
Dependable-LQNS: A Performability Modeling
Tool for Layered Systems

Olivia Das and C. Murray Woodside
Department of Systems and Computer Engineering,

Carleton University, Ottawa, Canada
Email : odas@sce.carleton.ca, cmw@sce.carleton.ca

Abstract- Dependable-LQNS is a software tool for model-
ing and evaluating performability of fault-tolerant layered
distributed applications that use a separate architecture for
failure detection and reconfiguration. It takes into account
the effects of management architecture, application software
architecture, failure of management and application compo-
nents in the dependability computation. It uses a combina-
tion of minpath algorithms, AND-OR graphs, non-coherent
fault trees and Layered Queueing modeling in the analysis.

I. INTRODUCTION

Dependable-LQNS models the class of applications
that has layered software architecture with a general fault
management architecture, as considered in [1]. The
computation strategy of this tool has the following steps:

• find the different reachable operational configurations
of the application

• compute the probability of each operational configu-
ration (using a non-coherent fault tree)

• determine the reward rate for each operational config-
uration (using a Layered Queueing Network model)

• combine the probabilities and the rewards to deter-
mine the average performance measures.

This tool supports an architecture evaluation
language that all ows a user to:

(i) describe the application and management components
(processors, application software tasks, manager tasks,

agent tasks) and pseudo-components representing
additional shared factors of failures (such as power-supply
failure, failure due to mechanical vibrations).

(ii) specify the interactions between the components in the
management architecture (as for example, monitoring,
notification).

(iii) specify the functional dependencies among
application components from layer to layer.

(iv) performance and dependability parameters (for
example, execution demand of a task on its host, number
of service requests made by one task to the other from
layer to layer, failure and repair rates for the components
and the redundancy mechanisms employed).

The flow-chart of the tool is given in Figure 1. The
tool uses the help of Aralia[2] for non-coherent fault-tree
computation and LQNS[3] for performance analysis. The
tool has been written in C++ for Windows.

The input to the tool can be a plain-text file
containing the above descriptions or there is also a
graphical user interface for this tool developed with Java
that takes inputs from the user and automatically
generates the input file for the back-end compiler. Figure
2 shows a snapshot of the GUI.

The output of the tool consists of the different
operational configurations, their probabilities, their

Figure 1 Flow Chart of Dependable-LQNS tool

Model
description

Data
Computing

Model
description
compiler Layered

Queueing
models

Non-coherent
Fault trees Aralia[2]

LQNS[3]

file

Configuration
probabilities

Unit

Configuration
rewards

Performability
Calculator

Average
Throughput

of pure client
tasks

associated reward rates and the average reward for the
whole application. Presently, the mean throughput of the
pure cli ent task is taken as the reward rate for a particular
configuration.

 ACKNOWLEDGMENTS

This work was supported by a scholarship from Nortel
Networks, and by the Natural Sciences and Engineering
Research Council of Canada.

 REFERENCES

[1] O. Das and C. M. Woodside, "Modeling the Coverage and
Effectiveness of Fault-Management Architectures in Layered
Distributed Systems” , IEEE DSN 2002, Bethesda, Maryland,
June 2002, pp. 745-754.

[2] Y. Dutuit and A. Rauzy, "Exact and Truncated Computations
of Prime Implicants of Coherent and non-Coherent Fault
Trees within Aralia", Reliabili ty Engineering and System
Safety, 58, 1997, pp. 127-144.

[3] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia, and
M. Woodside, "Performance Analysis of Distributed Server
Systems", in the Sixth International Conference on Software
Quality (6ICSQ), Ottawa, Ontario, 1996, pp. 15-26.

Figure 2 GUI snapshot of Dependable-LQNS tool

