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2. Introduction

« performance analysis should be done early on in the design

» performance analysis is an example of architecture evaluation

« Software Architecture Analysis Method (SAAM) makes use of scenar-
l0S as a means of evaluating software architectures

» Use Case Maps (UCMs) are used to illustrate the scenarios and the
architecture

« Layered Queueing Networks (LQNS) are used to evaluate the perfor-

mance



3. UCM and LOQN

 UCMSs represent scenarios as paths with responsibilities that are exe-
cuted along the way (may have AND or OR forks and joins)

 UCM paths traverse components that represent system entities

* The architecture of the system is represented by the combination of
paths and the way they traverse components

 The UCM Navigator (UCMNav) is a tool used to edit and manipulate
UCMs

 LOQN models consist of tasks with associated entries and lists of activi-
ties

* The tasks are organized in conceptual layers interacting with each
other through synchronous calls and returns, or asynchronous calls

 The LQN Solver (LQNS)is a tool that solves LQN models and returns
performance parameters for the system

» Jlgndef is a tool that can be used to edit, solve (using LONS), and dis-

play LQNs



4. Correspondences Between UCMs and LOQNSs

« Synchronous Call and Return
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A synchronous call is made whenever the UCM path crosses from one compo-

nent to another and returns back to the original component



» Asynchronous Call
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* An asynchronous call is made whenever the UCM path crosses from one com-
ponent to another and does not returns back to the original component

Fig.4: LQN with an asynchronous call.



* Multiple Calls
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» Multiple synchronous calls are made whenever the UCM path crosses from one
component to another, returns back to the original component, and repeats the
same pattern



« Forwarding
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» A call forwarding is made whenever the UCM path crosses from one component
to another, and then to several others, before returning back to the original com-
ponent. The first component makes a synchronous call, but the forwarding is
asynchronous for the other components
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« AND Fork and Join
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* An AND fork and join are put in the calling component. By making two synchro-
nous calls after the AND fork, parallel services are triggered in the other compo-
nents.



OR Fork and Join
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* An OR fork and join are put in the calling component. By making two synchro-
nous calls after the fork, competing alternate services are triggered in the other
components.



e Loop
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* Aloop is indicated by a special UCM loop construct that appears the same as
an OR join followed immediately by an OR fork.



5. POTS Example

* based upon the POTS functionality described in the Feature Interaction (FI)
Detection Contest as part of the 5th International Workshop on Feature Interac-
tions.

 The components on the map are as follows:

* Orig - process corresponding to the call originator’s (caller) telephone or
telephone device

e Term - process corresponding to the call terminator’s (callee) telephone or
telephone device

» Switch - process corresponding to the service provider’s telecommunica-
tions switch

* OS - process corresponding to the service provider’'s operations system
server



POTS Root Map
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o POTS Post-Dial Plug-in shows how POTS works after the number has been
dialed and until the call has been established.
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 POTS Process-Call Plug-in encompasses the essential call processing logic of
the telephone system.
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e POTS LQN model
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6. Conclusions

* We have demonstrated an effective way to bring performance analysis to the
early software development stages.

» Our framework for transforming UCM designs into LQN performance models
can be applied across a wide range projects.

« The next step in our project is to finish implementing a UCM2LQN tool that will
automatically convert UCMs from the UCMNav into LOQNS
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