
ABSTRACT
This paper analyzes the performability of client-server
applications that use a separate fault management architecture for
monitoring and controlling of the status of the application
software and hardware. The analysis considers the impact of the
management components and connections, and their reliability, on
performability. The approach combines minpath algorithms,
Layered Queueing analysis and non-coherent fault tree analysis
techniques for efficient computation of expected reward rate of
the application.

Keywords
System Fault-tolerance, Performability, Distributed Systems, Non-
coherent fault trees, Layered Queueing Networks.

1. INTRODUCTION
This work considers efficient evaluation of the effectiveness of
fault management architectures in distributed systems. It assumes
there is a fault management subsystem (for example [21, 16, 14])
to detect failures, to isolate faults and to coordinate
reconfiguration of services after a failure or repair event. The
architecture of the fault management subsystem is critical to its
capability to respond, by obtaining knowledge of failures and by
applying correctional measures. This work considers a broad class
of fault management architectures called MAMA, applied to a
layered distributed service system that has a layered queueing
performance model. It is important to include layered service
effects because most distributed systems have some element of
layering (which in this work simply means subsystems in service
layers, that offer services to other subsystems in higher layers),
which means that the effects of a server failure are felt through the
inability of its clients to obtain service. Thus failures are
propagated by the layered dependencies.

In [4] and [5], the failure dependencies induced by a layered

service structure were exploited to create an efficient calculation
of failure probabilities, and of combined performance and
reliability measures (called performability[19] measures). The
model, called Fault-tolerant Layered Queueing networks or
FTLQN, assumed perfect knowledge of the failure state. It can be
seen as an extension of the Dynamic Queueing Analysis approach
of Haverkort et.al. [12, 13] to include layered queueing analysis in
place of standard flat queueing models, and the role of layered
service dependencies in propagating failures. The FTLQN
calculations are highly scalable, essentially because a large
number of possible failure states often lead to just a few distinct
performance models to be solved.

The great majority of work on reliability modeling is concerned
with hardware component failures (e.g., the book by Wallace [1]).
Software reliability analysis is largely concerned with analyzing
test results to predict failure rates (e.g. [18]). For an extensive
survey on software reliability models, the reader is referred to
[20]. Most of these models treat the software as a whole
considering only its interactions with the outside environment
without looking into its internal structure, i.e. its architecture.
Detecting faults and working around them in a running system,
which is the concern of a fault management subsystem, are
described in [21] for a grid system, and in [14] and [16] for cluster
systems. These describe prototype systems and measurements. [9]
describes a Markov model for software failures based on the
system given in [14]. A model for software failures based on the
application software architecture was described in [10, 11],
however it did not consider a management architecture, or its
related failures. Sun et. al. investigated the impact of a single
centralized fault management server on a highly available
communication system in [22] but did not include more general
management architectures. As far as we know, [6] was the first
attempt to model the effect of management subsystem failures on
system reliability.

In [6], the MAMA management architecture was introduced into
the FTLQN model and analyzed by enumerating the system
failure states. The present paper describes a much more efficient
algorithm to determine the configurations and their probabilities.
It determines the connectivity between a management element that
detects a failure and a point of reconfiguration, by applying
Minpath algorithms to a Knowledge Propagation Graph. This is
then used in a Fault Propagation Graph, which is an AND-OR-
NOT graph that also captures the service dependencies, to give
configurations and probabilities.

Computing the Performability of Layered Distributed
Systems with a Management Architecture

Olivia Das and C. Murray Woodside
Dept. of Systems and Computer Engineering

Carleton University, Ottawa, Ontario, Canada K1S 5B6

email: {odas, cmw}@sce.carleton.ca

A kind of non-coherence is introduced into the Fault Propagation
Graph because the occurrence of a failure is not enough to trigger
a reconfiguration; the knowledge of the failure must reach the
decision-making elements. This makes it an AND-OR-NOT
graph, instead of an AND-OR graph as used in [5] (which, we
remember, assumed perfect knowledge). To compute the
probabilities of the operational configurations, we use non-
coherent fault trees [7, 17]. They can be constructed so as to
model both standby redundancy (redirect requests to a standby
server) and load-balancing redundancy (redistribute the load
among the remaining operational servers).

The contribution of this work is an efficient algorithm for the
probabilities of the operational configurations. To give a
performability measure, the following steps were used:

• find the different operational configurations of the system
from the non-coherent fault propagation graph

• compute the probability of each operational configuration
(using a non-coherent fault tree)

• determine the reward rate for each operational configuration
(using a Layered Queueing model for each one)

• combine the probabilities and the rewards to determine the
steady-state performability.

The computational tool Dependable-LQNS developed for the
calculations uses the Aralia software for non-coherent fault trees
[7] and the Layered Queueing Network Solver (LQNS) [8] for the
performance calculations for each operational configuration.

Sections 2 and 3 describe the models for the application and the
management subsystem. studied in this paper, and section 4
defines a model for knowledge propagation. Sections 5 present the
non-coherent fault propagation graph and the performability
computation. Experience to evaluate its effectiveness is given in
Section 7.

2. LAYERED DISTRIBUTED SYSTEMS
DESCRIPTION
Distributed systems with clients and servers are typically
constructed with a layered architecture. Client-server architectures
are popular for distributed systems such as information processing
systems, web applications and database systems. Compared to
centralized computing they enhance the system usability,
scalability and availability. In these layered applications, failure of
a processor or a failure of a process in one layer can cause many
other processes that depend on its services to fail, unless they can
detect the failure and reconfigure to use a redundant process. This
section describes the FTLQN model introduced in [4] to capture
the layered operational or failure dependencies among various
services.

Figure 1 illustrates an FTLQN model with an example of a
layered console application. There are six tasks (concurrent
operating system processes, represented as rectangles), “Console”,
“Application Server”, “Console Server”, “Database-A”,
“Database-B” (backup of “Database-A”) and “Data Server”. Each
task runs on a processor represented by a dotted ellipse. The task
“Application Server” creates a report which involves reading from
the database and also requesting some kind of application data
from the “Data Server”. Tasks have one or more entries which are

service handlers (for example, the task Data Server has entries
“Get Application Data” and “Get Console Data”), which in turn
make service requests (represented by rounded rectangles). A
service request has a single target server if there is no server
redundancy, or a set of redundant target servers with a policy to
decide which one to use. Figure 1 shows the service “dbService”
requested by the entry “Create Report” for reading from the
database. It has a primary-standby policy and the priority of the
target servers are labelled “#n” on the arcs going to the servers. In
Figure 1 all the service requests are synchronous so that the sender
is blocked until the receiver replies. Asynchronous requests are
also possible. The workload is generated by tasks like UI which
cycle and create requests, and they are called reference tasks. The
model is restricted to being acyclic in order to avoid cycles of
mutual waiting that may lead to deadlock.

FTLQN is a dependability extension of Layered Queueing
Networks (LQN) [8], which is a pure performance model for
layered applications. The performance parameters are the mean
CPU demand of each entry and the mean number of requests for
each interaction. The availability related parameters are the
probabilities of being in a failed state for each component (either a
task or a processor). The performance measures may be defined
for components (e.g. utilization) or for requests (e.g. delay).

The FTLQN model shows the policy for redundant servers but the
decision about where to forward the request is made by the fault
management sub-system (not visible in this model) based on its
knowledge of the state of the application components. This
resolution of requests gives different operational configurations
of the application. Each one has an ordinary LQN model which
can be solved by the Layered Queueing Network Solver LQNS
[8], based on extended queueing approximations.

Console

Data

Application Console

Data

UI

CreateReport Fetch

Read-A

Processor 4

Processor 2

Processor 1

Server Server

Server

GetApplication
Data

GetConsole
Data

Data
Read-B

#2 #1

Database ser-
vice with an
alternative
standby server

Processor 3

dbService

serv1 serv2

serv3 serv4

base-B base-A

Figure 1. A Fault Tolerant Layered Queueing Network model

3. FAULT MANAGEMENT SUBSYSTEM
DESCRIPTION
The fault management subsystem controls and monitors the health
of a distributed application. It performs activities that include
failure detection, fault isolation, and automatic recovery from
failures by reconfiguring to use redundant application
components.

A common architecture for management subsystems is the
manager-agent model [15], which is used for example in Tivoli
application management systems [23]. In this model, agents
mediate between application components and managers. Each
application processor usually runs an agent that monitors all the
application tasks running on that processor and also monitors the
operating system’s health status. An agent is responsible for
sending events to the manager, relaying data and command
requests from the manager to the application tasks, collecting
responses and forwarding them to the requester. There are one or
more managers which are responsible for collecting status
information from the agents (using a management protocol such
as SNMP or JMX), making decisions and issuing notifications for
reconfiguration.

A managed application task has a set of responsibilities that
include exposing an appropriate interface to the management
system, sending heartbeat messages to the local agent, or
responding to requests from an agent or a manager.
Reconfiguration is handled by an agent which causes its managed
task to retarget or forward its requests to appropriate target server.

Failures of application components are detected by timeouts in
waiting for heartbeats, or for responses to pings or polls. Heartbeat
messages from an application task can be generated by a special
heartbeat interrupt service routine which sends a message to the
local agent every time an interrupt occurs, as long as the task has
not crashed. A component that cannot initiate heartbeat messages
(e.g a processor), may be able to respond to messages such as
pings or polling messages from an agent or manager. In either case
the agent or manager listens for a message and assumes failure if
the delay is too long.

3.1 Abstract Management Model
Figure 2 illustrates the manager-agent model described above in
an abstract manner using UML class diagram notation [2]. It
presents the model at two levels. In the first level (see Figure
2(a)), the manager tasks are shown to manage the application
tasks directly while in the second level (see Figure 2(b)), agents
come into play mediating between the managers and the
application tasks.

This abstract management model is described using the MAMA
(Model for Availability Management Architecture) notation
described in [6]. It has four classes of components: application
tasks, agent tasks, manager tasks and the processors hosting them.
They are connected using three different classes of connector:

• Alive-watch connector: This connector is used between two
components in cases where the destination component would
like to be able to detect whether the source component is alive
or not. This may be achieved by periodic polls or “i-am-alive”
messages. Usually, the source of this connector are the man-

ageable application components.

• Status-watch connector: In cases where a destination compo-
nent would like to know about the liveness of the source com-
ponent and also wants to collect failure data about other
components in the system that has been gathered by the
source component, this connector is used. An example would
be a connector from an agent task to a manager task.

• Notify connector: This connector is used for cases where the
source component would like to send or forward reconfigura-
tion commands to its sub-ordinate destination component (for
example, a manager sending commands to an agent or an
agent forwarding a command to an application task) or con-
veying management information to its peer (for example, a

<<application task>> <<processor>>

<<manager>>

1..n 1
<<runs on>>

<<runs on>>
<<monitors, <<monitors>>

<<monitors>>
<<exchange information>>

{constraint:manager
cannot manage the

processor it is

1..n

1

0..n
1 1

0..n

1..n

1

1

1..n

sends commands>>

running on}

Figure 2(a) Class diagram showing relationship between
management components

<<application task>> <<processor>>

<<manager>>

1..n

1<<runs on>>

<<runs on>>

<<monitors>>

<<monitors>> <<exchange information>>

{constraint:
manager cannot
manage the

<<agent task>>

<<monitors,

<<monitors,
collects failure data,

<<runs on>>
{constraint: must
run on the same
processor as the

0..1

1

1

1..n

1..n

1

sends commands>>

0..n
1 1 0..n

1..n

1

1

0..n

forward commands>> application tasks
it is monitoring}

processor it is
running on}

Figure 2(b) An agent component mediating between a
manager and an application task

Figure 2. The manager-agent model

manager sending information about the domain it manages to
another manager).

Cycles may occur in a MAMA model; we assume that the flow of
information is managed in a way so as not to cycle or ping-pong.
It is also assumed that if a task watches a remote task, then it also
watches the processor executing the remote task in order to
differentiate between a task failure and a processor failure.

Figure 3 shows the graphical notation used in this work for
MAMA components and connectors. Figure 4 shows a MAMA
model for a centralized management architecture for the
application of Figure 1, with agents ag1-ag4 running on the
processors p1-p4. m1 is the single manager task that indirectly
manages all the application tasks through the agents and directly
monitors the processors.

The next section describes how the failure information propagates
in the management architecture from the source of failure to the
point where reconfigurations are executed.

4. FAULT MANAGEMENT INFORMATION
PROPAGATION MODELING
The responsibility of the fault management system is to detect
component failures, reason about the global system state, and to
issue reconfiguration commands to the relevant retargettable
application tasks. Successful reconfiguration depends on the
connectivity (through the MAMA model) between the source of
failure and the point of retargetting services, at the instant of
failure. The connectivity is determined by applying minpath
algorithms to a derived graph called the Knowledge Propagation
Graph for the MAMA architecture.

The Knowledge Propagation Graph has an arc for each component
and connector in the MAMA architecture, and vertices
representing their points of connection. It is created as follows.

Let us denote ivi and tvi to be the initial and terminal vertices

respectively of arc i.

For each component i in the MAMA model, the Knowledge
Propagation Graph K has

• two vertices ivi, tvi

• a directed arc i = (ivi, tvi), of type component.

For each connector (i, j) in the MAMA model, K has

• a directed arc w from tvi to ivj.

• the type of the arc w is set equal to the type of the connector
(i, j). That is, it is one of {alive-watch, status-watch, notify}.

Figure 5 shows the knowledge propagation graph corresponding
to the MAMA model in Figure 4.

Let oi denote the state of component i, with

 oi = 1 if component i is in working state

 = 0 if component i is in failed state.

The knowledge propagation graph is used for computing the
binary-valued connectivity function, knowc,t, between two

components c and t as follows:

where m is the total number of minpaths (P1, P2, ..., Pm) from tvc

type A task with name and its type, where

name
 type = {MT, AT, AGT | MT = Manager Task,

Status_watch connector

Alive_watch connector

Notify connector

 A processor with name

name

AT = Application Task, AGT = AGent Task}

Figure 3. Legend used in this work for MAMA model

AT
Console

AT
Application

Server

AT

Console
Server

AT

Data
Server

AT

Database-A
AT

Database-B

AGT

ag1

AGT

ag2
AGT

ag3

Processor 1

Processor 2
Processor 3

AGT

ag4

Processor 4

Processor 5

MT

m1

Figure 4. MAMA model for a centralized management archi-
tecture for layered application of Figure 1

knowc,t =
q = 1

m

j Pq∈
oj()
+

to tvt. A minpath Pq is a minimal set of arcs of graph K such that

when all the arcs in Pq are operational, then vertices tvc and tvt are

connected; vertices tvc and tvt are disconnected for every proper

subset of Pq. A minpath Pq from tvc to tvt is obtained from K

when c represents a task, or from the reduced graph [K - {arcs
representing task tj (contained in processor c) in K}] when c

represents a processor. The analysis can use any standard
minpaths algorithm (e.g. [3]), taking into account that the first arc
in the path must be of type alive-watch or status-watch and rest of
the arcs should be of type component, status-watch or notify.

Define Pq
+ as an augmented minpath obtained from Pq as:

Pq
+=

if c is a task, or

Pq
+ =

if c is a processor.

The knowledge propagation graph is used in the next section
while modeling the operational dependencies of FTLQN model.

5. OPERATIONAL SERVICE
DEPENDENCIES MODELING
The operational dependencies describe how an operation depends
on its processor and on layered services, and on the use of a
“working” alternative for a failed service. Earlier analysis, based
on perfect knowledge of failures, used an AND-OR graph to
model the dependencies [5]. In the present model a “working”
system state may depend (through reconfiguration) on the fact that
some system element is in a “not working” state (e.g. a backup
configuration of an application might corresponds to a primary
element being “not working” and the management system has
knowledge about the failure and has reconfigured the application
to use the backup). This requires an AND-OR-NOT graph, like
the Non-coherent fault-propagation graph introduced here. It
represents the operational dependencies among the entries in the
FTLQN model and also takes into account the effect of failures of
the management and the agent tasks on the operation of the
entries. It combines the management connectivity informations
(computed from the knowledge propagation graph) with the
structural information extracted from the FTLQN model.

The fault propagation graph is an AND-OR-NOT graph that has a
root node root, and a node for each processor, task, entry, and
service. Some dummy nodes are also added to this graph to
account for the knowledge informations. In this graph, edges
connecting a node to a group of lower nodes represent an OR
function of the values at the lower nodes. If the edges have an arc
across them, they represent an AND function. A filled dummy
node connecting to one lower node is a NOT function of that
node.

Figure 6 shows the fault propagation graph for the model given in
Figure 1 and Figure 5. In this figure, the root is (by convention) an
OR node with the reference entry node “UI” as its only child. An
entry node is an AND node representing an entry e of the FTLQN
model. An entry is working if its task is working AND its
processor is working AND all the services it uses are working.
This implies that the children of an entry node are: node for e’s
task, the node for e’s processor and the nodes corresponding to the
services that entry e uses. For example, the entry node “UI” is an
AND node with the service nodes “serv1” and “serv2”, the task
node “Console”, and the processor node “Processor1” as its
children. A service node is an OR node representing a service s of
the FTLQN model. If the service s has a single target entry, then
the node corresponding to that target entry is the only child of the
service node, e.g. the service node “serv1” has only child
“CreateReport”. Otherwise, if s has multiple redundant target
entries, then the children of the corresponding service node are
dummy nodes which represent the operational logic of the target
entries. For example, the service node “dbService” has two

Processor 1; cmpt

Processor 2; cmpt Processor 3; cmpt

Processor 4; cmpt

Processor 5; cmpt

Database-A; cmpt Database-B; cmpt

Console

Data Server; cmpt

Application

m
1;

 c
m

pt

ag1; cmpt

ag2; cmpt ag3; cmpt

ag4; cmpt

Console; cmpt

c10;ntfy

c6;aw
c13;sw

c14;aw

c5;aw

c4;aw

c1
1;

aw

c9;sw

c8;aw

c1
2;

sw

c3;ntfy

c1;aw

c7;aw

c16;aw

c15;sw

c2;aw

Server; cmpt Server; cmpt

Each edge corresponding to a component is labelled by its
name and type as name; cmpt.
Abbreviations are: cmpt = component; ntfy = notify; aw =
alive-watch; sw = status-watch

Figure 5. The Knowledge Propagation graph corresponding
to the MAMA model in Figure 4.

Pq arc p p is processor of task tj()
tj Pq∈

∪

pc∪ ∪

Pq arc p p is processor of task tj()
tj Pq∈

∪

∪

dummy nodes, “d1” and “d2”, as its children. “d1” represents
primary branch is working and “d2” represents backup branch is
working.

The primary branch, represented by “d1”, is working if

• the entry “Read-A” is working
• AND the task “Application Server” which requires “dbSer-

vice” has the knowledge about the working status of “Read-
A”. Let the dummy node “d3” represents this knowledge
information. In order to know that “Read-A” is working (i.e.

“d3” is true), the task “Application Server” has to know that
the task “Database-A” is working (represented by dummy
node “d4”) AND also the processor “Processor2” is working
(represented by dummy node “d5”). The node “d4” requires
“Database-A” to be working AND there is a connectivity
from “Database-A” to “Application Server”, represented by
knowDatabase-A,ApplicationServer. A know node represents alter-

native minpaths between two components and thus is an OR
node with each child representing a single minpath. For clar-
ity, these know nodes are not expanded in this figure.

Figure 6. The Non-Coherent Fault-propagation graph corresponding to the FTLQN model of Figure 1 and Knowledge Propa-
gation Graph of Figure 5. knowc,t functions are not expanded here for clarity. Each knowc,t would be an OR node with AND
children (one child for each minpath).

root

Console

Processor 1

UI

CreateReport Fetch

Console
Server

Application
Server

Processor 4

dbService

GetApplication
Data

GetConsole
Data

Data
Server

Read-A

Database-A Processor2
Database-B

Processor3

knowProcessor3,ApplicationServerknowDatabase-A,ApplicationServer knowProcessor2,ApplicationServer

knowDatabase-B,ApplicationServer

Read-B

To be computed from the Knowledge Propagation Graph (Figure 5)

serv1 serv2

serv3 serv4

#1
#2

d1 d2

d3

d4 d5

d6d7

d8 d9

d10

d11
d12

The backup branch, represented by “d2”, is working if

• the entry “Read-B” is working and the task “Application
Server” knows about it. Let the dummy node “d6” represents
this fact. The expansion of “d6” is very similar to the expan-
sion logic of “d1” and is not elaborated here.

• AND the entry “Read-A” is failed and the task “Application
Server” knows about the failure. This fact is represented by
dummy node “d7”. In order to know that “Read-A” is failed
(i.e. node “d7” is true), the task “Application Server” has to
know that either the task “Database-A” is failed (represented
by dummy node “d8”) OR the processor “Processor2” is
failed (represented by dummy node “d9”). The node “d8”
requires “Database-A” to be failed AND there is a connectiv-
ity from “Database-A” to “Application Server”, represented
by knowDatabase-A,ApplicationServer. Similar argument holds for

node “d9”.
This graph is used to determine the set of distinct operational
configurations of the FTLQN model, and their probabilities. From
the root down, all distinct sets of alternative working possibilities
are created by a breadth-first search. Once the graph is all
searched, a complete alternative corresponds to an operational
configuration. A full description of the process was given for
AND-OR graphs in [5]. The process with NOT functions is almost
identical. In practice, nodes that represent the management
components are not explored since they are not part of a
configuration (although they affect the probabilities of achieving a
configuration).

6. PERFORMABILITY COMPUTATION
This section describes an algorithm to compute the mean of any
performance measure, averaged over failure states and the
probability that a system has failed.

It has following steps:

Step(1):Obtain the knowledge propagation graph K corresponding
to the specified MAMA model (i.e. the fault management
architecture), as described in Section 4.

Step(2): Obtain the non-coherent fault propagation graph G using
the layered FTLQN model (i.e. the layered application)
and the knowledge propagation graph K, as described in
Section 5.

Step(3): Using the fault propagation graph, determine the set, Z, of
all the distinct operational configurations Ci of the

FTLQN model. A distinct operational configuration
corresponds to a distinct choice of alternatives (for a
primary-backup policy) or of different combinations of
redundant servers (for a load-balanced policy).

Step(4): Compute probability, Prob(Ci), of the system being in

each such configuration Ci using non-coherent fault tree

analysis described in sub-section 6.1.

Step(5): For each , generate an ordinary Layered Queueing

Network model and solve it [8]. From the performance
measures assign a reward Ri to configuration Ci.

Step(6): Compute the expected reward rate of the system as

R = .

Next, we elaborate on Step (4).

6.1 Step (4) - Computation of Configuration
Probabilities by State Aggregation Approach
using Non-Coherent Fault Trees:
This approach computes the probabilities of the distinct
operational configurations directly without exhaustively
generating all the failure states of the system. Using the graph G, it
generates a non-coherent fault tree corresponding to each
configuration (that has already been obtained in Step(3)) and
computes the probability for that configuration using Aralia tool
[7]. The fault tree represents a logic function which is true for all
states which give the stated configuration, and failed for all other
states. Thus, it expresses the conditions under which the
configuration occurs. The non-coherent fault tree solution
computes the probability of this configuration, from the state
probabilities.

Figure 7 provides an example of the non-coherent fault tree
generated for a configuration “dbService is using the backup
Server Database-B” of the FTLQN model in Figure 1. For this
configuration to occur, the entries “UI”, “CreateReport”, “Fetch”,
“Read-B”, “GetApplicationData” and “GetConsoleData” have to
be working. This implies that all the components “Console”,
“Processor1”, “ApplicationServer”, “ConsoleServer”,
“DataServer”, “Processor4”, “Database-B” and “Processor3” have
to be working. These eight components correspond to the eight
basic events that are direct child of the top AND gate of the fault
tree. No gate is explicitly created for the entries. The dummy
AND node “d2” in the fault propagation graph in Figure 6
corresponds to the fact that the service “dbService” is using the
backup server. Thus, an AND gate corresponding to this “d2”
node is added as a child of the top gate in the fault tree. In this
particular example, all the OR gates corresponding to the know
nodes have only one AND child since there is only one minpath
between the relevant components.

As in our earlier models [5], the representation here is logically
inverted compared to most fault trees; an edge is true if the
corresponding element is operational (rather than failed).
However, the fault tree here is quite different from the earlier
models because it represents knowledge dependencies and NOT
functions.

6.2 Step (4) - Computation of Configuration
Probabilities by Enumeration Approach:
From [6], this brute-force approach enumerates all the failure
states. It is described here for comparison.

Let the total number of components (i.e. the processors and the
tasks) in the MAMA model and the FTLQN model be N.

Enumerate all 2N failure states of the system. For each state Γ =
{γ1, γ2, ...γN}, where γc = 0 or 1, if the root node of G is working

(i.e. the state Γ satisfies the non-coherent fault propagation graph
G), obtain the configuration C for that state. Set Prob(C) =

Ci Z∈

RiProb Ci()
Ci Z∈
∑

Prob(C) + (c is in state γc).

We observe that the state aggregation approach takes more
computational time as the number of operational configurations
increases. The number of operational configurations depends on
the structure and the number of components of the FTLQN model.
The introduction of management components and their
connections may exclude some operational configurations due to

lack of knowledge in the management system about the status of
the application components (but can never add more
configurations, since they are a function only of the FTLQN
model, not of the MAMA elements).

However, the addition of management components increases the
total number of components (contributed by both MAMA and
FTLQN) thereby increasing the number of states that has to be
enumerated. Overall then the state aggregation approach should
have less computation than the enumeration approach.

Console

Database-B

Processor3

Processor1

Application
Server

Data
Server

Processor4

Console
Server

....

....

AND Gate

OR Gate

NOT Gate

Legend

This node corresponds to priority
#2 working (“dbService is using
backup Database-B”).

Processor2

c4 c10c13

m1

ag1

Application
ServerProcessor5

Processor1

Database-A

c13 c10c3 m1 ag2

Application
Server

Processor5
Processor1

Processor2c6
ag1

Processor3

c16 c10c3

m1

ag1

Application
Server

Database-B

c15 c7 m1
ag3

Application
Server

Processor5
c3

ag1

knowDatabase-A,ApplicationServer

knowProcessor2,ApplicationServer

knowDatabase-B,ApplicationServer

knowProcessor3,ApplicationServer

Processor5
Processor1

Processor1

Processor3
c10

Figure 7. Non-coherent fault-tree corresponding to the operational configuration “dbService is using the Server Database-B”
of the FTLQN model in Figure 1. Each dotted enclosure realizes a know function.The repeated basic events are shown in
italics.

TOP

d7

d2

d8d9 d12 d11

d6

d10

Prob

c 1=

N

∏

7. EXPERIENCE

7.1 Example
Let us consider the example of the layered console application
shown in Figure 1 and a centralized management architecture
managing the layered application as shown in Figure 4, in order to
explain our solution approach. The probabilities of being in failed
state for each of the components (i.e. all the management tasks,
application tasks and the processors) are assumed to be 0.1. Let us
consider the mean total demand for execution on the processor for
entries “CreateReport”, “Fetch”, “Read-A”, “GetApplicationData”
and “GetConsoleData” be 1 seconds and for the thin client entry
“UI” to be 0.01 seconds. The execution demand for the backup
entry “Read-B” is assumed to be 1.5 seconds. Let us further
assume that on average, at every invocation, a caller entry makes
one service request to each of the called entries.

The MAMA model in Figure 4 is first translated to the knowledge
propagation graph shown in Figure 5. Next, combining the
information of the FTLQN model of Figure 1 and the knowledge
propagation graph of Figure 5, a non-coherent fault propagation
graph (illustrated in Figure 6) is obtained. Then, the set of all
distinct operational configurations and their associated
probabilities are found, with the results shown in Table 1. For this
system, the number of distinct operational configurations is much

less than the number of system states, two vs. 216 (=65536).

An LQN model is created for each of the operational
configurations, C1 and C2, and solved using LQNS tool [8] to give

their performance measures. In this example, we select the mean
throughput of the load-generating task “Console” to be the reward.
Finally, the expected reward rate of the system is obtained as
0.0656 responses/sec.

If we change the redundancy policy of “dbService” from stand-by
to load-balanced, we would get more operational configurations as

shown in Table 2. This is because when both the servers,
“Database-A” and “Database-B” are operational, “dbService”
would use both of them with the workload being equally
distributed among the two. The probabilities of the configurations
are different in this case because of the following reasons: In the
standby case, we assume that a standby server can be used if the
failure status of the primary and the working status of the standby
is known by the management system. However, in the load-
balanced case, we assume that a redundant server can be used if
its working status is known. The expected reward rate of the
system in this load-balanced case is found to have increased to
0.0683 responses/sec, because the change in the knowledge
function makes the system failed state less probable.

7.2 Scalability Analysis (Comparison of Two
Approaches)
This section demonstrates the efficiency of the State Aggregation
Approach over the Enumeration Approach by comparing them
through incremental scaling up of a layered application and its
associated management system.

The example is a three-tier client-server system shown in Figure
8(a), with four tasks t1-t4 running on their own private processors
(not explicitly shown in the figure). Task t4 is a backup of task t3.
The associated management system is a centralized model with
one central manager controlling the whole application. Figure 8(b)
shows the centralized management model with no agents
(manager is directly watching all the application components).
Figure 8(c) shows the same management model with agents
running on each processor thereby increasing the number of
management components (keeping the number of application
components same). This is done in order to demonstrate the effect
of increasing the number of management components on the
performance of the two approaches.

Next, this application is scaled up in two stages; in the first stage
(Figure 9) standby-servers are added in both layers and in the
second stage (Figure 10) each service has two stand-bys with
overlapping use. The management model (not shown here due to
lack of space), with or without agents, for these two stages are
also centralized and is similar to those used for the application in
Figure 8(a), except that in these cases, the tasks interested for
receiving notifications from the manager are t1 and t5 for
application in Figure 9, and t1, t2, t5 and t8 for that in Figure 10.
The probabilities of being in failed state for all the components
(i.e. all the management tasks, application tasks and the
processors) are assumed to be 0.05. The mean total demand for
execution on the processor for all the entries be 0.3 seconds except
the thin client entry “e1” whose demand is assumed to be 0.01
seconds.

Table 3 shows the computation time taken for determining the
distinct operational configurations and their probabilities by both
the approaches. The computation time is in seconds and is
measured on Windows98 hosted by Pentium (III) processor.
Immediately we can see that aggregation is faster except for the
smallest system, and that its effort grows much more slowly as the
system is made more complex.

For the management model with no agents, as we move from one
stage to the next (see row1, row3 and row5 in Table 3), we find an

Table 1. Standby-Redundancy policy: Distinct Operational
Configurations and their probabilities obtained using State

Aggregation Approach

Configura
tion Ci

Number of system
states mapped to
Ci (as found from

Enumeration
approach)

Prob(Ci)

Reward Ri =

mean
throughput of

task
“Console”

C1 16 0.2824 0.1996

C2 10 0.0511 0.1815

System
failed
state

65536 - (16 + 10)
= 65510

0.6665 0

where,
C1: “dbService is using server Database-A.”

C2: “dbService service is using server Database-B and Data-

base-A failed.”

increase in the number of operational configurations due to the
increasing addition of the stand-by servers, resulting in the
generation of more non-coherent fault trees (one for each
operational configuration), thereby increasing the computation
time for the State Aggregation Approach. However for a particular
scaled stage of the application (e.g. see row1 and row2 in Table
3), as we add agents to the management model, the number of
management components increases (consequently the number of
nodes in the knowledge propagation graph gets larger) although
the number of operational configurations remains the same. The
increase in the CPU time for the State Aggregation approach in
this case is due to the minpath determination algorithm which now
works on a bigger knowledge propagation graph.

The Enumeration approach, however, performs badly compared to

the State Aggregation Approach with the scaling up of application
as well as management components. As we add more standby
servers to the application, the number of reconfiguration points
increases, resulting in a larger number of executions of the
minpath algorithm. Therefore, although there is the same number
of system states (that need to be enumerated) in row2 and row3 in
Table 3, the computation time for the Enumeration approach is
higher for the case in row3.

8. CONCLUSIONS
The introduction of management components and their
interconnections into the performability analysis of layered
systems gives rise to scenarios where an operational state of the
system corresponds to a mixture of failed and working states of its

e1t1

e2t2

e3t3 e4t4

(a)

#1 #2

Original system: Bottom-level stand-by only

Figure 8. A three-tiered client-server system and its associated central management system (with agents in (b) and
without agents in (c))

serv1

serv2

MT

m1

AT

t1
AGT

ag1
AT

t3
AGT

ag3

AT

t2
AGT

ag2
AT

t4
AGT

ag4

MT

m1

AT

t3

AT

t4
AT

t2

AT

t1

(b)
Centralized MAMA model for application in 8(a) without agents

(c)
Centralized MAMA model for aplication in 8(a) with agents

components, making the analysis non-coherent. This paper
presented an efficient approach that takes into account this issue
of non-coherence in the performability computation. Initial
experience with modest sized examples shows a reasonable
growth of effort with system complexity, indicating that the
scalability of this approach may be excellent.

The analysis relies on layered queueing analysis, non-coherent
fault tree solution and minpath algorithms. Examining a few
cases, our observation is that the LQN solutions and non-coherent
fault tree analysis scale up well. However, with the increase in the
problem size, the minpath algorithms will limit the scalability of

the present approach.

9. ACKNOWLEDGMENTS
This research was supported by a grant from NSERC, the Natural
Sciences and Research Council of Canada, and by a scholarship
from Nortel.

10. REFERENCES
[1] Blischke, W. R. and Murthy, D. N. Prabhakar, “Reliability:
Modeling, Prediction, and Optimization”, Wiley, 2000.

e1t1

e2t2

e3t3

e5t5

e4t4 e6t6

#1 #2 #1 #2

#1 #2

e1t1

e2t2

e3t3

e5t5

e4t4 e6t6

#1 #2

#1 #2

e7t7 e9t9

e8t8

#3
#1

#2
#3 #1

#2
#3

#3

Scaled-up versions of the application in Figure 8. (The corresponding MAMA models (with and without agents) would
be similar to those of Figure 8 and are not shown here.

serv1

serv2 serv3

serv1

serv2 serv3 serv4

Figure 9. One stand-by server throughout Figure 10. Two stand-by servers throughout

Table 3. Computation time for determining the distinct operational configurations by the Enumeration Approach and the State
Aggregation Approach for the models in Fig. 8 and 9

Application
model

Centralized
Management

MAMA model

Number of
System states

(enumerated by
Enumeration
Approach)

Number of
Operational

Configurations
(not including
System failed

state)

CPU time (in
secs) for

Enumeration
Approach

CPU time (in
secs) for State
Aggregation

Approach

Mean
Throughput

Reward
(responses/

sec)

Fig. 8(a) without agents (Fig.
8(b))

1024 2 0.22 1.42 1.194

with agents (Fig.
8(c))

16384 2 1.49 1.48 1.075

Fig. 9 without agents 16384 4 3.19 1.81 1.319

with agents 1048576 4 102.65 2.36 1.125

Fig.10 without agents 1048576 9 252 2.97 1.334

with agents ~ 5 x 108 9 > 12 hrs 5.16 1.138

[2] Booch, G., Rumbaugh, J. and Jacobson, I., The Unified
Modeling Language User Guide, Addison-Wesley, 1st edition,
1998.

[3] Colbourn, C. J., The Combinatorics of Network Reliability,
Oxford University Press, 1987.

[4] Das, O. and Woodside, C. M., “The Fault-tolerant layered
queueing network model for performability of distributed
systems”, IEEE Int. Computer Performance and Dependability
Symposium (IPDS’98), Sept. 1998, pp. 132-141.

[5] Das, O. and Woodside, C. M., “Evaluating layered distributed
software systems with fault-tolerant features”, Performance
Evaluation, 45 (1), 2001, pp. 57-76.

[6] Das, O. and Woodside, C. M., “Modeling the Coverage and
Effectiveness of Fault-Management Architectures in Layered
Distributed Systems”, IEEE International Conference on
Dependable Systems and Networks (DSN'2002), June 2002, pp.
745-754.

[7] Dutuit, Y. and Rauzy, A., “Exact and Truncated Computations
of Prime Implicants of Coherent and non-Coherent Fault Trees
within Aralia”, Reliability Engineering and System Safety, 58,
1997, pp. 127-144.

[8] Franks, G., Majumdar, S., Neilson, J., Petriu, D., Rolia, J. and
Woodside, M., “Performance Analysis of Distributed Server
Systems,” in the Sixth International Conference on Software
Quality (6ICSQ), Ottawa, Ontario, 1996, pp. 15-26.

[9] Garg, S., Huang, Y., Kintala, C. M. R.,Trivedi, K. S. and
Yajnik, S., “Performance and Reliability Evaluation of Passive
Replication Schemes in Application Level Fault Tolerance”, 29th
Annual International Symp. on Fault-Tolerant Computing
(FTCS'99), June 1999, pp. 322-329.

[10] Gokhale, S. S.,Wong, W. E., Trivedi, K. S. and Horgan, J. R.,
“An analytical approach to architecture-based software reliability
prediction”, IEEE Intl. Computer Performance and Dependability
Symposium (IPDS’98), Sept. 1998, pp. 13-22.

[11] Goseva-Popstojanova, K. and Trivedi, K. S., “Architecture-
based approach to reliability assessment of software systems”,
Performance Evaluation, 45 (2-3), 2001, pp. 179-204.

[12] Haverkort, B. R., Niemegeers, I. G. and Veldhuyzen van
Zanten, P., “DYQNTOOL: A performability modelling tool based
on the Dynamic Queueing Network concept”, in Proc. of the 5th
Intl. Conference on Computer Performance Evaluation: Modelling
Techniques and Tools, G. Balbo, G. Serazzi, editors, North-
Holland, 1992, pp. 181-195.

[13] Haverkort, B. R., “Performability modelling using

DYQNTOOL+”, International Journal of Reliability, Quality and
Safety Engineering, 1995, pp. 383-404.

[14] Huang, Y., Chung, P. Y., Kintala, C. M. R., Liang, D. and
Wang, C., “NT-Swift: Software implemented fault-tolerance for
Windows-NT”, Proc. of 2nd USENIX WindowsNT Symposium,
Aug. 3-5, 1998.

[15] Kreger, H., “Java management extensions for application
management”, IBM Systems Journal, 40(1), 2001, pp. 104-129.

[16] Laranjeira, L. A., “NCAPS: Application high availability in
UNIX computer clusters”, Proc. of 28th Int. Symp. on Fault
Tolerant Computing (FTCS-28), June 1998, pp. 441-450.

[17] Luo, T. and Trivedi, K. S., “Using Multiple Variable
Inversion Technique to Analyze Fault-trees with Inverse Gates”,
Fast Abstracts, ISSRE’98.

[18] Lyu, M. R., editor., Handbook of Software Reliability
Engineering, McGraw-Hill and IEEE Computer Society, New
York, 1996.

[19] Meyer, J. F., “On Evaluating the Performability of
Degradable Computing Systems”, IEEE Trans. on Computers,
29(8), Aug 1980, pp. 720-731.

[20] Musa, J. D., Iannino, A. and Okumoto, K., Software
Reliability - Measurement, Prediction, Application, McGraw-Hill,
New York, 1987.

[21] Stelling, P., Foster, I., Kesselman, C., Lee, C. and Laszewski,
G. von, “A fault detection service for wide area distributed
computations” in Proc. of 7th IEEE Symp. on High Performance
Distributed Computations, 1998, pp. 268-278.

[22] Sun, H., Han, J. J. and Levendel, I., “Impact of Fault
Management Server and Its Failure-related Parameters on High-
Availability Communication Systems”, IEEE International
Conference on Dependable Systems and Networks (DSN'2002),
June 2002, pp. 679-686.

[23] Tivoli Systems Inc., 9442 Capital of Texas Highway North,
Arboretum Plaza One, Austin, TX 78759. See http://
www.tivoli.com.

Table 2. Load-balanced Policy: Distinct Operational
Configurations and their probabilities obtained using State

Aggregation Approach

Configuration
Ci

Prob(Ci)
Reward Ri = mean throughput

of task “Console”

C1 0.0765 0.1996

C2 0.0765 0.1815

C3 0.2059 0.1901

System failed
state

0.6411 0

where,
C1: “dbService is using server Database-A, Database-B failed”

C2: “dbService is using server Database-B, Database-A failed”

C3: “dbService service is using both Database-B and Database-

A with equally distributed load.”

