Evaluating the Performance

of Software Architectures

D. Petriu (dorin@sce.carleton.ca)

C. M. Woodside (cmw@sce.carleton.ca)

1. Overview

Introduction
UCM and LQN

Correspondences Between UCMs and LOQNS

POTS example

Conclusion

2. Introduction

« performance analysis should be done early on in the design

» performance analysis is an example of architecture evaluation

« Software Architecture Analysis Method (SAAM) makes use of scenar-
l0S as a means of evaluating software architectures

» Use Case Maps (UCMs) are used to illustrate the scenarios and the
architecture

« Layered Queueing Networks (LQNS) are used to evaluate the perfor-

mance

3. UCM and LOQN

 UCMSs represent scenarios as paths with responsibilities that are exe-
cuted along the way (may have AND or OR forks and joins)

 UCM paths traverse components that represent system entities

* The architecture of the system is represented by the combination of
paths and the way they traverse components

 The UCM Navigator (UCMNav) is a tool used to edit and manipulate
UCMs

 LOQN models consist of tasks with associated entries and lists of activi-
ties

* The tasks are organized in conceptual layers interacting with each
other through synchronous calls and returns, or asynchronous calls

 The LQN Solver (LQNS)is a tool that solves LQN models and returns
performance parameters for the system

» Jlgndef is a tool that can be used to edit, solve (using LONS), and dis-

play LQNs

4. Correspondences Between UCMs and LOQNSs

« Synchronous Call and Return

Client
Q—I |
—
C1 C2
ZE1 Client
1 —2
Server l
S5E1 Server
52

SlU S2 51

Activity Connections
Cl->C2

Activity Connections
S1->S2;
S2 [SE1]

A synchronous call is made whenever the UCM path crosses from one compo-

nent to another and returns back to the original component

» Asynchronous Call

Client
C1
. ;-"'J?
CE1 Client SE1 Server
C2 /
Z1 2 51 52
Server Client Activity Connections

Cl->C2

Server Activity Connections

§ S1->8S2

* An asynchronous call is made whenever the UCM path crosses from one com-
ponent to another and does not returns back to the original component

Fig.4: LQN with an asynchronous call.

* Multiple Calls

Client
C2
Ci CE1 Client Activity Connections
C3 Cl->C2;
o C2 C3 C2->C3
Server Activity Connections
SE1 B2 Server S1 [SE1]:
S2 [SE2]
51 2

» Multiple synchronous calls are made whenever the UCM path crosses from one
component to another, returns back to the original component, and repeats the
same pattern

« Forwarding

Client

. Activity Connections
ZE1 Client Cl->C2
1 cz2
c1 c2 i
Activity Connections
51E1 Serveri
[
51,
Serverl Server2 i
Activity Connections
SZE1 Serverd S2 [SZEl]
52

» A call forwarding is made whenever the UCM path crosses from one component
to another, and then to several others, before returning back to the original com-
ponent. The first component makes a synchronous call, but the forwarding is
asynchronous for the other components

Client

« AND Fork and Join

C2

C1

C3

C4

C6

C

Serverl /

Server;\\\

CET

Client

oy

C2

C3

4 o ChE

o

S51ET

Serveri

51

Client Activity Connections

N

52ET

Server?

52

Serverl Activity Connections

Cl1->C2&Cs3; S1[S1E1]

C2 -> C4;

C3 ->C5; Server2 Activity Connections
C4 & C5->C6 S2 [S2E1]

* An AND fork and join are put in the calling component. By making two synchro-
nous calls after the AND fork, parallel services are triggered in the other compo-
nents.

OR Fork and Join

Client
C1 C6
CE1 Client
C2 C3 c4 C Z1 2 3) 5 B
Serverl / Server* /
S1E1 Serveri S2E1 Server?
51 52

Client Activity Connections Serverl Activity Connections

C1->(0.5) C2 + (0.5) C3; S1[S1E1]

C2 > C4;

C3 ->C5; Server2 Activity Connections
C4+C5->C6 S2 [S2E1]

* An OR fork and join are put in the calling component. By making two synchro-
nous calls after the fork, competing alternate services are triggered in the other
components.

e Loop

Client

Cl (2 . Activity Connections
CE1 Client Cl->C2

oy C2

Server l i

Activity Connections
<3 SE1 Server S1->05*S2, S3:
Sl S3 [SE1]
51 52 53
S2

* Aloop is indicated by a special UCM loop construct that appears the same as
an OR join followed immediately by an OR fork.

5. POTS Example

* based upon the POTS functionality described in the Feature Interaction (FI)
Detection Contest as part of the 5th International Workshop on Feature Interac-
tions.

 The components on the map are as follows:

* Orig - process corresponding to the call originator’s (caller) telephone or
telephone device

e Term - process corresponding to the call terminator’s (callee) telephone or
telephone device

» Switch - process corresponding to the service provider’s telecommunica-
tions switch

* OS - process corresponding to the service provider’'s operations system
server

POTS Root Map

OS

billin BillingDone
INL 9 ouT1 ji

Switch

\
_ POSK T2)
| I\Hre;‘dlaLle;L N o1
%
SetOrigB

OrF Term
DialTon StopDial jgmBrisyTone

Con e@ﬂgOkHoolp DigiNumider Bysy Conrjected

o POTS Post-Dial Plug-in shows how POTS works after the number has been
dialed and until the call has been established.

/OS

Switch

Connected

 POTS Process-Call Plug-in encompasses the essential call processing logic of
the telephone system.

ON)

Switch

PC&TS IsTermBusy SetTegnBusy TermlsAvailable
Tern@/

ori Term

e POTS LQN model

CallerE1 |Cal|er | CalleeE1 |Ca|lee |
Call Answer |
OrigEl Origez Ori&S Origed Origes Rw@.r_Lg\ | Tg;mE—‘r" TermE2 | TermE3 Term |

StopRing | TermOffHook TermConnected|

OrigDffHook OriJﬁS OrigP\.ﬂ RemoteRing | Sto rmoteRing OrigP.?Im‘A-LLQiaITone|OrigDiaINumher|StopDiaIToﬁL@nﬂéﬁgl-;szT@yl/ Ring

SwitchEl SwitchE2 Sm\'tchEB SwitchEd Switch|

SetOrigBusy SetTerl;mBusy Swi\chP.S Switchab | Switch chaz itchaz | S itchad | smmj&#@@ma | SwitchA itcha1o | Switchati |Switch.°.12 | Switchala |

4

al

osEl |os |

LogBegin

6. Conclusions

* We have demonstrated an effective way to bring performance analysis to the
early software development stages.

» Our framework for transforming UCM designs into LQN performance models
can be applied across a wide range projects.

« The next step in our project is to finish implementing a UCM2LQN tool that will
automatically convert UCMs from the UCMNav into LOQNS

	Evaluating the Performance
	of Software Architectures
	D. Petriu (dorin@sce.carleton.ca)
	C. M. Woodside (cmw@sce.carleton.ca)
	1. Overview
	• Introduction
	• UCM and LQN
	• Correspondences Between UCMs and LQNs
	• POTS example
	• Conclusion

	2. Introduction
	• performance analysis should be done early on in the design
	• performance analysis is an example of architecture evaluation
	• Software Architecture Analysis Method (SAAM) makes use of scenarios as a means of evaluating so...
	• Use Case Maps (UCMs) are used to illustrate the scenarios and the architecture
	• Layered Queueing Networks (LQNs) are used to evaluate the performance

	3. UCM and LQN
	• UCMs represent scenarios as paths with responsibilities that are executed along the way (may ha...
	• UCM paths traverse components that represent system entities
	• The architecture of the system is represented by the combination of paths and the way they trav...
	• The UCM Navigator (UCMNav) is a tool used to edit and manipulate UCMs
	• LQN models consist of tasks with associated entries and lists of activities
	• The tasks are organized in conceptual layers interacting with each other through synchronous ca...
	• The LQN Solver (LQNS)is a tool that solves LQN models and returns performance parameters for th...
	• Jlqndef is a tool that can be used to edit, solve (using LQNS), and display LQNs

	4. Correspondences Between UCMs and LQNs
	• Synchronous Call and Return
	• A synchronous call is made whenever the UCM path crosses from one component to another and retu...
	• Asynchronous Call
	• An asynchronous call is made whenever the UCM path crosses from one component to another and do...
	Fig. 4: LQN with an asynchronous call.

	• Multiple Calls
	• Multiple synchronous calls are made whenever the UCM path crosses from one component to another...
	• Forwarding
	• A call forwarding is made whenever the UCM path crosses from one component to another, and then...
	• AND Fork and Join
	• An AND fork and join are put in the calling component. By making two synchronous calls after th...
	• OR Fork and Join
	• An OR fork and join are put in the calling component. By making two synchronous calls after the...
	• Loop
	• A loop is indicated by a special UCM loop construct that appears the same as an OR join followe...

	5. POTS Example
	• based upon the POTS functionality described in the Feature Interaction (FI) Detection Contest a...
	• The components on the map are as follows:
	• Orig - process corresponding to the call originator’s (caller) telephone or telephone device
	• Term - process corresponding to the call terminator’s (callee) telephone or telephone device
	• Switch - process corresponding to the service provider’s telecommunications switch
	• OS - process corresponding to the service provider’s operations system server
	• POTS Root Map
	• POTS Post-Dial Plug-in shows how POTS works after the number has been dialed and until the call...
	• POTS Process-Call Plug-in encompasses the essential call processing logic of the telephone system.
	• POTS LQN model

	6. Conclusions
	• We have demonstrated an effective way to bring performance analysis to the early software devel...
	• Our framework for transforming UCM designs into LQN performance models can be applied across a ...
	• The next step in our project is to finish implementing a UCM2LQN tool that will automatically c...

