 0 0

4

S t im 1 0

P C 5 [1 0]

P e r i o d = 1 0 0 0

6

S t i m 1 1

P C 6 [1 0]

P e r i o d = 1 0 0 0

5

S t i m 1 2

T P [1 0]

P e r i o d = 1 0 0 0

8

S t im 6

S t i m 1

 Page 139

6.3 The Optimization Method: Robustness on Random

Examples

This section tests the optimization method of Chapter 5 on a wide variety of applications

which were generated as LQNs with 16 processes and a randomly generated pattern of

interaction and execution.

There are a large number of aspects that may affect the performance of the optimization

strategy. They can be classified as system aspects which specify the distributed system under

consideration and application aspects which specify the software architecture and the

communication patterns between processes. The generation of realistic applications and

distributed systems largely depend on how these aspects are specified. However, little is

reported in the literature about “typical” real-time software architecture and their

communication patterns. Thus, in our experiments, we randomly generate both the software

architecture and process parameters according to some guidelines as will be discussed below.

We believe that these randomly generated software designs cover a wide spectrum of real-time

applications.

To assess the performance of the optimization method, it was applied to 3000 randomly

generated software models allocated on 4 CPUs. The models were generated by assigning

random execution times to the entries of the two software architectures shown in Figures 6.9 and

6.10. For each software architecture, 1500 software models were randomly generated. Each of

these has the following characteristics:

• Number of scenarios = 4

• Number of processes = 16

• Probability that a process has more than one entry = 0.6

 Page 140

• Probability that a process participate in more than one scenario = 0.6

• Average number of messages sent by a process = 1.3 message.

• Communication overheads and delays are set to zero (ignored).

• The computation time of an entry is uniformly distributed between [80,120] time units.

• The period of a scenario is set according to equation (6.1)

• The deadline of a scenario is set according to equation (6.2)

Under the above formulas, given a scenario with certain computation requirements, the

larger the period flexibility factor (F), the larger the period that will be chosen for scenarios, and

hence the less intense the workload that will be generated by them. Accordingly, the period

flexibility factor was used during the experiments to change the average workload intensity and

the average utilization of the CPUs. It was chosen to provide average CPU utilization between

0.4 and 0.8. On the other hand, the larger the laxity factor (L), the larger the deadline that will

be assigned to scenarios, hence the easier is it to find a feasible design. Thus, the Laxity Factor

was used during experiments to control the laxity of scenarios, and was chosen to range from

2.1 to 3.0.

Periods Ce Nc× F×=

Ce Average cost (computation time) of an entry=

L Laxity factor, ranging from 2.1 to 3.0=

Nc Number of entries along the critical path of scenario S=

Deadlines Ce Nc× L×=

F Period flexibility factor=

6.1()

6.2()

 Page 141

Figure 6.9 The software Architecture of the random application1

Figure 6.10 The software Architecture of the random application2

T1 T2 T3 T4

T5

T6 T7 T8

T9

T10 T11 T12 T13 T14

T15 T16

S1 S2 S3 S4

Legend

Synchronous message

Asynchronous message

Forwarding message

T1 T2 T3 T4

T5

T6 T7 T8

T9

T10 T11 T12 T13

T14 T15

T16

S1 S2 S3 S4

Legend

Synchronous m essage

Asynchronous m essage

Forw arding m essage

 Page 142

Before applying the optimization method to a model, we removed from consideration the

models that had infeasible execution requirements. This was detected by calculating the minimal

time requirements of a scenario, which is the total execution time along the critical path of the

scenario, and comparing it with the deadline of the scenario. If the minimal time requirements

of any scenario was greater than its deadline, the design was identified as “obviously infeasible”

and not considered any further. Obviously, this does not eliminate all infeasible designs since

the interference and contention with other processes, which are not on the critical path, can make

some additional designs infeasible. However, the problem of determining if a given design is

feasibly schedulable in multiple processor is a computationaly intractable problem

[Ramamritham95]. Because of this, when a heuristic algorithm does not succeed in determining

a feasible schedule, it could be due to the infeasibility of the design. Hence the metric chosen to

characterize the performance of the algorithm is the Success Ratio. If an algorithm is able to find

feasible designs for x out of the given y designs, (where none of the y designs are obviously

infeasible) its Success Ratio (SR) is said to be (x/y).

The optimization method was applied to the randomly generated designs and its

performance was determined for different average processor utilization factor (APUF) and

laxity constraints, where APUF is the sum of the utilization factors of all processes divided by

the number of processors. Results are presented in Figure 6.11 and Figure 6.12, and are

summarized as follows:

• For a given Laxity Factor, the Success Ratio decreases as the APUF increases.

• For a given APUF, the Success Ratio increases as the Laxity Factor increases.

It can be seen from the results that the strategy and heuristics used for optimization is robust

and guides the algorithm efficiently for a feasible design. For example, the optimization method

succeeded in finding a feasible solution more than 80% of the time when the Laxity factor was

 Page 143

2.6 or greater, or the average CPU utilization was less than 50%. In addition, when the average

CPU utilization was around 60%, the optimization method only performed 20 steps on average

to find a feasible process allocation and priority assignment to the software design. Even when

the average CPU utilization was as high as 80%, the optimization method only performed 35

steps on average to find a feasible solution.

Note that the purpose of the above experiments was not to completely quantify the behavior

of the algorithm, but rather to verify its general performance trends. Thus, for examples, we

conducted the experiments on problems based only on two software architectures. The

conclusion we draw from the above experimental observation is that the optimization method is

robust and has potential to find feasible solutions efficiently. In particular, the small number of

steps relative to the size of the search space shows that the metric used to identify the

contributors for performance problems is efficient. Also the high success ratio shows the

robustness of the overall optimization method.

Figure 6.11 Optimization results: success ratio vs. average CPU utilization

0

0.2

0.4

0.6

0.8

1

1.2

0.4 0.5 0.6 0.7 0.8

Average CPU utilization

S
u

cc
es

s
R

at
io Laxity=2.1

Laxity=2.3

Laxity=2.5

Laxity=2.7

Laxity=3.0

 Page 144

Figure 6.12 Optimization results: average # of steps vs. average CPU utilization

0

10

20

30

40

50

60

70

0.4 0.5 0.6 0.7 0.8

Average CPU utilization

A
ve

ra
g

e

o
f

st
ep

s

Laxity=2.1

Laxity=2.3

Laxity=2.5

Laxity=2.7

Laxity=3.0

 Page 145

Chapter 7: Conclusions

7.1 Discussion

This thesis has described a complete process for analyzing performance of designs using

models. One of the principal concepts of the process is to create the model from the design, so

it can be forced to track the design closely as it evolves, and to introduce automation to make the

tracking cheap and rapid. The starting point is a design (in an asynchronous style) expressed in

SDL processes, which are constructed from a set of scenarios. To build a performance model,

the SDL model is executed for a set scenarios, traces are recorded for each scenario, and the

model structure and data is extracted from the traces. A layered queueing model is then

constructed. Model building is completely automatic.

For asynchronous designs that are encoded in SDL, the model builder is operational and has

been tested on a large number of designs created as test cases, with different features and degrees

of complexity. The use of the model-builder has also been demonstrated on a large example

(Automatic Protection Switching), with 252 processes.

The performance models produced in this work reflect (by construction) the structure of the

software or system design in SDL, combined with the coverage of the scenarios. If some part of

the design is not activated by the scenarios then it will not be in the model, but the omission may

be deliberate. For example, exception-handling code that is rarely active will not affect the

normal performance of the application.

The question of accuracy of the final predictions is not addressed here. Our purpose is to

 Page 146

create a model containing everything that is in the scenarios and the SDL design. The question

of model accuracy then becomes a question of coverage of the scenarios, adequacy of the

configuration definitions, and accuracy of the resource functions. These are important questions

but are beyond the scope of this thesis. In its present state the process depends on engineering

judgement to give adequate coverage and accuracy.

The performance models can be used for all the usual kinds of analysis. The accuracy of

predictions will depend on the accuracy of the resource function data which must also be

provided. Approximate values will give approximate results, which may be entirely adequate for

early analysis. In our own work we often find that errors of less than 10% are excellent for this

purpose, and errors less than 25% are adequate.

From the earlier work in [Hrishuck95], the model builder has retained the concept of angio

traces and the goal of model building, but it has broadened the target from processes based on

RPCs to a system (that is, SDL) based entirely on asynchronous messages, with additional types

of execution paths (e.g. parallel execution) and interactions. To deal with the broader problem

the model-building algorithms have been reconstructed from the ground up, beginning with the

trace capture and interpretation. Only the term “angio trace” and the outline of steps have been

retained.

The model building technique can be applied without using SDL; other early design

descriptions, such as Use Cases or prototypes, can in principle be used to provide inputs to the

same model-building process. In [Hrischuk95] another CASE tool, ObjecTime [ObjectTime97],

was the source of angio traces. Even target code could be instrumented and traced to build

models, and this would let us maintain the same models from early in the design cycle, into

production code.

 Page 147

The goal of optimization is to satisfy soft deadlines in responses. The optimization strategy

proposed here improves a non-compliant design by making incremental changes. The approach

taken is to identify the factors that might contribute to the problem, rank them, and from the

ranking generate a design change. The new design is then evaluated and the quality of the

solution is estimated. The technique iterates between these steps until either a feasible solution

is found or some stopping criteria are satisfied.

The optimization process is formulated as a two-level optimization problem. At the first-

level of optimization, only changes in process priorities are considered as candidate factors until

the solution converges without obtaining feasibility. The second-level of optimization reshapes

the design by changing the process allocation and/or structure, and the search is restarted again

at the first-level.

One of the unique features of the optimization strategy is that it can be applied on complex

software architectures (i.e. which include servers with multi-services and various

communication paradigms). To our knowledge, this class of software architectures can not be

handled by any optimization algorithm in the literature.

Another important advantage of the optimization strategy is that it uses an incremental

approach for identifying and solving performance problems due to wrong design decisions on

priority assignments, process allocation and/or process structuring. This means that the

optimization method can be applied to an advanced design (in which its configuration

parameters are obtained by performing slight changes to an original feasible design, as in the

case of the Automatic Protection Switching example), as well as to initial designs (in which its

configuration parameters are obtained by applying some heuristic techniques, as in the case of

the two examples from literature and the randomly generated examples).

 Page 148

In addition, the optimization strategy can solve performance problems due to one design

decision (i.e. priority assignments, process allocation and/or process structuring) or to all the

three decisions combined. In the literature, most approaches start from initial designs, and

develop optimal (or near optimal) solutions to each subproblem (design decision) separately.

Unfortunately, it is often not possible to obtain good solutions (or even feasible solutions) if the

three design decisions are treated in isolation [Tindel92].

The optimization strategy has been used to optimize the performance of an industrial design:

Automatic Protection Switching in a 2-fiber Bidirectional Line Switching Ring network. In this

case study, the original feasible design has been slightly altered and made unfeasible by

changing the priority of some process, and was found that the optimization method succeeded

to transformed the infeasible design to a feasible one in only 3 steps. This shows that the

proposed method is robust and able to find feasible solutions efficiently.

The optimization strategy has been compared with other approaches in the literature. It has

been applied to the example proposed by Tindell et al. [Tindell92] and Santos et. al [Santos97],

as well as to the example proposed by Etemadi [Etemadi96]. For Tindell and Santos’s problem,

the present optimization method was as good as theirs, that is it also found feasible solutions for

different starting points. For more stressful versions of their problem, with communication

overhead costs, the present method succeeded for most but not all starting points. Similar results

were observed with Etemadi’s problem. In conclusion, the proposed method handled the

original examples successfully. Also, after the examples were made more difficult, it still

succeeded in finding feasible solutions.

The optimization method was also applied to 3000 randomly generated designs and its

performance was determined for different average processor utilization factors (APUFs) and

laxity constraints, where APUF is the sum of the utilization factors of all processes divided by

 Page 149

the number of processors. It has been seen from the results that the strategy and heuristics used

for optimization is robust and guides the algorithm efficiently for a feasible design. For example,

the optimization method succeeded to find a feasible solution more than 80% of the time when

the Laxity factor was 2.5 or greater, or the CPU utilization was less than 50%. In addition, when

the average CPU utilization was around 60%, the optimization method only performed 20 steps

on average to find a feasible process allocation and priority assignment to the software design.

Even when the average CPU utilization was as high as 80%, the optimization method only

performed 35 steps on average to find a feasible solution.

The conclusion we draw from the above experimental observations is that the optimization

method is robust and has potential to find feasible solutions efficiently. In particular, the small

number of steps relative to the size of the search space shows that the metric used to identify the

contributors for performance problems is efficient. Also the high success ratio shows the

robustness of the overall optimization method.

7.2 Summary of Contributions

The main contributions of this thesis are summarized below.

• A conceptual framework for performance engineering of real-time distributed systems

is introduced (Chapter1).

• A way for specifying software designs with parallel threads that fork-and-join is

explained (Chpater3).

• A new methodology and a tool for automating the construction of Layered Queueing

Network models from the execution traces of SDL functional designs is proposed

(Chapter 4).

• A new technique and a tool for obtaining compliance with response deadlines is

proposed (Chapter 5).

 Page 150

• The framework has been implemented in a toolset by integrating all the tools that

implement the individual components, namely the software specification tool (Scenario

Design Paradigm), the SDL Tool, the LQN model builder tool, the LQN model solver

tool, and the optimization tool. This toolset enables practitioners

(architects/designers/developers) with little training to establish and maintain

performance baselines for complex, real-time distributed systems.

• The framework has been evaluated in 3 ways (chapter 6):

1) Its applicability to real systems is tested by an industrial example. The framework

was used to model and analyze the performance of an Automatic Protection

Switching system (with 252 processes), in a 2-fiber Bidirectional Line Switching

Ring (BLSR) network.

2) Its effectiveness, compared to another recently published and completely different

approaches has been investigated. The framework has been applied to 2 examples

from the literature, and was found that optimization strategy is as good as other

techniques on standard problems.

3) Its effectiveness over a large number of randomly generated problems of varying

degree of difficulty has been demonstrated.

7.3 Future Work

In order to develop a complete toolset for performance engineering of real industry designs,

some issues addressed in this thesis need to be extended. In particular, the following two aspects

may have the potential for building upon the current work:

Increasing the practical usefulness of the framework

To increase the practical usefulness of the methods described here, it could be useful to:

• implement a more general interface for trace processing

• develop a technique/tools for deriving resource demands from system specification

 Page 151

• extend the trace and the model building algorithm for more general styles (i.e. software

designs that are not necessarily asynchronous)

Improving the optimization Strategy

Although the optimization method presented in the thesis has been found satisfactory; it may

be valuable to extend and improve it in the following directions.

• better diagnostic measures to identify and rank the sources of performance problems.

• better policy and heuristics for selecting the major source(s) for performance problems,

and recommending configuration/design changes.

• new formulation for the optimization problem and solution. In this thesis, the

optimization problem has been formulated as a two-level optimization problem, and an

incremental approach has been proposed to solve it.

 Page 152

References
[Arora80] R.K. Arora and S.P. Rana. “Heuristic algorithms for process assignment in distributed

computing system”, Information Processing Letters, 11(4,5):199-203,
1980.

[Audsley91] N.C. Audsley, “Optimal priority assignment and feasibility of static priority tasks
with arbitrary start times”, Department of Computer Science, Report no. YCS
164, University of York, England, Dec. 1991.

[Audsley93] N.C. Audsley, K.W. Tindel, and A. Burns, “The end of the road for static cyclic
scheduling”, Proceedings of 5th Euromicro Workshop on Real-Time Systems,
pp. 36-41, Oulu, Finland, 1993.

[Bagrodia91] Rajive L. Bagrodia and C-C Shen, “MIDAS: Integrated design and simulation of
distributed systems”, IEEE Transactions on Software Engineering, vol. 17, no.
10, Oct. 1991.

[Bannister83] J.A. Bannister and K.S. Trivedi, “Task allocation in fault-tolerant distributed
systems”, in Acta Informica, vol. 20, pp. 261-281, 1983.

[Bause91] F. Bause and P. Buchholz, “Protocol analysis using a timed version of SDL”, Third
Int. Conf. on Formal Description Techniques, Spain, 1991.

[Bause93] F. Bause and P. Buchholz, “Qualitative and quantitative analysis of timed SDL
specifications”, Kommunikation in Verteilten Systemen, N. Gerner et al.
(eds.), Springer-Verlag, pp. 486-500, 1993

[Bellcore95] Bellcore, SONET Bidirectional Line-Switched Ring (BLSR) equipment generic
criteria, GR-1230-CORE, Issue 2, November 1995.

[Bettati94] R. Bettati, “End-to-end scheduling to meet deadlines in distributed systems”, Ph.D.
thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois, USA, March 1994.

Page 153

[Biermann76] A.W. Biermann and R. Krishnaswamy, “Constructing programs from example
computations”, IEEE Transactions on Software Engineering, vol. 2, pp. 141-
153, 1976.

[Blanning95] R. Blanning, “A decision support framework for scenario management”, in Proc.
3rd Intl. Conf. on Decision Support Systems, 1995.

[Bokhari79] S.H. Bokhari. “Dual Processor Scheduling with Dynamic Reassignment”. IEEE
Transactions on Software Engineering, vol. 5, pp. 341-349, July 1979.

[Bokhari81] S.H. Bokhari. “A shortest tree algorithm for optimal assignment across space and
time in distributed processor system”. IEEE Transactions on Software
Engineering, 7(11):583-589, Nov. 1981 .

[Bokhari87] S.H. Bokhari. “Assignment problems in Parallel and Distributed Computing”.
Kluwer Academic Publishers, 1987.

[Braek93] R. Braek, O. Haugen, “Engineering Real Time Systems - An Object Oriented
Methodology using SDL”. BCS Practitioner Series, Prentice Hall, 1994.

[Buchard94] A. Buchard, J. Liebeherr, Y. Oh, and S.H. Son, “Assigning real-time tasks to
homogeneous multiprocessor systems”, Tec. Rep. CS-94-01, University of
Virginia, Jan. 1994.

[Buchard95] A. Buchard, J. Liebeherr, Y. Oh, and S.H. Son, “New strategies for assigning real-
time tasks to multiprocessor systems”, IEEE Transactions on Computers, vol.
44, pp. 1429-1442., 1995.

[Bui96] T. Bui, D. Kersten, and P.-C. Ma, “Supporting negotiation with scenario management”,
in Proc. 29th Annual Hawaii Intl. Conference on System Sciences, vol. III, pp.
209-218, 1996.

[Buhr96] R.J.A Buhr and R.S. Casselman, Use Case Maps for object-oriented systems. Prentice
Hall, 1996.

[Cameron97] Doanld Cameron, “Scenario design paradigm: synthesizing a system from
scenarios”, Nortel Telecom internal report, March 1997.

[Carrol95] J. Carroll, “The scenario perspective on system development”, in Scenario-
Based Design: Envisioning work and Technology in system Development (J.
Carroll, ed.), John Wiley and Son, 1995.

[Chu87] Wesley W. Chu and L. M. Lan, “Task allocation and precedence relations for
distributed real-time systems”, IEEE transactions on Computers, 36(6):667-
679, June 1987.

[Coffman78] E.G. Coffman, M.R. Garey and D.S. Johnson, “An application of bin-packing to
multiprocessor scheduling”, SIAM J. Comput., vol. 7, pp. 1-17, Feb. 1978.

Page 154

[Coli95] M. Coli and P. Palazzari, “A new method for optimization of allocation and scheduling
in real time applications”, Proc. Seventh Euromicro Workshop on Real Time
Systems, pp. 262-269, June 1995.

[Davari85] S. Davari and S. Dhall, “On a real-time task allocation problem”, in Proc. of the 7th
Hawaii International Conference on System Sciences, 1985.

[Davari86a] S. Davari and S. Dhall, “An on line algorithm for real-time task allocation”, in Proc.
of the IEEE Real-Time System Symposium, pp. 194-200, 1986.

[Davari86b] S. Davari and S. Dhall, “On a periodic real-time task allocation problem”, in Proc.
of the 19th Annual International Conference on System Sciences, pp. 133-141,
1986.

[Dhall77] S.K. Dhall, “Scheduling periodic-time-critical jobs on single processor and
multiprocessor computing systems”, Ph.D. thesis, University of Illinois at
Urbana-Champaign, 1977.

[Dhall78] S.K. Dhall and C.L. Liu, “On a real-time scheduling problem”, in Operations
Research, vol. 26(1), pp. 127-140, Feb. 1978

[Diefenbruch95] M. Diefenbruch, E. Heck, J. Hintelmann, and B. Muller-Clostermann,
“Performance evaluation of SDL systems adjunct by queueing models”,
Seventh SDL Forum, SDL’95, 1995.

[Diefenbruch98] M. Diefenbruch, and B. Muller-Clostermann, “Queueing SDL: A language for
the functional and quantitative specification of distributed Systems”,
Workshop on Performance and Time in SDL and MSC, Univ. Erlangen-
Nurnberg, 1998, Workshop Proceedings.

[Elsayed98] H.M. El-Sayed, D. Cameron, and C.M. Woodside, “Automated performance
modeling from scenarios and SDL designs of distributed systems”, In Proc. of
the Int. Symposium on Software Engineering for Parallel and Distributed
Systems (PDSE’98), Kyoto, April 1998.

[Etemadi96] Reza Etemadi, “End-to-end scheduling in hard real-time multiprocessor systems”,
Ph.D. Thesis, Dept. of Systems and Computer Engineering, Carleton
University, 1996.

[Franks95] G. Franks, A. Hubbard, S. Majumdar, D. Petriu, J. Rolia, and C.M. Woodside, “A
toolset for performance engineering and software design of client-server
systems”, Performance Evaluation, 24 (1-2):117-135, November 1995.

[Franks97] G. Franks, “Performance analysis of distributed server systems”, Ph.D. thesis
proposal, Dept. of Systems and Comp. Eng., Carleton University, Feb.
1997.

Page 155

[Garcia95] J.J.G. Garcia and M. Gonzalez Harbour, “Optimized priority assignment for task and
messages in distributed hard real-time systems”, Proc. of the IEEE Workshop
on Parallel and Distributed Real-Time Systems, California, pp. 124-132, April
1995.

[Garey79] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, New York: W. H. Freeman and Company, 1979.

[Gomaa93] H. Gomaa, Software Design Methods for Concurrent and Real-Time Sytems,
Addison-Wesley, 1993.

[Hsia94] P. Hsia, J. Samuel, J. Gao, Y. Toyoshima, and C. Chen, “Formal approach to scenario
analysis”, IEEE Software, pp. 33-41, Mar. 1994.

[Hou92] C.J. Hou and K.G. Shin, “Allocation of periodic task modules with precedence and
dead-line constraints in distributed real-time systems”, in Proc. of the Real-
time system symposium, pp. 146-155, 1992

[Houstis90] C.E. Houstis, “Module allocation of real-time applications for distributed systems”,
IEEE Transactions on Software Engineering, vol. 16, pp. 699-709, July
1990.

[Hrischuk95] C. Hrischuk, J. Rolia, C.M. Woodside, “Automated generation of software
performance model using an object-oriented prototype”, International
Workshop on Modeling and Simulation, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS ‘95), pp. 399-409,
Durham, NC, 1995.

[Hrischuk99] C. Hrischuk, C.M. Woodside, J. Rolia and R. Iversen, “Trace-based load
characterization for generaling software performance models”, IEEE
Transactions on Software Engineering, vol. 25, no. 1, January 1999.

[Huang85] James P. Huang, “Modeling of software partition for distributed real-time
applications”, IEEE Transactions on Software Engineering, vol.11, no. 10,
October 1985.

[ISO87a] ISO DIS8807, “Lotos. A formal description technique”, 1987.

[ISO87b] ISO DIS9074, “Estelle: A formal description technique based on extended state
transition model”, 1987.

[ITU93a] ITU-T: Z.100, “Specification and Description Language (SDL)” ITU, 1993.

[ITU93b] ITU-T: Z.100, “Message Sequence Chart (MSC)” ITU, 1993.

[Iyer89] V. R. Iyer and H. A. Sholl, “Software partitioning for distributed, sequential, pipelined
applications”, IEEE Transactions on Software Engineering, vol. 15, no. 10,
1989.

Page 156

[Jacobson92] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object Oriented
Software Engineering-A Use Case Driven Approach, Addison Wesley,
1992.

[Jedrysiak94] S. Jedrysiak, G. Suwala, “Scenario-design system paradigm, a highly-automated
approach”, Nortel Design Forum 1994.

[Jedrysiak96] S. Jedrysiak, D. Cameron, G. Suwala, “Rapid system design = executable
requirements + automated reuse”, Nortel Design Forum 1996

[Jonsson97] Jan Jonsson and Kang G. Shin, “Deadline assignment in distributed hard real-time
systems with relaxed locality constraints”, In Proc. of the IEEE Int. Conf. on
Distributed Computing Systems, May 27-30, pp. 432-440, Baltimore,
Maryland, 1997.

[Kao93] B. Kao and H. Garcia-Molina, “Deadline assignment in a distributed soft real-time
system”, Proc. of the IEEE International Conference on Distributed
Computing Systems, Pittsburgh, Pennsylvania, pp. 428-437, May 1993.

[Kao94] B. Kao and H. Garcia-Molina, “Subtask deadline assignment for complex distributed
soft real-time systems”, Proc. of the IEEE International Conference on
Distributed Computing Systems, Poznan, Poland, pp. 172-181, June 1994.

[Koskimies94] K. Koskimies and E. Makinen, “Automatic synthesis of state machines from
trace diagrams”, Software-Practice and Experience, vol. 24(7), pp. 643-658,
July 1994.

[Lam96] Kam-yiu Lam, Victor Lee, S. Hung and B.C. Kao, “Impact of priority assignment on
optimistic concurrency control in distributed real-time databases”, pp. 128135,
IEEE 1996.

[Lee92] C-H Lee D. Lee and M. Kim, “Optimal task assignment in line array networks”, IEEE
Transactions on Computers, vol. 41, no. 7, pp. 877-888, July 1992.

[Lee97] C-H Lee and Kang G. Shin, “Optimal task assignment in homogeneous networks”,
IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 2, Feb.
1997.

[Lehoczky89] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithms:
exact characterization and average case behavior”, In Proc. of the 10th IEEE
Real-Time Systems Symposium, pp. 166-171, 1989.

[Lehoczky90] J.P. Lehoczky, “Fixed priority scheduling of periodic task sets with arbitrary
deadlines”, Proceedings IEEE Real-Time Systems Symposium, pp. 201-209,
1990.

Page 157

[Leung82] J.Y.T. Leung, J. Whitehead, “On the complexity of fixed-priority scheduling of
periodic real-time tasks”, Performance Evaluation, 2, (4), pp. 237-250, Dec.
1982.

[Lin91] Feng-Tse Lin and Ching-Chi Hsu, “Task assignment problems in distributed computing
systems by simulated annealing”, Journal of the Chinese Institute of
Engineers, 14(5):537-550, Sept. 1991.

[Liu73] C.L. Liu and J.W. Layland, “Scheduling algorithms for multiprogramming in a hard
real-time environment”, in Journal of the Assoc. Computing Mach., vol. 20(1),
pp. 46-61, 1973.

[Lo88] V.M. Lo, “Heuristic algorithms for task assignment in distributed systems”, IEEE
Transactions on Computers, vol. 20, pp. 1384-1397, Nov. 1988

[Ma82] P.R. Ma, E.Y. Lee, and M. Tsuchiya, “A task allocation model for distributed computing
systems”, IEEE Transactions on Computers, 31:41-47, Jan. 1982.

[Martins95] J. Martins and J.-P. Hubaux, “A new methodology for performance evaluation
based on the formal technique SDL”, Workshop on Design and Analysis of
Real-Time Systems, Sponsored by Spacebel Informatique, pp. 73-88,
Belgium, 1995.

[Mazzeo97] A.Mazzeo, N. Nazzocca, S. Russo and V. Vittorini, A systematic approach to the
Petri Net based specification of concurrent systems”, Real-Time Systems, Vol.
13, pp. 219-236, 1997.

[Menace98] D. Menasce and H. Gomaa, “On a language based method for software performance
engineering of client/server systems”. Proceedings of the First International
Workshop on Software and Performance WOSP 98, Santa Fe, New Mexico,
October 12-16, 1998.

[Menace99] D. Menasce and H. Gomaa, “A method for design and performance modeling of
client/server systems”. to appear in the IEEE Transactions on Software
Engineering.

[Mok84] A.K. Mok, “The decomposition of real-time system requirements into process
models”, Proceedings of the IEEE 1984 Real-Time System Symposium,
Texas, Dec. 1984, pp. 125-134

[Mok86] A.K. Mok, “The Von Neuman Straitjacket - the process construct”, ACM SIGSOFT
Software Engineering Notes, Vol 11 No 4, Aug. 1986.

[Mutka95] M.W. Mutka and J.P. Li, “A tool for allocating periodic real-time tasks to a set of
processors”, Journal of Systems and Software, vol. 29, pp. 135-148, 1995

Page 158

[ObjecTime97] ObjecTime Limited, Kanata, Ontario, Canada. ObjectTime User’s Manual,
1997.

[Oh95] Y. Oh and S.H. Son, “Allocating fixed-priority periodic tasks on multiprocessor
systems”, Real-Time Systems, vol. 9, pp. 207-239, 1995.

[Oslen94] A. Oslen, O. Faergemand, B. Moller-Pedersen, R. Reed and J.R.W. Smith, “Systems
engineering using SDL-92”, North Holland, 1994.

[Parnas67] D. Parnas and J.A. Darringer, “SODAS and a methodology for system design”, in
AFIPS Conf. Proc., Fall Joint Comput. Conf., Washington, DC: Thompson,
vol. 31, pp. 449-474, 1967.

[Peng87] D.T. Peng and K.G. Shin, “Assignment and scheduling of communicating periodic
tasks in distributed processing systems”, Proceedings of the IEEE, vol. 75, pp.
547-562, May 1987.

[Peng89] D.T. Peng and K.G. Shin, “Static allocation of periodic tasks with precedence
constraints in distributed real-time systems”, In Proc. of the 9th Intl. Conf. on
Distributed computing systems, pp. 190-198, 1989.

[Potts94] C. Potts, K. Takahashi, and A. Anton, “inquiry-based requirement analysis”,
IEEE Software, vol. 11, pp. 21-32, Mar. 1994.

[Purimetla94] B. Purimetla, R.M. Sivasankaran, J.A. Stankovic, K. Ramamritham and D.
Towsley, “Priority assignment in real-time active databases”, pp. 176-184,
IEEE 1994.

[Ram90] K. Ramamritham, “Allocation and scheduling of complex periodic tasks”, In
Proceedings of the 10th International conference on distributed Computing
Systems, pages 108-115, Paris, France, 1990.

[Ram95] K. Ramamritham, “Allocation and scheduling of precedence-related periodic tasks”,
IEEE Transactions on Parallel and Distributed Systems, 6(4): 412-420, April
1995.

[Regnell95] B. Regnell, K. Kimbler, and A. Wesslen, “Improving the Use Case driven approach
to requirements engineering”, In Proceedings of Second Int. Symposium on
Requirements Engineering, York, U.K., IEEE Computer Society Press, pp. 40-
47, March 1995.

[Regnell96] B. Regnell, M. Andersson, and J. Bergstrand, “A hierarchical use case model
with graphical representation”, In Proceedings of ECBS’96, IEEE Second
International Symposium of Computer-Based Systems, 1996.

[Riddle72] W.E. Riddle, The Modeling and Analysis of Supervisory Systems, Ph.D. thesis,
Stanford University, Mar. 1972.

Page 159

[Rolia95] J. R. Rolia and Kenneth Sevcik, “The method of layers”, IEEE Transactions on
Software Engineering, Vol. 21, No. 8, pp. 689-700, 1995.

[Roman87] G.C. Roman, “Specifying software/hardware interactions in distributed systems”, In
Proc. Int. Conf. Software Eng., pp. 126-139, May 1987.

[Rolland98] C. Rolland et al., “A proposal for scenario classification framework”,
Requirements Engineering Journal, Vol. 3, No. 1, Springer Verlag, 1998.

[Rumbaugh91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object
Oriented Modeling and Design, Prentice-Hall, 1991.

[Sager89] G. Sager, Anil K. Sarje, and Kamal U. Ahmed “Task allocation techniques for
distributed computing systems: a review”, Journal of Microcomputer
Applications. 12(2):97-105, April 1989

[Santos97] J. Santos, E. Ferro, J. Orozco, and R. Cayssials, “A heuristic approach to the
multitask-multiprocessor assignment problem using the empty-slots method
and rate monotonic scheduling”. Real-Time Systems, 13, 167-199 (1997).

[Saksena96] M. Saksena and S. Hong, “An engineering approach to decomposing end-to-end
delays on a distributed real-time system”, Proc. of the IEEE Workshop on
Parallel and Distributed Real-Time Systems, Hawaii, pp. 244-251, April
1996.

[Saracco89] R. Saracco, J.R.W. Smith and R. Reed, Telecommunications Systems Engineering
using SDL, Elsevier Science Publishers B.V., 1989.

[Sarje91] A.K. Sarje and G. Sagar, “Heuristic models for task allocation in distributed computer
systems”. IEE Proceedings, Part E, [Computer and Digital Techniques],
138(5):313-318, Sept. 1991.

[Scratchley99] W.C. Scratchley and C.M. Woodside, “Evaluating concurrency options in
software specifications”, Submitted to MASCOTS 99.

[Shen85] Chien-Chung Shen and Wen-Hsiang Tsai, “A graph matching approach to optimal
task assignment in distributed computing systems using a minimax criteria”,
IEEE Transactions on Software Engineering, 34(3):197-203, March 1985.

[Sherman95] W.Sherman, D.J. Paulish, M. Klinger and W. Liao, “Scenario-driven software
design”, Electronic Design, October 24, 1995.

[Smith90] C.U. Smith, Performance Engineering of Software Systems, Addison-Wesley
Publishing Co., New York, NY, 1990.

[Smith97] C.U. Smith and Lloyd Williams, “Performance engineering evaluation of object-
oriented systems with SPE-ED”, Computer Performance Evaluation:

Page 160

Modeling Techniques and Tools, No. 1245, (R. Marie, et. al. eds.), Springer-
Verlag, Berlin, 1997.

[Sngauinetti79] J. Snaguinetti, “A technique for integrating simulation and system design”, in
Conf. on Simulation, Measurement and Modeling of Comput. Sys., Aug.
1979.

[Stone77] Harold S. Stone, “Multiprocessor scheduling with the aid of network flow algorithm”,
IEEE Transactions on Software Engineering, 3(1):85-93, Jan. 1979

[Stone78a] Harold S. Stone, “Critical load factors in distributed computer systems”, IEEE
Transactions on Software Engineering, vol. 4, pp. 254-258, May 1978.

[Stone78b] Harold S. Stone and S.H. Bokhari, “Control of distributed processes”, Computer,
vol. 11, pp. 97-106, July1978.

[Storch93] M.F. Storch and J.W.S. Liu, “Heuristic algorithms for periodic job assignment”, In
Proceedings of the Workshop on Parallel and Distributed Real-time Systems,
pp. 245-251, Apr. 1993.

[Strosnider96] Jay K. Strosnider, “Performance Engineering Real-Time/Multimedia Systems”,
“http://www.ece.cmu.edu/afs/ece/usr/jks/web/home.html”

[Sun96] Jun Sun, Fixed Periodic Scheduling of Periodic Tasks with End-To-End Deadlines,
Ph.D. thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, Illinois, USA, March 1996.

[Tantawi85] A.N. Tantawi and D. Towsley, “Optimal static load balancing in distributed
computer systems”, Journal of the ACM, vol. 32, pp. 445-465, April 1985.

[Telelogic96] SDT 3.1 User’s Guide, SDT 3.1 Reference Manual. Telelogic Malom AB,
Sweden, 1996

[Thiel96a] A. Mitschele-Thiel, “Methodology and tools for the development of high
performance parallel systems with SDL/MSC”, Proc. Software Engineering
for Parallel and Distributed Systems, 1996

[Thiel96b] A. Mitschele-Thiel, P. Langendofer, and R. Henke, “Design and optimization of
high-performance protocols with the DO-IT toolbox”, Proc. of FORTE/PSTV
‘96.

[Thiel99] A. Mitschele-Thiel, and B. Muller-Clostermann, “Performance engineering of
SDL/MSC systems”, 9th SDL-Forum, Montreal, June 1999.

[Tindel92] K.W. Tindel, A. Burns, and A.J. Wellings, “Allocating hard real-time tasks: an NP-
hard problem made easy”, Real-Time Systems, 4(2):145-165, June 1992.

Page 161

[Towsley86] Don Towsley, “Allocating programs containing branches and loops within a
multiple processor system”, IEEE Transactions on Software Engineering,
12:1018-1024, Oct. 1986

[UML99] UML Revision Task Force: OMG Unified Modeling Language Specification, version
1.3 beta R1, June1999. http://uml.systemhouse.mci.com/

[Verilog96] Verilog. ObjectGEODE - Technical Documentaion, 1996.

[Weiden98] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer, “Scenario usage in system
development: a report on current practice”, IEEE Software, pp. 34-45,
March 1998.

[Wohlin91] Claes Wohlin, “Performance analysis of SDL systems from SDL specifications”,
SDL design forum 1991.

[Woodside89] C.M. Woodside, “Throughput calculation for basic stochastic rendezvous
networks”, Performance Evaluation, Vol. 9, No. 2, pp. 143-160, 1989.

[Woodside93] C.M. Woodside and G.M. Monforton, “Fast allocation of processes in distributed
and parallel systems”, IEEE Transactions on Parallel and Distributed Systems,
vol. 4, no. 2, Feb. 1993.

[Woodside95a] C. M. Woodside, J. E. Neilson, D. C. Petriu, and S. Majumdar, “The
stochastic rendezvous network model for performance of synchronous client-
server-like distributed software”, IEEE Transactions on Computers,
44(1):20-34, January 1995.

[Woodside95b] C. M. Woodside, “Three-view model for performance engineering of
concurrent software”, IEEE Transactions on Software Engineering, vol. 21,
no. 9, Sept. 1995.

[Woodside98] C. M. Woodside, C.E. Hrischuk, B. Selic, S. Bayarov, “A wideband approach to
software performance prediction and improvement”, 1st International
Workshop on Software and Performance (WOSP’98), October 10-12, 1998.

[Xin88] Huang Xin, Zhang Hong, and X. Cai, “Heuristic software partitioning algorithms for
distributed real-time applications”, IEEE 1988.

[Zurcher68] F. Zurcher and B. Randell, “Iterative, multi-level modeling - a methodology for
computer system design”, in Proc. IFIP Congress ‘68, pp. 867-871, 1968.

THIS IS THE LAST PAGE MARKER

