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Abstract dependency were modeled in [10]). It is the purpose of the

Increasingly, fault-tolerant distributed software applica- presgnt work tp incorpo_rate the fau!t management
tions use a separate architecture for failure detection@rchitecture and its failures into the analysis.
instead of coding the mechanisms inside the application
itself. Such a structure removes the intricacies of the failure Other work analyzes the effect of software architecture
detection mechanisms from the application, and avoid4@nd not the management architecture) on reliability and is
repeating them in every program. However, successful sygiven by Trivedi and his co-workers [11, 12].
tem reconfiguration now depends on the management archi- ] .
tecture (which does both fault detection and ThiS paper investigates fault —coverage (and
reconfiguration), and on management subsystem failures, a&erformability) in layered systems with a fault-
well as on the application. This paper presents an approactnanagement architecture, extending the work in [8, 10]. In
which computes the architecture-based system reconfigurd€liability modeling, the usual approach to model coverage

tion coverage simultaneously with its performability. is to have three states {not failed, failed covered (which
implies that the system has automatically detected and
1. Introduction recovered from the fault), failed not covered (which implies

that the global system failure has occurred due to the fault

Fault-tolerant computer systems are designed Wm{egardless of the state of the system)} fpr each compon .ent
redundancy to mask and tolerate failures. However, thé‘nd then.c.or_nbme the aspects of t_;ehaworal dgcomposmon,
redundancy is ineffective if mechanisms are not in place t um-of-disjoint products and multi-state solution methgds
detect and recover from a fault. [1, 2, 3]. An accurate 2, 3]. However, in layered systems, there may be multiple

dependability analysis must consider the system detectiof?conﬁguraﬂon points that must be activated in order to

and recovery behavior in addition to the system structuréOIerate a single failure. Success at a reconfiguration point
and its provision of redundancy depends on the system structure and the connectivity

between the source of failure and the point of

The use of a separate architecture for failure detectio@ecfnﬂfgqlratlon n t;[h? :‘Iault n:.arl}agemetn : archlzjec;[urltlab i
and reconfiguration is becoming more popular among faultiact, @ failure may be [ully, partially or not covered at all by

tolerant distributed applications (instead of handling thethe system, depending on how many of the necessary

faults within the application itself) [4, 5, 6]. Such usage reconflguratlton§ I?re succl:tess_ful. dl?;fferetn t degrt:g S IOf
promotes software reuse and also eases the developmentccﬂverage ypically —result —in —diierent — operationa

the software application. Most of these systems arEg:onfigurations of the system. Whgn a failure is partiall_y
structured in layers with some kind of user-interface taské:overed, the system may end up failed or may operate with

at the topmost layer, making requests to various layers 0(iiegraded performance, compared to the fully covered case.

servers. Client-server systems and Open Distributed hi K he eff f ial f
Processing systems such as DCE, ANSA and CORBA ar? .T IS wor _captures the efiect of partia coverage of a
also structured in this way. [7] introduced an approach toallure which is necessary for f ul performgblhty analy3|§
express layered failure and repair dependencies while [8, é),f the system. This wprk coq5|der§ detectlng'and reacting
10] provided an efficient algorithm for identifying only to crash-stop failures, in which an entity becomes

equivalent system states from performance viewpoint, idnactlve after failure, anq not 'to other complex fa|Iu.re
these systems. However, these studies assu odes such as Byzantine failures [13]. The solution

instantaneous perfect detection and reconfiguration, analrategy for obtaining the expected reward rate of the

independent failures and repairs (some kinds of failureSyStem in this paper involves state-space enumeration and



combines min-paths generation algorithms, AND-ORdepartments; if it fails they will use Server2 until Server1 is
graph analysis with the Layered Queueing Analysis [14]. working again.
The rest of the paper is organized as follows: Section 2‘6‘ Reconfiguration
describes the layered systems and their fault management The alternative targeting of requests is indicated in
architectures. Section 3 describes the failure propagation iRigure 1 by showing an abstraction called “serviceA” and
layered systems and Section 4 describes the propagation tferviceB” for the data access service required by the
knowledge about a failure or a repair event in a faultApplications. This service has alternative request arrows
management architecture. Section 5 presents thattached to it, with labels “#n” showing the priority of the
performability computation algorithm and Section 6 target. A request goes to the highest-priority available
compares the effect of coverage of four different faultserver, which is determined byraconfiguration decision
management architectures on the expected steady-stdte [8, 10] the decision was assumed to be made by the
reward rate of a system. Application, based on perfect information. Here the
decision will be made by the management subsystem, and
2. Layered Systems WithaDetection/Reconfig- will be conditioned by its knowledge of the status of
uration Architecture system components. It can respond not only to processor
failures, but also to software failures (task crashes or

The class of systems analyzed in this work has a layere§P€rating system crashes). Network components can be
or tiered architecture for the applications. Figure 1|ncIU(_1ed in the model as well, but for S|r_an|C|t)_/we will not
illustrates the class with an example, using a notation thatonsider that here, so network connections will be assumed
was also used in [8, 9, 10]. There is a set of users, whicffiot 0 fail.
may be people at terminals or at PC workstations, ] ) )
accessing applications, which in turn access back-end 1he special property of layered systems is that a failure
servers. The rectangles in the figure represent tasks (i.@f & S€rver or processor in one layer can cause many tasks
operating system processes) such as UserA, AppA, Servefiat depend on its services (at any layer in the system) to
with entries, which are service handlers embedded in thil: unless they have an alternative. In general, there can be
tasks (there may be several entries such as eA-1, eB-1 in®yY Nnumber of layers in the system, and network
task). The arrows designate service requests from one entfPMpPonents can be included. The notation in Figure 1 was
to another, with an implied reply. Tasks block to receive thellltroduced in [8] as “Fault Tolerant Layered Queueing
reply, as in standard remote procedure calls. We restrict th¢Works” (FTLQNS) and is based on layered queueing

analysis to models with no cycles of requests, as cycle§€Works (LQNs) [14]. Non-blocking and multi-threaded
may lead to deadlock. tasks, and asynchronous interactions, can be included. The

model captures layered operational and failure
Nusera= 50| [ yusera |UserA  UserB ||| userB| Nusers=100  dependencies, and [10] showed how this could be

1 generalized to abstract “failure dependency factors” that
model some forms of dependency among individual
failures.

The general strategy of the analysis is to compute the
performance for each reachable configuration (with
cA-1| eB-1 | Serverl eA-2 | eB.o | Server2 diﬁere_znt c_hoic_es of alternati\{e_ targets for requ_ests)_and

combine it with the probability of each configuration

/7 N
/ ~
occurring, to find performability measures. This is similar

) . . to the Dynamic Queueing Network approach given in [15,
Figure 1. A layered model of a client-server system with 16].

two groups of users. Server2 is the backup of Serverl.

\
\ \
\ \
N

B. Management Components
In Figure 1, there are 50 UserA users who could be . :
: . The management components and relationships are
working on one department of an enterprise, and 100

UserB users in another department. Each group make'gd'cmed in Figure 2, following [17]. Applications have

primary access through a departmental server tembedded modules (Subagents) which may be configured
applications specific to the department (tasks AppA an 0 send heartbeat messages in response to timer interrupts
AppB), which in turn access enterprise data servers Serve ndicating they are alive) to a local Agent, or {0 a manager
and Server2. Serverl is the primary server to both irectly. A node may have an Agent task which monitors



the operating system health status and all the processes kmowledge of the system status at different points in the
the node, and there may be one or more Manager taskeanagement system.
which collect status information from agents, make
decisions, and issue notifications to reconfigure. Components haveports which are attached to
Reconfiguration can be handled by a subagent (to causeannectors in certain roles. The roles are defined as part of
task or an ORB to retarget its requests) or an agent (tthe connector type. The connector types and the roles they
restart a task, or reboot a node altogether). support are:
*  Alive-watchconnectors, with rolesionitorandmoni-

The agents and managers are described in this paper as tored They only convey data to detect crash failure of
if they are free-standing processes, even though in practice the component in the monitored role, to the component
some of these components may be combined with other inthe monitor role. A typical example is a connector to
components in a dependability ORB [18, 19], or an a single heartbeat source.
application management system [20]. e  Status-watcttonnectors, also with rol@sonitorand

monitored They may convey the same data about the
Manager AppA y may y

monitored component, but also propagate data about
Agent Serverl

the status of other components to the component in the
Figure 2. Management components and relationships

monitor role. A typical example is a connector to a
node agent, conveying full information on the node sta-
tus, including its own status.

* Notify connectors, with rolesubscriberandnotifier.
The component in the notifier role propagates status
data that it has received to a component in a subscriber

Failures of system entities are detected by mechanisms role, however it does not include data on its own status.
such as heartbeats, timeouts on periodic polls, and timeouts Manager and Agent tasks can be connected in any role;
on requests between application tasks. Heartbeat messagds Application task can be connected in the roles
from an application task can be generated by a specie{f‘on'tored or subscrlb_er A Processor is a composite
heartbeat interrupt service routine which sends a messag@mponent that contains a cluster of tasks that execute
to a local agent or to a manager, every time an interrup here. If the processor fails, all its enclo_sed tasks fail. The
occurs, as long as the task has not crashed. HeartbeBf0cessor can only be connected inithenitoredrole to an
messages for an entire node can be generated by an ag&@hye-waich connector (which might convey a ping, for
configured similarly, to show that the node is functioning; €xample).
the agent could query the operating system health status ) )
before sending its message. Heartbeat information once UPON occurrence of a failure or repair of a task or a

collected can be propagated among the agents arffOCeSSor, the occurrence is first captured via alive-watch
managers to act as a basis for decisions, made b r status-watch connections and the information propagates

reconfiguration modules. rough status-watch and notify connections, to managers
which initiate system reconfiguration. Reconfiguration

An entity that cannot initiate heartbeat messages may bgommands are sent botify connections. Cycles may
able to respond to messages from an agent or manager: yp&cur in the architecture; we assume that the information
can think of these as status polls. The responses give tHiPW iS managed so as to not cycle. In this work, we note
same information as heartbeat messages. Polls to a noffédt if @ task watches a remote task, then it also has to

could be implemented as pings, for instance. watch the processor executing the remote task, in order to
distinguish between the processor failure and the task
C. Management Architecture failure.

The architecture model described here will be called ) ) ] )
MAMA, Model for Availability Managemen&rchitectures. Figure 3 shows a graphical notation for various types of
The model has four types of components: application task§oMPoNents, ports, connectors and roles based on the
(which may include subagent modules), agent taskscustomized UML notation for conceptual architecture as
manager tasks, and the processors they all run on (netwofi€fined in [21]. The component types and connector types
failures are for the time being ignored). There are thredVill D& shown as classes in this work. In order to avoid
types of connectorsalive-watch status-watchand notify, ~ Cluttering in the MAMA diagrams, the role names such as
These connectors are typed according to the informatioffONitor, monitored notifier and subscriber have been
they convey, in a way which supports the analysis ofomitted from them.



* OR-nodes corresponding to the “services” in the

e role [ | port ——— connection
o FTLQN model that have alternative targets. They are
a7 || Application Task Manager Task calledservice noded abels #1, #2, ... on the outgoing
Component MT ) :
I Component OR arcs define the preference order for the alternative
Processor targets (#1 first).
AGT | Agent Task Proc Figure 5 shows the Fault Propagation Graph G
Component Component : R :
— corresponding to the layered model in Figure 1. Notice that

monitoreonitor Alive-watch Connector only tasks that are part of the application are included in
this graph; the failures of management or agent tasks are

monitored monitor Status-watch Connector described within the Knowledge Propagation Graph
‘@' (described later in Section 4), although they also have

notifier @iubscriber Notify Connector effects within this Fault Propagation Graph.

Figure 3. MAMA notations. The graphical notation of
components, ports, connectors and roles are taken
from [21].

Figure 4 shows a centralized management architecture-
in MAMA notation, for the system of Figure 1. Managerl
is introduced here as the central manager task. The
application tasks AppA and AppB are also subscribers fo
the notifications from Managerl, which control retargeting

of requests to the Servers.
proc3:Proc
SenerL:AT |
c5:AW

AppA

procl:Proc

procA:Prac

UserA:AT

Figure 5. The fault propagation graph G correspond-
ing to Figure 1.

Notations:
* Vdenotes the set of nodesGn
+ L denotes the set of leaf node<an

. L(n) OL denotes the set of leaf nodesGon which

the non-leaf noden, depends on.
* 0O represents the working status of comporment

* o, (compliment ofoy) represents failed status of com-

UserB:Al Sener2:AT

procB:Proc proc2:Proc proc4:Proc
ponentc.
Figure 4. MAMA Model for a centralized management + know ;is determined by a boolean expression that
architecture. Manager1 is the central manager task. evaluates to TRUE if tagkhas knowledge about the

operational state of a componeniThe expression can
be found (as described in Section 4) from the connec-
tivity information of the fault management architecture
of the system.

t(s) denote the task that requires sendce

3. Modeling Fault Propagation

The operational dependencies among the entries in the
FTLQN model can be represented by an AND-OR-like
graph, known as dfault propagation graph[8]. The  Definition 1: In a fault propagation gragb,
transformation of an FTLQN model to a fault propagation*  An entry node is working if all its child nodes are
graph follows [8]. The nodes of the fault propagation graph ~ working.

are: * The root node is working if any of its child nodes is
» leaf nodes representing either a task or a processor (a  working.
task nodeor aprocessor node * A service node is working if any of its child nodes is

*  AND-nodes corresponding to the entries in the FTLQN working. A service nodsthat hagVl alternative target
model, callecentry nodes entriesey, &, ...ey (ordered by their priorities 1, 2,



...M) and which is required by an enewf taskt, the MAMA model, wherei, j are connected to roles
selects a target, for being operational if: {monitored monitof} of ¢ (whenc is of typealive-watchor

e p=min{j* 1(eJ is operational) }j = 1, 2, .M where status-watchor connected to rolesptifier, subscribef of
the indicator functiori(expressiopis equal to one if € (whencis of typenotify),

the expressions true and zero otherwise, and * add a directed arcto K such thatv, = tv; andtv, = iv;
* the entrye, is operational and the tagkhas the « the type of the arciis set equal to the type of the con-
knowledge (usindgnowfunction) about the state of all nectorc.

the components that make enggyoperational, and
« if p>1, then all the entrieg are failed foj <p and

the taskt knows (usinknowfunction) about each of
the entryg’s failure by knowing the state of the com-

Figure 6 shows the knowledge propagation graph
corresponding to the MAMA model in Figure 4.

c4; nt c9; ntfy
" @)

. . . procA; cmpt D )
ponents that contributed &s failure. @—> g, .rOCB'Cmpt‘
Q
Definition 2: Let us define a configuratio@ of the system @UserAicmDC S N UserBemp
()]
as:C={ n| nOV where node represents an entry or a § Q,,-\“»’ @‘—‘
>

service node that is working as per Definition-1 and is in pfOCl?CmPt
use by the system }. Q

Co.
S
‘. AppA,; cmp. c3;aw
The fault propagation graph is used in the algorithm 0 @

described in Section 5, to determine the distinct operational

S
’ ) . ot proc3;cmpt,—~L
configurations of the system and their probabilities. @—»

) w
proc4;cmp,
(Edetem)
. . L Serverlcmp o Server2cmp
Apart from theknowfunction, and its effects, this is the @—»
same reconfiguration algorithm as in [8]. The function O Pf°C5DmP}
knowincorporates possible coverage limitations created byE h edae is labelled by it et "
the fault management architecture. Its computation is ach edge 1s labefled by s name and typeaase; type

- . - cmpt= componentntfy = notify;
described in the Section 4. aw = alive-watch sw= statuswatch

2

y@procz;cmp
clO;awApB; cmp, *

Figure 6. The Knowledge Propagation graph corre-

4. MOde“ng KnOW|edge Propagatlon sponding to the MAMA model in Figure 4.

The ConnectiVity between a pOint of failure and the pOint The know|edge propagation graph is used for Computing

of reconfiguration can be analyzed by applying minpaththe functionknow ; (defined in Section 3) as:
algorithms to the MAMA model. First, the MAMA model ’

is converted to a flat graph called thkKnowledge m wheremis the total number of
Propagation graph There are four types of arcs in the Kknows;=\/ (/\ N ) minpaths Py, Py ..., Py
knowledge propagation gragft { componentalive-watch q=1]0UPg from tv¢ to tv.. A minpath R,
status-watch notify}. Each component in the MAMA is a minimal set of arcs in

model leads to an arc of tymamponenteach connector in - graphK such that when all the arcs P, are operational,
the MAMA model leads to an arc of the same type as thpen verticesv, andty, are connected; vertices, andtv,

connector. A component or connector failure is representegre disconnected for every proper subsePgfA minpath

by an arc failure. . )

y Pq from tv; to tv; is obtained fromK whenc represents a
Let us denoteiv; and tv, to be the initial and terminal task or from the reduced grapK [ {arcs representing task
vertices respectively of aic tj (contained |r1 processor)dn K}] vyhen c repres'ents a

) processor, using any standard minpaths algorithm (e.g.
The steps for transformation of a MAMA model to a [22]) taking into account that the first arc in the path must
Knowledge Propagation graph are: be of typealive-watchor status-watchand rest of the arcs

For each componenin MAMA model, should be of typeeomponentstatus-watctor notify. Pq+ is

«  add a directed aic= (v;, tv;) to K. an augmented minpath obtained fréqas:

+ the type of the artis set toccomponent Py = DqDH DDP (arc p| p is processor of taskj)ED p, if
af 0

For each connectar between two componenisandj in I



cis atask, asR= % RProb(C).

+ O _ 0. cTz

Pq =P,00 [l (arc p| p is processor of task )¢ if
q 01 OP I'g

_ 6. A Comparison of Four Fault Management
CIS a processor.

Architectures

The knowledge propagation graph is used during the

performability computation This section studies the effect of four different fault

management architectures on the expected steady-state
reward rate of a distributed system. The architectures are
selected according to the classification given in [23], for

ﬁwanagement systems based on the manager-agent

5. Performability Algorithm

The expected steady state reward rate of a layere aradigm
system with a separate fault management architecture is '

now computed as follows: 6.1. Architectural Model of a fault-tolerant layered

Step (1): Obtain the knowledge propagation graigh distributed system

corresponding to the specified MAMA model, as described

in Section 4. Let us consider the layered system shown in Figure 1.

Let us assume the independent failure probabilities for all
the tasks and the processors to be 0.1 except UserA, UserB,
(E)rocA and procB which are assumed to be perfectly
reliable. Let us consider the mean total demand for
execution on the processor for entries eA, eB, eA-1, eB-1,
eA-2 and eB-2 to be 1, 0.5, 1, 0.5, 1, 0.5 seconds
respectively and let us assume that on average, 1 request is
made from a caller entry to the called entry per invocation
of each caller entry. Since the tasks UserA, UserB and their

_ ) . . associated processors are assumed perfectly reliable, they
Step (4): Determine the seZ, of all possible distinct .« not monitored and are not shown in any of the

operational configurationg;, from G and compute the management architectures described next.
probability, Prob(C;), of the system being in each such

configuration C; as follows. Let the total number of 6.2. Four fault management architectures
processors and tasks in the MAMA model and the FTLQN

model beN. Enumerate all ® states of the system. For The centralized architecture [24, 25] is the most

each staté” = {yy, vz, ..yn}, Whereye= 0 or 1, if the root o601y used. A single manager handles all agents and
node r is working as per Definition-1, generate a gpplication tasks, makes the decisions and initiates
configurationC containing all the non-leaf nodes which are ygconfiguration. Figure 7 shows a centralized management

Step (2): Obtain the fault propagation grapts
corresponding to the layered FTLQN model, as describe
in Section 3.

Step (3): For each service noden G and for each leaf
node 10L(s) , computeknowys from the knowledge
propagation grapK.

Architecture I Centralized Management Architecture

) o N o architecture for the system in Figure 1. The central
working and is in use. Compute Pr@)(= [] Prob(cisin  manager m1 manages all the tasks AppA, AppB, Serverl,
c=1 Server2 and their associated processors.
statey,). If there exists a configuratio®’' 0z  such that
C'= C, then setProb(C’) = Prob(C’) + Prob(C) else Let us consider the failure probability of the manager
z=70C . and all the agents be 0.1. In order to analyze the system in

Figure 1 with the centralized management architecture in
i i . Figure 7, we do the followings:
Step (5): EachC,0z determines the service alternatives,
so it defines an ordinary Layered Queueing Network For node serviceA in the corresponding fault
model. Generate the LQNs and solve them [14]. From thepropagation graph G in Figure 5, we compute:
performance measures assign a rewgrtb configuration knOWServerl,AppA:/\ O

Ci- ¢ ={c3,ag3,c8,m1,proc5,c13,agl,c5,AppA,procl,proc3}

(since there is only one minpath from Serverl to AppA in
Step (6) Compute the eXpeCted reward rate of the Systefimhe Corresponding know|edge propagation graph)



procl:Proc

proc2:Proc

connected to AppB) has also failed, then AppB does not
know about the failure of proc3 and does not reconfigure to

AppB:AT ag2.AGT use Server2; this leads to configurati@y instead. In
’ configurationC,, the A group of u_sers_are operational and
the B group are not. Thus the failure is partly covered and
T B the system has reduced functionality.
prosPoc |c15:5W> Table 1: Configuration Probabilities (for Centraliz-
- ed Management) and Rewards
L R Tl b A :
L L Confiaur Perfect Centralized RewardR,
c9:AW g Knowledge Mgmt = Total Throughpu
\ N\ ationC;
ProbC;) ProbC;) (A and B users)
-CY:AW > R
c10:5W C, 0.125 0.117 0.5
: C 0.024 0.021 0.5
prog3:Proc r——m proc4:Proc_— 2
(<A cAAN Cs 0.125 0.117 0.5
Senerl:AT ag3:AGT Sener2:AT ag4:AGT Cy 0.024 0.021 0.5
Cs 0.531 0.314 1.11
Figure 7. MAMA Model of a centralized management Cs 0.100 0.057 111
architecture for the system in Figure 1. System 0.071 0.353 0
Failed

knOV\ServerZ,AppAF/\ Oc
¢ ={c4,ag4,proc4,c10,m1,proc5,c13,agl,c5,AppA,procl}

KNOWproc3,AppA= /\ ©c

This example also shows that the failures in the
management architecture increase the probability of system

¢ ={c7,m1,proc5,c13,agl,c5 AppA,procl}

knOV\f)roc4,AppA= /\ Oc

¢ ={c9,m1,proc5,c13,agl,c5,AppA,procl}

being failed or of reduced functionality.

Architecture 2: Distributed Management Architecture
The distributed architecture [26] has multiple

We repeat the steps for noderviceB Then, using these management domains with a manager for each one. When
knowfunctions and the information in Figure 5, we obtain information from another domain is needed, the manager

six distinct operational configurations of the system as:

: UserA operational using Serverl. UserB is failed.
: UserA operational using Server2. UserB is failed.

communicates with its peer systems to retrieve it. Figure 8
shows a distributed management architecture for the system
in Figure 1. In Figure 8, there are two domain managers,

C3: UserB operational using Serverl. UserA is failed.
C,: UserB operational using Server2. UserA is failed.
Cs: UserA, UserB operational. Both using Serverl.

Ce: UserA, UserB operational. Both using backup Server2.

We generate an LQN model for each of the operational
configurations and solve these models using LQNS tool
[14] for determining the performance measures. Table 1
shows the probability and the associated reward for eac
operational configurations.

The expected steady-state reward rate for the system is
obtained as approximately 0.55/secs whereas in case o
perfect knowledge, it is found to be 0.85/secs.

Senerl:AT Sener2:AT

To illustrate a situation with partial coverage of a failure,
consider the failure of Processor proc3 (which supports
Serverl) when the system is fully operational. With perfect Figure 8. MAMA Model of a distributed management
knowledge, this always leads to configuratiog However  4chitecture for the system in Figure 1. dm1 and dm2

under any management architecture, if agent ag2 (which isare two peer domain managers.




dml (for the entities AppA, Serverl, procl and proc3) andask AppB, the managers dml, dm2 and the processors
dm2 (for the entities AppB, Server2, proc2 and proc4).proc3 and proc4. The connections between managers can
They communicate through theotify connections. Results have any topology.

are given below in Section 6.3.

Architecture 3: Hierarchical Management Architecture

The hierarchical architecture [27, 28] also relies on
multiple (domain) managers and introduces the concept o
the manager of managers (MOM). Each domain manager i
connected to the rest of the network only through the
MOM. The MOM operates on a higher hierarchical level,
retrieving information from and coordinating the domain
managers. Unlike the distributed architecture, the domai
managers do not communicate directly. Figure 9 shows &
hierarchical management architecture for the system i
Figure 1, with two domain managers, dml (for AppA,
Server, procl and proc3) and dm2 (for AppB, Server2,
proc2 and proc4), and a manager of managers moml
Results are given below in Section 6.3.

Figure 10. MAMA Model of a network management
architecture for the system in Figure 1. im1, im2 are
integrated managers.

6.3. Results

Suppose the agents and the managers in the four fault-
management architectures described above have
independent failures and failure probability 0.1. Define the
reward rateR; for configurationC; as

- RI :NUserAfi,UserA+WUserBfi,UserE
Droca oo A  ZProc wherew; represents the weight of users. of grq’upndf'i,j
— represents the throughput of users of grpaprresponding
Senerl:AT ag3:AGT Sener2:AT ag4:/GT to the configurationC;. Table 2 shows the distinct
operational configurations of the system, together with
Figure 9. MAMA Model of a hierarchical management their probabilities and throughputs for the four fault
architecture for the system in Figure 1. mom1 is man- management architectures and also for perfect knowledge.

ager of managers handling both dm1 and dm2.

Architecture 4: General “Network’ Management Figure 11 compares the _exp(_acted steady state _reward
Architecture rate of the layered system in Figure 1 corresponding to

The K archi 271 binati fth each of the four management architectures, under
e “network” architecture [27] is a combination of the variations of the weight of the UserB users relative to

distributed and the hierarchical architectures. Instead of YserA. In Table 2, we observe that the variation in UserA
purely peer-structure or hierarchical structure, the throughput (given in second row from the bottom) for
managers are organized in a network scheme. Figure ifferent management architectures is less than the
shows a network management architecture for the SysteL iation in UserB throughput (given in the last row). As

in Figure 1. In Figure 10, there are two domain ManagerSye increase the weight of UserB over UserA, the effect of
dml and dm2, and two integrated managers, im1 and |m2§k

dmi h KsS 1 dm2 h serB throughput on the reward rate of the system
ml manages the task Server m2 manages the tagk. o ces UserB throughput decreases for the cases in

Server2. im1 handles the task AppA, the managers dml'I’able 2 in the order Case 3, Case 1, Case 5, Case 2 and
dm2 and the processors proc3 and proc4. im2 handles tIF@ase 4. Thus from Figure 11, we observe that the expected



Table 1: Distinct Operational Configurations of the system in Figure 1, their probabilities for four fault
management architectures and the associated throughput of two groups of users

ProbC;) Throughputs df
Configuration Perfect — _ _ users
i | G; ={n|nodenis an entry or a service Nofignowledge Ce_ntral Dlstrlbuted Hlergrchmal Nevaork (fi,usera fiuser®)
that is working and is in use by the system}assumed Architecture] Architecturg Architecture Architecture
(Case 2) (Case 3) (Case 4) (Case 5)
(Case 1)
1 {userA, eA, serviceA, eA-1} 0.125 0.117 0.082 0.225 0.148 (0.5,0
2 {userA, eA, serviceA, eA-2} 0.024 0.021 0.041 0.014 0.024 (05,0
3 {userB, eB, serviceB, eB-1} 0.125 0.117 0.307 0.0764 0.148 (0,0.5)
4 {userB, eB, serviceB, eB-2} 0.024 0.021 0.036 0.014 0.02p (0,0.8)
5 [{userA, userB, €A, eB, serviceA, eA-1, sefvi- 0.531 0.314 0.349 0.206 0.282 (0.44,0.67)
ceB, eB-1}
6 [{userA, userB, eA, eB, serviceA, eA-2, servi- 0.100 0.057 0.046 0.037 0.049 (0.44, 0.67)
ceB, eB-2}
System Failed Configuration 0.071 0.353 0.134 0.428 0.341 0,0
Average UserA throughput 0.352 0.232 0.235 0.226 0.23B
Average UserB throughput 0.572 0.387 0.609 0.25 0.396

steady state reward rate of the system decreases for the Conclusion
architectures in the order distributed, network, centralized

and hierarchical with the increase in the Weight of UserB The value of inc|uding the management architecture in

over UserA.

Figure 11. Comparison of expected steady state reward
rate of the system in Figure 1 for the four management

architectures.

the analysis is first to account for failures and repairs of
managers and agents, and second to evaluate limitations in
the detection and reconfiguration architecture. The
algorithm described here scans the space of failure
combinations to detect the reachable configurations of tasks
(a relatively small set) and the operational configurations of
application tasks (smaller yet). Thus the effort expended in
the high-complexity steps which prune the set of

configurations is small. The need to explofé Gases will

limit the scalability of the approach as described here to
one or two dozen entities, however much more efficient
pruning appears to be possible, using a non-state-space-
based approach.

In layered systems there may be partially covered
failures that affect the probability of different operational
configurations thereby affecting the performability of a
system, as we have seen in Section 6.2. This work has
combined the effect of partial coverage with the
performability computation.

The algorithm costs are different for analyzing the
different architectures. In the order of cases given across Tpe examples shown here considered only failure of

the table, the number of states in the solution state space fsocessors and tasks. Network failures are easily included,
256, 16384, 65536, 262144 and 65536 respectively. Thgg well.

larger state spaces arise for systems with more management

components. The execution times for obtaining the distinct

The analysis could be extended to include delays to

operational configurations of the system in Figure 1 antyetect failures and to reconfigure, following the approach
their associated probabilities for the five cases argjescribed in [29]. Delays in detection may be due to the
approximately 0.2, 2, 8, 35, and 8 secs respectively. This ifangth of a heartbeat interval, or to a polling delay. This

for a Java implementation, measured in Windows98 hostegdytension leads to a serious increase in the number of states
by Pentium (Ill) processor.

however, which may require approximations or bounding
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