DRAFT DRAFT DRAFT

A “Displacement” Technique for Robust Portable
Measurement of Communications Processing Overheads

C. M. Woodside, Marc Courtois, Cheryl Schramm
Department of Systems & Computer Engineering
Carleton University
1125 Colonel By Drive
Ottawa, Canada K1S 5B6
email: {cmw,courtois,schramm}@sce.carleton.ca

Internal Report,
Copyright Real-time And Distributed Systems (RADS) Lab,
Carleton University,
May 5, 1997

Abstract

The problem of recording CPU demand for communications operations is handled poorly by some
instrumentation techniques. A simple technique is described that does not require instrumenting the code
(so it can be used without having the source code), and that can be used with any operating system. It
records the displacement of a CPU-intensive looping process by the process under test, and computes the
CPU effort taken by the process under test. Experiments show that standard UNIX instrumentation misses a
large fraction of the CPU time to handle socket messages, and misses more for larger messages.
Displacement captures it all, apart from errors due to daemons.

1. Introduction

It is difficult to measure the CPU usage of communications protocols and midware, such as
sockets and RPCs. The difficulty is that in many implementations a significant amount of the
protocol execution is done by interrupt service routines (ISRs), and the usual kernel
instrumentation does not capture all of this. As there is no process switch, the clock ticks which
occur during the ISR execution are allocated to the process which was interrupted, not the one
for which the messages are being handled. Indeed, it is impossible to know which process is the
destination of a message at the moment of the interrupt which begins its handling, because the
information is in the header which has not yet been read. So the normal means for accounting for
operations by a process fail for ISRs, and as a consequence, for a significant fraction of protocol
processing (our experiments indicate that the fraction may be of the order of 50% in some
cases!).

McCanne and Torek [1] have documented how ISR execution is not captured by the standard
CPU-demand tools in UNIX. They introduced a modification into the 4.4BSD UNIX release
which identified an ISR state and counted clock ticks that occurred in that state. This only half

Page 1

solves the problem, since the process is still not identified, and solves it for only one version of
one operating system. We would like to have a generic solution that could be applied across as
many platforms as possible. The displacement technique appears to be as universal as one could
realistically hope for.

The "standard" tools for determining CPU demand are not standard across different versions of
UNIX, much less on other platforms such as OS/2 or NT. This work was stimulated by a need to
calibrate communications overheads for a family of applications running on a full range of
distributed platforms, and running a range of communications midware (sockets, DCE RPCs,
MQSeries, CORBA). The communications overheads were an important part of the entire
workload, and we wanted a procedure that would apply not only to the present platforms but, if
possible, to new ones as they are introduced.

The one measurement that is available in all environments is the “wall-clock” time, or time-of-
day, so we searched for a technique that is based entirely on time-of-day measurements. Because
a time-of-day utility does not track which process is running, it would make sense to have just
one process running, the Process Under Test. However, this does not work for communications
utilities, because communicating software often blocks when waiting for input events, so the
duration of a scenario is not all execution time.

The displacement technique determines how much of a given time interval is spent running the
Process Under Test, by running a second process to fill the gaps. By analogy with Archimedes'
Principle, the second process will be called the Fluid Process; the time taken by the Process
Under Test is found by the displacement of the execution of the Fluid Process. The displacement
technique can be applied in any environment with a wall-clock timer, or even with a stop-watch,
to estimate the execution time of an operation involving uninstrumentable parts, such a remote
procedure call or socket message interchange. The idea is so simple that we assume it has been
used before, however we have not found a published description. This paper therefore describes
our version of the idea, analyzes its properties and describes examples.

This paper describes the technique, analyzes the assumptions upon which it depends for
accuracy, compares its results with those of standard UNIX calls to determine communications
costs, and shows its effectiveness when predictions are made based on the measurements.

2. Displacement Procedure

The Process Under Test (to be narR&d) is configured so that it repeats the operation to be
measured, for some programmable nuntlgsr of loops. It is convenient to have one send

operation, or one receive operation, or one of each, in one repetition of the loop. The auxiliary
Fluid Process (to be nam&jl executes a fairly short loop over some arithmetic operations; the
duration of its loop affects the resolution of the measurements to be obtained. Priscess
configured to run for a given numblgt of loops, and to obtain and print out the wall-clock time

at the beginning and the end.

Step 1: The CPU time per loop of the Fluid Pro¢esscalibrated by running it alone on a
workstation for some large numhg#(1); let the wall-clock time interval bB-(1) seconds. The

estimated CPU time for one loop traversalFa$

Page 2

T = Te(1)/Lg(1) sec/loop

Step 2: The two processesandPUT are then run together in such a way that the Fluid Process
starts a little before and ends a little after the other, as illustrated in Figure 1. The loop counters
are set to the valués(2) andLp1{(2); it may require some experiments to adjts{2) to be

long enough. The wall-clock time interval for the Fluid Process is recordee(2s

“Fluid” ProcessF Proces®UT

/

- Te(2) >

Figure 1. Step 2 Measures H®WUT Displaces Some of the Time
for F.

Then the CPU time taken by the Process Under Test during Step 2 is
Teut(2) =Te(2) - Le(2) T¢

The second term is the time taken by the Fluid Process, during the interval ofTig{2yth
according to the calibration experiment. The estimated CPU cB41Dfs then

Tpyt = Tput(2) /Lpyt(2)

Tpyt IS the CPU cost of executing the code in the loop of the Process under Test.

3. Assumptions and Errors

The procedure above assumes

» that the loop ilPUT is essentially entirely made up of the operation to be calibrated; loop
count overhead can be ignored, as well as overhead in starting and sRipping

» that the clock resolution is small,

» that onlyF andPUT are running during the two tests,

and that wheir andPUT are run together,

* F always runs whenev&UT blocks,

» the processes do not interact, so the time per loop of the Fluid Process is the same when it is
running alone in the calibration experiment, and with the Process Under Test.

Page 3

In fact the clock resolution may be significantly large, there are also other processes (e.g. the
daemons in UNIX) and the two given processes might interact by context switching or by cache
interference. The potential errors can be analyzed as follows.

Daemons

First consider the daemon processes. Suppose that during Step 1 and Step 2, &Ly atnwh
D(2) sec is taken, respectively, by daemons. Thus the recorded durations are Betljp#y

D(1), andTg(2) +H(2), and the calculated values foare

T = [Te(1)/Le(1)] +[D(1)/Le(1)]

- [Te(1) —Le(2)T(1)/Le(D)] o
PUT — LPUT(Z) daemons

e _ D(2)-D(1)Lg(2)/Lg(1)
daemons LPUT(Z)

sec/loop

In the best case the valueldfi) has a fixed ratiot to the loop counttg(i), (i.e.D(i) = aLg(i))
andey,emondS zero. If the proportion is different in each step, with vatu@$ anda(2), then

€gaemons= [0(2)—a(1)]Le(2)/(Lpyr(2)) seclloop.

Context Switching

Context switching will occur naturally due to the operation of the communications software, for
instance whenevdtUT blocks to receive a message. The constructidtdf makes this occur
once per loop, drp1(2) times. The overhead of these context switches however is part of the

execution time that we want to estimate, so there is no error in including it. Additional switches
due to time-slicing between the two processes may also occur, and the additional overhead is
similar to additional daemon execution, in that their number increaseEmatidLp .

Cache Interference

Cache interference will occur if, while running one process, the other is displaced from the
cache. Itis plausible that the arithmetic loop in the Fluid Process is small enough to fit entirely in
the cache, but it might be displaced at a context switch. Thus time lost due to cache reloads is
also similar to context switching and daemon execution, and is proportidgabt@lp 7.

Clock Resolution

The effect of clock resolutioft can be counteracted by running a long enough experiment.
Supposd andTp 1 are measured with an error range:af/ 2 sec., due to clock resdlution

Thentg has an error rangeA)/2L(1) amgyt has an error range of
*A(1+Le(2)/Le(1))/ (2Lpy7(2)) . If Le(2) =Lg(1) then the range is roughly

Page 4

= 0/ (Lpy7(2)).

ieres
Overhead of Starting and Stopping

However the launching and termination of the two processes is arranged there will be some
overhead distinct from loop repetition, but executed by the process. Suppdset ifor each
process. The the recorded values are actiia(iy+S

T = To(1)/Le(1) +S/ Le(D)
Tour(1) +S = Te(2) +S— L(2)1,

. _ TF(Z) B TF(]-)LF(Z) B S
PUT T Lpur(@ Le(DLpyr(2) Lpyr(2)

= calculated value + g,

estart = S/(LPUT(Z))

Overall then, assuming the errors are small, the ermgjfis

error = €gaemonst €cache* €res * Estart

€4aemondincluding context switching and cache interference) is a constant proportion which we
must hope is small; we will attempt to observeiis andeg, . are proportional thp1(2)/
Le(2). Thus for small errord,g(2) >>Lpy1(2).

Robustness
The robustness of the method comes from the robustness of the assumptions.

Several factors which bedevil other techniques for measuring CPU time do not influence the
displacement technique. It does not matter what the execution time of the Fluid Process loop is,
exactly, so a knowledge of the instructions, the loop overhead, etc. is immaterial. The wall-clock
measurements are taken only twice, so their overhead effect is small (and it can also be estimated
and subtracted out). The synchronization of measurement instants in the two processes is not
necessary, we only require that the Fluid Process covers all the execution time of the Process
Under Test.

Consider the cache transient assumption. If execution of one Fluid Process loop out of ¢ache is
times faster than the first time when the cache is being loaded, and each interval of Fluid Process
execution (filling in between intervals of the Process Under Test, while it is blocked) reggires

loops, the fractional error compared to the calibratid€/(5g). The factoK can be estimated

from a knowledge of the processor technology and the number of blocked intervals of the
Process Under Test during the run (estimated in turn frgm

Page 5

4. Displacement vs. UNIX Instrumentation

Simple examples will show that standard UNIX instrumentation gives a very different value for
socket communications cost, than Displacement, and that when the numbers are used to predict
performance Displacement is correct.

4.1. Plain Computation

First we shall check that the two approaches give the same result for a plain CPU-intensive
computationPUT was just a spin loop with a CPU demand per loop cycle “operation” which
could be approximately specified by the user. The two procEssedPUT were run on one
computer. Process execution times were measured by the Solaris kernel call “ioctl” which
provides timing results with small granularity (typically a few microseconds). Experiments were
run varying the CPU demand of tR&JT “operation” from 400 us to 3200 us. Each run used an
LpyT 0f 10000, so the resulting CPU time was divided by 10000 to measure CPU time per

operation. (The range of CPU times was chosen to include the CPU times which will be
encountered in the next section when we measure TCP/IP serig, Arof 10000 was chosen to

sufficiently amortize the overhead associated with the displacement method (this is discussed
further below). All experiments were performed on a quiet SPARC 2 processor running under
Solaris. The times reported by displacementianl ~ were almost identical, as show in

Figure 2 and Table 1.

Cpu Demand of a Computation Bound Task
4000 ‘ ‘ ‘ ‘

3500~ b

* displacement
3000+ A

... ioctl

2500 b

2000~ b

Cpu time (us)

1500 7

1000 b

5001 % 1

0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500
Approximate generated demand (us)

Figure 2. Displacement vs. UNIX Instrumentatioctl on Plain
Computation.

Page 6

Table 1: Comparing on Plain Computation

Approximate loctl Displacement
CPU time measurements) measurements %age difference

generated(s) (us) (us)
400 454 456 0.41
800 902 936 3.77
1200 1353 1367 1.03
1600 1805 1821 0.89
2000 2256 2278 0.98
2400 2705 2736 1.15
2800 3157 3193 1.14
3200 3607 3644 1.03

The difference between the two measurements, therefore is very small. Displacement is always
slightly higher thanoctl measurements as expected.

4.2 .PUT with Communications

When a measurement is made with communications the two approaches disagree substantially.
Figure 3 shows the configuration, with two processesdPUT on one node, and a Server on

the other. The role of the Server is simply to receive message®tdmnd send replies back.

PUT blocks and waits for each reply.

UNIX

_ Node
Client
PUT

UNIX
Node

Server

Figure 3.

In this case we measured the CPU time of a TCP/IP send operation, varying the message size
from 1K to 8K in steps of 1K. There was also a receive operation, but for a message of roughly

Page 7

zero length.Lpr was set to 10000. Displacement aoctl measurements are plotted in the
following graph.

Cpu Demand of TCP/IP Send
3000 ‘ ‘

2500 b

* displacement
2000 i
... ioctl *

1500} : 8

Cpu time (us)

1000 b

500 7

0 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000
Message size (bytes)

Figure 4. Displacement vs. UNIX Instrumentation on Message
Sending.

Notice the systematic difference between displacemenatid . This discrepancy is due to

work performed by Interrupt Service Routines (ISRs) - work which is not all captured by the
Solaris (UNIX) instrumentation. The corresponding table of values indicates that at least 40% of
the activity on a TCP/IP send operation is not captured by UNIX.

Table 2: Displacement vsloctl for TCP/IP Send

loctl : 0
Message CPU time Displacement Yoage
Size (bytes) (1s) CPU time 1s) | difference
1000 378 551 45.77
2000 624 915 46.63
3000 777 1280 64.74
4000 869 1448 66.63

Page 8

Table 2: Displacement vsloctl for TCP/IP Send

loctl . 0
Message CPU time Displacement Yoage
Size (bytes) (1s) CPU time @1s) | difference
5000 1118 1839 64.49
6000 1377 2279 65.50
7000 1433 2561 78.72
8000 1815 2856 57.36

Table 1 indicated that the displacement method provides similar measuremecits to on
computation bound tasks. Table 2, however, indicates a large discrepancy between the two
methods. In order to confirm that displacement was reporting the correct CPU times we
performed a simple throughput experiment which is described in the following section.

4.3. Confirmation of Displacement Estimates

A CPU estimate can be used to predict CPU saturation in an appropriate situation. To confirm
that the Displacement values are more accurate thaocthe measurements we used both
results to make predictions for an experiment in which meassaging contributes to a saturated
CPU. In the experiment, a sending process would send 10000 messages of a given size to a
receiving process. In order to make sure that the network or the receiving task was not the
bottleneck, (i.e. we wanted the throughput to be solely determined by the sending task), each
send was followed by a period of pure computation which consumed a precisely known amount
of CPU time proportional to the message size. This compute time was generated using a
calibrated spin loop and was calculated so as to be slightly larger than the transmission time
using 8 Mb/s as the nominal transmission rate with a minimum time of 2 ms. The measured
throughput was simply the elapsed time divided by 10000. The predicted throughput was
calculated as:

1/ (CPU_time_to_send_message + CPU_time_to_compute)

As demonstrated earlier, tPU_time_to_computis the same whether you measure it with
displacement or witioctl . The debate, however, is centered on

CPU _time_to_send_messadgye our experiment, we recorded the throughput of a sending task
using message sizes of 1K to 8K in steps of 1K. Figure 5 compares the measured throughputs to
the two estimates.

Page 9

Real Thruput vs Displacement and loctl Based Predictions
400 T T T T T T

350

__ real thruput
300 :
* displacement based prediction

... ioctl based prediction

N

a

o
T

N

o

o
T

Thruput (msg/s)

150

100

1 1 1 1
4000 5000 6000 7000

Message sze (bytes)

50 1 1
1000 2000 3000 8000

Figure 5. Comparison of Predictions

As can be seen, the displacement-based predictions are almost perfect wheoets the
based figures consistently overestimate the throughput. This confirmgdthat is losing
some of the execution. The results are summarized in Table 3.

Table 3: Measured vs. Predicted Throughputs

Message Real Displ-based %age loctl - %age
: Throughput o . based .
Size (bytes) prediction | difference o difference
(msg/s) prediction

1000 346.62 355.35 2.52 378.63 9.23
2000 318.52 314.65 -1.21 346.37 8.74
3000 213.87 213.92. 0.02 239.71 12.08
4000 169.51 167.39 -1.25 185.35 9.34
5000 133.70 133.39 -0.23 147.59 10.39
6000 111.47 110.27 -1.07 122.45 9.86
7000 98.67 95.40 -3.32 106.91 8.34

Page 10

Table 3: Measured vs. Predicted Throughputs

Message Real Displ-based %age loctl - %age
: Throughput L . based .
Size (bytes) prediction | difference L difference
(msg/s) prediction
8000 85.16 83.97 -1.39 92.02 8.06

5. Accuracy

The error analysis in Section 3 identifies ermg,; for start-up costs arg},emon €res €cache

for activities during an experiment (background activity). The effect of background activity is to
introduce variance into displacement measurements. The effect of start-up overhead is to
introduce a one-time cost. Ag 7 increases, the overhead is spread over a larger number of

trials thus decreasing the measured CPU time per operation. Eventually the CPU time will reach
an asymptotic value where the overhead has virtually no effect. The trick therefore is to find an
LpyT Which amortizes start-up effects and which provides an acceptable variance.

To get an idea of the effect bp 1 on accuracy, the same send operation as in Section 4.2 was
measured with a 2K message dn,t values of 200, 1000, 5000, 10000 and 15000. For each of
thesel p 1 values, 20 replications were made. Figures 6(a),(b) show how the mean and variance
are related thpy.

Mean Cpu Time vs Lput
960 \ T

9551

950

9451

©

N

[<)
T

©o

w

(2]
T

Mean cpu time(us)

9301

9251

9201

915 ‘
0 5000 10000 15000

Lput

Figure 6(a). Measured Mean gt

Page 11

Std Dev of Mean Cpu Time vs Lput
60 \ T

50 b

N
o
T
Il

Std dev of mean cpu time(us)
N w
o o
T T
Il Il

10 b

1
0 5000 10000 15000
Lput

Figure 6(b). Measured Standard Durationgft

From the graph, the start-up effect is satisfactorily amortized witlpgnof 5000. At this point

the standard deviation is less than 1% of the mean. It is for this reason that we employed 10000
as anLpyTin our previous experiments. The following table summarizes that results and

provides a 95% confidence interval for the mean.

Table 4: Impact of Lp;+ on mean/variance

Mean (1s) StD as a 95%
Lput using 20 StD %age of the| Confidence
replications mean half interval
200 957.20 55.30 5.77 34.17
1000 930.75 11.84 1.27 7.32
5000 918.65 7.41 0.81 4.58
10000 919.15 7.08 0.77 4.37
15000 918.00 6.03 0.66 3.73

References

S. McCanne, C. Torek, “A Randomized Sampling Clock for CPU Utilization Estimation and
Code Profiling”, 1993 Winter USENIX Conference, Jan. 1993, San Diego.

Page 12

	DRAFT DRAFT DRAFT
	A “Displacement” Technique for Robust Portable Measurement of Communications Processing Overheads
	C. M. Woodside, Marc Courtois, Cheryl Schramm
	Department of Systems & Computer Engineering
	Carleton University
	1125 Colonel By Drive
	Ottawa, Canada K1S 5B6
	email: {cmw,courtois,schramm}@sce.carleton.ca
	Internal Report,
	Copyright Real-time And Distributed Systems (RADS) Lab,
	Carleton University,
	May 5, 1997
	Abstract
	1. Introduction
	2. Displacement Procedure
	Figure 1. Step 2 Measures How PUT Displaces Some of the Time for F.

	3. Assumptions and Errors
	Daemons

	Robustness
	4. Displacement vs. UNIX Instrumentation
	4.1. Plain Computation
	Figure 2. Displacement vs. UNIX Instrumentation ioctl on Plain Computation.
	Table 1: Comparing on Plain Computation

	4.2. PUT with Communications
	Figure 3.
	Figure 4. Displacement vs. UNIX Instrumentation on Message Sending.
	Table 2: Displacement vs. Ioctl for TCP/IP Send

	4.3. Confirmation of Displacement Estimates
	Figure 5. Comparison of Predictions
	Table 3: Measured vs. Predicted Throughputs

	5. Accuracy
	Figure 6(a). Measured Mean of tPUT
	Figure 6(b). Measured Standard Duration of tPUT
	Table 4: Impact of LPUT on mean/variance

