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Abstract

The problem of recording CPU demand for communications operations is handled poorly by some
instrumentation techniques. A simple technique is described that does not require instrumenting the code
(so it can be used without having the source code), and that can be used with any operating system. It
records the displacement of a CPU-intensive looping process by the process under test, and computes t
CPU effort taken by the process under test. Experiments show that standard UNIX instrumentation misses
large fraction of the CPU time to handle socket messages, and misses more for larger messages.
Displacement captures it all, apart from errors due to daemons.

1. Introduction

It is difficult to measure the CPU usage of communications protocols and midware, such as
sockets and RPCs. The difficulty is that in many implementations a significant amount of th
protocol execution is done by interrupt service routines (ISRs), and the usual kernel
instrumentation does not capture all of this. As there is no process switch, the clock ticks w
occur during the ISR execution are allocated to the process which was interrupted, not the
for which the messages are being handled. Indeed, it is impossible to know which process
destination of a message at the moment of the interrupt which begins its handling, because
information is in the header which has not yet been read. So the normal means for accounti
operations by a process fail for ISRs, and as a consequence, for a significant fraction of pr
processing (our experiments indicate that the fraction may be of the order of 50% in some
cases!).

McCanne and Torek [1] have documented how ISR execution is not captured by the stand
CPU-demand tools in UNIX. They introduced a modification into the 4.4BSD UNIX release
which identified an ISR state and counted clock ticks that occurred in that state. This only h
Page 1



n of
s as

e could

ns of
ed to

s,

ut, if

of-
ecause
ust
tions
e

 the
des'
s
ement
atch,
ote

s been
cribes

ions
s.

ary
e

e

solves the problem, since the process is still not identified, and solves it for only one versio
one operating system. We would like to have a generic solution that could be applied acros
many platforms as possible. The displacement technique appears to be as universal as on
realistically hope for.

The "standard" tools for determining CPU demand are not standard across different versio
UNIX, much less on other platforms such as OS/2 or NT. This work was stimulated by a ne
calibrate communications overheads for a family of applications running on a full range of
distributed platforms, and running a range of communications midware (sockets, DCE RPC
MQSeries, CORBA). The communications overheads were an important part of the entire
workload, and we wanted a procedure that would apply not only to the present platforms b
possible, to new ones as they are introduced.

The one measurement that is available in all environments is the “wall-clock” time, or time-
day, so we searched for a technique that is based entirely on time-of-day measurements. B
a time-of-day utility does not track which process is running, it would make sense to have j
one process running, the Process Under Test. However, this does not work for communica
utilities, because communicating software often blocks when waiting for input events, so th
duration of a scenario is not all execution time.

The displacement technique determines how much of a given time interval is spent running
Process Under Test, by running a second process to fill the gaps. By analogy with Archime
Principle, the second process will be called the Fluid Process; the time taken by the Proces
Under Test is found by the displacement of the execution of the Fluid Process. The displac
technique can be applied in any environment with a wall-clock timer, or even with a stop-w
to estimate the execution time of an operation involving uninstrumentable parts, such a rem
procedure call or socket message interchange. The idea is so simple that we assume it ha
used before, however we have not found a published description. This paper therefore des
our version of the idea, analyzes its properties and describes examples.

This paper describes the technique, analyzes the assumptions upon which it depends for
accuracy, compares its results with those of standard UNIX calls to determine communicat
costs, and shows its effectiveness when predictions are made based on the measurement

2. Displacement Procedure

The Process Under Test (to be namedPUT) is configured so that it repeats the operation to be
measured, for some programmable numberLPUT of loops. It is convenient to have one send
operation, or one receive operation, or one of each, in one repetition of the loop. The auxili
Fluid Process (to be namedF) executes a fairly short loop over some arithmetic operations; th
duration of its loop affects the resolution of the measurements to be obtained. ProcessF is
configured to run for a given numberLF of loops, and to obtain and print out the wall-clock tim
at the beginning and the end.

Step 1: The CPU time per loop of the Fluid ProcessF is calibrated by running it alone on a
workstation for some large numberLF(1); let the wall-clock time interval beTF(1) seconds. The
estimated CPU time for one loop traversal ofF is
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Step 2: The two processesF andPUT are then run together in such a way that the Fluid Proce
starts a little before and ends a little after the other, as illustrated in Figure 1. The loop coun
are set to the valuesLF(2) andLPUT(2); it may require some experiments to adjustLF(2) to be
long enough. The wall-clock time interval for the Fluid Process is recorded asTF(2).

Then the CPU time taken by the Process Under Test during Step 2 is

TPUT(2) = TF(2) - LF(2)

The second term is the time taken by the Fluid Process, during the interval of lengthTF(2),
according to the calibration experiment. The estimated CPU cost ofPUT is then

 = TPUT(2) / LPUT(2)

 is the CPU cost of executing the code in the loop of the Process under Test.

3. Assumptions and Errors

The procedure above assumes
• that the loop inPUT is essentially entirely made up of the operation to be calibrated; loop

count overhead can be ignored, as well as overhead in starting and stoppingPUT.
• that the clock resolution is small,
• that onlyF andPUT are running during the two tests,

and that whenF andPUT are run together,
• F always runs wheneverPUT blocks,
• the processes do not interact, so the time per loop of the Fluid Process is the same whe

running alone in the calibration experiment, and with the Process Under Test.

τF TF 1( ) LF⁄ 1( )=

Figure 1. Step 2 Measures HowPUT Displaces Some of the Time
for F.

TF(2)

“Fluid” ProcessF ProcessPUT

t

τF

τPUT

τPUT
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In fact the clock resolution may be significantly large, there are also other processes (e.g. t
daemons in UNIX) and the two given processes might interact by context switching or by c
interference. The potential errors can be analyzed as follows.

Daemons

First consider the daemon processes. Suppose that during Step 1 and Step 2, a durationD(1) and
D(2) sec is taken, respectively, by daemons. Thus the recorded durations are actuallyTF(1) +
D(1), andTF(2) + H(2), and the calculated values forτ are

sec/loop

In the best case the value ofD(i) has a fixed ratioα to the loop countLF(i), (i.e.D(i) = αLF(i))
andedaemons is zero. If the proportion is different in each step, with valuesα(1) andα(2), then

 sec/loop.

Context Switching

Context switching will occur naturally due to the operation of the communications software
instance wheneverPUT blocks to receive a message. The construction ofPUT makes this occur
once per loop, orLPUT(2) times. The overhead of these context switches however is part of t
execution time that we want to estimate, so there is no error in including it. Additional switc
due to time-slicing between the two processes may also occur, and the additional overhea
similar to additional daemon execution, in that their number increases withLF andLPUT.

Cache Interference

Cache interference will occur if, while running one process, the other is displaced from the
cache. It is plausible that the arithmetic loop in the Fluid Process is small enough to fit entire
the cache, but it might be displaced at a context switch. Thus time lost due to cache reload
also similar to context switching and daemon execution, and is proportional toLF andLPUT.

Clock Resolution

The effect of clock resolution∆ can be counteracted by running a long enough experiment.
SupposeTF andTPUT are measured with an error range of  sec., due to clock resolutio∆.

ThenτF has an error range  andτPUT has an error range of

. If  then the range is roughly

τF TF 1( ) LF 1( )⁄[ ] D 1( ) LF 1( )⁄[ ]+=

τPUT

TF 1( ) LF 2( )TF 1( )– LF 1( )⁄[ ]
LPUT 2( )

--------------------------------------------------------------------------- edaemons+=

edaemons

D 2( ) D 1( )LF 2( ) LF 1( )⁄–

LPUT 2( )
-----------------------------------------------------------------=

edaemons α 2( ) α 1( )–[ ]LF 2( ) LPUT 2( )( )⁄=

∆± 2⁄
∆±( ) 2LF 1( )⁄

∆± 1 LF 2( ) LF 1( )⁄+( ) 2LPUT 2( )( )⁄ LF 2( ) LF 1( )≈
Page 4



e

 we

e
op is,
clock
imated
not
ess

e is
ocess
s

.

Overhead of Starting and Stopping

However the launching and termination of the two processes is arranged there will be som
overhead distinct from loop repetition, but executed by the process. Suppose it isS sec for each
process. The the recorded values are actuallyTF(i)+S,

= calculated value + estart

Overall then, assuming the errors are small, the error inτPUT is

error = edaemons +  ecache + eres + estart

edaemons (including context switching and cache interference) is a constant proportion which
must hope is small; we will attempt to observe it.eres andestart are proportional toLPUT(2)/
LF(2). Thus for small errors,LF(2) >>LPUT(2).

Robustness

The robustness of the method comes from the robustness of the assumptions.

Several factors which bedevil other techniques for measuring CPU time do not influence th
displacement technique. It does not matter what the execution time of the Fluid Process lo
exactly, so a knowledge of the instructions, the loop overhead, etc. is immaterial. The wall-
measurements are taken only twice, so their overhead effect is small (and it can also be est
and subtracted out). The synchronization of measurement instants in the two processes is 
necessary, we only require that the Fluid Process covers all the execution time of the Proc
Under Test.

Consider the cache transient assumption. If execution of one Fluid Process loop out of cachK
times faster than the first time when the cache is being loaded, and each interval of Fluid Pr
execution (filling in between intervals of the Process Under Test, while it is blocked) requireLF

loops, the fractional error compared to the calibration isK/(LF). The factorK can be estimated
from a knowledge of the processor technology and the number of blocked intervals of the
Process Under Test during the run (estimated in turn fromLT).

eres± ∆± LPUT 2( )( )⁄=

τF TF 1( ) LF 1( )⁄ S LF 1( )⁄+=

TPUT 1( ) S+ TF 2( ) S LF 2( )τF–+=

τPUT

TF 2( )
LPUT 2( )
---------------------

TF 1( )LF 2( )
LF 1( )LPUT 2( )
------------------------------------– S

LPUT 2( )
---------------------–=

estart S LPUT 2( )( )⁄=
Page 5
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4.  Displacement vs. UNIX Instrumentation

Simple examples will show that standard UNIX instrumentation gives a very different value
socket communications cost, than Displacement, and that when the numbers are used to p
performance Displacement is correct.

4.1. Plain Computation

First we shall check that the two approaches give the same result for a plain CPU-intensive
computation.PUT was just a spin loop with a CPU demand per loop cycle “operation” which
could be approximately specified by the user. The two processesF andPUT were run on one
computer.  Process execution times were measured by the Solaris kernel call “ioctl” which
provides timing results with small granularity (typically a few microseconds). Experiments w
run varying the CPU demand of thePUT “operation” from 400 us to 3200 us. Each run used a
LPUT of 10000, so the resulting CPU time was divided by 10000 to measure CPU time per
operation. (The range of CPU times was chosen to include the CPU times which will be
encountered in the next section when we measure TCP/IP send. AnLPUT of 10000 was chosen to
sufficiently amortize the overhead associated with the displacement method (this is discuss
further below). All experiments were performed on a quiet SPARC 2 processor running und
Solaris. The times reported by displacement and ioctl  were almost identical, as show in
Figure 2 and Table 1.
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Figure 2. Displacement vs. UNIX Instrumentationioctl on Plain
Computation.
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The difference between the two measurements, therefore is very small. Displacement is al
slightly higher than ioctl  measurements as expected.

4.2.PUT with Communications

When a measurement is made with communications the two approaches disagree substan
Figure 3 shows the configuration, with two processesF andPUT on one node, and a Server on
the other. The role of the Server is simply to receive messages fromPUT and send replies back.
PUT blocks and waits for each reply.

In this case we measured the CPU time of a TCP/IP send operation, varying the message 
from 1K to 8K in steps of 1K.  There was also a receive operation, but for a message of rou

Table 1: Comparing on Plain Computation

Approximate
CPU time

generated(µs)

Ioctl
measurements

(µs)

Displacement
measurements

(µs)
%age difference

400 454 456 0.41

800 902 936 3.77

1200 1353 1367 1.03

1600 1805 1821 0.89

2000 2256 2278 0.98

2400 2705 2736 1.15

2800 3157 3193 1.14

3200 3607 3644 1.03

Figure 3.

F Client
PUT

UNIX
Node

Server

UNIX
Node
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% of
zero length.LPUT was set to 10000. Displacement andioctl  measurements are plotted in the
following graph.

Notice the systematic difference between displacement andioctl . This discrepancy is due to
work performed by Interrupt Service Routines (ISRs) - work which is not all captured by the
Solaris (UNIX) instrumentation. The corresponding table of values indicates that at least 40
the activity on a TCP/IP send operation is not captured by UNIX.

Table 2: Displacement vs.Ioctl  for TCP/IP Send

Message
Size (bytes)

Ioctl
CPU time

(µs)

Displacement
CPU time (µs)

%age
difference

1000 378 551 45.77

2000 624 915 46.63

3000 777 1280 64.74

4000 869 1448 66.63
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Figure 4. Displacement vs. UNIX Instrumentation on Message
Sending.
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Table 1 indicated that the displacement method provides similar measurements to ioctl  on
computation bound tasks. Table 2, however, indicates a large discrepancy between the tw
methods. In order to confirm that displacement was reporting the correct CPU times we
performed a simple throughput experiment which is described in the following section.

4.3. Confirmation of Displacement Estimates

A CPU estimate can be used to predict CPU saturation in an appropriate situation. To conf
that the Displacement values are more accurate than theioctl  measurements we used both
results to make predictions for an experiment in which meassaging contributes to a saturat
CPU. In the experiment, a sending process would send 10000 messages of a given size to
receiving process. In order to make sure that the network or the receiving task was not the
bottleneck, (i.e. we wanted the throughput to be solely determined by the sending task), ea
send was followed by a period of pure computation which consumed a precisely known am
of CPU time proportional to the message size. This compute time was generated using a
calibrated spin loop and was calculated so as to be slightly larger than the transmission tim
using 8 Mb/s as the nominal transmission rate with a minimum time of 2 ms. The measured
throughput was simply the elapsed time divided by 10000. The predicted throughput was
calculated as:

1 / (CPU_time_to_send_message + CPU_time_to_compute)

As demonstrated earlier, theCPU_time_to_compute is the same whether you measure it with
displacement or with ioctl . The debate, however, is centered on
CPU_time_to_send_message. In our experiment, we recorded the throughput of a sending tas
using message sizes of 1K to 8K in steps of 1K. Figure 5 compares the measured through
the two estimates.

5000 1118 1839 64.49

6000 1377 2279 65.50

7000 1433 2561 78.72

8000 1815 2856 57.36

Table 2: Displacement vs.Ioctl  for TCP/IP Send

Message
Size (bytes)

Ioctl
CPU time

(µs)

Displacement
CPU time (µs)

%age
difference
Page 9



As can be seen, the displacement-based predictions are almost perfect whereas the ioctl -
based figures consistently overestimate the throughput. This confirms that ioctl  is losing
some of the execution. The results are summarized in Table 3.

Table 3: Measured vs. Predicted Throughputs

Message
Size (bytes)

Real
Throughput

(msg/s)

Displ-based
prediction

%age
difference

Ioctl -
based

prediction

%age
difference

1000 346.62 355.35 2.52 378.63 9.23

2000 318.52 314.65 -1.21 346.37 8.74

3000 213.87 213.92. 0.02 239.71 12.08

4000 169.51 167.39 -1.25 185.35 9.34

5000 133.70 133.39 -0.23 147.59 10.39

6000 111.47 110.27 -1.07 122.45 9.86

7000 98.67 95.40 -3.32 106.91 8.34

1000 2000 3000 4000 5000 6000 7000 8000
50

100

150

200

250

300

350

400

Message sze (bytes)

T
h

ru
p

u
t 
(m

sg
/s

)

Real Thruput vs Displacement and Ioctl Based Predictions

___  real thruput

* displacement based prediction

...  ioctl based prediction

Figure 5. Comparison of Predictions
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5. Accuracy

The error analysis in Section 3 identifies errorsestart for start-up costs andedaemon, eres, ecache

for activities during an experiment (background activity). The effect of background activity i
introduce variance into displacement measurements. The effect of start-up overhead is to
introduce a one-time cost. AsLPUT increases, the overhead is spread over a larger number of
trials thus decreasing the measured CPU time per operation. Eventually the CPU time will 
an asymptotic value where the overhead has virtually no effect. The trick therefore is to find
LPUT which amortizes start-up effects and which provides an acceptable variance.

To get an idea of the effect ofLPUT on accuracy, the same send operation as in Section 4.2 w
measured with a 2K message andLPUT values of 200, 1000, 5000, 10000 and 15000. For each
theseLPUT values, 20 replications were made. Figures 6(a),(b) show how the mean and var
are related toLPUT.

8000 85.16 83.97 -1.39 92.02 8.06

Table 3: Measured vs. Predicted Throughputs

Message
Size (bytes)

Real
Throughput

(msg/s)

Displ-based
prediction

%age
difference

Ioctl -
based

prediction

%age
difference
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Figure 6(a). Measured Mean ofτPUT
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From the graph, the start-up effect is satisfactorily amortized with anLPUT of 5000. At this point
the standard deviation is less than 1% of the mean. It is for this reason that we employed 1
as anLPUT in our previous experiments. The following table summarizes that results and
provides a 95% confidence interval for the mean.

References

S. McCanne, C. Torek, “A Randomized Sampling Clock for CPU Utilization Estimation and
Code Profiling”, 1993 Winter USENIX Conference, Jan. 1993, San Diego.

Table 4: Impact of LPUT on mean/variance

LPUT

Mean (µs)
using 20

replications
StD

StD as a
%age of the

mean

95%
Confidence
half interval

200 957.20 55.30 5.77 34.17

1000 930.75 11.84 1.27 7.32

5000 918.65 7.41 0.81 4.58

10000 919.15 7.08 0.77 4.37

15000 918.00 6.03 0.66 3.73
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Figure 6(b). Measured Standard Duration ofτPUT
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