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Abstract. Several different kinds of performance models can be generated 
from sets of scenarios that describe typical responses of a system, and their use 
of resources. The Core Scenario Model described here integrates the scenario 
and resource elements defined in a UML model with performance annotations, 
preparatory to generating performance models. It is based on, and aligned with 
the UML Profile for Schedulability, Performance and Time, and supports the 
generation of predictive performance models using queueing networks, layered 
queueing, or timed Petri nets. It is proposed to develop it as an intermediate 
language for all performance formalisms. 

1. Performance Analysis of Software Specifications 

Preliminary performance analysis can be effective in avoiding performance disasters 
in software projects [11]. However, it takes time and effort to derive the necessary 
performance models. The UML Profile for Schedulability, Performance and Time 
(SPT) [6] was developed to assist the capture of performance data, and automation of 
the model-building step. This should make the analysis more accessible to developers 
who are concerned about performance issues in their designs. Figure 1 illustrates the 
type of processing that is envisaged by the Profile.  
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Fig. 1. Transformations and performance model solutions as envisaged in the UML SPT 
Profile 

The range of applications covered by the SPT Profile is broad, ranging from 
embedded systems with schedulability concerns, to business systems. The present 
paper is directed to applications with probabilistic behaviour and statistical perform-



 

ance requirements, which are common in distributed information processing such as 
telecom, business systems and web services. 

The relevant information in the UML design U is scattered in behaviour and 
deployment submodels, and possibly in other submodels. Some of it is expressed in 
the stereotypes and tag values of the SPT Profile, and some (e.g. the sequence of 
actions) is implicit in the UML. The Core Scenario Model (CSM) collects and organ-
izes all this into a form that is convenient for generating P, and allows us to check 
for consistency and completeness of this information from the viewpoint of P. We 
thus propose a two-step processing sequence as shown in Fig. 2, with two transfor-
mations: U2C extracts the scenario model and C2P to derives a performance model, 
Different C2P transformations may support different performance formalisms for P. 
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Fig. 2. Two-step transformation supporting consistency-checking and a variety of performance 
formalisms 

The purpose of this work is to describe the CSM, demonstrate that it cap-
tures all the information defined by annotations in the profile, and discuss its feasi-
bility for deriving performance models. 

2. UML Profile for Schedulability, Performance, and Time (SPT) 

The SPT Profile [6] extends the UML standard by defining stereotypes and tags 
which can be applied to object instances, and to instances of action executions in 
behaviour specifications. The UML specification together with the stereotypes de-
termines structural properties of a performance model, and the tags provide parame-
ter values. The profile is based on domain sub-models for resources and for perform-
ance, which are the basis of the CSM metamodel described below. 

The SPT domain model for performance is summarized in Fig. 3. It is cen-
tered on a Scenario class, representing behaviour for one kind of system response. A 
scenario is an ordered sequence of steps, each of which can be a sub-scenario. The 
ordering supports forks, joins and loops in the flow. Stereotypes and tagged value 
names are prefixed by P or PA for “performance” or “performance analysis”. 

Each scenario has a “workload” which describes the intensity of its execu-
tion. It may be an open workload, with arrivals from the environment (described by 
their rate), or a closed workload in which a fixed number of potential arrivals are 
either in the system, or are waiting to arrive again. 
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Fig. 3. The Performance domain model of the UML SPT Profile (from Fig. 8-1 of 
[6]) 

 
Resources may be attached to a scenario. The domain submodel for re-

sources (in Chapter 4 of [6]) distinguishes between active resources (such as a user) 
which spontaneously generate events, and passive resources that respond to requests. 
Both types of resource may be protected, (in which case a client gets exclusive use of 
one or more units of the resource), or unprotected, in which case they can be shared 
without control. Chapter 8 distinguishes between processing resources (devices) and 
logical resources (created by the software, such as buffers, tasks, or semaphores). 
Every primitive Step has a host processing resource or CPU, which executes the step. 

3. The Core Scenario Model (CSM) Metamodel 

The CSM metamodel captures the essential entities in the domain model which are 
required for building performance models, and it makes explicit some facts which 
have to be inferred from the UML and the SPT Profile data. The class structure of 
CSM, consistent with the Meta-Object Facility (MOF, [7]) is shown in Fig. 4.  

The CSM provides explicit representation of the scenario flow in a Path 
Connection type. The Profile depends on a simple successor association between 
Steps. Here, there is a PathConnection object between each pair of Steps, with sub-
types which correspond to the sequential relationship types common in path models 
for real-time software: Sequence for simple sequence, one step after another; Branch 
for an OR-fork with Merge for an OR-join, to describe alternative paths, and Fork 
and Join for AND-fork and AND-join respectively (to describe parallel paths). Prob-
abilities for a Branch are attributes of the target Steps. Explicit Path Connections 
(instead of just successor associations) simplify the later generation of a performance 
model, when the UML context is stripped away. 

Each PathConnection subtype takes a different number m of source steps, 
and n of successor steps, and these are labeled with the subtypes in the diagram. For 
example, a Sequence has exactly one source and one target Step, while a Fork or 
Branch has one source Step and multiple target Steps.  



 

Explicit subtypes of Step, for Resource Acquire and Release, and for Start 
and End of a Scenario, also support checking of the model, and performance model 
generation. 

A Message class, which may be associated to any path connection, has been 
added for future use (it is not supported in [6]), to describe the size of network mes-
sages sent between system nodes. 
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Fig. 4. Classes in the Core Scenario Model meta-model. Attributes are described in Table 1 

Active and passive resources represent the resources defined in the Profile. 
Active resources include devices (Processing Resources) and subsystems (captured by 
a placeholder called External Service). The latter are service operations executed by 
some resource outside the design document. Passive resources include operating  
system processes (or threads) identified as Components, and hosted by  Processing 
Resources. In this way a primitive Step (but not an abstract Step) has a host resource 
through its Component. Unprotected resources have been combined with protected 
resources, based on a multiplicity parameter which defines the number of units of the 
resource, such as a number of buffers, or of threads. An exclusively-held resource has 
multiplicity one, while an unprotected resource is indicated by an infinite multiplic-
ity. This avoids the need for separate classes and is consistent with resource notation 
in queueing models. The attributes of the CSM correspond to tagged values in the 



 

Profile and are described in Table 1. These include ID-ref attributes representing 
meta-associations which are not shown in Fig. 4 to avoid cluttering the diagram. 

4. A Building Security System (BSS) Example 

An example which has been used in previous work to describe the use of the SPT 
Profile [9][13], will be used here to describe the use of CSM. It is a Building Security 
System (BSS), which controls access and monitors activity in an institutional build-
ing.  The BSS is deployed on a main processing node, a database node, and a set of 
other resources all communicating over a LAN, as shown in Fig 5. 

Table 1.  Attributes of the CSM Metaclasses ( ID is a unique identifier generated 
automatically, opt stands for optional, and ref stands for an object reference) 

CSM Class Attributes 
Component ID; name; host ProcessingResource ID ref; ‘is active’ flag; descrip-

tion (opt); multiplicity (opt); containing component ID (opt) 
ActiveResource ID; name; time per operation; scheduling policy; description (opt) 
Scenario ID; name, collection of Steps 
Step ID; name; Component ref, host ProcessingResource demand, optional 

collection of pairs of ExternalService ID refs and demands; probabil-
ity (opt); repetition count (opt); subscenario ref to nested Scenario 
(opt); description (opt); selection policy (opt) 

Start Step attributes + Workload ID ref 
End Step attributes 
ResourceAcquire Step attributes + Resource ID ref; resource units (opt); priority (opt) 
ResourceRelease Step attributes + Resource ID ref; resource units (opt) 
Workload ID; arrival stream type (open or closed); arrival process; distribution 

type; closed system population size (opt); mean inter-arrival delay 
(opt); lower bound on the inter-arrival delay (opt); upper bound on 
the inter-arrival delay (opt); inter-arrival process description (opt) 

PathConnection ID; Message ID ref (opt); condition (opt); label (opt) 
Sequence Path Connection attributes + source Step ref; target Step ref 
Branch Path Connection attributes + source Step ref; target Step refs  
Merge Path Connection attributes + source Step refs; target Step ref 
Fork Path Connection attributes + source Step ref; target Step refs  
Join Path Connection attributes + source Step refs (2 or more); target 

Step ref 
Message type (none, asynchronous, synchronous, reply); size; multiplicity 

(opt) 
 
In Fig. 5, the nodes are either host ProcessingResources (<<PAhost>>) 

which execute the steps of the various components, or other physical ProcessingRe-
sources stereotyped as <<PAresource>>. The software components are concurrent 
processes (the stereotype <<PAresource>> has not been shown, but is shown in 
Fig. 6) and a buffer pool called Buffer (also <<PAresource>>), associated with 



 

the Buffer Manager. The size of the buffer pool is given by the tag PAcapacity, 
which takes the default value of 1 for the other resources. 

A performance-sensitive scenario for video surveillance is presented as a 
UML Sequence Diagram in Fig. 6. Video frames are captured periodically from a 
number of web cameras located around the building, and stored in the database as 
needed. The example is explored in greater detail, including Activity Diagrams and 
an additional scenario for managing building access, in [13]. 

In Fig. 6 (and also Fig. 5) the annotations use the stereotypes and tagged 
values defined in the SPT Profile. A performance context (labeled <<PAcon-
text>>) defines the overall scenario made up of steps (<<PAstep>>). The first 
step is driven by a workload (<<PAclosedLoad>>). The step use resources, with a 
host resource (<<PAhost>>) for its processor. Each step is a focus of control for 
some concurrent component (<<PAresource>> in Fig 6). The stereotype can be 
applied to the focus of control or to the message that initiates it, and can be defined 
directly or in a note.  
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Fig. 5. Deployment and software components in the Building Security System (BSS) 

The steps are tagged with a CPU demand value for processing time (tag 
PAdemand). The PAworkload stereotype is also tagged with a response time re-
quirement, indicated by the tag PAInterval with parameter ‘req’, that the interval 
between successive frames be less than 1 second 95% of the time, and a placeholder 
with name $Cycle is defined for the model prediction for the 95th percentile. 

The getImage step requires a network operation which is not included in the 
Sequence Diagram. It is described as a demand for an ExternalService (tagged as 
<<PAextOp>> on the getImage step), shown by the tag PAextOp = (Network, $P), 
indicating a number of network operations (and latencies) defined by the variable $P. 
The time for a network latency is not defined in the UML specification or the Profile, 
and is meant to be supplied by the modeler. If it is supplied during the U2C trans-



 

formation, it can be included as an attribute of the corresponding ExternalService 
ActiveResource object.  
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Fig. 6. The Acquire/Store Video scenario for the Building Security System 
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Fig. 7. The CSM representation of the information in Figures 5 and 6: the high-level loop 
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Fig. 8. The CSM representation of Figures 5 and 6: refinement of the loop step 



 

Figs. 7 and 8 show the corresponding CSM model, using some abbrevia-
tions for CSM types (such as ResAcq for ResourceAcquire) which should be clear. 
The loop which is indicated by the parameter *$N on the procOneImage message in 
Fig. 6, has been realized as a CSM Step processImages with a repetition parameter 
$N in Fig. 7. It is refined by a subscenario also named processImages, in Fig. 8. Figs. 
7 and 8 use some special graphical notation. They use bold outlines for Resources 
and for ResourceAcquire and ResourceRelease Steps, and bold arrows for dependen-
cies between them. There is also a special hollow arrow representing a Sequence 
path connection and its associations with its predecessor and successor Steps. 

It can be confirmed that Figs. 7 and 8 capture the sequential scenario in-
formation from the Sequence Diagram, and the resource relationships from it and the 
Deployment Diagram, without loss of information.  

A place has also been provided in the CSM representation for a description 
of the Message sent to the database to log the video frame. The UML specification 
does not provide message parameters, but a modeler could provide them for the 
CSM. 

The power of the CSM representation can be observed in its clear represen-
tation of the Buffer buffer pool resource, which is important in this system. In the 
UML specification its existence is defined in Fig. 5, and its use is indicated by the 
GRMAcquire and GRMrelease stereotypes on the messages to the Buffer Manager in 
Fig 6, and the note that associates the Buffer Manager with the Buffer resource. The 
U2C transformation assembles the information and connects the acquisition and 
release points to the resource. If the UML models failed to define the buffer pool 
resource, or to associate it correctly with the messages to allocate and deallocate 
buffers, the missing information could be discovered during the U2C transformation 
and supplied through queries to the modeler. 

5. The Transformations to Generate a Performance Model 

The implementation of the two transformation steps in Fig. 2 (U2C and C2P) can 
exploit a variety of established techniques. 
U2C is a model transformation as envisaged in the proposals for Queries, Views and 
Transformations (QVT) at the OMG, such as [1]. As performance is platform-
dependent, other QVT transformations to incorporate platform-specific elements 
may also be a part of U2C, or a preliminary to it. Work with QVT is for the future. 
At the time of writing we are creating a direct ad hoc transformation from an XMI 
representation of the UML design, to an XML representation of the CSM, following 
the CSM metamodel.  

5.1. Transformation U2C, from UML to a Core Scenario Model 

The transformation that is currently being developed reads XMI files repre-
senting the UML design model, builds a data structure to represent the UML objects, 
and uses it to create a DOM (Domain Object Model) tree for the CSM, which can be 



 

output in XML. The formal definition of this U2C transformation, based on the 
UML metamodel, will be described in a planned report on the transformation. Here, 
the status of the transformation and its general approach will be described. At pre-
sent, only Deployment Diagrams and Activity Diagrams are included; Sequence 
Diagrams will be approached later. The Activity Diagram for the example (corre-
sponding to Figure 6) is given in [9]. 

The first step is to create resource and component objects for the resources 
and components in the UML description, using the stereotypes (possibly provided by 
notes) in the UML, and the one-to-one correspondences shown in Table 2. Attributes 
are obtained from tagged values. Then each Activity Diagram (AD) in the UML is 
examined. A CSM Scenario is established, and the AD Partitions (swimlanes) are 
identified with Components in CSM, constructed from the Deployment information. 
If this is not straightforward through component names, the user is asked about cre-
ating Component objects for them. From the Initial PseudoState, a Start Step is cre-
ated. If a State following this has a <<PAworkload>> stereotype, the workload pa-
rameters become attributes of the Start Step. The rest of the AD is used to create a set 
of Steps and Connectors from the correspondences in the second part of Table 2. If 
an activity is of type CompositeState, with another diagram to refine it, the Step in 
CSM has a reference to a nested Scenario created for the second diagram. 

Table 2. Objects in CSM, created in direct correspondence to objects in a UML Deployment 
or Activity Diagram  

Type of Object in 
UML 

Stereotype 
in  
STP Profile 

Type of Object in CSM 

Deployment Diagram 
Node   PAresource Passive Resource 
Node  PAhost Processing Resource 
Component PAresource Passive Resource 
Component none Component 
   
Activity Diagram 
SimpleState PAstep Step 
CompositeState PAstep Step with nested Sce-

nario 
PseudoState: Initial none Start Step 
PseudoState: Fork       none Fork PathConnector 
PseudoState: Join        none Join PathConnector 
PseudoState: Branch   none Branch PathConnector 
PseudoState: Merge none Merge PathConnector 
FinalState none End Step 
 

The sequential relationships in the Scenario are constructed by linking the Steps 
through IDrefs to PathConnectors, as described by the attributes shown in Table 1. 
They are based on the Transitions in the Activity Diagram, and their source and 



 

target States. If both are States (SimpleState or CompositeState) the Transition pro-
vides a Sequence PathConnector linked to the corresponding Steps. If one is a Fork, 
Join, Branch or Merge PseudoState, the Transition provides only a pair of links (in 
both directions) between the corresponding PathConnector and the Step for the 
other. If both are PseudoStates then a dummy Step is introduced between the Path-
Connectors in the CSM. 

A loop can be described in the Activity Diagram by a CompositeState activ-
ity (referencing another diagram for a subscenario), stereotyped as <<PAstep>> with 
a repetition count tagged value.  This can be translated directly to the CSM represen-
tation as a high-level Step with a nested Scenario and a repetition count attribute. 
However another possible representation of a loop in an AD is a sequence of activi-
ties delimited by a Merge at the loop head (where the repetition begins) and a 
Branch at the loop end (with a Transition back to the Merge for the next repetition); 
we can call this an “informal loop”.  Informal loops must be detected and then trans-
formed to the subscenario structure just described, but this has not yet been ad-
dressed. 

In a diagram with swimlanes representing different Components, a Transi-
tion from one swimlane to another implies releasing one Component Resource and 
acquiring the other. A Resource Release Step, Sequential PathConnector and Re-
source Acquire Step are introduced into the sequence for that Transition, possibly 
with Sequential PathConnectors at the beginning and end, depending on the source 
and target. 

External Operations (with operation counts) are created in CSM for every 
ExternalService in the Activity Diagram, named in a tagged value attached to a 
<<PAStep>> stereotype. They are placeholders for calls to services defined outside 
the design, and are intended to be described by submodels introduced at the CSM 
level or at the performance model level (as in [12] for instance). 

Since most of the CSM metamodel corresponds one-to-one to elements in 
the domain model underlying the SPT Profile, most of the U2C transformation is 
straightforward. Most of the transformations described above have been implemented 
and tested at this point; some details are incomplete. 

Clearly some parameters or resource specifications may be missing, and the 
process of CSM extraction will include reports to the user, and provision of default 
values. Some translations have not yet been addressed, including informal loops 
(mentioned above) and the “Message” objects in CSM (which are not derived from 
the current Profile). Our current approach to any gap or ambiguity is to ask the tool 
user to resolve it. 

Traceability from objects in the UML design to objects in the CSM (and on 
into the performance model) is presently provided only by the use of names, such as 
the names of Resources, Components, and Steps. Some UML tools provide a unique 
object identifier which could be carried into the CSM along with the name, to pro-
vide a stronger traceability. 



 

5.2. Transformation to a Performance Model 

There is not space here to describe the possible C2P transformations in any 
detail, but typical performance models use Queuing Networks, Layered Queues, or 
timed Petri nets. For systems with only processing devices and no nested resources 
Smith has shown how to create a Queueing Network model from a similar scenario 
model which she calls an Execution Graph [11] (she also deals with nested resources 
on an ad hoc basis). For nested resources, a systematic algorithm which traverses a 
scenario model almost identical to CSM, and generates a layered queueing (LQN) 
performance model [3] was described in [10]. The LQN that emerges for the BSS 
example in this paper was described in [13], with an analysis that illustrates the use 
of the model to study bottlenecks and scalability. 

Other authors have created performance models using different intermediate 
models. Shen and Petriu extracted a graph model of the scenario from UML activity 
diagrams and used graph transformations to create an LQN [8]. Kahkipuro [4] de-
fined his own intermediate model expressing the UML information he needed to 
create a model similar to a LQN. Cortelessa et al define a kind of Execution Graph to 
extract the scenario [2], and derived queueing models. Lopez-Grao et al [5] derive a 
timed Petri net in an interesting way. They create subnets for the individual Steps 
with labels that allowed them to compose the fragments of scenarios, bottom-up, to 
arrive at a model for the entire behaviour. However, their approach is suitable only 
for the particular style of Petri nets they use, and at this point their model does not 
address processor contention. 

6. Conclusions 

The Core Scenario Model defined here has the capability to open up the use of pre-
dictive models for performance of software designs, by providing a core of informa-
tion needed in building performance models of different kinds. It provides a kind of 
“Unified Performance Model”, at one remove from the actual modeling formalisms. 

This paper described the model and showed, using an example, how it cap-
tures the required information. CSM provides a bridge between UML and the SPT 
Profile, and existing techniques to generate performance models which are based on 
the queueing and layered queueing formalisms. While it is not demonstrated here, it 
seems clear that Petri net models may be obtained with equal ease, and that new 
features introduced in UML 2 are easily accommodated.  
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