Dependable-LQNS: A Performability Modeling

Tod for Layered Systems

OliviaDas and C. Murray Woodside
Department of Systems and Computer Engineering,
Carleton University, Ottawa, Canada
Email : odas@sce.carleton.ca, cmw@sce.carleton.ca

Abstract- Dependable-L QNS is a software tool for model-
ing and evaluating performability of fault-tolerant layered
distributed applications that use a separate architecture for
failure detection and reconfiguration. It takes into account
the effects of management architecture, application software
architecture, failure of management and application compo-
nents in the dependability computation. It uses a combina-
tion of minpath algorithms, AND-OR graphs, non-coherent
fault trees and Layered Queueing modeling in the analysis.

|. INTRODUCTION

Dependable-LQNS models the class of applications
that has layered software architecture with a general fault
management architecture, as considered in [1]. The
computation strategy of this tool has the following steps:

« find the different reachable operational configurations
of the application

e compute the probability of each operational configu-
ration (using a non-coherent fault tree)

* determine the reward rate for each operational config-
uration (using a L ayered Queueing Network model)

e combine the probabilities and the rewards to deter-
mine the average performance measures.

This tool suppats an architecture evaluation
languege that all ows a user to:

(i) describe the gplication and management components
(processors, application software tasks, manager tasks,

Model

Model
description
compiler

LQNS[3] __’

Figure 1 Flow Chart of Dependable-L QNS tool

- Non-coherent Confi urio
description i —| 9
f”': Faulttre > |Ardial2] [probabilities \

agent tasks) and pseudo-comporents representing
additional shared factors of failures (suchas power-supply
failure, failure due to mechanical vibrations).

(if) specify the interactions between the componentsin the
management architecture (as for example, monitoring,
notification).

(iif) specify the functional dependencies among
application components from layer to layer.

(iv) performance and dependability parameters (for
example, execution demand of atask onits host, number
of service requests made by ore task to the other from
layer to layer, failure and repair rates for the cmponrents
and the redundancy mechanisms employed).

The flow-chart of the tool is given in Figure 1. The
tool uses the help of Aralia[2] for non-coherent fault-tree
computation and LQNS[3] for performance analysis. The
tool has been written in C++ for Windows.

The inpu to the tod can be a plain-text file
containing the abowve descriptions or there is aso a
graphical user interface for this tool developed with Java
that takes inpus from the user and automatically
generates the input file for the back-end compiler. Figure
2 shows a snapshat of the GUI.

The output of the tood consists of the different

operational corfigurations, their probabilities, their
Average
ili Throughpu
Performabilit |
Calculator e of pureclient
tasks
Configuratio
rewards
Computing

O Dpaa Unit

associated reward rates and the average reward for the ACKNOWLEDGMENTS
whole application. Presently, the mean throughpu of the

pure client task is taken as the reward rate for a particular This work was supported by a scholarship from Nortel
configuration. Networks, and by the Natural Sciences and Engineering

Research Courcil of Canada.

REFERENCES

F=:Dependable LANS: D-\dians:

Processors

[1] O. Das and C. M. Woodside, "Modeling the Coverage and
Effediveness of Fault-Management Architecturesin Layered
Distributed Systems”, IEEE DSN 2002, Bethesda, Maryland,
June 2002, pp. 745-754.

[2] Y.Dutuit and A. Rauzy, "Exact and Truncated Computations
of Prime Implicants of Coherent and non-Coherent Fault
Trees within Araid’, Reliability Engineering and System
Safety, 58, 1997, pp. 127-144

[3] G. Franks, S. Mgumdar, J. Neilson, D. Petriu, J. Rolia, and
M. Woodside, "Performance Analysis of Distributed Server
Systems', in the Sixth International Conference on Software
Quality (61CSQ), Ottawa, Ontario, 1996, pp. 15-26.

I Scheduling Discipline
Hirst come first serve)

rocessor < <
: > =3 D:\dlans\simple-example.out

rst come first serve
rst come first serve
st come first serve
=| | Jrstcome first serve

Sohing

CONFIGURATIONS: --
ofg2: [(52,1) (Entry2,1) (Entry! 1) (s2U_Entry3,13 (Processor3, 1) (T) 2
Probability: 0.538737 i
[Throughput of Entryl: 1.63934

efg3: [(52,1) (Entry2, 1) (Entryt, 1) (s2_1 1) (s 2U_Entyd 1) (Process
Probability: 0.0569548 -
[Throughput of Entryl - 1.63834

Expected Throughput of entry Entry1: 1.0748

Program successfully terminated
Elapsed Time: 5 48 secands

;;?

ok || swp |

Figure 2 GUI snapshat of Dependable-L QNS toal

