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Abstract
Increasingly, fault-tolerant distributed software applica-

tions use a separate architecture for failure detection
instead of coding the mechanisms inside the application
itself. Such a structure removes the intricacies of the failure
detection mechanisms from the application, and avoids
repeating them in every program. However, successful sys-
tem reconfiguration now depends on the management archi-
tecture (which does both fault detection and
reconfiguration), and on management subsystem failures, as
well as on the application. This paper presents an approach
which computes the architecture-based system reconfigura-
tion coverage simultaneously with its performability.

1.  Introduction

Fault-tolerant computer systems are designed with
redundancy to mask and tolerate failures. However, the
redundancy is ineffective if mechanisms are not in place to
detect and recover from a fault. [1, 2, 3]. An accurate
dependability analysis must consider the system detection
and recovery behavior in addition to the system structure
and its provision of redundancy.

The use of a separate architecture for failure detection
and reconfiguration is becoming more popular among fault-
tolerant distributed applications (instead of handling the
faults within the application itself) [4, 5, 6]. Such usage
promotes software reuse and also eases the development of
the software application. Most of these systems are
structured in layers with some kind of user-interface tasks
at the topmost layer, making requests to various layers of
servers. Client-server systems and Open Distributed
Processing systems such as DCE, ANSA and CORBA are
also structured in this way. [7] introduced an approach to
express layered failure and repair dependencies while [8, 9,
10] provided an efficient algorithm for identifying
equivalent system states from performance viewpoint, in
these systems. However, these studies assume
instantaneous perfect detection and reconfiguration, and
independent failures and repairs (some kinds of failure

dependency were modeled in [10]). It is the purpose of t
present work to incorporate the fault manageme
architecture and its failures into the analysis.

Other work analyzes the effect of software architectu
(and not the management architecture) on reliability and
given by Trivedi and his co-workers [11, 12].

This paper investigates fault coverage (an
performability) in layered systems with a fault-
management architecture, extending the work in [8, 10].
reliability modeling, the usual approach to model coverag
is to have three states {not failed, failed covered (whic
implies that the system has automatically detected a
recovered from the fault), failed not covered (which implie
that the global system failure has occurred due to the fa
regardless of the state of the system)} for each compon
and then combine the aspects of behavioral decompositi
sum-of-disjoint products and multi-state solution method
[2, 3]. However, in layered systems, there may be multip
reconfiguration points that must be activated in order
tolerate a single failure. Success at a reconfiguration po
depends on the system structure and the connectiv
between the source of failure and the point o
reconfiguration in the fault management architecture.
fact, a failure may be fully, partially or not covered at all b
the system, depending on how many of the necess
reconfigurations are successful. Different degrees
coverage typically result in different operationa
configurations of the system. When a failure is partial
covered, the system may end up failed or may operate w
degraded performance, compared to the fully covered ca

This work captures the effect of partial coverage of
failure which is necessary for full performability analysi
of the system. This work considers detecting and reacti
only to crash-stop failures, in which an entity become
inactive after failure, and not to other complex failur
modes such as Byzantine failures [13]. The solutio
strategy for obtaining the expected reward rate of th
system in this paper involves state-space enumeration
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combines min-paths generation algorithms, AND-OR
graph analysis with the Layered Queueing Analysis [14].

The rest of the paper is organized as follows: Section 2
describes the layered systems and their fault management
architectures. Section 3 describes the failure propagation in
layered systems and Section 4 describes the propagation of
knowledge about a failure or a repair event in a fault
management architecture. Section 5 presents the
performability computation algorithm and Section 6
compares the effect of coverage of four different fault
management architectures on the expected steady-state
reward rate of a system.

2. Layered Systems with a Detection/Reconfig-
uration Architecture

The class of systems analyzed in this work has a layered
or tiered architecture for the applications. Figure 1
illustrates the class with an example, using a notation that
was also used in [8, 9, 10]. There is a set of users, which
may be people at terminals or at PC workstations,
accessing applications, which in turn access back-end
servers. The rectangles in the figure represent tasks (i.e.
operating system processes) such as UserA, AppA, Server1
with entries, which are service handlers embedded in the
tasks (there may be several entries such as eA-1, eB-1 in a
task). The arrows designate service requests from one entry
to another, with an implied reply. Tasks block to receive the
reply, as in standard remote procedure calls. We restrict the
analysis to models with no cycles of requests, as cycles
may lead to deadlock.

In Figure 1, there are 50 UserA users who could be
working on one department of an enterprise, and 100
UserB users in another department. Each group makes
primary access through a departmental server to
applications specific to the department (tasks AppA and
AppB), which in turn access enterprise data servers Server1
and Server2. Server1 is the primary server to both

departments; if it fails they will use Server2 until Server1
working again.

A. Reconfiguration

The alternative targeting of requests is indicated
Figure 1 by showing an abstraction called “serviceA” an
“serviceB” for the data access service required by th
Applications. This service has alternative request arro
attached to it, with labels “#n” showing the priority of the
target. A request goes to the highest-priority availab
server, which is determined by areconfiguration decision.
In [8, 10] the decision was assumed to be made by t
Application, based on perfect information. Here th
decision will be made by the management subsystem, a
will be conditioned by its knowledge of the status o
system components. It can respond not only to proces
failures, but also to software failures (task crashes
operating system crashes). Network components can
included in the model as well, but for simplicity we will not
consider that here, so network connections will be assum
not to fail.

The special property of layered systems is that a failu
of a server or processor in one layer can cause many ta
that depend on its services (at any layer in the system)
fail, unless they have an alternative. In general, there can
any number of layers in the system, and netwo
components can be included. The notation in Figure 1 w
introduced in [8] as “Fault Tolerant Layered Queuein
Networks” (FTLQNs) and is based on layered queuein
networks (LQNs) [14]. Non-blocking and multi-threade
tasks, and asynchronous interactions, can be included.
model captures layered operational and failu
dependencies, and [10] showed how this could
generalized to abstract “failure dependency factors” th
model some forms of dependency among individu
failures.

The general strategy of the analysis is to compute t
performance for each reachable configuration (wi
different choices of alternative targets for requests) a
combine it with the probability of each configuration
occurring, to find performability measures. This is simila
to the Dynamic Queueing Network approach given in [1
16].

B. Management Components

The management components and relationships
indicated in Figure 2, following [17]. Applications have
embedded modules (Subagents) which may be configu
to send heartbeat messages in response to timer interr
(indicating they are alive) to a local Agent, or to a manag
directly. A node may have an Agent task which monito

userA UserA userBUserB

AppA AppB

Server1 Server2

eA

eA-1 eA-2eB-1 eB-2

procA procB

proc1 proc2

proc3 proc4

serviceA

#1
#1#2 #2

NUserA = 50 NUserB= 100

eB

Figure 1. A layered model of a client-server system with
two groups of users. Server2 is the backup of Server1.

serviceB
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the operating system health status and all the processes in
the node, and there may be one or more Manager tasks
which collect status information from agents, make
decisions, and issue notifications to reconfigure.
Reconfiguration can be handled by a subagent (to cause a
task or an ORB to retarget its requests) or an agent (to
restart a task, or reboot a node altogether).

The agents and managers are described in this paper as
if they are free-standing processes, even though in practice
some of these components may be combined with other
components in a dependability ORB [18, 19], or an
application management system [20].

Failures of system entities are detected by mechanisms
such as heartbeats, timeouts on periodic polls, and timeouts
on requests between application tasks. Heartbeat messages
from an application task can be generated by a special
heartbeat interrupt service routine which sends a message
to a local agent or to a manager, every time an interrupt
occurs, as long as the task has not crashed. Heartbeat
messages for an entire node can be generated by an agent
configured similarly, to show that the node is functioning;
the agent could query the operating system health status
before sending its message. Heartbeat information once
collected can be propagated among the agents and
managers to act as a basis for decisions, made by
reconfiguration modules.

An entity that cannot initiate heartbeat messages may be
able to respond to messages from an agent or manager; we
can think of these as status polls. The responses give the
same information as heartbeat messages. Polls to a node
could be implemented as pings, for instance.

C. Management Architecture

The architecture model described here will be called
MAMA, Model forAvailability ManagementArchitectures.
The model has four types of components: application tasks
(which may include subagent modules), agent tasks,
manager tasks, and the processors they all run on (network
failures are for the time being ignored). There are three
types of connectors:alive-watch, status-watchand notify.
These connectors are typed according to the information
they convey, in a way which supports the analysis of

knowledge of the system status at different points in th
management system.

Components haveports which are attached to
connectors in certain roles. The roles are defined as par
the connector type. The connector types and the roles th
support are:
• Alive-watch connectors, with rolesmonitor andmoni-

tored. They only convey data to detect crash failure o
the component in the monitored role, to the compone
in the monitor role. A typical example is a connector to
a single heartbeat source.

• Status-watch connectors, also with rolesmonitor and
monitored. They may convey the same data about the
monitored component, but also propagate data abou
the status of other components to the component in t
monitor role. A typical example is a connector to a
node agent, conveying full information on the node st
tus, including its own status.

• Notify connectors, with rolessubscriber andnotifier.
The component in the notifier role propagates status
data that it has received to a component in a subscrib
role, however it does not include data on its own stat

Manager and Agent tasks can be connected in any ro
an Application task can be connected in the role
monitored, or subscriber. A Processor is a composite
component that contains a cluster of tasks that exec
there. If the processor fails, all its enclosed tasks fail. T
Processor can only be connected in themonitoredrole to an
alive-watch connector (which might convey a ping, for
example).

Upon occurrence of a failure or repair of a task or
processor, the occurrence is first captured via alive-wa
or status-watch connections and the information propaga
through status-watch and notify connections, to manag
which initiate system reconfiguration. Reconfiguratio
commands are sent bynotify connections. Cycles may
occur in the architecture; we assume that the informati
flow is managed so as to not cycle. In this work, we no
that if a task watches a remote task, then it also has
watch the processor executing the remote task, in order
distinguish between the processor failure and the ta
failure.

Figure 3 shows a graphical notation for various types
components, ports, connectors and roles based on
customized UML notation for conceptual architecture a
defined in [21]. The component types and connector typ
will be shown as classes in this work. In order to avo
cluttering in the MAMA diagrams, the role names such a
monitor, monitored, notifier and subscriber have been
omitted from them.

Figure 2. Management components and relationships

Manager AppA

Agent

Agent Subagent Server1 Server2

Agent
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Figure 4 shows a centralized management architecture,
in MAMA notation, for the system of Figure 1. Manager1
is introduced here as the central manager task. The
application tasks AppA and AppB are also subscribers for
the notifications from Manager1, which control retargeting
of requests to the Servers.

3.  Modeling Fault Propagation

The operational dependencies among the entries in the
FTLQN model can be represented by an AND-OR-like
graph, known as afault propagation graph [8]. The
transformation of an FTLQN model to a fault propagation
graph follows [8]. The nodes of the fault propagation graph
are:
• leaf nodes representing either a task or a processor (a

task node or aprocessor node).
• AND-nodes corresponding to the entries in the FTLQN

model, calledentry nodes.

• OR-nodes corresponding to the “services” in the
FTLQN model that have alternative targets. They are
calledservice nodes. Labels #1, #2, ... on the outgoing
OR arcs define the preference order for the alternativ
targets (#1 first).

Figure 5 shows the Fault Propagation Graph
corresponding to the layered model in Figure 1. Notice th
only tasks that are part of the application are included
this graph; the failures of management or agent tasks
described within the Knowledge Propagation Grap
(described later in Section 4), although they also ha
effects within this Fault Propagation Graph.

Notations:
• V denotes the set of nodes inG.
• L denotes the set of leaf nodes inG.

•  denotes the set of leaf nodes inG on which
the non-leaf node,n, depends on.

• oc represents the working status of componentc.

• (compliment ofoc) represents failed status of com-

ponentc.
• knowc,t is determined by a boolean expression that

evaluates to TRUE if taskt has knowledge about the
operational state of a componentc. The expression can
be found (as described in Section 4) from the connec
tivity information of the fault management architecture
of the system.

• t(s) denote the task that requires services.

Definition 1: In a fault propagation graphG,
• An entry node is working if all its child nodes are

working.
• The root node is working if any of its child nodes is

working.
• A service node is working if any of its child nodes is

working. A service nodes that hasM alternative target
entries,e1, e2, ...eM  (ordered by their priorities 1, 2,

Processor
Component

Agent Task
Component

Alive-watch Connector

Status-watch Connector

Notify Connector

Application Task
Component

Manager Task
Component

port connectionrole

AT MT

AGT Proc

monitored monitor
AW

Figure 3. MAMA notations. The graphical notation of
components, ports, connectors and roles are taken
from [21].

monitored monitor
SW

notifier subscriber
Ntfy

procA:Proc

UserA:AT

proc1:Proc

AppA:AT

proc3:Proc

Server1:AT

procB:Proc

UserB:AT

proc2:Proc

AppB:AT

proc4:Proc

Server2:AT

proc5:ProcManager1:MT

Figure 4. MAMA Model for a centralized management
architecture. Manager1 is the central manager task.

c1:AW

c7:AW

c4:Ntfy c2:AW c3:AW c6:AW c5:AW

c8:AW

c9:Ntfy c10:AW c12:AW
c11:AW

r

userA userB

UserB procBUserA procAeA eB

AppA proc1serviceA AppB proc2serviceB

eA-1 eA-2eB-1 eB-2

proc3 Server1 Server2 proc4

#1 #2 #1 #2

Figure 5. The fault propagation graph G correspond-
ing to Figure 1.

L n( ) L⊆

oc′
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...M) and which is required by an entryeof taskt,
selects a targetep for being operational if:

• p = min{ j * 1(ej is operational) },j = 1, 2, ...M where
the indicator function1(expression) is equal to one if
theexpression is true and zero otherwise, and

• the entryep is operational and the taskt has the
knowledge (usingknowfunction) about the state of all
the components that make entryep operational, and

• if p > 1, then all the entriesej are failed forj < p and
the taskt knows (usingknow function) about each of
the entryej’s failure by knowing the state of the com-
ponents that contributed inej’s failure.

Definition 2: Let us define a configurationC of the system

as:C = { n | where noden represents an entry or a
service node that is working as per Definition-1 and is in
use by the system }.

The fault propagation graph is used in the algorithm
described in Section 5, to determine the distinct operational
configurations of the system and their probabilities.

Apart from theknowfunction, and its effects, this is the
same reconfiguration algorithm as in [8]. The function
know incorporates possible coverage limitations created by
the fault management architecture. Its computation is
described in the Section 4.

4.  Modeling Knowledge Propagation

The connectivity between a point of failure and the point
of reconfiguration can be analyzed by applying minpath
algorithms to the MAMA model. First, the MAMA model
is converted to a flat graph called theKnowledge
Propagation graph. There are four types of arcs in the
knowledge propagation graphK: { component, alive-watch,
status-watch, notify}. Each component in the MAMA
model leads to an arc of typecomponent; each connector in
the MAMA model leads to an arc of the same type as the
connector. A component or connector failure is represented
by an arc failure.

Let us denoteivi and tvi to be the initial and terminal
vertices respectively of arci.

The steps for transformation of a MAMA model to a
Knowledge Propagation graph are:

For each componenti in MAMA model,

• add a directed arc i = (ivi, tvi) to K.
• the type of the arci is set tocomponent.

For each connectorc between two componentsi and j in

the MAMA model, where i, j are connected to roles
{ monitored, monitor} of c (whenc is of typealive-watchor
status-watch) or connected to roles {notifier, subscriber} of
c (whenc is of typenotify),

• add a directed arcc to K such thativc = tvi andtvc = ivi

• the type of the arcc is set equal to the type of the con-
nectorc.

Figure 6 shows the knowledge propagation grap
corresponding to the MAMA model in Figure 4.

The knowledge propagation graph is used for computi
the functionknowc,t (defined in Section 3) as:

wherem is the total number of
minpaths (P1, P2, ..., Pm)
from tvc to tvt. A minpath Pq
is a minimal set of arcs in

graphK such that when all the arcs inPq are operational,
then verticestvc and tvt are connected; verticestvc and tvt

are disconnected for every proper subset ofPq. A minpath
Pq from tvc to tvt is obtained fromK whenc represents a
task or from the reduced graph [K - { arcs representing task
tj (contained in processor c) in K}] when c represents a
processor, using any standard minpaths algorithm (e
[22]), taking into account that the first arc in the path mu
be of typealive-watchor status-watchand rest of the arcs

should be of typecomponent, status-watchor notify. Pq
+ is

an augmented minpath obtained fromPq as:

Pq
+ = if

n V∈
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c4;ntfy
c1;aw

proc2;cmpt

proc4;cmpt

procA;cmpt

proc1;cmpt

AppA; cmpt

c2;aw

c3;aw c10;aw

3
UserA;cmpt

9
proc3;cmpt

16
UserB;cmpt

20
AppB; cmpt

24
Server2;cmpt

12
Server1;cmpt

11

28
proc5;cmpt

27

c6;aw

c9;ntfy

c12;aw

Figure 6. The Knowledge Propagation graph corre-
sponding to the MAMA model in Figure 4.

Each edge is labelled by its name and type asname; type.
cmpt = component; ntfy = notify;
aw = alive-watch; sw = status-watch

knowc,t =
q = 1

m

j Pq∈
oj( )
+

Pq arc p p is processor of task tj( )
t j Pq∈

∪
 
 
 

pc∪ ∪
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c is a task,

Pq
+ = if

c is a processor.

The knowledge propagation graph is used during the
performability computation.

5.  Performability Algorithm

The expected steady state reward rate of a layered
system with a separate fault management architecture is
now computed as follows:

Step (1): Obtain the knowledge propagation graphK
corresponding to the specified MAMA model, as described
in Section 4.

Step (2): Obtain the fault propagation graphG
corresponding to the layered FTLQN model, as described
in Section 3.

Step (3): For each service nodes in G and for each leaf
node , computeknowl,t(s) from the knowledge
propagation graphK.

Step (4): Determine the set,Z, of all possible distinct
operational configurationsCi, from G and compute the
probability, Prob(Ci), of the system being in each such
configuration Ci as follows. Let the total number of
processors and tasks in the MAMA model and the FTLQN

model beN. Enumerate all 2N states of the system. For
each stateΓ = { γ1, γ2, ...γN}, where γc = 0 or 1, if the root
node r is working as per Definition-1, generate a
configurationC containing all the non-leaf nodes which are

working and is in use. Compute Prob(C) = (c is in

stateγc). If there exists a configuration such that

= C, then setProb( ) = Prob( ) + Prob(C) else

.

Step (5): Each determines the service alternatives,

so it defines an ordinary Layered Queueing Network
model. Generate the LQNs and solve them [14]. From the
performance measures assign a rewardRi to configuration
Ci.

Step (6): Compute the expected reward rate of the system

asR = .

6.  A Comparison of Four Fault Management
Architectures

This section studies the effect of four different fau
management architectures on the expected steady-s
reward rate of a distributed system. The architectures a
selected according to the classification given in [23], fo
management systems based on the manager-ag
paradigm.

6.1. Architectural Model of a fault-tolerant layered
distributed system

Let us consider the layered system shown in Figure
Let us assume the independent failure probabilities for
the tasks and the processors to be 0.1 except UserA, Use
procA and procB which are assumed to be perfect
reliable. Let us consider the mean total demand f
execution on the processor for entries eA, eB, eA-1, eB
eA-2 and eB-2 to be 1, 0.5, 1, 0.5, 1, 0.5 secon
respectively and let us assume that on average, 1 reque
made from a caller entry to the called entry per invocatio
of each caller entry. Since the tasks UserA, UserB and th
associated processors are assumed perfectly reliable,
are not monitored and are not shown in any of th
management architectures described next.

6.2. Four fault management architectures

Architecture 1: Centralized Management Architecture
The centralized architecture [24, 25] is the mos

commonly used. A single manager handles all agents a
application tasks, makes the decisions and initiat
reconfiguration. Figure 7 shows a centralized managem
architecture for the system in Figure 1. The centr
manager m1 manages all the tasks AppA, AppB, Serve
Server2 and their associated processors.

Let us consider the failure probability of the manage
and all the agents be 0.1. In order to analyze the system
Figure 1 with the centralized management architecture
Figure 7, we do the followings:

For node serviceA in the corresponding fault
propagation graph G in Figure 5, we compute:

(since there is only one minpath from Server1 to AppA i
the corresponding knowledge propagation graph).

Pq arc p p is processor of task tj( )
t j Pq∈

∪
 
 
 

∪

l L s( )∈

Prob
c 1=

N

∏
C′ Z∈

C′ C′ C′

Z Z C∪=

Ci Z∈

RiProb Ci( )
Ci Z∈
∑

knowServer1,AppA = oc

c = {c3,ag3,c8,m1,proc5,c13,ag1,c5,AppA,proc1,proc3}
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We repeat the steps for nodeserviceB. Then, using these
know functions and the information in Figure 5, we obtain
six distinct operational configurations of the system as:
C1: UserA operational using  Server1. UserB is failed.
C2: UserA operational using  Server2. UserB is failed.
C3: UserB operational using  Server1. UserA is failed.
C4: UserB operational using  Server2. UserA is failed.
C5: UserA, UserB operational. Both using  Server1.
C6: UserA, UserB operational. Both using  backup Server2.

We generate an LQN model for each of the operational
configurations and solve these models using LQNS tool
[14] for determining the performance measures. Table 1
shows the probability and the associated reward for each
operational configurations.

The expected steady-state reward rate for the system is
obtained as approximately 0.55/secs whereas in case of
perfect knowledge, it is found to be 0.85/secs.

To illustrate a situation with partial coverage of a failure,
consider the failure of Processor proc3 (which supports
Server1) when the system is fully operational. With perfect
knowledge, this always leads to configurationC6. However
under any management architecture, if agent ag2 (which is

connected to AppB) has also failed, then AppB does n
know about the failure of proc3 and does not reconfigure
use Server2; this leads to configurationC2 instead. In
configurationC2, the A group of users are operational an
the B group are not. Thus the failure is partly covered an
the system has reduced functionality.

This example also shows that the failures in th
management architecture increase the probability of syst
being failed or of reduced functionality.

Architecture 2: Distributed Management Architecture
The distributed architecture [26] has multiple

management domains with a manager for each one. Wh
information from another domain is needed, the manag
communicates with its peer systems to retrieve it. Figure
shows a distributed management architecture for the syst
in Figure 1. In Figure 8, there are two domain manage

AppA:AT ag1:AGT

proc1:Proc c1:AW

c5:Ntfy

AppB:AT ag2:AGT

proc2:Proc c2:AW

c6:Ntfy

Server1:AT ag3:AGT

proc3:Proc
c3:AW

Server2:AT ag4:AGT

proc4:Proc
c4:AW

c11:AW

c12:SW c13:Ntfy c16:Ntfy

c14:AW

c15:SW

c7:AW c8:SW

c9:AW

c10:SW

m1:MT

Figure 7. MAMA Model of a centralized management
architecture for the system in Figure 1.

proc5:Proc

knowServer2,AppA = oc

c = {c4,ag4,proc4,c10,m1,proc5,c13,ag1,c5,AppA,proc1}

knowproc3,AppA = oc

c = {c7,m1,proc5,c13,ag1,c5,AppA,proc1}

knowproc4,AppA = oc

c = {c9,m1,proc5,c13,ag1,c5,AppA,proc1}

Table 1: Configuration Probabilities (for Centraliz-
ed Management) and Rewards

Configur
ationCi

Perfect
Knowledge

Prob(Ci)

Centralized
Mgmt

Prob(Ci)

RewardRi
= Total Throughput

(A and B users)

C1 0.125 0.117 0.5

C2 0.024 0.021 0.5

C3 0.125 0.117 0.5

C4 0.024 0.021 0.5

C5 0.531 0.314 1.11

C6 0.100 0.057 1.11

System
Failed

0.071 0.353 0

AppA:AT ag1:AGT

proc1:Proc :AW

:Ntfy

AppB:AT ag2:AGT

proc2:Proc :AW

:Ntfy

Server1:AT ag3:AGT

proc3:Proc
:AW

Server2:AT ag4:AGT

proc4:Proc
:AW

dm1:MT

:SW:AW

dm2:MT

:SW:AW

:Ntfy

:Ntfy

:AW:SW:Ntfy:AW :Ntfy :SW

Figure 8. MAMA Model of a distributed management
architecture for the system in Figure 1. dm1 and dm2
are two peer domain managers.

proc5:Proc proc6:Proc
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dm1 (for the entities AppA, Server1, proc1 and proc3) and
dm2 (for the entities AppB, Server2, proc2 and proc4).
They communicate through thenotify connections. Results
are given below in Section 6.3.

Architecture 3: Hierarchical Management Architecture
The hierarchical architecture [27, 28] also relies on

multiple (domain) managers and introduces the concept of
the manager of managers (MOM). Each domain manager is
connected to the rest of the network only through the
MOM. The MOM operates on a higher hierarchical level,
retrieving information from and coordinating the domain
managers. Unlike the distributed architecture, the domain
managers do not communicate directly. Figure 9 shows a
hierarchical management architecture for the system in
Figure 1, with two domain managers, dm1 (for AppA,
Server, proc1 and proc3) and dm2 (for AppB, Server2,
proc2 and proc4), and a manager of managers mom1.
Results are given below in Section 6.3.

Architecture 4: General “Network” Management
Architecture

The “network” architecture [27] is a combination of the
distributed and the hierarchical architectures. Instead of a
purely peer-structure or hierarchical structure, the
managers are organized in a network scheme. Figure 10
shows a network management architecture for the system
in Figure 1. In Figure 10, there are two domain managers,
dm1 and dm2, and two integrated managers, im1 and im2.
dm1 manages the task Server1. dm2 manages the task
Server2. im1 handles the task AppA, the managers dm1,
dm2 and the processors proc3 and proc4. im2 handles the

task AppB, the managers dm1, dm2 and the process
proc3 and proc4. The connections between managers
have any topology.

6.3. Results

Suppose the agents and the managers in the four fa
management architectures described above ha
independent failures and failure probability 0.1. Define th
reward rateRi for configurationCi as

Ri =

wherewj represents the weight of users of groupj and fi,j
represents the throughput of users of groupj corresponding
to the configuration Ci. Table 2 shows the distinct
operational configurations of the system, together wi
their probabilities and throughputs for the four fau
management architectures and also for perfect knowledg

Figure 11 compares the expected steady state rew
rate of the layered system in Figure 1 corresponding
each of the four management architectures, und
variations of the weight of the UserB users relative t
UserA. In Table 2, we observe that the variation in User
throughput (given in second row from the bottom) fo
different management architectures is less than t
variation in UserB throughput (given in the last row). A
we increase the weight of UserB over UserA, the effect
UserB throughput on the reward rate of the syste
increases. UserB throughput decreases for the cases
Table 2 in the order Case 3, Case 1, Case 5, Case 2
Case 4. Thus from Figure 11, we observe that the expec

AppA:AT ag1:AGT

proc1:Proc :AW

:Ntfy

AppB:AT ag2:AGT

proc2:Proc :AW

:Ntfy

Server1:AT ag3:AGT

proc3:Proc
:AW

Server2:AT ag4:AGT

proc4:Proc
:AW

dm1:MT

:SW:AW

dm2:MT

:SW:AW

:Ntfy

:AW:SW:Ntfy:AW :Ntfy :SW

:Ntfy
mom1:MT

:Ntfy

Figure 9. MAMA Model of a hierarchical management
architecture for the system in Figure 1. mom1 is man-
ager of managers handling both dm1 and dm2.

proc7:Procproc5:Proc proc6:Proc:Ntfy

AppA:AT

ag1:AGT
proc1:Proc :AW

:Ntfy

im1:MT
:SW

:Ntfy

AppB:AT

ag2:AGT
proc2:Proc :AW

:Ntfy

im2:MT
:SW

:Ntfy

dm1:MT

Server1:AT

ag3:AGT

:AW

proc3:Proc
:SW

Server2:AT

:AW :SW

:AW

ag4:AGT

:SW
proc4:Proc

dm2:MT

:AW :SW :SW

:AW
:AW

:SW

Figure 10. MAMA Model of a network management
architecture for the system in Figure 1. im1, im2 are
integrated managers.

wUserAf i UserA, wUserBf i UserB,+
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Table 1: Distinct Operational Configurations of the system in Figure 1, their probabilities for four fault
management architectures and the associated throughput of two groups of users

i
Configuration

Ci = {n | noden is an entry or a service node
that is working and is in use by the system}

Prob(Ci) Throughputs of
users

(fi,UserA, fi,UserB)
Perfect

knowledge
assumed
(Case 1)

Central
Architecture

(Case 2)

Distributed
Architecture

(Case 3)

Hierarchical
Architecture

(Case 4)

Network
Architecture

(Case 5)

1 {userA, eA, serviceA, eA-1} 0.125 0.117 0.082 0.225 0.148 (0.5, 0)
2 {userA, eA, serviceA, eA-2} 0.024 0.021 0.041 0.014 0.026 (0.5, 0)
3 {userB, eB, serviceB, eB-1} 0.125 0.117 0.307 0.076 0.148 (0, 0.5)
4 {userB, eB, serviceB, eB-2} 0.024 0.021 0.036 0.014 0.026 (0, 0.5)
5 {userA, userB, eA, eB, serviceA, eA-1, servi-

ceB, eB-1}
0.531 0.314 0.349 0.206 0.282 (0.44, 0.67)

6 {userA, userB, eA, eB, serviceA, eA-2, servi-
ceB, eB-2}

0.100 0.057 0.046 0.037 0.049 (0.44, 0.67)

System Failed Configuration 0.071 0.353 0.139 0.428 0.321 (0, 0)
Average UserA throughput 0.352 0.232 0.235 0.226 0.233
Average UserB throughput 0.572 0.387 0.608 0.253 0.396
steady state reward rate of the system decreases for the
architectures in the order distributed, network, centralized
and hierarchical with the increase in the weight of UserB
over UserA.

The algorithm costs are different for analyzing the
different architectures. In the order of cases given across
the table, the number of states in the solution state space is
256, 16384, 65536, 262144 and 65536 respectively. The
larger state spaces arise for systems with more management
components. The execution times for obtaining the distinct
operational configurations of the system in Figure 1 and
their associated probabilities for the five cases are
approximately 0.2, 2, 8, 35, and 8 secs respectively. This is
for a Java implementation, measured in Windows98 hosted
by Pentium (III) processor.

7.  Conclusion

The value of including the management architecture
the analysis is first to account for failures and repairs
managers and agents, and second to evaluate limitation
the detection and reconfiguration architecture. Th
algorithm described here scans the space of failu
combinations to detect the reachable configurations of ta
(a relatively small set) and the operational configurations
application tasks (smaller yet). Thus the effort expended
the high-complexity steps which prune the set o

configurations is small. The need to explore 2N cases will
limit the scalability of the approach as described here
one or two dozen entities, however much more efficie
pruning appears to be possible, using a non-state-spa
based approach.

In layered systems there may be partially covere
failures that affect the probability of different operationa
configurations thereby affecting the performability of
system, as we have seen in Section 6.2. This work h
combined the effect of partial coverage with th
performability computation.

The examples shown here considered only failure
processors and tasks. Network failures are easily includ
as well.

The analysis could be extended to include delays
detect failures and to reconfigure, following the approac
described in [29]. Delays in detection may be due to th
length of a heartbeat interval, or to a polling delay. Th
extension leads to a serious increase in the number of sta
however, which may require approximations or boundin

Figure 11. Comparison of expected steady state reward
rate of the system in Figure 1 for the four management
architectures.
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