
 1

Chapter 1 - Introduction

This thesis presents UCM2LQN, an automated conversion tool that converts annotated

Use Case Map (UCM) design models into Layered Queueing Nework (LQN) performance mod-

els. The UCM2LQN converter works as a link between the existing UCM Navigator (UCMNav)

UCM editing tool and two existing LQN analysis tools, LQNS and ParaSRVN.

The UCM2LQN program is an add-on to the UCMNav and uses the UCMNav internal

data structure for UCMs in order to create an equivalent LQN model. The LQN model is saved to

file in the format used by the LQNS and ParaSRVN tools. Users can thus use UCM2LQN and

either of the LQN analysis tools to generate performance data for high-level designs.

1.1. Motivation

Software design and performance analisys are two vital, yet poorly coordinated aspects of

the lifecycle of software systems. All too often in industry design takes the front stage and is

viewed as the key to reducing time-to-market. Performance analysis is viewed as too cumber-

some and time-consuming, and when it is done at all is is usually as a validation step after the

design has been finalized. Thus traditionally software designers design the system and only after-

wards do performance analysts get to see it. In this approach performance evaluation is seen as

being a part of integration testing at the end of the design cycle.

Since software designers are not performance analysts there is a lot of overhead in going

from design to analysis in this traditional paradigm. In order to get a performance analysis done

on a design the designers need to meet with the performance analysts, provide them with docu-

mentation and a thorough explanation of the system, wait as the performance analysts come up

with their own performance model of the system, and wait to finally get the results back. By this

time it is likely that key design decisions and commitments have already been made and the des-

ing might have evolved to the point where it no longer reflects the same system as the one that was

analysed. Therefore if the performance analysis uncovers any weaknesses in the original design

addressing them might require a fair bit of reengineering, or even worse, the performance analysis

results might be overlooked altogether since they are out of date.

 2

Assuming that performance analysis is even done, as opposed to finding out how fast the

system tuns after it has been implemented, this particular paradigm of separate fiefdoms between

design and performance analysis is sadly enough pretty much the norm in industry. Time-to-mar-

ket pressures and the ever-accelerating speed at which systems must be developed makes it

unlikely that this will change as long as the integration of design and performance analysis

remains hampered by the high overhead of going from one phase to the other.

Software Performance Engineering (SPE) was an early attempt at evolving the software

development paradigm into something that includes performance analysis at an early stage in the

design. Championed by Connie Smyth, SPE came up in the late 1980’s as a research idea and the

first publications appearing in the early 1990’s. The SPE software development model proposes

developing performance models at the same time as the design takes place. The results from per-

formance analysis performed early on in the cycle can thus be integrated back into the design at a

point at which they can make an effective contribution. SPE has proven to be appealing in con-

cept but rarely adopted in practice. This is due to the fact that SPE is a methodology for going

between the design and performance analysis realms and as such it still requires knowledgeable

and trained people to implement it. Acquiring this knowledge and training takes time and given

the nature of the industry this time is usually not spared.

A possible solution appears to be the automation of the transition from design document to

performance model. As the increasing adoption of CASE tools shows, tool use has the benefit of

creating a portable record of the design for a given system. When using CASE tools, designers

can quickly exchange models and information in a manner that remains consistent from one

designer to another. Augmenting a CASE tool used for design with automatic performance model

generation capabilities would be an effective way of incorporate performance analysis into the

early stages of the software development lifecycle.

1.2. The Converter Tool

The UCM2LQN converter is just such an automated tool that bridges the gap between a

CASE tool for design in the form of the UCMNav and CASE tools for performance analysis in

the form of LQNS and ParaSRVN. Designers who use UCMs for their high-level design can enter

 3

their models in the UCMNav and generate LQNs suitable for use with either the LQNS analytical

solver or the ParaSRVN simulator. The performance results from LQNS and ParaSRVN can then

be incorporated back into the design. The automation of the conversion of the design into a per-

formance model maintains a consistency between the two models that is hard to achieve by tradi-

tional manual means. This approach not only has the advantage of improving the final product by

allowing it to be designed with performance in mind, but it also means that there can be less of a

distinction between designers and performance analysts.

Using the UCM2LQN converter in conjunction with LQNS and ParaSRVN means that a

software designer does not need to be a performance analyst in order to get a performance analy-

sis of a design. There is still a requirement to specify the apropriate performance data - such as

service demands by responsibilities, arrival rates at start points, branching probabilities, loop rep-

etitions, and device speed factors - in the UCM in order to get meaningful results. However, some

of these values like service demands can be approximated by using a budgeting approach and sup-

plying values based on an estimate of much time operations have to complete. The results from

the performance analysis can then be used to confirm the time budget or show where the system

the time budgets can be met. The designer can then fine tune the budgeting values or modify the

design of the system based on those results. All without requiring an in-depth grounding in per-

formance analysis. This thesis describes the relationship between design scenarios as defined by

UCMs and performance models in the form of LQNs. It also develops a conversion algorithm to

generate the latter from the former.

1.3. Contributions Of This Thesis

The thesis makes the following contributions:

• identification of corresponding constructs and patterns of interaction between the UCM and

LQN notations

• software design methodology for incorporating additional modules in the UCMNav, both in

terms of class and file structure and in defining an interface between the UCMNav and an

additional module

• algorithm for traversing the internal UCM model of the UCMNav

• algorithm for detecting component boundary crossings in UCMs

 4

• algorithm for interpreting the nature of messaging between UCM components

• algorithm for creating LQN objects based on UCM constructs and directing the traversal of

the UCM accordingly

• validation of the UCM2LQN converter using “in-house” UCM models

• testing of the UCM2LQN converter using UCM models originating from industry

1.4. Thesis Organization

This thesis is organized in the following manner. Chapter 1 is a contains a basic descrip-

tion of the UCM2LQN tool and describes the motivation behind this research. Chapter 1 also pro-

vides a list of contributions made by the thesis. Chapter 2 describes the UCM and LQN notations

in more detail, using a common example to for illustration purposes. It also describes the UCM-

Nav tool used for editing UCMs and the LQNS and ParaSRVN tools used for LQN analysis.

Chapter 3 introduces the basic corresponding constructs between the UCM and LQN notations, as

well as more complex corresponding patterns of interaction that can be modelled using both nota-

tions. Chapter 4 describes the strategy used to integrate the UCM2LQN tool into the the UCM-

Nav editor. It describes the class inheritance and containment relationships of both tools. Chapter

5 explains the path traversal and LQN object creation algorithms used in UCM2LQN. Chapter 6

shows “in-house” models used to validate the conversion algorithms. Chapter 7 describes two

models originating from industry that were used to further test the UCM2LQN converter. Finally,

Chapter 8 contains the conclusions.

 5

Chapter 2 - Background

This chapter covers background information on Use Case Maps, Layered Queueing Net-

works, and building performance models.

2.1. Use Case Map Background

The Use Case Map (UCM) notation results from research instigated by Professor R. J. A.

Buhr at Carleton University. UCMs represent scenarios being executed across a system. UCMs

work at a level of abstraction high enough to enable the user to grasp the emerging behaviour of

the system without getting lost in execution details. Compared to the Unified Modeling Language

(UML) notation, UCMs reside at the same level of abstraction as Collaboration Diagrams but pro-

vide a better visual representation of how scenarios unfold.

UCM usage and acceptance is steadily growing with an active user community anchored

by the www.usecasemaps.org website. There is also an industry-led effort to make UCMs an

ITU-T standard as part of a recognized User Requirements Notation (URN).

2.1.1. UCM Notation

A UCM map is a collection of elements that describe one or more scenarios unfolding

throughout a system. This section introduces these elements and explains how to use them using

the simple example of a banking transaction at an automatic teller machine (ATM).

The basic building block of the UCM notation is the path, which is the visual representa-

tion of a scenario. In its most basic form a path is a line with a start point and an end point, repre-

sented by a filled circle and a bar respectively. As a scenario is executed one can imagine a token

traversing the path from the start to the end. Since UCM is a concurrent notation there is no

restriction as to the number of tokens that may traverse a given path or the position of any token

on a path relative to any other token. Figure 2-1 shows a simple path corresponding to making a

banking transaction at an ATM. The transaction starts with the insertion of a bank card in the

ATM and is completed when the card is ejected from the ATM.

UCM paths can be overlaid on components. Components represent functional or logical

 6

entities that are encountered during the execution of a scenario. They can represent both hard-

ware and software resources in a system, as well as refinements of those resources. Figure 2-2

shows the path representing the ATM banking transaction overlaid on a component representing

the ATM. In this case the component represents the ATM in its entirety.

A path can be refined to show more scenario detail with the addition of responsibilities.

Responsibilities are denoted with an X shaped mark along the path. They represent functions that

need to be accomplished at given points in the execution of the scenario. Figure 2-3 shows the

banking transaction path, but refines it with the addition of responsibilities to read the information

from the card, get the user’s PIN, display a PIN request to the user, collect the PIN from the key-

pad, perform the banking transaction, and finally eject the card. The ATM is also refined by

showing distinct components for the card reader, the keypad, the display, and the cash dispenser.

A component representing the ATM customer as the user is also shown.

Although responsibilities can be used to represent any kind of function at any level of

abstraction, they are normally used to represent simple operations that can be considered atomic.

Another construct, called a stub, is available to denote broader functionality that can be described

Figure 2-1:Simple UCM path for an ATM banking transaction.

CardInserted CardEjected

Figure 2-2:Simple UCM path for an ATM banking transaction overlaid on an
ATM component.

ATM

CardInserted CardEjected

 7

by another UCM called a plug-in. There may be several alternative plug-ins for any stub. A plug-

in is a separately specified map that has further detail describing a given aspect of a scenario. A

plug-in may commonly be thought of as a sub-map of the map with its referring stub, the plug-in

map can also stand alone as a valid UCM in its own right. There are no restrictions as to the pres-

ence of further stubs in the plug-in map, although stub recursion may hinder the user ability to

navigate through the UCM and understand the scenario and system. Figure 2-4 shows the ATM

banking example further refined with the substitution of a stub for the responsibility of perform-

ing the banking transaction. Figure 2-5 shows a withdrawal plug-in for the banking transaction

stub. Other kinds of transactions, such as deposits, account balance inquiries, balance transfers,

etc., can be described with plug-ins of their own.

The UCM synchronization construct is used to indicate a place where parallel path seg-

ments split or gather. In general, synchronizations are used as either logical AND forks (a single

Figure 2-3:UCM with responsibilities and additional components for an ATM
banking transaction.

ATM

CardReader

User

Keypad Display CashDispenser

CardInsertedCardEjected

ReadCard

EjectCard

GetPIN

EnterPINKeyPIN

Transaction

 8

path splitting into two or more parallel paths) or logical AND joins (two or more parallel paths

gathering into a single path), but there is no restriction as to how many paths must lead in or out of

a synchronization. Any synchronization joining paths does require that tokens travelling along

each incoming path all arrive at the synchronization before path traversal can proceed past the

synchronization. Figure 2-6 shows a refined withdrawal plug-in with a parallel path segment that

requests account information from a central bank database while the ATM displays a message

asking the user to wait.

Scenario alternatives are shown using OR forks (a single path splitting into two or more

alternative paths) and OR joins (two or more alternative paths gathering into a single path). An

OR fork indicates that a choice between alternatives is being made and only one of the possible

branches may be traversed after the fork. An OR join indicates that at least one of the possible

paths leading into it needs to be traversed before proceeding further. Figure 2-7 further expands

the ATM example by adding an alternative path that cancels the transaction if the user presses the

Figure 2-4:UCM for an ATM banking transaction with a stub for the transaction.

ATM

CardReader

User

Keypad Display CashDispenser

CardInsertedCardEjected

ReadCard

EjectCard

GetPIN

OUT1 IN1

EnterPINKeyPIN

Transaction

 9

“cancel” button or is unable to provide a correct PIN.

OR joins and forks can be used to create informal looping structures in UCM, but there is

a loop construct as well. The loop construct indicates that the body of the loop is traversed a cer-

tain number of times before the traversal of the main path resumes. Figure 2-8 shows a loop

added to the ATM example in order to show that an incorrect PIN may be re-entered a certain

number of times. For the work described in this thesis it is assumed that all UCM loops use the

explicit loop construct. Other looping structures are not converted to LQNs.

Figure 2-5:Withdrawal UCM used as a plug-in for the stub in Figure 2-4.

ATM

CardReader

User

Keypad

BankDatabase

Display CashDispenser

WithdrawWithdrawDone
GetAmount

GiveCash

EnterAmountKeyAmount DispenseBills

 10

2.1.2. The UCM Navigator

The UCM Navigator (UCMNav) is a UCM editing tool developed at Carleton University

by Andrew Miga. It is currently used at Carleton University and the University of Ottawa, as well

as within Nortel Networks and Mitel. The UCMNav allows the user to draw and modify UCMs,

add comments and descriptions for the design and/or individual elements, specify system devices,

integrate multiple UCMs into an overall design, and even generate Message Sequence Charts

(MSC) from UCMs.

Figure 2-6:Refined withdrawal UCM with a parallel path segment getting
account information from the bank database used as a plug-in for the Transaction

stub defined in Figure 2-4.

ATM

CardReader

User

Keypad

BankDatabase

Display CashDispenser

WithdrawWithdrawDone
GetAmount

GiveCash

EnterAmount
KeyAmount DispenseBillsPleaseWait

WaitMsg

GetBalance

AccountBalance

 11

Figure 2-9 shows a screen shot of the UCMNav. The top menu bar provides access to the

file input and output functions, various editing options and preferences, and advanced options

such as MSC or LQN generation. The UCM drawings are done on the editing canvas which is the

large white area in the upper left portion of the UCMNav window. Graphical editing is done

using tools from the tool palette right above the canvas and below the menu bar. The smaller gray

areas right of the canvas are comment and description boxes. They are used to display additional

information about the UCM elements and the overall design.

The UCM designs are represented internally as hypergraphs and saved as XML files. The

hypergraph model is explained in further detail in Chapter 4. For details on the UCMNav XML

document type definition please refer to ***.

Figure 2-7:UCM for an ATM banking transaction with alternative paths that end
the transaction.

ATM

CardReader

User

Keypad Display CashDispenser

CardInserted
CardEjected

ReadInfo

Eject

GetPIN

OUT1 IN1

correct

EnterPIN

KeyPIN

incorrect

Cancel

Cancel

CheckPIN

EjectCard

Transaction

 12

2.2. Layered Queueing Network Background

Queueing Networks are based on a client-server paradigm. The clients make service

requests of the servers and these request are queued at the server until it can service them. Tradi-

tional queueing networks can model only a single set of client-server relationships. In practice

this means that queueing networks can only model hardware resources as pure servers and soft-

ware tasks as pure clients.

Layered Queueing Networks (LQN) allow for of an arbitrary number of client-server lev-

els. An LQN can thus model intermediate software servers and be used to detect software dead-

locks.

Figure 2-8:UCM path for an ATM banking transaction with a loop to get the cor-
rect PIN number.

ATM

CardReader

User

Keypad Display CashDispenser

CardInserted
CardEjected

ReadInfo

Eject

GetPIN

OUT1

IN1
passPIN

EnterPIN
KeyPIN

failPIN

Cancel

Cancel

CheckPIN

EjectCard

KeyPIN

GetPIN

EnterPIN

CheckPIN

Verify

Transaction

 13

2.2.1. LQN Notation

LQNs can model both software and hardware resources. The basic software resource is a

task. A task is any software object that has its own thread of execution. The basic hardware

resource is a device. Typical devices are CPU’s and disks. Figure 2-10 shows a task and two

devices.

Service requests are shown in LQN by messaging arrows. Tasks may both send and

receive messages, whereas devices may only be pure servers that receive messages. Whenever

tasks model pure clients which only send messages, they are called reference tasks.

There are two types of messages: asynchronous and synchronous. Asynchronous mes-

Figure 2-9:Screen shot of the UCMNav.

 14

sages are sent by a task and do not require a reply. The sending task continues executing normally

after sending an asynchronous message. Synchronous messages are blocking calls that require a

reply. A task sending a synchronous message suspends execution until it receives a reply to that

message. Synchronous service requests may be forwarded to other tasks and it becomes their

responsibility to provide the reply, in such a case the original task making the call remains

blocked until it finally receives the reply. Figure 2-11 shows an example of asynchronous and

synchronous messaging with Task_A acting as a reference task.

Tasks receive service requests at designated interface points called entries. Entries corre-

spond to method invocations, with a different entry for every kind of service a task provides.

Entries may have their own service demands, either as requests from other tasks or from devices,

or an entry may point to sequences of smaller computational blocks called activities. Activities

have their own hardware service demands and can make calls to entries in other tasks as shown in

Figure 2-12. They can be arranged in sequences, as well as in parallel (AND forks and joins) or

alternative (OR forks and joins) configurations. An activity can also make repeated service calls

in order to model repetitive behaviour. Thus entries and activities can be used to fully describe a

task’s functions. Figure 2-13 shows an LQN based on the ATM banking transaction model intro-

duced in Section 2.1. The ATM task is showing entry and activity detail corresponding to a with-

drawal transaction.

For the purposes of this research it was assumed that LQN activities are the basic building

blocks of LQN models. An LQN activity is assumed to directly correspond to a UCM responsi-

Figure 2-10:LQN task and devices.

 15

bility. Further correspondences between LQN and UCM models are introduced in Chapter 3.

2.2.2. Applying LQN

LQN models need to be simulated or solved in order to extract performance metrics from

them. This requires more data in addition to the execution and calling structure modeled by the

notation described in Section 2.2.1.

Since all software runs on hardware, devices must have a speed factor specified that indi-

cates their response time per operation. Reference tasks also need to have arrival rates specified

which indicate the distribution and frequency of their initial service requests. It is also necessary

to indicate whether the system supports open or closed arrivals.

If entries are used in conjunction with activities to describe the behaviour, then they are

not required to have any hardware demands specified since those are specified by the activities

themselves. Each activity needs to have its hardware demands specified, as does each entry that is

not described by activities. Alternative OR forks must specify the probability of execution of

each branch. Of course, parallel AND forks have an equal 100% probability of each branch being

Figure 2-11:LQN synchronous and asynchronous message arrows.

 16

executed. Any entry or activity making a call must also specify the probability of that call being

made, as well as its frequency if the call is repeated.

This type of information is not necessarily specified in UCM models, but the UCMNav

does have facilities to specify it.

Figure 2-12:LQN with entry and activity detail.

 17

Figure 2-13:LQN for an ATM withdrawal transaction with entry and activity
detail shown for the ATM task.

 18

2.2.3. LQN Tools

This section introduces the tools available to supprt the LQN notation. There are two tools

available from Carleton University that can be used to solve LQN models and get performance

metrics. The Layered Queueing Network Solver (LQNS) solves LQN models analytically,

whereas the PARASOL Stochastic Rendez-Vous Network Simulator (ParaSRVN) simulates LQN

models using the PARASOL simulation system. A third tool, the Java Layered Queueing Net-

work Definition Editor (jLqnDef) can be used as an LQN editor.

All three tools use the same file format, part of which is described in Section 2.2.3.3.

2.2.3.1. LQNS

The Layered Queueing Network Solver (LQNS) is a tool developed at Carleton University

by Greg Franks as part of his Ph.D. research ***. LQNS is an analytic solver that breaks the LQN

layers down into separate queueing network sub-models. The individual queueing networks can

then be solved analytically using mean value analysis (MVA). The MVA results for each sub-

model are then used to fine-tune the MVA parameters for the other sub-models it is connected to

and the MVA is performed anew. This process is repeated either for a maximum number of itera-

tions or until the results converge on a convergeance value specified by the user.

LQNS can use different layering techniques for the sub-models. The default is batched

layering where the layers are composed of as many servers as possible. The two other layering

techniques that are implemented are loose layering, where layers have only a single server, and

strict layering, where layers

2.2.3.2. ParaSRVN

The precursor to the current LQN notation was called Stochastic Rendez-Vous Networks

(SRVN), hence the ‘SRVN’ in ParaSRVN.

2.2.3.3. LQN File Format

 19

2.3. Creating Performance Models

- UCM2LQN is a method to create performance models

2.3.1. Software Performance Engineering

2.3.2. Creating Petri Net Models

 20

Chapter 3 - Correspondences Between UCM and LQN

This chapter deals with the correspondences that were identified between the UCM and

LQN models. It covers corresponding constructs between the two notations, corresponding ways

to model basic patterns of interaction between components, as well as ways to model more com-

plex patterns of interaction.

3.1. Corresponding Constructs

There are some constructs that correspond directly between the UCM and LQN notations.

These constructs are the building blocks for the more complex correspondences described later in

this chapter and are listed in Table 3-1.

3.2. Basic Patterns of Interaction

This section shows the basic correspondences between UCMs and LQNs. We use ele-

mentary UCM systems that illustrate one interaction type at a time. The UCMs are shown as out-

puts from the UCMNav. The LQNs are shown as visual output from the jLqnDef tool and as such

their appearance differs slightly from the LQN notation as introduced in Section 2.2.1. Currently

jLqnDef does not display activity connections graphically so textual annotations are provided to

do so. The LQNs shown were saved as LQNS files and are syntactically correct and can be solved

with LQNS.

UCM Construct LQN Construct

responsibility activity

component task

device device

service task with a dedicated processor

Table 3-1:Corresponding UCM and LQN constructs.

 21

3.2.1. Synchronous Call and Return

A synchronous call is made whenever the UCM path crosses from one component to

another and returns back to the original component. In the corresponding LQN model each call

corresponds to an entry in the called task. The entry then leads to a succession of activities that

correspond to the UCM responsibilities. The last activity in that succession points back to its

entry when the call is ready to be returned The call is shown in the LQN as a line with a filled

arrowhead pointing from the activity that makes the call to the entry that is being called. Figure 3-

1 shows the corresponding UCM and LQN models for a synchronous call and return.

3.2.1.1. Multiple Calls

Multiple synchronous calls are made whenever the UCM path crosses from one compo-

nent to another, returns back to the original component, and repeats the same pattern. In the LQN

model each separate call corresponds to a separate entry in the called task. Each entry then leads

to a succession of one or more activities that correspond to the UCM responsibilities. Figure 3-2

shows corresponding UCM and LQN models for two successive synchronous calls and returns

3.2.2. Asynchronous Call

An asynchronous call is made whenever the UCM path crosses from one component to another

and does not returns back to the original component. In the LQN model each asynchronous call

corresponds to an entry in the called task. The entry then leads to a succession of activities that

correspond to the UCM responsibilities. An asynchronous call is shown in the LQN as a line with

an empty arrowhead pointing from the activity that makes the call to the entry that is being called.

Figure 3-3 shows the corresponding UCM and LQN models for an asynchronous call.

3.2.3. Forwarding

A call forwarding is made whenever the UCM path crosses from one component to

another, and then to several others, before returning back to the original component. The original

call is synchronous for the original component, but the forwarding is asynchronous for the other

 22

components. In LQNs forwarding is shown by a dashed line with a filled arrowhead that goes

from the original entry that does the forwarding to subsequent forwarded-to entries. Figure 3-4

shows UCM and LQN models for a forwarding interaction.

3.2.4. Parallel Calls

The UCM path has an AND fork and then join in the calling component. By making calls

Server

Client

C1

S1 S2

C2

Activity Connections
C1 -> C2

Activity Connections
S1 -> S2;
S2 [SE1]

Figure 3-1:Corresponding UCM and LQN models for a simple synchronous call
and return.

 23

from each branch after the fork, parallel services are requested in the other components. In the

LQN model the AND is indicated by an ‘&’ between activities in the activity connection text

boxes. Figure 3-5 shows the corresponding UCM and LQN models for such an instance.

3.2.5. Alternative Calls

Similarly to the parallel case above, the UCM path has an OR fork and join in the calling

Server

Client

C1

S1 S2

C3

C2

Activity Connections
C1 -> C2;
C2 -> C3

Activity Connections
S1 [SE1];
S2 [SE2]

Figure 3-2:Corresponding UCM and LQN models for successive synchronous
calls and returns.

 24

component. By making calls from each branch after the fork, competing alternate services are

requested in the other components. In the LQN model the AND is indicated by a ‘+’ between

activities in the activity connection text boxes. Figure 3-6 shows the corresponding UCM and

LQN models for this case.

3.2.6. Looping

A loop is indicated by a special UCM loop construct that appears the same as an OR join

followed immediately by an OR fork. In the LQN model the loop is indicated by a loop traversal

count multiplying the loop activity ID in the activity connection text boxes. Figure 3-7 shows the

corresponding UCM and LQN models for a synchronous interaction with a loop in the server.

Server

Client

C1

S1 S2

C2

Client Activity Connections
C1 -> C2

Server Activity Connections
S1 -> S2

Figure 3-3:Corresponding UCM and LQN models for a simple synchronous call
and return.

 25

3.3. Complex Patterns of Interaction

There are possible patterns of interaction that can be expressed as UCMs but do not have a

straightforward corresponding LQN representation. This section examines two such patterns.

Client

Server2Server1

C1

S1 S2

C2

Activity Connections
C1 -> C2

Activity Connections

Activity Connections
S2 [S2E1]

Figure 3-4:Corresponding UCM and LQN models for a forwarded synchronous
call and subsequent return.

 26

3.3.1. Fork and Join in Separate Components

It is common to have UCM models that represent systems where paths fork in one compo-

nent and join in another, such as the example shown in Figure 3-8.

While such systems can also be represented using the LQN notation, and they are syntac-

tically correct, semantically they are doubtful at best. The LQNS solver is unable to process the

Client

Server2Server1

C1

S1

C6

S2

C5C4C2 C3

Activity Connections
C1 -> C2 & C3;
C2 -> C4;
C3 -> C5;
C4 & C5 -> C6

Server1 Activity Connections
S1 [S1E1]

Server2 Activity Connections
S2 [S2E1]

Figure 3-5:Corresponding UCM and LQN models for parallel synchronous calls
and returns.

 27

semantics of such a model since it does not break down into a tidy analytical solution. The ParaS-

RVN simulator can solve models with corresponding forks and joins in different tasks, but only if

the activities that send messages are defined to send exactly one message and their workload is

deterministic. Such solving restrictions make the use LQN models with forks and corresponding

joins in different tasks undesireable. A better solution is to create equivalent LQN models which

do not have distributed forks and joins.

The example system shown in Figure 3-8 has a client Task_A making a synchronous ser-

Figure 3-6:Corresponding UCM and LQN models for alternative synchronous
calls and returns.

Client

Server2Server1

C1

S1

C6

S2

C5C4C2 C3

Activity Connections
C1 -> (0.5) C2 + (0.5) C3;
C2 -> C4;
C3 -> C5;
C4 + C5 -> C6

Server1 Activity Connections
S1 [S1E1]

Server2 Activity Connections
S2 [S2E1]

 28

vice request at the server Task_B. Task_B executes responsibility r3 and then splits into two alter-

native streams of execution, one which executes responsibility r4 and then sends a reply, or the

other one which executes responsibilities r6 and r7 before replying. Task_A executes responsibil-

ity r4 after receiving the reply from the first alternative stream and responsibility r8 after receiving

the reply from the second parallel stream. After either responsibility r4 or r8 have been executed,

Task_A resumes a single stream of execution. The equivalent LQN model removes the OR fork

from Task_B and places it in Task_A. Task_B has two fully independent execution paths and

Server

Client

C1 C2

S2

S3S1

Activity Connections
C1 -> C2

Activity Connections
S1 -> 0.5 * S2, S3;
S3 [SE1]

Figure 3-7:Corresponding UCM and LQN models for a loop.

 29

responsibility r3 is duplicated as two identical activities, r3_A1 and r3_A2. The resulting LQN

model can now be solved using both LQNS and ParaSRVN without any restrictions on workload

specification.

Activity Connections
r3_A1 -> r4;
r4 [Task_B_E1];
r3_A2 -> r6;
r6 -> r7;
r7 [Task_B_E1]

Activity Connections
r1 -> r2;
r2 -> (0.5) Task_A_A1 + (0.5) Task_A_A2;

Figure 3-8:UCM and LQN models including an OR fork and join in separate
tasks.

Task_A_A1 -> r5;
Task_A_A2 -> r8;
r5 + r8 -> r9

Task_B

Task_A

r3

r1

r2

r4

r5

r6
r7

r8

r9

 30

Please note that the same strategy of only results in an approximate, not a fully equivalent,

LQN model if the original UCM model has an AND instead of an OR fork and join. In such a

case, Task_B would end up executing both r3_A1 and r3_A2, instead of either r3_A1 or r3_A2 in

this case.

3.3.2. Loop with Complex Body

LQNs can easily represent loops with a single activity as their body, as described in Sec-

tion 3.2.6. These loops correspond to repeated activities in the LQN. Representing models with

more complex loop bodies can be a problem however, since there is no provision in the LQN nota-

tion to repeat sequential blocks of activities. This problem can be overcome by abstracting the

loop control activity away from the loop body. Figure 3-9 shows an example system with is a

loop with multiple activities in the loop body.

The UCM in Figure 3-9 shows a client Task_A making a synchronous service request at

the server Task_B. Before replying, Task_B must execute responsibility r3, loop twice through

the sequence of responsibilities r4, r5, r6 and r7, and then execute responsibility r8 before reply-

ing. In order to model the system as an LQN, it was necessary to abstract the loop head from the

loop body. The resulting LQN model includes a clone of Task_B named Task_B_clone. This

clone task is identical to Task_B in every respect and handles the activities associated with the

loop body. The loop is modelled by repeating a loop control activity Task_B_LH1, which in turns

makes a synchronous call to entry Task_B_clone_E1 in Task_B_clone. Entry Task_B_clone_E1

is executes the sequence of activities r4, r5, r6, and r7 before replying back to Task_B_LH1.

The resulting LQN model can thus be made to correspond to the same system as in the

original UCM, despite the limitations of the LQN notation when it comes to describing repeated

blocks of activities.

 31

Task_B

Task_A

r3

r1

r2

r4

r5r6

r7

r8

r9

Activity Connections
r1 -> r2;
r2 -> r9

Activity Connections
r3 -> 2 * Task_B_LH1, r8;
r8[Task_B_E1]

Activity Connections
r4 -> r5;
r5 -> r6;
r6 -> r7;
r7[Task_B_clone_E1]

Figure 3-9:UCM and LQN models including a complex loop.

 32

Chapter 4 - Transformation Strategy

The UCM2LQN tool transforms UCM models from the UCMNav into LQN models that

can be input into the LQNS tool. This chapter describes the strategy behind some of the design

decisions that were made, as well as the internal data and class structure of the UCMNav and

UCM2LQN converter.

4.1. UCM2LQN Design Choices

A previous attempt at creating a UCM-to-LQN conversion tool was made by Greg Franks

as part of his Ph.D. research. Unfortunately the resulting program did not work as well as hoped

for. Franks’ work did provide a suitable staring point for the research effort described in this the-

sis.

Franks’ UCM-to-LQN tool used the XML files saved by the UCMNav as its input. This

strategy had the seeming advantage of fully decoupling the conversion from the UCMNav and

allowing to use only the required UCM path and component information from the file and dis-

pense with the memory requirements of creating objects that are used by the UCMNav but are

unnecessary for conversion. It also meant that the conversion tool could be completely decoupled

from the UCMNav. This did require Franks to create a new XML loading filter to read in the

UCM file. Unfortunately, the XML document-type definition (DTD) for the UCM file format

needs to be modified as the UCMNav is refined and additional features are added, and such modi-

fications of the DTD did indeed take place. This meant that the conversion tool was soon unable

to read in the latest UCMNav file versions and as such became obsolete.

Reading in the XML file output from the UCMNav also has the additional shortcoming of

misinterpreting the proper sequence of points along a path. Each point along a UCM path is saved

with an identifier number that is generated when it is instantiated. Franks interpreted this number

as indicating the point’s position along a UCM path. Unfortunately the identifier number is only

an indication of when a given point was created and bears no relationship to its position or

sequence along a path. This shortcoming in interpreting the XML file can be overcome by creat-

ing UCM paths in strict sequence and never adding any new points after a path has been created,

 33

but this is an unenforceable restriction if the tool is to be more widely distributed and makes the

creation of complicated UCMs too inconvenient.

This first attempt at a UCM-to-LQN conversion tool showed that the only reliable and

practical way to convert UCMs is to start with the internal UCM model used in the UCMNav

instead of reading in the UCMNav file output because the UCMNav XML DTD will evolve as the

UCMNav is refined and the UCMNav classes provide methods for following a path that would

need to be reinvented if the XML is to be parsed directly. This means that the UCM2LQN con-

version tool must communicate directly with an instance of the UCMNav that has the desired

UCM and can pass on its internal model. Given this restriction, it was decided that UCM2LQN

might as well be fully integrated with the UCMNav as an optional add-on, thus making it more

transparent and convenient to the user.

The danger with this approach is in having the add-on become too closely coupled with

the UCMNav code. In order to prevent this, a convention was adopted whereby hooks into the

UCMNav code are provided, but all the add-on code is kept in separate files and no other changes

are made to UCMNav code. Normally, add-on files are not compiled into the UCMNav, but if the

add-on is needed its code can be included by defining a special compilation flag in the makefile.

This convention allows for the concurrent development of both the UCMNav and any add-on,

such as UCM2LQN, in a manner which does not lead to the creation of separate code variants for

either tool. It also means that multiple add-ons can be included into the UCMNav and the mix of

those can be tailored to suit any preference simply by declaring the appropriate flags at compile

time.

Both the UCMNav and the UCM2LQN classes make use of aCltn class to manage sets of

multiple pointers or instances of other classes.Cltn is a template class that provides methods to

treat sets of identical objects in either an ordered or unordered manner. Furthermore, theCltn

class dynamically allocates and deallocates memory and as such can be used to manage sets of

arbitrary and variable size. Any references to multiple objects in this chapter assume that those

objects are organized inCltn collections.

 34

4.2. UCMNav

This section describes the design of the UCMNav, its internal hypergraph model, and the

inheritance and containment relationships of the UCMNav classes that were used as part of the

input of the converter. A complete class inheritance hierarchy of the UCMNav with the integrated

UCM2LQN converter is shown in ***APPENDIX.

4.2.1. Design

The UCMNav can be said to have two main functions: managing all the logical objects

that make up a UCM model and providing a visual interface that displays the model and makes it

possible to edit it. As such, the UCMNav classes can be divided into two major categories: logi-

cal classes and display classes. The logical classes store all the data associated with the model,

while the display classes provide the user interface to access this data.

The UCMNav display is managed by theDisplayManagerclass. TheDisplayManager

controls all the UCM entities that have a visual representation. TheDeviceDirectoryclass keeps

track of all the devices in the UCM model. When the UCM2LQN converter is invoked, it is

passed a pointer to the complete set of UCM maps from theDisplayManagerand a pointer to the

list of devices fromDeviceDirectory.

There are three main kinds of logical entities that we’re concerned with in order to gener-

ate LQNs: path elements, components, and devices. Of these three, the path elements and compo-

nents also have a corresponding UCM visual notation and hence corresponding display classes,

while the devices do not have any such corresponding visual notation nor any corresponding dis-

play classes. The relationship between path elements is stored as a hypergraph model which is

explained in the next section. The UCMNavMapclass passed as an input to the UCM2LQN con-

verter contains the hypergraph describing its elements as well as the list of components included

in the map.

4.2.2. The Hypergraph Model

UCM paths and path elements are represented by a hypergraph model in the UCMNav. A

hypergraph is a sort of directed graph-in-reverse. It is composed of edges, also called hyperedges,

 35

and nodes. A hyperedge connects a set of multiple source nodes with a set of multiple target

nodes. A node has a single hyperedge leading into it and a single hyperedge leading from it. This

contrasts with a traditional graph where the edges are arcs that connect a single node to another

single node, and the nodes are hubs that can have multiple edges leading into and from them.

The hypergraph supports the expected kind of operations on its elements. Hyperedges and

nodes can be added to, inserted in, shifted around, and removed from the graph. Since the hyper-

graph is directed, both hyperedges and nodes support direction by distinguishing between source

inputs and target outputs. Although it is possible to create infinite looping structures in the hyper-

graph, as it is used in the UCMNav there is a requirement that there be at least one start point and

an ultimate end point. There is no restriction on how many start or end points there are as long as

there is at least one of each. Since a hyperedge can have multiple source and target nodes, there is

no need for another type of construct to show forks, joins, or loop-heads. Thus the hyperedge is

the only construct needed for a straight connection, a fork, a join, a join-then-fork construct, or a

loophead.

The hyperedges in the UCMNav hypergraph thus correspond to points along a UCM path

and the nodes correspond to the arcs between those points. All the UCM path constructs with a

semantic meaning - such as start and end points, responsibilities, forks and joins, loop heads - are

points along a path and as such correspond to hyperedges in the hypergraph. The arcs along a

path do not carry special semantic meaning, and as such neither do the nodes in the hypergraph.

Components are not directly part of a path in the UCM notation and thus they are not part

of the hypergraph proper. They are represented in the UCMNav internal model by component

objects that have a containment relationship with hypergraph elements. The task of generating

LQN models from the UCMNav involves dealing almost exclusively with the logical classes,

except when it comes to this containment of path elements in components. Technically, the con-

tainment status of points along a UCM path is solely a factor of how the component and path fig-

ures are drawn and displayed on the screen. As such the UCMNavComponentclass, which

defines the logical component objects, does not provide any methods to directly access the hyper-

edges corresponding to the path elements it may contain. Therefore it is necessary to refer to the

HyperedgeFigureandComponentReferenceclasses, which handle the display of theHyperedge

andComponentclasses respectively, in order to be able to determine whether a given hyperedge is

 36

contained in a component (or vice-versa).

4.2.3. Hypergraph Classes

The hypergraph classes are divided into two general types. The first type are the logical

entity classes which represent the UCM constructs, their interconnections, and associated data.

The second type are the associated figure classes which deal with the screen placement of those

logical objects. This section describes the inheritance hierarchy and the class containment rela-

tionships between those classes.

4.2.3.1. Class Inheritance Hierarchy

The base hypergraph class is theHyperedge. It is a virtual class that defines all the meth-

ods and data common to every hyperedge. Every class with a single input and output is a direct

child of Hyperedge, as well as theLoopclass which has a fixed number of two inputs and two out-

puts (one of each for the main path and the loop body). TheMultipathEdgevirtual class refines

Hyperedgewith methods to manage a variable number of multiple input or output paths. The

OrFork, OrJoin, andSynchronizationclasses are derived fromMultipathEdgesince they can have

a variable number of input and/or output branches. Figure 4-1shows the class hierarchy for the

hyperedge classes.

The base class for the display classes is theFigure class. It defines the basic methods of

positioning and drawing the objects on the screen. TheHyperedgeFigureclass further refines

Figurewith pointers to the corresponding logical hyperedge and containing component reference.

The other hyperedge display classes descend fromHyperedgeFigure, with PointFigurehandling

the display of empty points, start points, end points, waiting places, and timers. All the classes

descending from HyperedgeFigure deal solely with the display of the points associated with their

logical hyperedge counterparts. TheLoopNullFigure, OrNullFigure, and SynchNullFigure

classes do not display hyperedges directly but rather are associated with the display of the branch-

ing structures from theLoopFigure, OrFigure, andSynchronizationFigurerespectively. Figure 4-2

shows the inheritance hierarchy for the hyperedge display classes in the UCMNav.

Figure 4-3 shows which figure classes and logical classes correspond with each other. In

some cases the figure class and the logical class will have a direct relationship where one or both

 37

of the classes have a pointer to the other class (as is the case with theHyperedgeFigureand

Hyperedgeclasses) or where either the figure or logical class includes its counterpart explicitly as

a friend class. In other cases the relationship between the figure and logical classes is indirectly

inherited from direct relationship between the parentHyperedgeFigure andHyperedge classes.

4.2.3.2. Class Containment Relationships

The UCM2LQN converter takes as its input the active maps and devices from the UCM-

Nav. Figure 4-4 shows a partial class containment diagram for theMap andDevice classes.

A Map contains aHypergraph, a collection ofComponentReferences, a collection of

Paths, a collection ofResponsibilityReferences, a collection ofHyperedgeFigures, and a pointer to

ResponsibilityReference

Hyperedge Synchronization

Empty

OrJoin

GoalTag

OrFork

Abort

WaitingPlace

Connect

Loop

Wait

Timestamp

Start

MultipathEdge

Result

Timer

Stub

Figure 4-1:Inheritance hierarchy for the classes derived fromHyperedge
(obtained using the WindRiver SNiFF+ code browser).

 38

its parentStub it is used as a plug-in anywhere. AHypergraphcontains a collection of logical

Hyperedgesand a collection ofNodes. ComponentReferencesall contain a logicalComponent,

which in turn contains an integer device id number that can be used to identify the processor it is

running on. EachComponentReferencealso has a collection of pointers to theHyperedgeFigures

enclosed within its borders. APathcontains a collection of pointers to its logicalHyperedgeele-

ments. EveryResponsibilityReferencecontains a logicalResponsibility, which in turn contains a

collection of ServiceRequestseach of which contains an integer device id number identifying

which device is being requested.Stubscontain either a collection ofServiceRequestslike

Responsibilitiesor a collection of sub-Maps for their plug-ins. All HyperdgeFigurescontain a

pointer to their enclosingComponentReferenceand a pointer to their corresponding logical

Hyperedge. Hyperedgescontain a pointer to their correspondingHyperedgeFigure, a collection

of pointers to their inputNodes, and another collection of pointers to their outputNodes. Nodes

contain a pointer to their respective input and outputHyperedges. Finally, eachDevicecontains

an integer identifier. Please note thatDevicesare only contained in theDeviceDirectoryclass

(which is not shown in Figure 4-4) and only their identifier is used by any other classes.

GoalFigure

OrFigure

HyperedgeFigure

StubFigure

SynchronizationFigure

SynchNullFigure

OrNullFigure

Figure

PointFigure

ResponsibilityFigure

TimestampFigure

LoopFigure

LoopNullFigure

Figure 4-2:Inheritance hierarchy for the classes derived fromFigure (obtained
using the WindRiver SNiFF+ code browser).

 39

Figure 4-3:Correspondence relationships between the UCMNav hypergraph fig-
ure classes and logical classes

 40

Figure 4-4:Partial class containment diagram for the UCMNav classes passed to
the UCM2LQN converter.

 41

4.3. UCM2LQN LQN Model

The UCM2LQN converter takes the set of maps and devices as an input when invoked

from the UCMNav and generates a set of LQN objects representing the same model. Those

objects are then saved to file in the LQNS file format described in Section 2.2.3.3. This section

describes the LQN classes that were created, along with their inheritance hierarchy and contain-

ment relationships.

4.3.1. LQN Classes

There are eight LQN classes as follows:

• Ucm2Lqn - wrapper class for the UCM2LQN converter, implements the UCM to LQN con-

version algorithm described in Chapter 5

• Lqn - container class for the LQN elements

• LqnActivity - LQN element class, describes an activity

• LqnEntry - LQN element class, describes an entry

• LqnTask - LQN element class, describes a task

• LqnDevice - LQN element class, describes a device

• LqnCrs - Call and Reply Stack class, used to keep track of component boundary crossing

when following UCM paths

• LqnCrsElement- Call and Reply Stack element class, wrapper for anLqnActivityor LqnEntry

The inheritance hierarchy for the UCM2LQN classes is shown in Figure 4-5. It is a flat

hierarchy with each class being defined independently. None of the classes have shared features

that would have made it worthwhile to put them together in related groups.

The Ucm2Lqn class is invoked when the “Create LQN” item is chosen from the Perfor-

mance menu in the UCMNav. AnLqn object and a collection ofLqnCrs’s are created along with

the Ucm2Lqn object. All other objects are created dynamically as the UCM map is parsed. The

Ucm2Lqn class has the following methods which may be of interest:

void Transmorgrify(Cltn<Map*>* maps, Cltn<Device*>* devices)

• called from the UCMNav to transform UCMs into LQNs

• checks for the completeness of the UCM and orchestrates its traversal

 42

void Start2Lqn(Hyperedge* start_pt)

• transforms a UCM start point into the appropriate set of LQN constructs

void Edge2Lqn(Hyperedge* edge)

• transforms any other UCM hyperedge into the appropriate LQN construct(s)

xing_type Xing(Hyperedge* edge1, Hyperedge* edge2)

• determines if component boundaries have been crossed when going from edge1 to edge2

• if a boundary was crossed then also determines the type of crossing - entering a component,

leaving a component, or moving directly from one component into another

The algorithm used to traverse the UCM and create the LQN constructs is described in

Chapter 5.

4.3.2. Class Containment Relationships

Figure 4-6 shows the class containment diagram of the UCM2LQN classes. As the wrap-

per class,Ucm2Lqncontains anLqn and a collection ofLqnCrs’s. TheLqn object represents the

entire LQN model for the UCM input, including sub-maps that are plugged into any stubs. As

such there is no need to have more than oneLqn object.

The LQN elements -LqnTask, LqnEntry, LqnActivity, andLqnDevice- are contained in

such a way as to make it easy to get the correct output file format. TheLqn class contains a col-

Lqn

LqnEntry

LqnDevice

LqnTask

LqnActivity

LqnCrs

LqnCrsElement

Ucm2Lqn

Figure 4-5:Inheritance hierarchy for the UCM2LQN LQN classes (obtained
using the WindRiver SNiFF+ code browser).

 43

lection ofLqnDevicesand a collection ofLqnTasks. EachLqnTaskpoints to theLqnDeviceit runs

on. LqnTaskalso includes a collection ofLqnEntriesand a collection ofLqnActivities. The

Figure 4-6:Class containment diagram for the UCM2LQN classes.

 44

LqnEntryclass has a pointer to its parentLqnTask, a pointer to its firstLqnActivity, and a pointer

to theLqnActivity that called it. The LqnActivity class has a a pointer to its parentLqnTask, a

pointer to theLqnEntrythrough which it began execution, a pointer to anyLqnEntry it may call

on, a collection of pointers to any possible precedingLqnActivities, and a collection of pointers to

any succeedingLqnActivities.

TheLqnCrsclass contains a collection ofLqnCrsElements, a pointer to the precedingLqn-

Crs, and a collection of pointers to any succeedingLqnCrs’s. The LqnCrsElementclass has a

pointer to theLqnEntry and a pointer to theLqnActivity it may represent.

4.3.3. LQN File Output

The LQN model is output to the file by taking advantage of the containment hierarchy of

the LQN objects. Once the LQN model has been created, theUcm2Lqn object opens a

“ucm2lqn.lqn” file to write the output to.Ucm2Lqnthen invokes theFilePrint method for theLqn

object and passes it a file pointer to the output file. TheLqn prints the general system simulation

parameters, the device information, and the task information to the file. TheLqn then invokes the

FilePrint method for eachLqnTaskin order to output the specific task information. Each LqnTask

thus saves its LqnEntry information by invoking the entries’FilePrint method, the LqnActivity

information by invoking the activities’FilePrint method, and finally the LqnActivity connections

by invoking each activity’sFilePrintConnections method. Once all the information has been

saved, theUcm2Lqn object closes the “ucm2lqn.lqn” file.

 45

Chapter 5 - UCM2LQN Algorithm

This chapter describes the algorithm used to generate an LQN model from a UCM. The

algorithm is broken down in the following sections:

• accessing the hyperedges sequentially

• path traversal

• identifying component boundary crossings

• determining the calling relationships between the components

• creating the LQN objects corresponding to UCM path elements

• manipulating the Call and Response Stack (CRS)

5.1. Accessing Hyperedges Sequentially

The basic logical UCM path element is the hyperedge, as described in Section 4.2.2. and

Section 4.2.3. This section describes the logic necessary to access the next or the previous hyper-

edges for a given hyperedge.

5.1.1. Getting the Next Hyperedges

There may be mutliple next hyperedges for a given hyperedge. As such a collection of

next hyperedges is always used, even when there is only a single such edge. A collection of next

hyperedgesnext_edges for a given hyperedgeedge is obtained as follows:

1. next_edges = new collection of hyperedges
2. get the collection of target_nodes for the given edge
3. for each successive node in target_nodes , starting with the first

node , until target_nodes is done
3.1. next_edge = target hyperedge of node
3.2. add next_edge to next_edges

4. return next_edges

5.1.2. Getting the Previous Hyperedges

Similarly, there may be mutliple previous hyperedges for a given hyperedge. As such a

collection of previous hyperedges is always used, even when there is only a single such edge. A

collection of previous hyperedgesprevious_edgesfor a given hyperedgeedgeis obtained as fol-

 46

lows:

1. previous_edges = new collection of hyperedges
2. get the collection of source_nodes for the given edge
3. for each successive node in source_nodes , starting with the first

node , until source_nodes is done
3.1. previous_edge = source hyperedge of node
3.2. add next_edge to previous_edges

4. return previous_edges

5.2. Path Traversal Algorithm

A UCM path is traversed from acurrent_edgeto a next_edge, without being concerned

about the specific type of hyperedge. If thecurrent_edgehasmultiple next_edges, then thefirst

next_edgeis arbitrarily assumed to be part of the main path and is skipped while the rest are fol-

lowed. Thefirst next_edgeis then only followed after all the othernext_edgeshave been

exhausted. This is shown in greater detail in Section 5.5. A traversal is assumed to begin after the

LQN objects corresponding to a start point have been created. The general path traversal algo-

rithm is as follows:

1. find component boundary crossings (see Section 5.3.)
2. switch component boundary crossing

2.1. case leaving component
2.1.1. handle leaving component (see Section 5.4.1.)
2.1.2. break

2.2. case entering component
2.2.1. handle entering component (see Section 5.4.2.)
2.2.2. break

2.3. case changing components
2.3.1. handle leaving component (see Section 5.4.1.)
2.3.2. handle entering component (see Section 5.4.2.)
2.3.3. break

3. create LQN object (see Section 5.5.)

5.3. Identifying Component Boundary Crossings

The first step in determining what kind of communication occurs between components is

to identify component boundary crossings. Thus in addition to traversing the UCM path, it is nec-

essary to identify if the path crosses any component boundaries and the direction of the crossing

(entering orleaving the component) when going from one hyperedge to another. The algorithm

section to detect and identify the type of component boundary crossings when going from an

 47

edge1 to anedge2 is as follows:

1. get enclosing component comp1 from the figure for edge1
2. get enclosing component comp2 from the figure for edge2
3. if comp1 does not exist and comp2 does not exist then

3.1. neither edge is in a component, therefore the path is not crossing
any component boundaries

4. else if comp1 exists and comp2 does not exist then
4.1. edge1 is in a component and edge2 is not, therefore the path is

leaving a component
5. else if comp1 does not exist and comp2 exists then

5.1. edge1 is not in a component and edge2 is, therefore the path is
entering a component

6. else
6.1. both edges are in a component
6.2. if comp1 is the same as comp2 then

6.2.1. edge1 and edge2 are in the same component, therefore the path
is not crossing any component boundaries

6.3. else
6.3.1. edge1 and edge2 are in different components, therefore the

path is changing components (leaving and then entering)

5.4. Handling Component Boundary Crossings

There are three possible types of component boundary crossings: leaving a component,

entering a component, and changing components. This section shows the algorithms for handling

leaving a component and entering a component. Changing components is simply a matter of leav-

ing the first component and immediately entering the next component.

5.4.1. Handlling Leaving a Component

The following algorithm fragment applies when leaving a component. Leaving a compo-

nent always corresponds with sending a message. The default activity that is created corresponds

to sending that message, although whether that message is a call or a reply can only be determined

when the path enters another component. It is assumed that the hyperedge involved is the last

edge encountered still inside the component being left.

1. get the enclosing component from the edge
2. get the LQN task corresponding to the enclosing component
3. if currently processing a loop body then

3.1. task = clone of task for the loop body
4. message_activity = new default activity in task
5. push message_activity on the CRS

 48

5.4.2. Handling Entering a Component

The following algorithm fragment applies when entering a component. Entering a compo-

nent always corresponds with receiving a message and this part of the algorithm is applied to

determine whether that message is a call or a reply. It is assumed that the hyperedge involved is

the first edge encountered inside the component being entered.

1. get the enclosing component from the next_edge
2. next_task = task corresponding to the enclosing component
3. if currently processing a loop body then

3.1. next_task = clone of next_task for the loop body
4. if next_task can be found on the CRS then

4.1. the message is a reply
4.2. previous_task = task before the last task on the CRS
4.3. if previous_task == next_task then

4.3.1. the reply is a direct synchronous reply
4.3.2. reply_activity = pop item off the CRS
4.3.3. reply_entry = pop item off the CRS
4.3.4. update reply_activity as making a reply to reply_entry
4.3.5. call_activity = pop item off the CRS
4.3.6. update call_activity as making a synchronous call
4.3.7. handle_reply_activity = new default activity in next_task
4.3.8. connect handle_reply_activity as the next activity after

call_activity
4.4. else

4.4.1. the reply is a forwarded reply
4.4.2. reply_activity = pop item off the CRS
4.4.3. reply_entry = pop item off the CRS
4.4.4. update reply_activity as making a reply to reply_entry
4.4.5. previous_task = task before the last task on the CRS
4.4.6. while previous_task != next_task

4.4.6.1. forward_entry = reply_entry
4.4.6.2. reply_activity = pop item off the CRS
4.4.6.3. update reply_activity as making a synchronous call
4.4.6.4. reply_entry = pop item off the CRS
4.4.6.5. update reply_activity as making a reply to reply_entry
4.4.6.6. update reply_entry as forwarding its call to forward_entry
4.4.6.7. previous_task = task before the last task on the CRS

4.4.7. forward_entry = reply_entry
4.4.8. reply_activity = pop item off the CRS
4.4.9. update reply_activity as making a synchronous call
4.4.10. reply_entry = pop item off the CRS
4.4.11. update reply_activity as making a reply to reply_entry
4.4.12. update reply_entry as forwarding its call to forward_entry
4.4.13. call_activity = pop item off the CRS
4.4.14. update call_activity as making a synchronous call
4.4.15. handle_reply_activity = new default activity in next_task

 49

4.4.16. connect handle_reply_activity as the next activity after
call_activity

5. else
5.1. the message being received is a call
5.2. next_entry = new entry for next_task
5.3. call_activity = pop item off the CRS
5.4. update call_activity as making a call to next_entry
5.5. push next_entry on the CRS
5.6. next_activity = new default activity in next_task
5.7. connect next_activity as the first activity of next_entry

5.5. LQN Object Creation Algorithm

This section presents the part of the algorithm that deals with the creation of LQN objects

that correspond to UCM path elements. This is the most complex part of the UCM2LQN algo-

rithm since it must not only deal with the creation of the LQN objects, but also set up the intercon-

nections between them, and implement the logic to choose which hyperedge to follow next. The

algorithm reads as follows:

1. get the hyperedge type of the current_edge
2. switch hyperedge type

2.1. case start_point
2.1.1. mark start_point as visited
2.1.2. assign the start_point to a separate reference task running on

an infinite processor
2.1.2.1. reference_task = new reference task
2.1.2.2. reference_entry = new entry for reference_task
2.1.2.3.reference_activity = new default activity in reference_task

for start_point
2.1.2.4. connect reference_activity as the first activity of

reference_entry
2.1.2.5. push reference_activity on CRS

2.1.3. if start_point is contained in a component then
2.1.3.1. first_task = task corresponding to the component
2.1.3.2. first_entry = new entry for first_task
2.1.3.3. update reference_activity as making a call to first_entry
2.1.3.4. push first_entry on CRS
2.1.3.5. first_activity = new default activity in first_task
2.1.3.6.connect first_activity as the first activity of first_entry

2.1.4. continue path traversal (see Section 5.2.)
2.1.5. break

2.2. case responsibility
2.2.1. if responsibility has not been visited then

2.2.1.1. mark responsibility as visited
2.2.1.2. if responsibility is contained in a component then

2.2.1.2.1.responsibility_task = task corresponding to the compo-

 50

nent
2.2.1.2.2. if currently processing a loop body then

2.2.1.2.2.1.responsibility_task = clone of responsibility_task
for the loop body

2.2.1.2.3.responsibility_activity = new responsibility activity
in responsibility_task for responsibility

2.2.1.2.4. if responsibility has service demands specified then
2.2.1.2.4.1.assign service demands to responsibility_activity

2.2.1.2.5.else
2.2.1.2.5.1.responsibility_activity has default service demands

2.2.1.2.6.connect responsibility_activity as the next activity
after the last activity added to responsibility_task

2.2.1.2.7.continue path traversal (see Section 5.2.)
2.2.1.3. else

2.2.1.3.1.responsibility_task = new default task
2.2.1.3.2.responsibility_entry = new entry for

responsibility_task
2.2.1.3.3.update the last activity on the CRS as making a call to

responsibility_entry
2.2.1.3.4.push responsibility_entry on CRS
2.2.1.3.5.responsibility_activity = new responsibility activity

in responsibility_task for responsibility
2.2.1.3.6. if responsibility has service demands specified then

2.2.1.3.6.1.assign service demands to responsibility_activity
2.2.1.3.7.else

2.2.1.3.7.1.responsibility_activity has default service demands
2.2.1.3.8.connect responsibility_activity as the first activity

of responsibility_entry
2.2.1.3.9.message_activity = new default activity in

responsibility_task
2.2.1.3.10.connect message_activity as the next activity after

responsibility_activity
2.2.1.3.11.push message_activity on the CRS
2.2.1.3.12.continue path traversal (see Section 5.2.)

2.2.2. break
2.3. case or_fork

2.3.1. if or_fork has not been visited then
2.3.1.1. mark or_fork as visited
2.3.1.2. if or_fork is contained in a component then

2.3.1.2.1.or_fork_task = task corresponding to the component
2.3.1.2.2. if currently processing a loop body then

2.3.1.2.2.1.or_fork_task = clone of or_fork_task for the loop
body

2.3.1.2.3.or_fork_activity = new default activity in or_fork_task
for or_fork

2.3.1.2.4.connect or_fork_activity as the next activity after the
last activity added to or_fork_task

2.3.1.2.5.get next_edges for or_fork (see Section 5.1.1.)
2.3.1.2.6.skip over the first item in next_edges
2.3.1.2.7.fork_crs = CRS

 51

2.3.1.2.8.while next_edges is not done
2.3.1.2.8.1.branch_crs = new CRS
2.3.1.2.8.2.set branch_crs as being on a branch path
2.3.1.2.8.3.connect branch_crs as the next CRS after fork_crs
2.3.1.2.8.4.CRS = branch_crs
2.3.1.2.8.5.branch_activity = new default activity in

or_fork_task
2.3.1.2.8.6.connect branch_activity as the next activity after

or_fork_activity
2.3.1.2.8.7.continue traversal of branch path using the current

item in next_edges (see Section 5.2.)
2.3.1.2.8.8.continue to next item in next_edges

2.3.1.2.9.branch_crs = new CRS
2.3.1.2.10.set branch_crs as being on the main path
2.3.1.2.11.connect branch_crs as the next CRS after fork_crs
2.3.1.2.12.CRS = branch_crs
2.3.1.2.13.branch_activity = new default activity in or_fork_task
2.3.1.2.14.connect branch_activity as the next activity after

or_fork_activity
2.3.1.2.15.continue traversal of main path using the first item in

next_edges (see Section 5.2.)
2.3.1.3. else

2.3.1.3.1.or_fork_task = new default task
2.3.1.3.2.or_fork_entry = new entry for or_fork_task
2.3.1.3.3.update the last activity on the CRS as making a call to

or_fork_entry
2.3.1.3.4.push or_fork_entry on CRS
2.3.1.3.5.or_fork_activity = new default activity in or_fork_task

for or_fork
2.3.1.3.6.connect or_fork_activity as the first activity of

or_fork_entry
2.3.1.3.7.get next_edges for or_fork (see Section 5.1.1.)
2.3.1.3.8.skip over the first item in next_edges
2.3.1.3.9.fork_crs = CRS
2.3.1.3.10.while next_edges is not done

2.3.1.3.10.1.branch_crs = new CRS
2.3.1.3.10.2.set branch_crs as being on a branch path
2.3.1.3.10.3.connect branch_crs as the next CRS after fork_crs
2.3.1.3.10.4.CRS = branch_crs
2.3.1.3.10.5.branch_activity = new default activity in

or_fork_task
2.3.1.3.10.6.connect branch_activity as the next branch activity

after or_fork_activity
2.3.1.3.10.7.push branch_activity on the CRS
2.3.1.3.10.8.continue traversal of branch path using the current

item in next_edges (see Section 5.2.)
2.3.1.3.10.9.continue to next item in next_edges

2.3.1.3.11.branch_crs = new CRS
2.3.1.3.12.set branch_crs as being on the main path
2.3.1.3.13.connect branch_crs as the next CRS after fork_crs

 52

2.3.1.3.14.CRS = branch_crs
2.3.1.3.15.branch_activity = new default activity in or_fork_task
2.3.1.3.16.connect branch_activity as the next branch activity

after or_fork_activity
2.3.1.3.17.push branch_activity on the CRS
2.3.1.3.18.continue traversal of main path using the first item in

next_edges (see Section 5.2.)
2.3.2. break

2.4. case or_join
2.4.1. if or_join has not been visited then

2.4.1.1. mark or_join as visited
2.4.1.2. if or_join is contained in a component then

2.4.1.2.1.or_join_task = task corresponding to the component
2.4.1.2.2. if currently processing a loop body then

2.4.1.2.2.1.or_join_task = clone of or_join_task for the loop
body

2.4.1.2.3.branch_activity = new default activity in or_join_task
2.4.1.2.4.connect branch_activity as the next activity after the

activity last added to or_join_task
2.4.1.2.5.or_join_activity = new default activity for or_join not

added to or_join_task
2.4.1.2.6.connect or_join_activity as next join activity after

branch_activity
2.4.1.3. else

2.4.1.3.1.or_join_task = new default task
2.4.1.3.2.or_join_branch_entry = new entry for or_join_task
2.4.1.3.3.update the last activity on the CRS as making a call to

or_join_branch_entry
2.4.1.3.4.push or_join_entry on CRS
2.4.1.3.5.branch_activity = new default activity in or_join_task
2.4.1.3.6.connect branch_activity as the first activity of

or_join_branch_entry
2.4.1.3.7.or_join_activity = new default activity for or_join not

added to or_join_task
2.4.1.3.8.connect or_join_activity as next join activity after

branch_activity
2.4.2. else

2.4.2.1. if or_join is contained in a component then
2.4.2.1.1.get or_join_task corresponding to the component
2.4.2.1.2. if currently processing a loop body then

2.4.2.1.2.1.or_join_task = clone of or_join_task for the loop
body

2.4.2.1.3.branch_activity = new default activity in or_join_task
2.4.2.1.4.connect branch_activity as the next activity after the

activity last added to or_join_task
2.4.2.1.5.get or_join_activity corresponding to or_join
2.4.2.1.6.connect or_join_activity as next join activity after

branch_activity
2.4.2.2. else

2.4.2.2.1.get or_join_task corresponding to the the or_join

 53

2.4.2.2.2.or_join_branch_entry = new entry for or_join_task
2.4.2.2.3.update the last activity on the CRS as making a call to

or_join_branch_entry
2.4.2.2.4.push or_join_entry on CRS
2.4.2.2.5.branch_activity = new default activity in or_join_task
2.4.2.2.6.connect branch_activity as the first activity of

or_join_branch_entry
2.4.2.2.7.get or_join_activity corresponding to or_join
2.4.2.2.8.connect or_join_activity as next join activity after

branch_activity
2.4.2.3. if CRS on the main path then

2.4.2.3.1.add or_join_activity to the or_join_task
2.4.2.3.2.continue normal path traversal (see Section 5.2.)

2.4.3. break
2.5. case synchronization

2.5.1. get previous_edges for synchronization (see Section 5.1.1.)
2.5.2. get next_edges for synchronization (see Section 5.1.1.)
2.5.3. if a single previous_edge and multiple next_edges then

2.5.3.1. this is an and_fork
2.5.3.2. if and_fork has not been visited then

2.5.3.2.1.mark and_fork as visited
2.5.3.2.2. if and_fork is contained in a component then

2.5.3.2.2.1.and_fork_task = task candresponding to the component
2.5.3.2.2.2.if currently processing a loop body then

2.5.3.2.2.2.1.and_fork_task = clone of and_fork_task fand the
loop body

2.5.3.2.2.3.and_fork_activity = new default activity in
and_fork_task fand and_fork

2.5.3.2.2.4.connect and_fork_activity as the next activity after
the activity last added to and_fork_task

2.5.3.2.2.5.get next_edges fand and_fork (see Section 5.1.1.)
2.5.3.2.2.6.skip over the first item in next_edges
2.5.3.2.2.7.fork_crs = CRS
2.5.3.2.2.8.while next_edges is not done

2.5.3.2.2.8.1.branch_crs = new CRS
2.5.3.2.2.8.2.set branch_crs as being on a branch path
2.5.3.2.2.8.3.connect branch_crs as the next CRS after fork_crs
2.5.3.2.2.8.4.CRS = branch_crs
2.5.3.2.2.8.5.branch_activity = new default activity in

and_fork_task
2.5.3.2.2.8.6.connect branch_activity as the next activity

after and_fork_activity
2.5.3.2.2.8.7.continue traversal of branch path using the cur-

rent item in next_edges (see Section 5.2.)
2.5.3.2.2.8.8.continue to next item in next_edges

2.5.3.2.2.9.branch_crs = new CRS
2.5.3.2.2.10.set branch_crs as being on the main path
2.5.3.2.2.11.connect branch_crs as the next CRS after fork_crs
2.5.3.2.2.12.CRS = branch_crs
2.5.3.2.2.13.branch_activity = new default activity in

 54

and_fork_task
2.5.3.2.2.14.connect branch_activity as the next activity after

and_fork_activity
2.5.3.2.2.15.continue traversal of main path using the first

item in next_edges (see Section 5.2.)
2.5.3.2.3.else

2.5.3.2.3.1.and_fork_task = new default task
2.5.3.2.3.2.and_fork_entry = new entry fand and_fork_task
2.5.3.2.3.3.update the last activity on the CRS as making a call

to and_fork_entry
2.5.3.2.3.4.push and_fork_entry on CRS
2.5.3.2.3.5.and_fork_activity = new default activity in

and_fork_task fand and_fork
2.5.3.2.3.6.connect and_fork_activity as the first activity of

and_fork_entry
2.5.3.2.3.7.get next_edges fand and_fork (see Section 5.1.1.)
2.5.3.2.3.8.skip over the first item in next_edges
2.5.3.2.3.9.fork_crs = CRS
2.5.3.2.3.10.while next_edges is not done

2.5.3.2.3.10.1.branch_crs = new CRS
2.5.3.2.3.10.2.set branch_crs as being on a branch path
2.5.3.2.3.10.3.connect branch_crs as the next CRS after

fork_crs
2.5.3.2.3.10.4.CRS = branch_crs
2.5.3.2.3.10.5.branch_activity = new default activity in

and_fork_task
2.5.3.2.3.10.6.connect branch_activity as the next branch

activity after and_fork_activity
2.5.3.2.3.10.7.push branch_activity on the CRS
2.5.3.2.3.10.8.continue traversal of branch path using the cur-

rent item in next_edges (see Section 5.2.)
2.5.3.2.3.10.9.continue to next item in next_edges

2.5.3.2.3.11.branch_crs = new CRS
2.5.3.2.3.12.set branch_crs as being on the main path
2.5.3.2.3.13.connect branch_crs as the next CRS after fork_crs
2.5.3.2.3.14.CRS = branch_crs
2.5.3.2.3.15.branch_activity = new default activity in

and_fork_task
2.5.3.2.3.16.connect branch_activity as the next branch activity

after and_fork_activity
2.5.3.2.3.17.push branch_activity on the CRS
2.5.3.2.3.18.continue traversal of main path using the first

item in next_edges (see Section 5.2.)
2.5.4. else if multiple previous_edges and a single next_edge then

2.5.4.1. this is an and_join
2.5.4.2. if and_join has not been visited then

2.5.4.2.1.mark and_join as visited
2.5.4.2.2. if and_join is contained in a component then

2.5.4.2.2.1.and_join_task = task corresponding to the component
2.5.4.2.2.2.if currently processing a loop body then

 55

2.5.4.2.2.2.1.and_join_task = clone of and_join_task for the
loop body

2.5.4.2.2.3.branch_activity = new default activity in
and_join_task

2.5.4.2.2.4.connect branch_activity as the next activity after
the activity last added to and_join_task

2.5.4.2.2.5.and_join_activity = new default activity for
and_join not added to and_join_task

2.5.4.2.2.6.connect and_join_activity as next join activity
after branch_activity

2.5.4.2.3.else
2.5.4.2.3.1.and_join_task = new default task
2.5.4.2.3.2.and_join_branch_entry = new entry for and_join_task
2.5.4.2.3.3.update the last activity on the CRS as making a call

to and_join_branch_entry
2.5.4.2.3.4.push and_join_entry on CRS
2.5.4.2.3.5.branch_activity = new default activity in

and_join_task
2.5.4.2.3.6.connect branch_activity as the first activity of

and_join_branch_entry
2.5.4.2.3.7.and_join_activity = new default activity for

and_join not added to and_join_task
2.5.4.2.3.8.connect and_join_activity as next join activity

after branch_activity
2.5.4.3. else

2.5.4.3.1. if and_join is contained in a component then
2.5.4.3.1.1.get and_join_task corresponding to the component
2.5.4.3.1.2.if currently processing a loop body then

2.5.4.3.1.2.1.and_join_task = clone of and_join_task for the
loop body

2.5.4.3.1.3.branch_activity = new default activity in
and_join_task

2.5.4.3.1.4.connect branch_activity as the next activity after
the activity last added to and_join_task

2.5.4.3.1.5.get and_join_activity corresponding to and_join
2.5.4.3.1.6.connect and_join_activity as next join activity

after branch_activity
2.5.4.3.2.else

2.5.4.3.2.1.get and_join_task corresponding to the the and_join
2.5.4.3.2.2.and_join_branch_entry = new entry for and_join_task
2.5.4.3.2.3.update the last activity on the CRS as making a call

to and_join_branch_entry
2.5.4.3.2.4.push and_join_entry on CRS
2.5.4.3.2.5.branch_activity = new default activity in

and_join_task
2.5.4.3.2.6.connect branch_activity as the first activity of

and_join_branch_entry
2.5.4.3.2.7.get and_join_activity corresponding to and_join
2.5.4.3.2.8.connect and_join_activity as next join activity

after branch_activity

 56

2.5.4.3.3. if CRS on the main path then
2.5.4.3.3.1.add and_join_activity to the and_join_task
2.5.4.3.3.2.continue normal path traversal (see Section 5.2.)

2.5.5. else
2.5.5.1. this is an and_synchronization (an and_join followed by an

and_fork)
2.5.5.2. treat as an and_join

2.5.5.2.1.goto step 2.5.4.1. above
2.5.5.2.2.stop after step 2.5.4.3.3.1.

2.5.5.3. treat as an and_fork
2.5.5.3.1.goto step 2.5.3.1. above

2.5.6. break
2.6. case loop_head

2.6.1. if loop_head has not been visited then
2.6.1.1. mark loop_head as visited
2.6.1.2. old_crs = CRS
2.6.1.3. loop_crs = new CRS
2.6.1.4. CRS = loop_crs
2.6.1.5. get next_edges for loop_head (see Section 5.1.1.)
2.6.1.6. if loop_head is contained in a component then

2.6.1.6.1. loop_head_task = task corresponding to the component
2.6.1.6.2. if currently processing a loop body then

2.6.1.6.2.1.loop_head_task = clone of loop_head_task for the
loop body

2.6.1.6.3. loop_head_activity = new default activity in
loop_head_task for loop_head

2.6.1.6.4.connect loop_head_activity as the next activity after
the activity last added to loop_head_task

2.6.1.6.5. loop_body_task = new clone of loop_head_task
2.6.1.6.6. loop_body_entry = new entry for loop_body_task
2.6.1.6.7.update loop_head_activity as making a synchronous call

to loop_body_entry
2.6.1.6.8.push loop_body_entry on CRS
2.6.1.6.9. loop_body_activity = new default activity in

loop_body_task
2.6.1.6.10.connect loop_body_activity as first activity of

loop_body_entry
2.6.1.6.11.continue traversal of the loop body path using the last

item in next_edges (see Section 5.2.)
2.6.1.6.12.loop_body_reply_activity = new default activity in

loop_body_task
2.6.1.6.13.update loop_body_reply_activity as making a reply to

loop_body_entry
2.6.1.6.14.handle_reply_activity = new default activity in

loop_head_task
2.6.1.6.15.connect handle_reply_activity as the next activity

after loop_head_activity
2.6.1.7. else

2.6.1.7.1. loop_head_task = new default task
2.6.1.7.2. loop_head_entry = new entry for loop_head_task

 57

2.6.1.7.3.update the last activity on the CRS as making a call to
loop_head_entry

2.6.1.7.4.push loop_head_entry on CRS
2.6.1.7.5. loop_head_activity = new default activity in

loop_head_task for loop_head
2.6.1.7.6.connect loop_head_activity as the first activity of

loop_head_entry
2.6.1.7.7. loop_body_task = new clone of loop_head_task
2.6.1.7.8. loop_body_entry = new entry for loop_body_task
2.6.1.7.9.update loop_head_activity as making a synchronous call

to loop_body_entry
2.6.1.7.10.push loop_body_entry on CRS
2.6.1.7.11.loop_body_activity = new default activity in

loop_body_task
2.6.1.7.12.connect loop_body_activity as first activity of

loop_body_entry
2.6.1.7.13.continue traversal of the loop body path using the last

item in next_edges (see Section 5.2.)
2.6.1.7.14.loop_body_reply_activity = new default activity in

loop_body_task
2.6.1.7.15.update loop_body_reply_activity as making a reply to

loop_body_entry
2.6.1.7.16.handle_reply_activity = new default activity in

loop_head_task
2.6.1.7.17.connect handle_reply_activity as the next activity

after loop_head_activity
2.6.1.8. CRS = old_crs
2.6.1.9. delete loop_crs
2.6.1.10.continue traversal of the main path using the first item

in next_edges (see Section 5.2.)
2.6.2. break

2.7. case stub
2.7.1. if stub has properly bound plug-in then

2.7.1.1. plug_in_entry_point = plug-in start_point bound to the
current stub input

2.7.1.2. mark plug_in_entry_point as visited
2.7.1.3.get next_edges for plug_in_entry_point (see Section 5.1.1.)
2.7.1.4. continue traversal of the plug-in path (see Section 5.2.)

2.7.2. else
2.7.2.1. treat stub as a responsibility

2.7.2.1.1.goto step 2.2.1.
2.7.2.2. use the stub output bound to the current stub input as the

next_edge
2.7.2.3. continue path traversal (see Section 5.2.)

2.7.3. break
2.8. case end_point

2.8.1. if end_point is bound to a stub exit then
2.8.1.1. use the stub output bound to end_point as the next_edge
2.8.1.2. continue path traversal (see Section 5.2.)

2.8.2. else

 58

2.8.2.1. if end_point is contained in a component then
2.8.2.1.1.end_task = task corresponding to the component
2.8.2.1.2. if currently processing a loop body then

2.8.2.1.2.1.end_task = clone of end_task for the loop body
2.8.2.1.3.end_activity = new default activity in end_task
2.8.2.1.4.connect end_activity as the next activity after the

last activity added to end_task
2.8.2.1.5. if end_point is connected to a start_point then

2.8.2.1.5.1.this is a closed system
2.8.2.1.5.2.end_entry = pop entry off the CRS
2.8.2.1.5.3.update end_activity as making a reply to end_entry
2.8.2.1.5.4.reference_activity = pop item off the CRS
2.8.2.1.5.5.update reference_activity as making a synchronous

call
2.8.2.1.6.else

2.8.2.1.6.1.this is an open system
2.8.2.1.6.2.while the CRS is not empty

2.8.2.1.6.2.1.crs_element = pop item off the CRS
2.8.2.1.6.2.2.if crs_element is an activity then

2.8.2.1.6.2.2.1.update activity as making an asynchronous
call

2.8.2.2. else
2.8.2.2.1. if end_point is connected to a start_point then

2.8.2.2.1.1.this is a closed system
2.8.2.2.1.2.first_task = first task called by the reference task

corresponding to the start_point
2.8.2.2.1.3.if last task on the CRS == first_task then

2.8.2.2.1.3.1.this is a direct synchronous reply to the refer-
ence task

2.8.2.2.1.3.2.reply_activity = pop item off the CRS
2.8.2.2.1.3.3.reply_entry = pop item off the CRS
2.8.2.2.1.3.4.update reply_activity as making a reply to

reply_entry
2.8.2.2.1.3.5.reference_activity = pop item off the CRS
2.8.2.2.1.3.6.update reference_activity as making a synchro-

nous call
2.8.2.2.1.4.else

2.8.2.2.1.4.1.this is a forwarded reply to the reference task
2.8.2.2.1.4.2.reply_activity = pop item off the CRS
2.8.2.2.1.4.3.reply_entry = pop item off the CRS
2.8.2.2.1.4.4.update reply_activity as making a reply to

reply_entry
2.8.2.2.1.4.5.while last task on the CRS != first_task

2.8.2.2.1.4.5.1.forward_entry = reply_entry
2.8.2.2.1.4.5.2.reply_activity = pop item off the CRS
2.8.2.2.1.4.5.3.update reply_activity as making a synchronous

call
2.8.2.2.1.4.5.4.reply_entry = pop item off the CRS
2.8.2.2.1.4.5.5.update reply_activity as making a reply to

reply_entry

 59

2.8.2.2.1.4.5.6.update reply_entry as forwarding its call to
forward_entry

2.8.2.2.1.4.6.forward_entry = reply_entry
2.8.2.2.1.4.7.reply_activity = pop item off the CRS
2.8.2.2.1.4.8.update reply_activity as making a synchronous

call to forward_entry
2.8.2.2.1.4.9.reply_entry = pop item off the CRS
2.8.2.2.1.4.10.update reply_activity as making a reply to

reply_entry
2.8.2.2.1.4.11.update reply_entry as forwarding its call to

forward_entry
2.8.2.2.1.4.12.reference_activity = pop item off the CRS
2.8.2.2.1.4.13.update reference_activity as making a synchro-

nous call
2.8.2.2.2.else

2.8.2.2.2.1.this is an open system
2.8.2.2.2.2.end_task = new default activity
2.8.2.2.2.3.end_entry = new entry for end_task
2.8.2.2.2.4.update the last activity on the CRS as making a call

to end_entry
2.8.2.2.2.5.while the CRS is not empty

2.8.2.2.2.5.1.crs_element = pop item off the CRS
2.8.2.2.2.5.2.if crs_element is an activity then

2.8.2.2.2.5.2.1.update activity as making an asynchronous
call

2.8.3. break
2.9. default

2.9.1. no LQN objects need to be created
2.9.2. continue path traversal (see Section 5.2.)
2.9.3. break

 60

Chapter 6 - Validation

This chapter describes the example systems used to validate the UCM2LQN conversion

algorithm. The examples are that of a simple connection of a telephone call (POTS), a distributed

ticket reservation system (TRS), and a group communication server (GCS). The UCM models for

these systems were all developed at Carleton University and reflect an “in-house” style. These

models validate the UCM2LQN converter by combining several of the UCM and LQN correspon-

dence patterns in complex models that represent real systems.

The LQN models generated by UCM2LQN were used as inputs to the jLqnDef, LQNS,

and ParaSRVN tools. This checked both the syntax and the semantics of the LQNs. All three

tools have a syntax checker and will not load badly formed LQN files. jLqnDef can also generate

a graphical model of the LQN and thus allow for a visual check of its composition. The ParaS-

RVN simulator further validates the semantics by successfully completing the required number of

simulation runs. The LQNS analytical solver can also be used to verify the syntax and semantics

of the LQN output.

6.1. Plain Old Telephone System

The POTS call connection example described in this section is the basis of a larger UCM

model for a telephony system that was originally developed by Daniel Amyot and myself in the

summer of 1998 for the feature interaction detection contest organized with the occasion of that

year’s Feature Interaction Workshop. The aim of the contest was to detect as many feature inter-

actions as possible when including a set of supplied features on top of the POTS system. The tele-

phony system was described using a collection of activity graphs, one general graph for POTS and

a separate subgraph one for every feature in isolation, and a minimum of any other documenta-

tion. It was the task of the contestants to intepret the descriptions, integrate them into the tele-

phony model, and detect potential feature interactions. The UCM model we developed was

unfortunately not ready on time for submission to the contest, but it did prove a good case study

for using UCMs to detect feature interactions, as well as testing the useability of early versions of

the UCMNav.

 61

6.1.1. POTS UCM Model

6.1.1.1. POTS Root Map

Figure 6-1 shows the UCM root map for the POTS system. The components for all the

POTS maps are as follows:

• Orig: the caller’s telephone set

• Term: the intended call recipient’s telephone set

• Switch: the telephone company’s switch gear

• SCP: the Service Control Point that processes IN features (not used in the POTS scenario)

Switch

Orig Term

SCP OS

OffHook

Busy

AccountBilled

OUT1

OrigConnect

OUT2

OUT1

OUT3

TermConnect

DT

OUT1

StopDT

BT

OUT4

IN1

OrigBusy

IN1

Dial

IN1

PreDial
PostDial

Billing

Figure 6-1:UCMNav root map for the POTS example.

 62

• OS: the Operations System that does the billing

The POTS root map features the following stubs:

• PreDial: features that are activated before the number is dialed

• PostDial: features that are activated after the number is dialed

• Billing: different billing schemes depending on the kind of connection and which features are

invoked

For POTS operation the PreDial stub has a default plug-in that merely connects the input

and output paths. Similarly, the Billing stub has a straight path connecting its input and output.

The path has a single responsiibility to log the start time of the connection between the caller and

the callee. The PostDial stub has more functionality and is discussed in further detail in Section

6.1.1.2.

6.1.1.2. POTS PostDial Plug-In

The PostDial plug-in either contacts the callee and establishes a connection or notifies the

caller that the callee is busy. The plug-in map is shown in Figure 6-2. The connection bindings to

the PostDial stub are listed in Table 6-1. The PostDial map features the following stubs:

• ProcessCall: features dealing with making a connection

• ProcessBusy: features associated with the callee being busy

• NumberDisplay: feature displaying the caller’s number

For POTS, both the ProcessBusy and NumberDisplay stubs have default plug-ins without any

responsibilities. The plug-in for the ProcessCall stub is discussed in Section 6.1.1.3.

PostDial Stub Path Binding PostDial Plug-In Path Binding

IN1 call

OUT1 orig_connected

OUT2 billing

OUT3 term_connected

OUT4 busy

Table 6-1:Stub and plug-in bindings for the PostDial stub shown in Figure 6-1 and
the PostDial UCM shown in Figure 6-2.

 63

6.1.1.3. POTS ProcessCall Plug-In

The ProcessCall plug-in for normal POTS operation checks whether the callee happens to

be idle or not. If the callee is idle then its status is changed to busy and the process of making the

connection is started. Otherwise the process of notifying the caller that the callee is busy starts.

The UCM is shown in Figure 6-3.

ThePOTSstart point is bound to the ProcessCall stub’sIN1 input. Theidle andbusyend

point are bound to the stub’sOUT1 andOUT2 outputs respectively.

Figure 6-2:UCMNav plug-in map for the PostDial stub shown in Figure 6-1 for
the POTS example.

Switch

Orig Term

SCP OS

call

orig_connected

busy

billing

term_connected

IN1
OUT1

R

StopRStopRR RR

IN1

SetLI

OUT1

OUT2

OUT1

OffHook

IN1

ProcessCall

NumberDisplay

ProcessBusy

 64

6.1.2. POTS Usage

POTS has two possible scenarios that can happen when attempting to make a call. The

call can either be set up successfully or the callee can be busy. If the call is placed successfully,

the scenario unfolds as follows:

1. the originator (caller) picks up the receiver

2. the switch notes that the originator is now busy

3. the originator gets a dial tone

4. the originator dials the desired terminator’s number (callee)

Switch

Orig Term

SCP OS

POTS
idle

busy

TermBusy

Figure 6-3:UCMNav plug-in map for the ProcessCall stub shown in Figure 6-2
for the POTS example.

 65

5. the dial tone stops

6. the switch checks and finds that the terminator is currently idle

7. the switch stores the originator’s number as the terminator’s last incoming number

8. the terminator gets a ring and the originator gets a remote ringing tone

9. the terminator picks up the receiver

10. the terminator’s ring stops

11. the originator’s remote ringing tone stops and the billing details are recorded by the operations

system

12. the connection is now made

Otherwise, an unsuccessful call connection scenario unfolds as follows:

step 1 through step 5 are the same

6. the switch checks and finds that the terminator is currently busy

7. the originator gets a busy tone

8. the connection is not made

6.1.3. POTS LQN Conversion Results

The LQN for the POTS model is shown in Figure 6-4. The model incorporates asynchro-

nous and synchronous messaging, alternate and parallel paths, and stubs. The resulting LQN is

syntactically sound and can be loaded into all three LQN tools.

Figure 6-4 shows that a reference task was created for the start point. Since the end of the

UCM path did not come back to the start point, the system has open arrivals and the reference task

Figure 6-4:POTS LQN generated by the UCM2LQN converter from the UCM
shown in Figure 6-1. (output from jLqnDef)

 66

sends an asynchronous message to theOrig task indicating that the receiver is being picked up.

TheOrig task interacts synchronously with theSwitchand requests a dial tone, then that a connec-

tion be established with the party whose number was entered, and finally that the creation be

enabled after it was made successgully. TheSwitch, in turn, makes a synchronous call to theTerm

process to create the call, and then sends an asynchronous message to indicate that the call has

been enabled and the caller and callee can now talk to each other. TheSwitchalso sends an asyn-

chronous message to log the start time of the connection to theOS.

The UCM2LQN conversion is semantically correct and can be simulated by ParaSRVN,

but the model cannot be solved by LQNS due to the presence of a distributed fork and join. Over-

coming this problem is something that will be addressed in the future.

6.2. Ticket Reservation System

The Ticket Reservation System (TRS) allows users to browse through a calendar of events

and buy tickets using a credit card. The TRS is one of the tutorial examples used as part of a

course on the Design of High Performance Software and the UCM model is based on that tutorial

example.[4]

6.2.1. TRS UCM Model

The UCM model for the TRS is shown in Figure 6-5. The components are as follows:

• User: TRS customer

• WebServer: web server that provides the interface to the TRS

• Netware: the underlying network

• CCReq: credit card verification and authorization server

• Database: database server

6.2.2. TRS Usage

The TRS can be used to either browse events by displaying the schedule and checking for

ticket availability, or to buy tickets using a credit card. A typical scenario involves having the user

log on to the system by making connection request. The web server registers the session and con-

 67

firms that the user is connected. Once she has connected to the system, the user enters a loop

where she has two options. She can either request to browse and check information about an

event, or she can buy a ticket. If the browsing option is chosen, the web server sends a request for

the event information to the database through the netware. The databse is responsible for deliver-

ing the requested data back to the web server. The information is then displayed back to the user.

If the user wishes to burchase a ticket, she can choose the buy option and supply a credit card

number to which the ticket purchase can be billed. The web server then confirms the transaction

by going through the netware and requesting that the credit card verification service verify the

credit card information. Once the credit card is verified, the credit card service forwards the pur-

chase request to the database so it may update its records. The transaction is now done and a con-

Database

WebServer

CCReq

NetwareUser

Connect

ConnectWeb

Disconnect

DisconnectWeb

DisplayWeb

DisplayNet

DisplayDatabase

ConfirmWeb

ConfirmNet

ConfirmDatabase

VerifyCC

Figure 6-5:UCMNav map for the Ticket Reservation System example.

 68

firmation is returned to the web server, which in turn relays it to the user. The user may browse or

purchase tickets as often as she wishes. Once the user is done she can request to be logged out

and the web server closes the session and confirms that the user has disconnected.

6.2.3. TRS LQN Conversion Results

The resulting TRS LQN is shown as jLqnDef graphical output in Figure 6-6. The LQN

shows that synchronous calls and forwarding are tansformed properly. All of the interactions

between the tasks in the TRS are of a synchronous nature, except for the initial asynchronous call

from the reference task due to the open nature of the model. The interesting feature of this exam-

ple is that it requires the conversion of a complex loop, the body of which features forking and

joining and makes service requests of other tasks. The loop head is shown as the activity

User_LH_48in theUsertask. The loop body was abstracted away from the loop head and is rep-

resented by theUser_clone1_E1entry in theUser_clone1task. The rest of the loop body is taken

care of by the activities inUser_clone1and the call made fromUser_clone1_A2to WebServer_E2

entry in theWebServer task.

The resulting LQN for the TRS can be solved with LQNS as well as simulated with ParaS-

RVN. This shows that the UCM2LQN converter output is syntactically and semantically correct

for both tools.

Figure 6-6:Ticket Reservation System LQN generated by the UCM2LQN con-
verter from the UCM shown in Figure 6-5. (output from jLqnDef)

 69

6.3. Group Communication Server

The Group Communication Server (GCS) is an example developed as a test for PER-

FECT, a methodology to evaluate the feasibility of alternate software concurrency architec-

tures.[2][3] The GCS is used to store documents and allow users later access to those documents.

Users are registered with the GCS and can subscribe to a set of documents, submit new docu-

ments, or update documents. If a document is updated, the GCS then notifies any subscribed

users in case they wish to request the latest version.[3]

6.3.1. GCS UCM Model

Several UCM models for different software concurrency architectures are available for the

GCS. The model chosen for this example is the one with the maximum amount of parallelism.[2]

The UCM root map for the GCS is shown in Figure 6-7. The components are as follows:

• main: main GCS process

• writeF: process to write files to the disk

• update: process to send out document update notifications

The GCS root map has a writeFile stub which is bound to the plug-in map shown in Figure

6-8.

6.3.2. GCS Usage

The GCS supports five usage scenarios as follows [2]:

• updating a document.

• submitting a new document.

• subscribing to a document

• unsubscribing from a document

• retrieving the most recent version of a document.

When updating a document, a user submits an updated copy of a document that is already

stored on the server. The GCS then proceeds to save the document to disk and in parallel with the

save also notify the subscribers of the new update. The notification process involves preparing a

notification message, making a temporary copy of the subscriber list, and then looping through

 70

the list and dispatching an update notification to each subscriber.

In the submitting a new document scenario, the user submits a new document which is

then associated with a new subscriber list. The user is added as the first subscriber to the list and

the document is added to the index of documents available on the server. Finally, the document is

saved to disk and an acknowledgement is sent back to the user.

If a user wants to subscribe to a document the list of subsribers for that document is

retrieved and the user is is added to it. An acknowledgement is then sent back to the user. The

unsubscribing from a document scenario unfolds in much the same way, except the user is

removed from the subscriber list instead of being added to.

Figure 6-7:UCMNav root map for the GCS example.

writeF

update

main

getDocInf1 subListAdd
sendAck1

subListRem
sendAck2

getDocInf2

getDistList

writeToD1

writeToD2

readFromD1

readFromD2

sendFile

getDocInf3

getFileLoca

getDocInf4

readFromMem1

recMsg

newDI bind

subListAddM

sendAck3

getASub

prepMsg

sendAck4

readFromMem2

sendUpd

-
Ts2

-

msgArr

-

Tu2

T1

Tqd2

IN1

-

OUT1
Tc2d

Twd1

Twd2

Trd1

Trd2

-

Tc2e

-

Tpu

getASub

writeFile

 71

In order to retrieve the most recent version of a document, the information associated with

the document is checked and then the document is read either from one of the disks or from a

memory cache. The file is then sent out to the user.

6.3.3. GCS LQN Conversion Results

A partial view of an early LQN conversion of the GCS is shown in Figure 6-9. The jLqn-

Def tool has a limit on the number of activities that it can handle, and the latest version of the GCS

model contains 64 activities in themain task alone. jLqnDef runs out of space in its internal dic-

tionary when attempting to load this model. An UCM2LQN output file lising for this example is

included as an appendix in instead. *** The partial view in Figure 6-9 does provide an idea of

how the system is layered and what kind of calls are made.

The GCS LQN can be solved by the LQNS analytic solver as well as by the ParaSRVN

simulator. This demonstrates that the output from the UCM2LQN converter is both syntactically

and semantically correct.

Figure 6-8:UCMNav plug-in map for the WriteFile stub shown in Figure 6-7 for
the GCS example.

main

writeToD1

writeToD2

start endTwD

 72

Figure 6-9:Partial view of the GCS LQN generated by the UCM2LQN converter
from the UCM shown in Figure 6-7. (output from jLqnDef)

 73

Chapter 7 - Application

This chapter shows two example systems used to test the UCM2LQN converter. The

examples are that of a wireless call delivery and a distributed hand-off protocol. The UCM mod-

els for these systems are based on industrial examples and did not originate at Carleton University.

These examples provide good testing material since they do not necessarily conform to an “in-

house” style of creating UCMs.

7.1. WIN Call Delivery

The wireless call delivery system shown by the UCM root map in Figure 7-1 and the

CallSetup plug-in map Figure 7-2 originates from research into Wireless Intelligent Networks

(WIN) standards conducted by a local telecommunications company. This is an example of an

industrial-stlye UCM that is used to describe a real system.

The WIN example was not supplied with any additional documentation for this testing

exercise. Therefore the call delivery scenario was simply inferred from the UCM model. Please

note that a complete understanding of the details of this system is not and should not be required

Figure 7-1:UCMNav root map for the WIN call delivery example.

SSF_o LRF_h LRF_v SSF_t

CallOrig

e2

CallOrig[DldDgts]
LocateMS[MIN] LocateMobile2[MIN]

AllocateTLDNRelayTLDN
ReplyToOriginatingOUT1

servedSSF

localMS

IN1

idle

busy

e1 AccessDeniedRelayAccesDeniedReturnAccessDeniedAccessDeny

accessible

inaccessible

GetProfile

CallSetup

 74

in order to be able to generate a performance model. However, the basic scenario for this model

as it emerges from the UCM can be summed up as a call delivery attempt begins when a call is

originated by the calling side after dialing a number. As the scenario unfolds through the system,

it generates two main outcomes: the call can either be set up or the caller is denied access to the

callee. TheSSF_oand LRF_h components represent the calling side of the system, and the

LRF_v andSSF_t components represent the receiving end of the system.

If the call can be set up, then the plug-in for theCallSetupstub, shown in Figure 7-2, is tra-

versed. The main path for the plug-in is the answer path and the answer end point is the one

bound to the output of the stub in the root map. The plug-in does have an alternate timeout path

where instead of receiving an answer after the call has been set up, the caller hears a recorded

announcement explaining that a reply will not be forthcoming and releases the call.

7.1.1. WIN Call Delivery LQN Conversion Results

The first attempt at converting this example did not yield a result that could be read by any

of the LQN tools (jLqnDef, LQNS, or ParaSRVN) because the original names of some of the

activities included the character sequence ‘-1’, which is a protected end of field deliminator in the

LQN file format. Although the LQN model that was generated was deemed to be valid after a

manual inspection, the stray ‘-1’ character sequences made it unsuitable as an input for any of the

tools. Thus the original WIN call delivery UCM that was submitted for testing had to be modified

by removing the ‘-1’ from the names that had it. This incident did serve to illustrate how the “in-

Figure 7-2:UCMNav plug-in map for the CallSetup stub shown in Figure 7-1 for
the WIN call connection example.

SSF_o SSF_t

s1

time_out

pageresp

answer

CallSetup
time_out

PlayAnnouncementCallRelease

AnswerComplete

 75

house” style of the UCMs used for validation in Chapter 6 avoided exposing a possible weakness

in the conversion results.

The jLqnDef output for the call delivery LQN is shown in Figure 7-3. The model shows

both asynchronous and synchronous calling relationships between the tasks. The resulting model

could only be solved by the ParaSRVN simulator. The LQNS analytic solver could not interpret

the semantics of the OR forks and joins in different components.

This model provides a good example of branching and joining, but the jLqnDef output

does not show activity connections. The LQN model was thus manually redrawn based on the file

output in a manner that shows the activity connections. The redrawn model is shown in Figure 7-

4 and demonstrates that the UCM2LQN converted output does match the OR forking and joining

structure of the the original UCM.

7.2. Example Of A Distributed Hand-Off Protocol

This system describes a distributed hand-off protocol. It is based on a teaching example

developed by Gunther Mussbacher at Mitel Networks. As such, it is not a design document for a

real product, but rather a theoretical model designed to showcase a particular style of drawing

UCMs and to be used as a resource for designers who need to become familiar with the UCM

notation. The UCM used for this test is shown in Figure 7-5. It was adapted from the industrial

teaching example by Khalid H. Siddiqui as part of his M.Eng. research.

Figure 7-3:WIN call delivery LQN generated by the UCM2LQN converter from
the UCM shown in Figure 7-1. (output from jLqnDef)

 76

Figure 7-4:Graphical rep-
resentation showing the

activity sequences for the
WIN call delivery LQN.

 77

The protocol described in this model is used to coordinate a hand-off between two tasks,

PartyAandPartyB, in a distributed environment. Each party has an associated device and proxy,

and uses them to communicate through a distributed network. The TupleSpace process is based

on *** and is used as a means to coordinate the communication between the other system partici-

pants.

The scenario illustrated in Figure 7-5 illustrates the transfer the handling of some arbitrary

duty from PartyA to PartyB. PartyA initiates the hand-off procedure, the initial phase of which

passes throughDeviceA, ProxyA, ProxyB, the MessageSystemand theDeviceHandlerin the

MainController, andProcessAbefore returning toPartyA. The scenario then proceeds through

the same set of tasks before arriving at theTupleSpace. A ts_inresponsibility is performed in the

Figure 7-5:UCMNav root map for the distributed hand-off protocol example.

ProxyADeviceAPartyA MainController
OS
MessageSystem

DeviceHandler

ProxyB

BackupProcessPartyBTupleSpace ProcessB

ProcessA

msg_e11

msg_e12

msg_e13

devH_e11

devH_e12

devH_e13

psA_e11

ts_in

ts_out

devA_e11

devA_e12

devA_e13

pA_e11

pA_e12

pA_e13

pB_e11

pB_e12

pB_e13

psA_e12

psB_e11
ptyB_e11psBk_e11

ptyA_e11

ptyA_e12

psB_e12

psB_e13

 78

TupleSpacebefore ProcessB is reached. AfterProcessB performs some operation, the

TupleSpaceperforms ats_outresponsibility and returns toProcessB. The execution then splits

off into two parallel paths atProcessB. One of the parallel paths traversesPartyB, DeviceA,

ProxyA, ProxyB, theMessageSystemandDeviceHandlercontained in theMainController, before

returning toProcessB. The other parallel branch remains inProcessBand executes some respon-

sibility. The two parallel paths are then rejoined into a single path and a call is made to theBack-

upProcess.

7.2.1. Distributed Hand-Off Protocol LQN Conversion Resuslts

In order to generate a UCM2LQN output file that could be read by the LQN tools, it was

necessary to modifiy some of the names in the UCM so that they did not contain any spaces. The

LQN file format uses a space as a delimiter between items, and as such a name with a space of any

kind ends up being read as two different names. This generates syntax errors that make the output

file unusable with any of the LQN tools. Just replacing the spaces with underscores was enough

to provide a solution for this problem

The jLqnDef graphical representation of the LQN model resulting from the hand-off pro-

tocol is shown in Figure 7-6. The LQN model shows the numberous asynchronous, synchronous,

and forwarding calls and replies that take place in the example.

An interesting result from the conversion is that theOS component does not have any

entries or activities in the LQN model and is effectively removed from thefunctioningt of the sys-

tem, even though the UCM clearly shows the path going through theOS. This is explained by the

fact that in the UCM model there are no path points enclosed exclusively in theOScomponent.

This shows that in order for a component to be included in the converted model it must directly

enclose at least one path point.

The model is solvable by both LQNS and ParaSRVN, which shows that the distributed

hand-off protocol LQN generated by UCM2LQN is both syntactically and semantically correct.

 79

Figure 7-6:LQN for the distributed hand-off protocol generated by the UCM2LQN
converter from the UCM shown in Figure 7-5. (output from jLqnDef)

 80

Chapter 8 - Conclusions

8.1. Contributions

The major contribution of this thesis is the development of a solution for integrating high

level design and performance analysis at an early stage in the software development cycle. The

UCM2LQN converter is the glue between high level design in the form of Use Case Maps and

performance analysis using Layered Queueing Networks. The impact of this tool is further

enhanced by its automated nature, as the converter is integrated with the UCM Navigator editing

tool and the resulting output can be analysed using existing programs like the LQNS analytic

sover and the ParaSRVN simulator.

The author has identified the basic corresponding constructs between the UCM and LQN

notations, as well as documenting corresponding UCM and LQN models for certain patterns of

interaction between components in a system. These correspondences were used as a basis for the

development of an algorithm to convert UCM designs into LQN performance models. The con-

version algorithm includes sections on traversing and parsing the internal data model of the UCM-

Nav, detecting the crossing of component boundaries and interpreting the messaging nature of

said crossinge, and creating the apropriate LQN entities to correspond with the UCM path con-

structs and sequences.

This conversion algorithm has also been implemented in the UCM2LQN conversion tool.

The author has also developed and implemented a design strategy for integrating the converter as

an add-on module to the UCMNav.

8.2. Case Studies

The UCM2LQN converter was applied to five different case studies in order to validate the

algorithm and test the tool. The validation was carried out by converting three UCM models for

a Plain Old Telephone System, a Ticket Reservation System, and a Group Communications

server. The resulting LQN models were viewed with jLqnDef and were then analysed and simu-

lated using the LQNS and ParaSRVN tools respectively. The algorithm was validated as all three

 81

example systems can be simulated without problem. The LQNs for the TRS and GCS systems

can also be solved with the analytical solver, but the POTS model cannot due to a known limita-

tion in the solver when it comes to dealing with distributed inter-task forks and joins. This points

to an area of possible future research.

The converter was also tested successfully using models originating from industry. These

examples were that of a call delivery in a Wireless Intelligent Network and a distributed hand-off

protocol. Both of these models showed the need to pay attention the naming of UCM objects,

since certain names may employ restricted characters in the LQN file format. Both models con-

verted to LQNs that can be simulated with ParaSRVN. The LQN for the hand-off protocol can

also be solved with LQNS, whereas the call delivery model cannot due to the same limitation of

LQNS in solving distributed forks and joins.

8.2.1. Converter Limitations

8.3. Future Research

 82

Chapter 9 - References

[1]

[2] Craig Scratchley, "Evaluation and Diagnosis of Concurrency Architectures", Report

OCIEE-00-07, PhD thesis, Carleton University, Ottawa, Sept 2000, pp 92-125

[3] C. Scratchley, C. M. Woodside, "Evaluating Concurrency Options in Software Specifica-

tions", Proc 7th Int. Symp. on Modeling, Analysis and Simulation of Computer and Tele-

comm Systems (MASCOTS99), College Park, Md., October 1999, pp 330 - 338

[4] C. M. Woodside, “Performance-Oriented Patterns in Software Design (A Multi-Level Ser-

vice Approach)”, class notes, Carleton University, Ottawa, Sept 1997

[5]

	Chapter 1 - Introduction
	This thesis presents UCM2LQN, an automated conversion tool that converts annotated Use Case Map (...
	The UCM2LQN program is an add-on to the UCMNav and uses the UCMNav internal data structure for UC...
	1.1. Motivation
	Software design and performance analisys are two vital, yet poorly coordinated aspects of the lif...
	Since software designers are not performance analysts there is a lot of overhead in going from de...
	Assuming that performance analysis is even done, as opposed to finding out how fast the system tu...
	Software Performance Engineering (SPE) was an early attempt at evolving the software development ...
	A possible solution appears to be the automation of the transition from design document to perfor...

	1.2. The Converter Tool
	The UCM2LQN converter is just such an automated tool that bridges the gap between a CASE tool for...
	Using the UCM2LQN converter in conjunction with LQNS and ParaSRVN means that a software designer ...

	1.3. Contributions Of This Thesis
	The thesis makes the following contributions:

	1.4. Thesis Organization
	This thesis is organized in the following manner. Chapter 1 is a contains a basic description of ...

	Chapter 2 - Background
	This chapter covers background information on Use Case Maps, Layered Queueing Networks, and build...
	2.1. Use Case Map Background
	The Use Case Map (UCM) notation results from research instigated by Professor R. J. A. Buhr at Ca...
	UCM usage and acceptance is steadily growing with an active user community anchored by the www.us...

	2.1.1. UCM Notation
	A UCM map is a collection of elements that describe one or more scenarios unfolding throughout a ...
	The basic building block of the UCM notation is the path, which is the visual representation of a...
	Figure 2-1: Simple UCM path for an ATM banking transaction.

	UCM paths can be overlaid on components. Components represent functional or logical entities that...
	Figure 2-2: Simple UCM path for an ATM banking transaction overlaid on an ATM component.

	A path can be refined to show more scenario detail with the addition of responsibilities. Respons...
	Figure 2-3: UCM with responsibilities and additional components for an ATM banking transaction.

	Although responsibilities can be used to represent any kind of function at any level of abstracti...
	Figure 2-4: UCM for an ATM banking transaction with a stub for the transaction.
	Figure 2-5: Withdrawal UCM used as a plug-in for the stub in Figure 2-4.

	The UCM synchronization construct is used to indicate a place where parallel path segments split ...
	Figure 2-6: Refined withdrawal UCM with a parallel path segment getting account information from ...

	Scenario alternatives are shown using OR forks (a single path splitting into two or more alternat...
	Figure 2-7: UCM for an ATM banking transaction with alternative paths that end the transaction.

	OR joins and forks can be used to create informal looping structures in UCM, but there is a loop ...
	Figure 2-8: UCM path for an ATM banking transaction with a loop to get the correct PIN number.

	2.1.2. The UCM Navigator
	The UCM Navigator (UCMNav) is a UCM editing tool developed at Carleton University by Andrew Miga....
	Figure 2-9: Screen shot of the UCMNav.

	Figure 2-9 shows a screen shot of the UCMNav. The top menu bar provides access to the file input ...
	The UCM designs are represented internally as hypergraphs and saved as XML files. The hypergraph ...

	2.2. Layered Queueing Network Background
	Queueing Networks are based on a client-server paradigm. The clients make service requests of the...
	Layered Queueing Networks (LQN) allow for of an arbitrary number of client-server levels. An LQN ...

	2.2.1. LQN Notation
	LQNs can model both software and hardware resources. The basic software resource is a task. A tas...
	Figure 2-10: LQN task and devices.

	Service requests are shown in LQN by messaging arrows. Tasks may both send and receive messages, ...
	There are two types of messages: asynchronous and synchronous. Asynchronous messages are sent by ...
	Figure 2-11: LQN synchronous and asynchronous message arrows.

	Tasks receive service requests at designated interface points called entries. Entries correspond ...
	Figure 2-12: LQN with entry and activity detail.
	Figure 2-13: LQN for an ATM withdrawal transaction with entry and activity detail shown for the A...

	For the purposes of this research it was assumed that LQN activities are the basic building block...

	2.2.2. Applying LQN
	LQN models need to be simulated or solved in order to extract performance metrics from them. This...
	Since all software runs on hardware, devices must have a speed factor specified that indicates th...
	If entries are used in conjunction with activities to describe the behaviour, then they are not r...
	This type of information is not necessarily specified in UCM models, but the UCMNav does have fac...

	2.2.3. LQN Tools
	This section introduces the tools available to supprt the LQN notation. There are two tools avail...
	All three tools use the same file format, part of which is described in Section 2.2.3.3.
	2.2.3.1. LQNS
	The Layered Queueing Network Solver (LQNS) is a tool developed at Carleton University by Greg Fra...
	LQNS can use different layering techniques for the sub-models. The default is batched layering wh...

	2.2.3.2. ParaSRVN
	The precursor to the current LQN notation was called Stochastic Rendez-Vous Networks (SRVN), henc...

	2.2.3.3. LQN File Format

	2.3. Creating Performance Models
	- UCM2LQN is a method to create performance models

	2.3.1. Software Performance Engineering
	2.3.2. Creating Petri Net Models

	Chapter 3 - Correspondences Between UCM and LQN
	This chapter deals with the correspondences that were identified between the UCM and LQN models. ...
	3.1. Corresponding Constructs
	There are some constructs that correspond directly between the UCM and LQN notations. These const...

	responsibility
	activity
	component
	task
	device
	device
	service
	task with a dedicated processor
	3.2. Basic Patterns of Interaction
	This section shows the basic correspondences between UCMs and LQNs. We use elementary UCM systems...

	3.2.1. Synchronous Call and Return
	A synchronous call is made whenever the UCM path crosses from one component to another and return...
	Figure 3-1: Corresponding UCM and LQN models for a simple synchronous call and return.

	3.2.1.1. Multiple Calls
	Multiple synchronous calls are made whenever the UCM path crosses from one component to another, ...
	Figure 3-2: Corresponding UCM and LQN models for successive synchronous calls and returns.

	3.2.2. Asynchronous Call
	An asynchronous call is made whenever the UCM path crosses from one component to another and does...
	Figure 3-3: Corresponding UCM and LQN models for a simple synchronous call and return.

	3.2.3. Forwarding
	A call forwarding is made whenever the UCM path crosses from one component to another, and then t...
	Figure 3-4: Corresponding UCM and LQN models for a forwarded synchronous call and subsequent return.

	3.2.4. Parallel Calls
	The UCM path has an AND fork and then join in the calling component. By making calls from each br...
	Figure 3-5: Corresponding UCM and LQN models for parallel synchronous calls and returns.

	3.2.5. Alternative Calls
	Similarly to the parallel case above, the UCM path has an OR fork and join in the calling compone...
	Figure 3-6: Corresponding UCM and LQN models for alternative synchronous calls and returns.

	3.2.6. Looping
	A loop is indicated by a special UCM loop construct that appears the same as an OR join followed ...
	Figure 3-7: Corresponding UCM and LQN models for a loop.

	3.3. Complex Patterns of Interaction
	There are possible patterns of interaction that can be expressed as UCMs but do not have a straig...

	3.3.1. Fork and Join in Separate Components
	It is common to have UCM models that represent systems where paths fork in one component and join...
	Figure 3-8: UCM and LQN models including an OR fork and join in separate tasks.

	While such systems can also be represented using the LQN notation, and they are syntactically cor...
	The example system shown in Figure 3-8 has a client Task_A making a synchronous service request a...
	Please note that the same strategy of only results in an approximate, not a fully equivalent, LQN...

	3.3.2. Loop with Complex Body
	LQNs can easily represent loops with a single activity as their body, as described in Section 3.2...
	Figure 3-9: UCM and LQN models including a complex loop.

	The UCM in Figure 3-9 shows a client Task_A making a synchronous service request at the server Ta...
	The resulting LQN model can thus be made to correspond to the same system as in the original UCM,...

	Chapter 4 - Transformation Strategy
	The UCM2LQN tool transforms UCM models from the UCMNav into LQN models that can be input into the...
	4.1. UCM2LQN Design Choices
	A previous attempt at creating a UCM-to-LQN conversion tool was made by Greg Franks as part of hi...
	Franks’ UCM-to-LQN tool used the XML files saved by the UCMNav as its input. This strategy had th...
	Reading in the XML file output from the UCMNav also has the additional shortcoming of misinterpre...
	This first attempt at a UCM-to-LQN conversion tool showed that the only reliable and practical wa...
	The danger with this approach is in having the add-on become too closely coupled with the UCMNav ...
	Both the UCMNav and the UCM2LQN classes make use of a Cltn class to manage sets of multiple point...

	4.2. UCMNav
	This section describes the design of the UCMNav, its internal hypergraph model, and the inheritan...

	4.2.1. Design
	The UCMNav can be said to have two main functions: managing all the logical objects that make up ...
	The UCMNav display is managed by the DisplayManager class. The DisplayManager controls all the UC...
	There are three main kinds of logical entities that we’re concerned with in order to generate LQN...

	4.2.2. The Hypergraph Model
	UCM paths and path elements are represented by a hypergraph model in the UCMNav. A hypergraph is ...
	The hypergraph supports the expected kind of operations on its elements. Hyperedges and nodes can...
	The hyperedges in the UCMNav hypergraph thus correspond to points along a UCM path and the nodes ...
	Components are not directly part of a path in the UCM notation and thus they are not part of the ...

	4.2.3. Hypergraph Classes
	The hypergraph classes are divided into two general types. The first type are the logical entity ...
	4.2.3.1. Class Inheritance Hierarchy
	The base hypergraph class is the Hyperedge. It is a virtual class that defines all the methods an...
	Figure 4-1: Inheritance hierarchy for the classes derived from Hyperedge (obtained using the Wind...

	The base class for the display classes is the Figure class. It defines the basic methods of posit...
	Figure 4-2: Inheritance hierarchy for the classes derived from Figure (obtained using the WindRiv...

	Figure 4-3 shows which figure classes and logical classes correspond with each other. In some cas...
	Figure 4-3: Correspondence relationships between the UCMNav hypergraph figure classes and logical...

	4.2.3.2. Class Containment Relationships
	The UCM2LQN converter takes as its input the active maps and devices from the UCMNav. Figure 4-4 ...
	A Map contains a Hypergraph, a collection of ComponentReferences, a collection of Paths, a collec...
	Figure 4-4: Partial class containment diagram for the UCMNav classes passed to the UCM2LQN conver...

	4.3. UCM2LQN LQN Model
	The UCM2LQN converter takes the set of maps and devices as an input when invoked from the UCMNav ...

	4.3.1. LQN Classes
	There are eight LQN classes as follows:
	The inheritance hierarchy for the UCM2LQN classes is shown in Figure 4-5. It is a flat hierarchy ...
	Figure 4-5: Inheritance hierarchy for the UCM2LQN LQN classes (obtained using the WindRiver SNiFF...

	The Ucm2Lqn class is invoked when the “Create LQN” item is chosen from the Performance menu in th...
	The algorithm used to traverse the UCM and create the LQN constructs is described in Chapter 5.

	4.3.2. Class Containment Relationships
	Figure 4-6 shows the class containment diagram of the UCM2LQN classes. As the wrapper class, Ucm2...
	Figure 4-6: Class containment diagram for the UCM2LQN classes.

	The LQN elements - LqnTask, LqnEntry, LqnActivity, and LqnDevice - are contained in such a way as...
	The LqnCrs class contains a collection of LqnCrsElements, a pointer to the preceding LqnCrs, and ...

	4.3.3. LQN File Output
	The LQN model is output to the file by taking advantage of the containment hierarchy of the LQN o...

	Chapter 5 - UCM2LQN Algorithm
	This chapter describes the algorithm used to generate an LQN model from a UCM. The algorithm is b...
	5.1. Accessing Hyperedges Sequentially
	The basic logical UCM path element is the hyperedge, as described in Section 4.2.2. and Section 4...

	5.1.1. Getting the Next Hyperedges
	There may be mutliple next hyperedges for a given hyperedge. As such a collection of next hypered...
	1. next_edges = new collection of hyperedges
	2. get the collection of target_nodes for the given edge
	3. for each successive node in target_nodes, starting with the first node, until target_nodes is ...
	3.1. next_edge = target hyperedge of node
	3.2. add next_edge to next_edges
	4. return next_edges

	5.1.2. Getting the Previous Hyperedges
	Similarly, there may be mutliple previous hyperedges for a given hyperedge. As such a collection ...
	1. previous_edges = new collection of hyperedges
	2. get the collection of source_nodes for the given edge
	3. for each successive node in source_nodes, starting with the first node, until source_nodes is ...
	3.1. previous_edge = source hyperedge of node
	3.2. add next_edge to previous_edges
	4. return previous_edges

	5.2. Path Traversal Algorithm
	A UCM path is traversed from a current_edge to a next_edge, without being concerned about the spe...
	1. find component boundary crossings (see Section 5.3.)
	2. switch component boundary crossing
	2.1. case leaving component
	2.1.1. handle leaving component (see Section 5.4.1.)
	2.1.2. break
	2.2. case entering component
	2.2.1. handle entering component (see Section 5.4.2.)
	2.2.2. break
	2.3. case changing components
	2.3.1. handle leaving component (see Section 5.4.1.)
	2.3.2. handle entering component (see Section 5.4.2.)
	2.3.3. break
	3. create LQN object (see Section 5.5.)

	5.3. Identifying Component Boundary Crossings
	The first step in determining what kind of communication occurs between components is to identify...
	1. get enclosing component comp1 from the figure for edge1
	2. get enclosing component comp2 from the figure for edge2
	3. if comp1 does not exist and comp2 does not exist then
	3.1. neither edge is in a component, therefore the path is not crossing any component boundaries
	4. else if comp1 exists and comp2 does not exist then
	4.1. edge1 is in a component and edge2 is not, therefore the path is leaving a component
	5. else if comp1 does not exist and comp2 exists then
	5.1. edge1 is not in a component and edge2 is, therefore the path is entering a component
	6. else
	6.1. both edges are in a component
	6.2. if comp1 is the same as comp2 then
	6.2.1. edge1 and edge2 are in the same component, therefore the path is not crossing any componen...
	6.3. else
	6.3.1. edge1 and edge2 are in different components, therefore the path is changing components (le...

	5.4. Handling Component Boundary Crossings
	There are three possible types of component boundary crossings: leaving a component, entering a c...

	5.4.1. Handlling Leaving a Component
	The following algorithm fragment applies when leaving a component. Leaving a component always cor...
	1. get the enclosing component from the edge
	2. get the LQN task corresponding to the enclosing component
	3. if currently processing a loop body then
	3.1. task = clone of task for the loop body
	4. message_activity = new default activity in task
	5. push message_activity on the CRS

	5.4.2. Handling Entering a Component
	The following algorithm fragment applies when entering a component. Entering a component always c...
	1. get the enclosing component from the next_edge
	2. next_task = task corresponding to the enclosing component
	3. if currently processing a loop body then
	3.1. next_task = clone of next_task for the loop body
	4. if next_task can be found on the CRS then
	4.1. the message is a reply
	4.2. previous_task = task before the last task on the CRS
	4.3. if previous_task == next_task then
	4.3.1. the reply is a direct synchronous reply
	4.3.2. reply_activity = pop item off the CRS
	4.3.3. reply_entry = pop item off the CRS
	4.3.4. update reply_activity as making a reply to reply_entry
	4.3.5. call_activity = pop item off the CRS
	4.3.6. update call_activity as making a synchronous call
	4.3.7. handle_reply_activity = new default activity in next_task
	4.3.8. connect handle_reply_activity as the next activity after call_activity
	4.4. else
	4.4.1. the reply is a forwarded reply
	4.4.2. reply_activity = pop item off the CRS
	4.4.3. reply_entry = pop item off the CRS
	4.4.4. update reply_activity as making a reply to reply_entry
	4.4.5. previous_task = task before the last task on the CRS
	4.4.6. while previous_task != next_task
	4.4.6.1. forward_entry = reply_entry
	4.4.6.2. reply_activity = pop item off the CRS
	4.4.6.3. update reply_activity as making a synchronous call
	4.4.6.4. reply_entry = pop item off the CRS
	4.4.6.5. update reply_activity as making a reply to reply_entry
	4.4.6.6. update reply_entry as forwarding its call to forward_entry
	4.4.6.7. previous_task = task before the last task on the CRS
	4.4.7. forward_entry = reply_entry
	4.4.8. reply_activity = pop item off the CRS
	4.4.9. update reply_activity as making a synchronous call
	4.4.10. reply_entry = pop item off the CRS
	4.4.11. update reply_activity as making a reply to reply_entry
	4.4.12. update reply_entry as forwarding its call to forward_entry
	4.4.13. call_activity = pop item off the CRS
	4.4.14. update call_activity as making a synchronous call
	4.4.15. handle_reply_activity = new default activity in next_task
	4.4.16. connect handle_reply_activity as the next activity after call_activity
	5. else
	5.1. the message being received is a call
	5.2. next_entry = new entry for next_task
	5.3. call_activity = pop item off the CRS
	5.4. update call_activity as making a call to next_entry
	5.5. push next_entry on the CRS
	5.6. next_activity = new default activity in next_task
	5.7. connect next_activity as the first activity of next_entry

	5.5. LQN Object Creation Algorithm
	This section presents the part of the algorithm that deals with the creation of LQN objects that ...
	1. get the hyperedge type of the current_edge
	2. switch hyperedge type
	2.1. case start_point
	2.1.1. mark start_point as visited
	2.1.2. assign the start_point to a separate reference task running on an infinite processor
	2.1.2.1. reference_task = new reference task
	2.1.2.2. reference_entry = new entry for reference_task
	2.1.2.3. reference_activity = new default activity in reference_task for start_point
	2.1.2.4. connect reference_activity as the first activity of reference_entry
	2.1.2.5. push reference_activity on CRS
	2.1.3. if start_point is contained in a component then
	2.1.3.1. first_task = task corresponding to the component
	2.1.3.2. first_entry = new entry for first_task
	2.1.3.3. update reference_activity as making a call to first_entry
	2.1.3.4. push first_entry on CRS
	2.1.3.5. first_activity = new default activity in first_task
	2.1.3.6. connect first_activity as the first activity of first_entry
	2.1.4. continue path traversal (see Section 5.2.)
	2.1.5. break
	2.2. case responsibility
	2.2.1. if responsibility has not been visited then
	2.2.1.1. mark responsibility as visited
	2.2.1.2. if responsibility is contained in a component then
	2.2.1.2.1. responsibility_task = task corresponding to the component
	2.2.1.2.2. if currently processing a loop body then
	2.2.1.2.2.1. responsibility_task = clone of responsibility_task for the loop body
	2.2.1.2.3. responsibility_activity = new responsibility activity in responsibility_task for respo...
	2.2.1.2.4. if responsibility has service demands specified then
	2.2.1.2.4.1. assign service demands to responsibility_activity
	2.2.1.2.5. else
	2.2.1.2.5.1. responsibility_activity has default service demands
	2.2.1.2.6. connect responsibility_activity as the next activity after the last activity added to ...
	2.2.1.2.7. continue path traversal (see Section 5.2.)
	2.2.1.3. else
	2.2.1.3.1. responsibility_task = new default task
	2.2.1.3.2. responsibility_entry = new entry for responsibility_task
	2.2.1.3.3. update the last activity on the CRS as making a call to responsibility_entry
	2.2.1.3.4. push responsibility_entry on CRS
	2.2.1.3.5. responsibility_activity = new responsibility activity in responsibility_task for respo...
	2.2.1.3.6. if responsibility has service demands specified then
	2.2.1.3.6.1. assign service demands to responsibility_activity
	2.2.1.3.7. else
	2.2.1.3.7.1. responsibility_activity has default service demands
	2.2.1.3.8. connect responsibility_activity as the first activity of responsibility_entry
	2.2.1.3.9. message_activity = new default activity in responsibility_task
	2.2.1.3.10. connect message_activity as the next activity after responsibility_activity
	2.2.1.3.11. push message_activity on the CRS
	2.2.1.3.12. continue path traversal (see Section 5.2.)
	2.2.2. break
	2.3. case or_fork
	2.3.1. if or_fork has not been visited then
	2.3.1.1. mark or_fork as visited
	2.3.1.2. if or_fork is contained in a component then
	2.3.1.2.1. or_fork_task = task corresponding to the component
	2.3.1.2.2. if currently processing a loop body then
	2.3.1.2.2.1. or_fork_task = clone of or_fork_task for the loop body
	2.3.1.2.3. or_fork_activity = new default activity in or_fork_task for or_fork
	2.3.1.2.4. connect or_fork_activity as the next activity after the last activity added to or_fork...
	2.3.1.2.5. get next_edges for or_fork (see Section 5.1.1.)
	2.3.1.2.6. skip over the first item in next_edges
	2.3.1.2.7. fork_crs = CRS
	2.3.1.2.8. while next_edges is not done
	2.3.1.2.8.1. branch_crs = new CRS
	2.3.1.2.8.2. set branch_crs as being on a branch path
	2.3.1.2.8.3. connect branch_crs as the next CRS after fork_crs
	2.3.1.2.8.4. CRS = branch_crs
	2.3.1.2.8.5. branch_activity = new default activity in or_fork_task
	2.3.1.2.8.6. connect branch_activity as the next activity after or_fork_activity
	2.3.1.2.8.7. continue traversal of branch path using the current item in next_edges (see Section ...
	2.3.1.2.8.8. continue to next item in next_edges
	2.3.1.2.9. branch_crs = new CRS
	2.3.1.2.10. set branch_crs as being on the main path
	2.3.1.2.11. connect branch_crs as the next CRS after fork_crs
	2.3.1.2.12. CRS = branch_crs
	2.3.1.2.13. branch_activity = new default activity in or_fork_task
	2.3.1.2.14. connect branch_activity as the next activity after or_fork_activity
	2.3.1.2.15. continue traversal of main path using the first item in next_edges (see Section 5.2.)
	2.3.1.3. else
	2.3.1.3.1. or_fork_task = new default task
	2.3.1.3.2. or_fork_entry = new entry for or_fork_task
	2.3.1.3.3. update the last activity on the CRS as making a call to or_fork_entry
	2.3.1.3.4. push or_fork_entry on CRS
	2.3.1.3.5. or_fork_activity = new default activity in or_fork_task for or_fork
	2.3.1.3.6. connect or_fork_activity as the first activity of or_fork_entry
	2.3.1.3.7. get next_edges for or_fork (see Section 5.1.1.)
	2.3.1.3.8. skip over the first item in next_edges
	2.3.1.3.9. fork_crs = CRS
	2.3.1.3.10. while next_edges is not done
	2.3.1.3.10.1. branch_crs = new CRS
	2.3.1.3.10.2. set branch_crs as being on a branch path
	2.3.1.3.10.3. connect branch_crs as the next CRS after fork_crs
	2.3.1.3.10.4. CRS = branch_crs
	2.3.1.3.10.5. branch_activity = new default activity in or_fork_task
	2.3.1.3.10.6. connect branch_activity as the next branch activity after or_fork_activity
	2.3.1.3.10.7. push branch_activity on the CRS
	2.3.1.3.10.8. continue traversal of branch path using the current item in next_edges (see Section...
	2.3.1.3.10.9. continue to next item in next_edges
	2.3.1.3.11. branch_crs = new CRS
	2.3.1.3.12. set branch_crs as being on the main path
	2.3.1.3.13. connect branch_crs as the next CRS after fork_crs
	2.3.1.3.14. CRS = branch_crs
	2.3.1.3.15. branch_activity = new default activity in or_fork_task
	2.3.1.3.16. connect branch_activity as the next branch activity after or_fork_activity
	2.3.1.3.17. push branch_activity on the CRS
	2.3.1.3.18. continue traversal of main path using the first item in next_edges (see Section 5.2.)
	2.3.2. break
	2.4. case or_join
	2.4.1. if or_join has not been visited then
	2.4.1.1. mark or_join as visited
	2.4.1.2. if or_join is contained in a component then
	2.4.1.2.1. or_join_task = task corresponding to the component
	2.4.1.2.2. if currently processing a loop body then
	2.4.1.2.2.1. or_join_task = clone of or_join_task for the loop body
	2.4.1.2.3. branch_activity = new default activity in or_join_task
	2.4.1.2.4. connect branch_activity as the next activity after the activity last added to or_join_...
	2.4.1.2.5. or_join_activity = new default activity for or_join not added to or_join_task
	2.4.1.2.6. connect or_join_activity as next join activity after branch_activity
	2.4.1.3. else
	2.4.1.3.1. or_join_task = new default task
	2.4.1.3.2. or_join_branch_entry = new entry for or_join_task
	2.4.1.3.3. update the last activity on the CRS as making a call to or_join_branch_entry
	2.4.1.3.4. push or_join_entry on CRS
	2.4.1.3.5. branch_activity = new default activity in or_join_task
	2.4.1.3.6. connect branch_activity as the first activity of or_join_branch_entry
	2.4.1.3.7. or_join_activity = new default activity for or_join not added to or_join_task
	2.4.1.3.8. connect or_join_activity as next join activity after branch_activity
	2.4.2. else
	2.4.2.1. if or_join is contained in a component then
	2.4.2.1.1. get or_join_task corresponding to the component
	2.4.2.1.2. if currently processing a loop body then
	2.4.2.1.2.1. or_join_task = clone of or_join_task for the loop body
	2.4.2.1.3. branch_activity = new default activity in or_join_task
	2.4.2.1.4. connect branch_activity as the next activity after the activity last added to or_join_...
	2.4.2.1.5. get or_join_activity corresponding to or_join
	2.4.2.1.6. connect or_join_activity as next join activity after branch_activity
	2.4.2.2. else
	2.4.2.2.1. get or_join_task corresponding to the the or_join
	2.4.2.2.2. or_join_branch_entry = new entry for or_join_task
	2.4.2.2.3. update the last activity on the CRS as making a call to or_join_branch_entry
	2.4.2.2.4. push or_join_entry on CRS
	2.4.2.2.5. branch_activity = new default activity in or_join_task
	2.4.2.2.6. connect branch_activity as the first activity of or_join_branch_entry
	2.4.2.2.7. get or_join_activity corresponding to or_join
	2.4.2.2.8. connect or_join_activity as next join activity after branch_activity
	2.4.2.3. if CRS on the main path then
	2.4.2.3.1. add or_join_activity to the or_join_task
	2.4.2.3.2. continue normal path traversal (see Section 5.2.)
	2.4.3. break
	2.5. case synchronization
	2.5.1. get previous_edges for synchronization (see Section 5.1.1.)
	2.5.2. get next_edges for synchronization (see Section 5.1.1.)
	2.5.3. if a single previous_edge and multiple next_edges then
	2.5.3.1. this is an and_fork
	2.5.3.2. if and_fork has not been visited then
	2.5.3.2.1. mark and_fork as visited
	2.5.3.2.2. if and_fork is contained in a component then
	2.5.3.2.2.1. and_fork_task = task candresponding to the component
	2.5.3.2.2.2. if currently processing a loop body then
	2.5.3.2.2.2.1. and_fork_task = clone of and_fork_task fand the loop body
	2.5.3.2.2.3. and_fork_activity = new default activity in and_fork_task fand and_fork
	2.5.3.2.2.4. connect and_fork_activity as the next activity after the activity last added to and_...
	2.5.3.2.2.5. get next_edges fand and_fork (see Section 5.1.1.)
	2.5.3.2.2.6. skip over the first item in next_edges
	2.5.3.2.2.7. fork_crs = CRS
	2.5.3.2.2.8. while next_edges is not done
	2.5.3.2.2.8.1. branch_crs = new CRS
	2.5.3.2.2.8.2. set branch_crs as being on a branch path
	2.5.3.2.2.8.3. connect branch_crs as the next CRS after fork_crs
	2.5.3.2.2.8.4. CRS = branch_crs
	2.5.3.2.2.8.5. branch_activity = new default activity in and_fork_task
	2.5.3.2.2.8.6. connect branch_activity as the next activity after and_fork_activity
	2.5.3.2.2.8.7. continue traversal of branch path using the current item in next_edges (see Sectio...
	2.5.3.2.2.8.8. continue to next item in next_edges
	2.5.3.2.2.9. branch_crs = new CRS
	2.5.3.2.2.10. set branch_crs as being on the main path
	2.5.3.2.2.11. connect branch_crs as the next CRS after fork_crs
	2.5.3.2.2.12. CRS = branch_crs
	2.5.3.2.2.13. branch_activity = new default activity in and_fork_task
	2.5.3.2.2.14. connect branch_activity as the next activity after and_fork_activity
	2.5.3.2.2.15. continue traversal of main path using the first item in next_edges (see Section 5.2.)
	2.5.3.2.3. else
	2.5.3.2.3.1. and_fork_task = new default task
	2.5.3.2.3.2. and_fork_entry = new entry fand and_fork_task
	2.5.3.2.3.3. update the last activity on the CRS as making a call to and_fork_entry
	2.5.3.2.3.4. push and_fork_entry on CRS
	2.5.3.2.3.5. and_fork_activity = new default activity in and_fork_task fand and_fork
	2.5.3.2.3.6. connect and_fork_activity as the first activity of and_fork_entry
	2.5.3.2.3.7. get next_edges fand and_fork (see Section 5.1.1.)
	2.5.3.2.3.8. skip over the first item in next_edges
	2.5.3.2.3.9. fork_crs = CRS
	2.5.3.2.3.10. while next_edges is not done
	2.5.3.2.3.10.1. branch_crs = new CRS
	2.5.3.2.3.10.2. set branch_crs as being on a branch path
	2.5.3.2.3.10.3. connect branch_crs as the next CRS after fork_crs
	2.5.3.2.3.10.4. CRS = branch_crs
	2.5.3.2.3.10.5. branch_activity = new default activity in and_fork_task
	2.5.3.2.3.10.6. connect branch_activity as the next branch activity after and_fork_activity
	2.5.3.2.3.10.7. push branch_activity on the CRS
	2.5.3.2.3.10.8. continue traversal of branch path using the current item in next_edges (see Secti...
	2.5.3.2.3.10.9. continue to next item in next_edges
	2.5.3.2.3.11. branch_crs = new CRS
	2.5.3.2.3.12. set branch_crs as being on the main path
	2.5.3.2.3.13. connect branch_crs as the next CRS after fork_crs
	2.5.3.2.3.14. CRS = branch_crs
	2.5.3.2.3.15. branch_activity = new default activity in and_fork_task
	2.5.3.2.3.16. connect branch_activity as the next branch activity after and_fork_activity
	2.5.3.2.3.17. push branch_activity on the CRS
	2.5.3.2.3.18. continue traversal of main path using the first item in next_edges (see Section 5.2.)
	2.5.4. else if multiple previous_edges and a single next_edge then
	2.5.4.1. this is an and_join
	2.5.4.2. if and_join has not been visited then
	2.5.4.2.1. mark and_join as visited
	2.5.4.2.2. if and_join is contained in a component then
	2.5.4.2.2.1. and_join_task = task corresponding to the component
	2.5.4.2.2.2. if currently processing a loop body then
	2.5.4.2.2.2.1. and_join_task = clone of and_join_task for the loop body
	2.5.4.2.2.3. branch_activity = new default activity in and_join_task
	2.5.4.2.2.4. connect branch_activity as the next activity after the activity last added to and_jo...
	2.5.4.2.2.5. and_join_activity = new default activity for and_join not added to and_join_task
	2.5.4.2.2.6. connect and_join_activity as next join activity after branch_activity
	2.5.4.2.3. else
	2.5.4.2.3.1. and_join_task = new default task
	2.5.4.2.3.2. and_join_branch_entry = new entry for and_join_task
	2.5.4.2.3.3. update the last activity on the CRS as making a call to and_join_branch_entry
	2.5.4.2.3.4. push and_join_entry on CRS
	2.5.4.2.3.5. branch_activity = new default activity in and_join_task
	2.5.4.2.3.6. connect branch_activity as the first activity of and_join_branch_entry
	2.5.4.2.3.7. and_join_activity = new default activity for and_join not added to and_join_task
	2.5.4.2.3.8. connect and_join_activity as next join activity after branch_activity
	2.5.4.3. else
	2.5.4.3.1. if and_join is contained in a component then
	2.5.4.3.1.1. get and_join_task corresponding to the component
	2.5.4.3.1.2. if currently processing a loop body then
	2.5.4.3.1.2.1. and_join_task = clone of and_join_task for the loop body
	2.5.4.3.1.3. branch_activity = new default activity in and_join_task
	2.5.4.3.1.4. connect branch_activity as the next activity after the activity last added to and_jo...
	2.5.4.3.1.5. get and_join_activity corresponding to and_join
	2.5.4.3.1.6. connect and_join_activity as next join activity after branch_activity
	2.5.4.3.2. else
	2.5.4.3.2.1. get and_join_task corresponding to the the and_join
	2.5.4.3.2.2. and_join_branch_entry = new entry for and_join_task
	2.5.4.3.2.3. update the last activity on the CRS as making a call to and_join_branch_entry
	2.5.4.3.2.4. push and_join_entry on CRS
	2.5.4.3.2.5. branch_activity = new default activity in and_join_task
	2.5.4.3.2.6. connect branch_activity as the first activity of and_join_branch_entry
	2.5.4.3.2.7. get and_join_activity corresponding to and_join
	2.5.4.3.2.8. connect and_join_activity as next join activity after branch_activity
	2.5.4.3.3. if CRS on the main path then
	2.5.4.3.3.1. add and_join_activity to the and_join_task
	2.5.4.3.3.2. continue normal path traversal (see Section 5.2.)
	2.5.5. else
	2.5.5.1. this is an and_synchronization (an and_join followed by an and_fork)
	2.5.5.2. treat as an and_join
	2.5.5.2.1. goto step 2.5.4.1. above
	2.5.5.2.2. stop after step 2.5.4.3.3.1.
	2.5.5.3. treat as an and_fork
	2.5.5.3.1. goto step 2.5.3.1. above
	2.5.6. break
	2.6. case loop_head
	2.6.1. if loop_head has not been visited then
	2.6.1.1. mark loop_head as visited
	2.6.1.2. old_crs = CRS
	2.6.1.3. loop_crs = new CRS
	2.6.1.4. CRS = loop_crs
	2.6.1.5. get next_edges for loop_head (see Section 5.1.1.)
	2.6.1.6. if loop_head is contained in a component then
	2.6.1.6.1. loop_head_task = task corresponding to the component
	2.6.1.6.2. if currently processing a loop body then
	2.6.1.6.2.1. loop_head_task = clone of loop_head_task for the loop body
	2.6.1.6.3. loop_head_activity = new default activity in loop_head_task for loop_head
	2.6.1.6.4. connect loop_head_activity as the next activity after the activity last added to loop_...
	2.6.1.6.5. loop_body_task = new clone of loop_head_task
	2.6.1.6.6. loop_body_entry = new entry for loop_body_task
	2.6.1.6.7. update loop_head_activity as making a synchronous call to loop_body_entry
	2.6.1.6.8. push loop_body_entry on CRS
	2.6.1.6.9. loop_body_activity = new default activity in loop_body_task
	2.6.1.6.10. connect loop_body_activity as first activity of loop_body_entry
	2.6.1.6.11. continue traversal of the loop body path using the last item in next_edges (see Secti...
	2.6.1.6.12. loop_body_reply_activity = new default activity in loop_body_task
	2.6.1.6.13. update loop_body_reply_activity as making a reply to loop_body_entry
	2.6.1.6.14. handle_reply_activity = new default activity in loop_head_task
	2.6.1.6.15. connect handle_reply_activity as the next activity after loop_head_activity
	2.6.1.7. else
	2.6.1.7.1. loop_head_task = new default task
	2.6.1.7.2. loop_head_entry = new entry for loop_head_task
	2.6.1.7.3. update the last activity on the CRS as making a call to loop_head_entry
	2.6.1.7.4. push loop_head_entry on CRS
	2.6.1.7.5. loop_head_activity = new default activity in loop_head_task for loop_head
	2.6.1.7.6. connect loop_head_activity as the first activity of loop_head_entry
	2.6.1.7.7. loop_body_task = new clone of loop_head_task
	2.6.1.7.8. loop_body_entry = new entry for loop_body_task
	2.6.1.7.9. update loop_head_activity as making a synchronous call to loop_body_entry
	2.6.1.7.10. push loop_body_entry on CRS
	2.6.1.7.11. loop_body_activity = new default activity in loop_body_task
	2.6.1.7.12. connect loop_body_activity as first activity of loop_body_entry
	2.6.1.7.13. continue traversal of the loop body path using the last item in next_edges (see Secti...
	2.6.1.7.14. loop_body_reply_activity = new default activity in loop_body_task
	2.6.1.7.15. update loop_body_reply_activity as making a reply to loop_body_entry
	2.6.1.7.16. handle_reply_activity = new default activity in loop_head_task
	2.6.1.7.17. connect handle_reply_activity as the next activity after loop_head_activity
	2.6.1.8. CRS = old_crs
	2.6.1.9. delete loop_crs
	2.6.1.10. continue traversal of the main path using the first item in next_edges (see Section 5.2.)
	2.6.2. break
	2.7. case stub
	2.7.1. if stub has properly bound plug-in then
	2.7.1.1. plug_in_entry_point = plug-in start_point bound to the current stub input
	2.7.1.2. mark plug_in_entry_point as visited
	2.7.1.3. get next_edges for plug_in_entry_point (see Section 5.1.1.)
	2.7.1.4. continue traversal of the plug-in path (see Section 5.2.)
	2.7.2. else
	2.7.2.1. treat stub as a responsibility
	2.7.2.1.1. goto step 2.2.1.
	2.7.2.2. use the stub output bound to the current stub input as the next_edge
	2.7.2.3. continue path traversal (see Section 5.2.)
	2.7.3. break
	2.8. case end_point
	2.8.1. if end_point is bound to a stub exit then
	2.8.1.1. use the stub output bound to end_point as the next_edge
	2.8.1.2. continue path traversal (see Section 5.2.)
	2.8.2. else
	2.8.2.1. if end_point is contained in a component then
	2.8.2.1.1. end_task = task corresponding to the component
	2.8.2.1.2. if currently processing a loop body then
	2.8.2.1.2.1. end_task = clone of end_task for the loop body
	2.8.2.1.3. end_activity = new default activity in end_task
	2.8.2.1.4. connect end_activity as the next activity after the last activity added to end_task
	2.8.2.1.5. if end_point is connected to a start_point then
	2.8.2.1.5.1. this is a closed system
	2.8.2.1.5.2. end_entry = pop entry off the CRS
	2.8.2.1.5.3. update end_activity as making a reply to end_entry
	2.8.2.1.5.4. reference_activity = pop item off the CRS
	2.8.2.1.5.5. update reference_activity as making a synchronous call
	2.8.2.1.6. else
	2.8.2.1.6.1. this is an open system
	2.8.2.1.6.2. while the CRS is not empty
	2.8.2.1.6.2.1. crs_element = pop item off the CRS
	2.8.2.1.6.2.2. if crs_element is an activity then
	2.8.2.1.6.2.2.1. update activity as making an asynchronous call
	2.8.2.2. else
	2.8.2.2.1. if end_point is connected to a start_point then
	2.8.2.2.1.1. this is a closed system
	2.8.2.2.1.2. first_task = first task called by the reference task corresponding to the start_point
	2.8.2.2.1.3. if last task on the CRS == first_task then
	2.8.2.2.1.3.1. this is a direct synchronous reply to the reference task
	2.8.2.2.1.3.2. reply_activity = pop item off the CRS
	2.8.2.2.1.3.3. reply_entry = pop item off the CRS
	2.8.2.2.1.3.4. update reply_activity as making a reply to reply_entry
	2.8.2.2.1.3.5. reference_activity = pop item off the CRS
	2.8.2.2.1.3.6. update reference_activity as making a synchronous call
	2.8.2.2.1.4. else
	2.8.2.2.1.4.1. this is a forwarded reply to the reference task
	2.8.2.2.1.4.2. reply_activity = pop item off the CRS
	2.8.2.2.1.4.3. reply_entry = pop item off the CRS
	2.8.2.2.1.4.4. update reply_activity as making a reply to reply_entry
	2.8.2.2.1.4.5. while last task on the CRS != first_task
	2.8.2.2.1.4.5.1. forward_entry = reply_entry
	2.8.2.2.1.4.5.2. reply_activity = pop item off the CRS
	2.8.2.2.1.4.5.3. update reply_activity as making a synchronous call
	2.8.2.2.1.4.5.4. reply_entry = pop item off the CRS
	2.8.2.2.1.4.5.5. update reply_activity as making a reply to reply_entry
	2.8.2.2.1.4.5.6. update reply_entry as forwarding its call to forward_entry
	2.8.2.2.1.4.6. forward_entry = reply_entry
	2.8.2.2.1.4.7. reply_activity = pop item off the CRS
	2.8.2.2.1.4.8. update reply_activity as making a synchronous call to forward_entry
	2.8.2.2.1.4.9. reply_entry = pop item off the CRS
	2.8.2.2.1.4.10. update reply_activity as making a reply to reply_entry
	2.8.2.2.1.4.11. update reply_entry as forwarding its call to forward_entry
	2.8.2.2.1.4.12. reference_activity = pop item off the CRS
	2.8.2.2.1.4.13. update reference_activity as making a synchronous call
	2.8.2.2.2. else
	2.8.2.2.2.1. this is an open system
	2.8.2.2.2.2. end_task = new default activity
	2.8.2.2.2.3. end_entry = new entry for end_task
	2.8.2.2.2.4. update the last activity on the CRS as making a call to end_entry
	2.8.2.2.2.5. while the CRS is not empty
	2.8.2.2.2.5.1. crs_element = pop item off the CRS
	2.8.2.2.2.5.2. if crs_element is an activity then
	2.8.2.2.2.5.2.1. update activity as making an asynchronous call
	2.8.3. break
	2.9. default
	2.9.1. no LQN objects need to be created
	2.9.2. continue path traversal (see Section 5.2.)
	2.9.3. break

	Chapter 6 - Validation
	This chapter describes the example systems used to validate the UCM2LQN conversion algorithm. The...
	The LQN models generated by UCM2LQN were used as inputs to the jLqnDef, LQNS, and ParaSRVN tools....
	6.1. Plain Old Telephone System
	The POTS call connection example described in this section is the basis of a larger UCM model for...
	Figure 6-1: UCMNav root map for the POTS example.

	6.1.1. POTS UCM Model
	6.1.1.1. POTS Root Map
	Figure 6-1 shows the UCM root map for the POTS system. The components for all the POTS maps are a...
	The POTS root map features the following stubs:
	For POTS operation the PreDial stub has a default plug-in that merely connects the input and outp...

	IN1
	call
	OUT1
	orig_connected
	OUT2
	billing
	OUT3
	term_connected
	OUT4
	busy
	6.1.1.2. POTS PostDial Plug-In
	The PostDial plug-in either contacts the callee and establishes a connection or notifies the call...
	Figure 6-2: UCMNav plug-in map for the PostDial stub shown in Figure 6-1 for the POTS example.

	For POTS, both the ProcessBusy and NumberDisplay stubs have default plug-ins without any responsi...

	6.1.1.3. POTS ProcessCall Plug-In
	The ProcessCall plug-in for normal POTS operation checks whether the callee happens to be idle or...
	Figure 6-3: UCMNav plug-in map for the ProcessCall stub shown in Figure 6-2 for the POTS example.

	The POTS start point is bound to the ProcessCall stub’s IN1 input. The idle and busy end point ar...

	6.1.2. POTS Usage
	POTS has two possible scenarios that can happen when attempting to make a call. The call can eith...
	1. the originator (caller) picks up the receiver
	2. the switch notes that the originator is now busy
	3. the originator gets a dial tone
	4. the originator dials the desired terminator’s number (callee)
	5. the dial tone stops
	6. the switch checks and finds that the terminator is currently idle
	7. the switch stores the originator’s number as the terminator’s last incoming number
	8. the terminator gets a ring and the originator gets a remote ringing tone
	9. the terminator picks up the receiver
	10. the terminator’s ring stops
	11. the originator’s remote ringing tone stops and the billing details are recorded by the operat...
	12. the connection is now made

	Otherwise, an unsuccessful call connection scenario unfolds as follows:
	step 1 through step 5 are the same
	6. the switch checks and finds that the terminator is currently busy
	7. the originator gets a busy tone
	8. the connection is not made

	6.1.3. POTS LQN Conversion Results
	The LQN for the POTS model is shown in Figure 6-4. The model incorporates asynchronous and synchr...
	Figure 6-4: POTS LQN generated by the UCM2LQN converter from the UCM shown in Figure 6-1. (output...

	Figure 6-4 shows that a reference task was created for the start point. Since the end of the UCM ...
	The UCM2LQN conversion is semantically correct and can be simulated by ParaSRVN, but the model ca...

	6.2. Ticket Reservation System
	The Ticket Reservation System (TRS) allows users to browse through a calendar of events and buy t...

	6.2.1. TRS UCM Model
	The UCM model for the TRS is shown in Figure 6-5. The components are as follows:
	Figure 6-5: UCMNav map for the Ticket Reservation System example.

	6.2.2. TRS Usage
	The TRS can be used to either browse events by displaying the schedule and checking for ticket av...

	6.2.3. TRS LQN Conversion Results
	The resulting TRS LQN is shown as jLqnDef graphical output in Figure 6-6. The LQN shows that sync...
	Figure 6-6: Ticket Reservation System LQN generated by the UCM2LQN converter from the UCM shown i...

	The resulting LQN for the TRS can be solved with LQNS as well as simulated with ParaSRVN. This sh...

	6.3. Group Communication Server
	The Group Communication Server (GCS) is an example developed as a test for PERFECT, a methodology...

	6.3.1. GCS UCM Model
	Several UCM models for different software concurrency architectures are available for the GCS. Th...
	Figure 6-7: UCMNav root map for the GCS example.

	The GCS root map has a writeFile stub which is bound to the plug-in map shown in Figure 6-8.
	Figure 6-8: UCMNav plug-in map for the WriteFile stub shown in Figure 6-7 for the GCS example.

	6.3.2. GCS Usage
	The GCS supports five usage scenarios as follows [2]:
	When updating a document, a user submits an updated copy of a document that is already stored on ...
	In the submitting a new document scenario, the user submits a new document which is then associat...
	If a user wants to subscribe to a document the list of subsribers for that document is retrieved ...
	In order to retrieve the most recent version of a document, the information associated with the d...

	6.3.3. GCS LQN Conversion Results
	A partial view of an early LQN conversion of the GCS is shown in Figure 6-9. The jLqnDef tool has...
	Figure 6-9: Partial view of the GCS LQN generated by the UCM2LQN converter from the UCM shown in ...

	The GCS LQN can be solved by the LQNS analytic solver as well as by the ParaSRVN simulator. This ...

	Chapter 7 - Application
	This chapter shows two example systems used to test the UCM2LQN converter. The examples are that ...
	7.1. WIN Call Delivery
	The wireless call delivery system shown by the UCM root map in Figure 7-1 and the CallSetup plug-...
	Figure 7-1: UCMNav root map for the WIN call delivery example.

	The WIN example was not supplied with any additional documentation for this testing exercise. The...
	If the call can be set up, then the plug-in for the CallSetup stub, shown in Figure 7-2, is trave...
	Figure 7-2: UCMNav plug-in map for the CallSetup stub shown in Figure 7-1 for the WIN call connec...

	7.1.1. WIN Call Delivery LQN Conversion Results
	The first attempt at converting this example did not yield a result that could be read by any of ...
	The jLqnDef output for the call delivery LQN is shown in Figure 7-3. The model shows both asynchr...
	Figure 7-3: WIN call delivery LQN generated by the UCM2LQN converter from the UCM shown in Figure...

	This model provides a good example of branching and joining, but the jLqnDef output does not show...
	Figure 7-4: Graphical representation showing the activity sequences for the WIN call delivery LQN.

	7.2. Example Of A Distributed Hand-Off Protocol
	This system describes a distributed hand-off protocol. It is based on a teaching example develope...
	Figure 7-5: UCMNav root map for the distributed hand-off protocol example.

	The protocol described in this model is used to coordinate a hand-off between two tasks, PartyA a...
	The scenario illustrated in Figure 7-5 illustrates the transfer the handling of some arbitrary du...

	7.2.1. Distributed Hand-Off Protocol LQN Conversion Resuslts
	In order to generate a UCM2LQN output file that could be read by the LQN tools, it was necessary ...
	The jLqnDef graphical representation of the LQN model resulting from the hand-off protocol is sho...
	Figure 7-6: LQN for the distributed hand-off protocol generated by the UCM2LQN converter from the...

	An interesting result from the conversion is that the OS component does not have any entries or a...
	The model is solvable by both LQNS and ParaSRVN, which shows that the distributed hand-off protoc...

	Chapter 8 - Conclusions
	8.1. Contributions
	The major contribution of this thesis is the development of a solution for integrating high level...
	The author has identified the basic corresponding constructs between the UCM and LQN notations, a...
	This conversion algorithm has also been implemented in the UCM2LQN conversion tool. The author ha...

	8.2. Case Studies
	The UCM2LQN converter was applied to five different case studies in order to validate the algorit...
	The converter was also tested successfully using models originating from industry. These examples...

	8.2.1. Converter Limitations
	8.3. Future Research

	Chapter 9 - References
	[1]
	[2] Craig Scratchley, "Evaluation and Diagnosis of Concurrency Architectures", Report OCIEE-00-07...
	[3] C. Scratchley, C. M. Woodside, "Evaluating Concurrency Options in Software Specifications", P...
	[4] C. M. Woodside, “Performance-Oriented Patterns in Software Design (A Multi-Level Service Appr...
	[5]

