
The Protocol Bypass Concept for High Speed OSI
Data Transfer

C. M. Woodside*, K. Ravindran** and R. G. Franks*
* Telecommunications Research Institute of Ontario, Dept. of Systems and Computer
Engineering, Carleton University, Ottawa, Canada K1S 5B6
** Dept. of Computer and Information Sciences, Kansas State University, Manhattan
KS 66506

Abstract
A protocol bypass is a fast processing path which is used for some data units, for instance
for large data packets. It can provide conformance with standardized layered protocol
system like OSI, together with some of the performance benefits of a “lightweight” pro-
tocol. The concept is discussed as it applies to the movement of user data by the OSI
transport and session protocols, with some implementation experience, and an outline
for an approach to formally deriving bypass specifications from protocol specifications is
given. This outline uses some steps which must still be proven to be practical. Correct
interleaving of data units from the two paths is a major concern, especially with mul-
tiple asynchronously specified layers. It seems that the difficulty can be overcome and
the concept has promise. In the (rather limited) implementation, bypassing consistently
outperformed parallel processing as a means of performance enhancement.

1 Introduction
The search for generality, flexibility and standardization in communications protocols
has led to the OSI layered system [1],[2] and many offshoots such as MAP [3]. However,
the slowness of execution of the protocol implementations, which is essentially due to the
complex checking of conditions that is done at every operation, is becoming a limiting
factor in some applications. Therefore a new generation of lightweight or high-speed data
transfer protocols is now emerging.

The lightweight protocols exploit the low error rates of many networks, and use larger
packets, reduced options to unclutter the data path, and more efficient methods for
congestion control. They are partly motivated by the high speeds of new fiber-based
networks, partly by high-throughput applications such as file system backups and full
motion video, and partly by performance constraints already being felt with current
protocols. Examples are Zwaenepoel’s Blast protocol [4, 5], VMTP [6], and XTP [7].

Present-day “heavyweight” protocols such as OSI place notable performance con-
straints on distributed applications. Svobodova [8] surveys the status of transport proto-
cols (OSI and others) running on LANs and finds throughputs up to a maximum of about
2 Mbits/s (other references are found in her paper). The goal of the current lightweight

1

Complex cases
(20% of cases?)

Special simple
cases (80%?)

Usual
Implementation Bypass

Figure 1: The Bypass Concept

protocols is to obtain an improvement by an order of magnitude now, and much greater
increases later on faster processors and nets, into the range 100–1000 Mbits/s. The
protocols do not have to be completely new ones; Clark et al [9] have analyzed the fun-
damental limitations in IP/TCP to show that it could be operated in the 100 Mbit/s.
range if implemented properly. They describe a “fast path” concept in [9],[10] which has
already, in an existing workstation environment, moved files at close to the capacity of
an Ethernet. Jacobson has called his guiding principle for a fast receiving path “Header
Prediction”.

The bypass concept described here is an attempt to generalize Jacobson’s “Header
Prediction” to other protocols, particularly to layered protocol systems like OSI. Figure 1
shows the general notion of The bypass part is activated when a very limited set of
conditions apply which may be executed quickly; it will be effective if the conditions
are satisfied often enough. Hopefully, one can obtain both the performance benefits of
a lightweight protocol, when operating within a restricted set of circumstances, and the
standardization and functional benefits of a fully conforming standard protocol stack.
To obtain the full potential performance, some adaptation of the OSI standards may be
necessary (e.g., larger window sizes). The bypass is an implementation concept rather
than a new protocol, but it raises interesting questions about specification, such as

• specifying the bypass path and control when several protocol layers are involved,

• specification properties which could constrain the applicability of the concept in

2

some cases,

• formal derivation of the bypass process specification from the protocol specification.
The bypass concept is based on a standard idea in performance enhancement, called

the ‘centering principle’ by Smith [11] and sometimes called the “80–20 principle”. In
‘centering’, special fast processing is provided for a frequently-occurring case. Although
the idea is standard, and seems to be relatively straightforward in [11], it is nontrivial
for layered protocols because of the sequential relationships generated by segmenting
and reassembly of data, the complex interchanges supported by each layer, the web of
relationships that may exist between entities at different layers due to multiplexing of
connections, and especially because of the asynchronous nature of the separate layers.

The purpose of this paper then is to explore the feasibility of constructing a bypass for
an arbitrary layered protocol, and more particularly for OSI. It begins with an informal
outline of a particular bypass for the OSI Session and Transport layers, identifying diffi-
culties associated with operating and controlling a bypass, that seem to be fundamental.
Ways to overcome these difficulties are discussed, and have been demonstrated by some
preliminary implementation experience discussed in Section 6. The formal derivation
of bypass specifications is approached in Section 7 by outlining how the simple control
strategy used in Sections 3, 4 and 5 could be described formally. The paper is intended
to show that bypassing is a fruitful and important mechanism for combining standard
and lightweight protocol concepts, and that this topic is worth pursuing further.

2 The Architecture of a Bypass
Figure 2(a) illustrates the architecture of a bypass, including the following nomenclature:

stack the set of entities implementing the standard protocol, which are to be bypassed,

user the user of the topmost layer of ‘stack’, assumed to be unique,

provider the service provider entity below the bottom layer of ‘stack’, also assumed
to be unique at each end. These embody a service layer serving both ends, and
hiding the physical transmission of data, etc.

The Figure shows a system to support one-way data transfer, in which data flows from
the ‘Data Sender’ end A to the ‘Data Receiver’ end B; note that control packets are also
involved and flow in both directions.

As a data unit flows from left to right, it is filtered by tests and if it qualifies, is
processed by the fast path. The fast path is envisaged as a single process without
internal concurrency, cutting through all the layers of ‘stack’, while ‘stack’ may have
internal concurrent processes. Jacobson’s ‘Header Prediction’ conforms somewhat to
this model, for in his system a received packet is examined for a match against a stored
predicted header at the test labelled RBYPASSTEST, but there is no SEND test.

One of the potential values of isolating the fast path rather than just optimizing the
code in ‘stack’ is the excellent prospect of implementing the bypass in hardware. Fig-
ure 2(b) shows a suggested division when the service entities are hardware-implemented
link controllers such as Ethernet controller chips. SBP and RBP are the ‘send’ and ‘re-
ceive’ bypass devices. The receive test RBYPASSTEST is in hardware, to avoid breaking
the hardware path to the user level, and the RBP device writes data into addresses sup-
plied in memory accessed by the device. The send test does not have such compelling
reasons to be in hardware, and so is not.

3

(a) Architecture of Bypass for Sender and Receiver

(b) A Hardware Implementation Strategy with two bypass devices

(for the case where the provider is the link controller)

shared
data

user A

SPS

Send
Bypass
Device

Link Net

user B

Receive
Bypass
Device

SPS

shared
data

Link

test

user B

(header
predictor)

provider B

SPS
standard
(multi-
layer)
protocol
stack

RB
receive
bypass

shared
data

receive
bypass
test

provider A

user A

SB
send
bypass

SPS
standard
(multi-
layer)
protocol
stack

shared
data

send
bypass
test

(any
set
of
protocol
layers)

Figure 2: Bypass Architectures

4

3 One-Way Bypass of OSI Session and Transport
Layers

To focus the discussion this section examines a bypass around an OSI session layer
combined with a Transport Class 2 layer, and used with extended TPDU-numbering,
but without flow control.

3.1 Ideal Data Transfer
Further, bypassing will be provided only for those data units and transfers which satisfy
the following conditions for “ideal data transfer”,

• the session service data units are of type “data”,

• there is no segmentation/reassembly, concatenation/separation, or multiplexing in
the two layers,

• there are no piggybacked acknowledgements or window credits

Attention is also restricted to a one-way bypass, as illustrated in Figure 2(a). It
could be used for instance in a file server with a send-only bypass loading pages across a
network to diskless workstations with receive-only bypasses. Only one-way “fast paths”
were considered in [9, 10]. Greater generality will be introduced in later sections.

In an “ideal data transfer” each SSDU corresponds to exactly one NSDU and entails
these operations in the layers:

• increment PDU numbers by one in each layer at sender and receiver,

• send an acknowledgement, after a receive.
The bypass must produce the same effects as a standard implementation.

The general architecture of a one-way bypass system is as shown in Figure 2(a).

3.2 The Bypass Tests, without Window Flow Control
Correct execution of the protocol by a bypass depends on two key operations – the iden-
tification, at the bypass-condition tests in Figure 2(a), of those data units which which
will give an ideal transfer, and correct interleaving of data units which follow the two
paths. On sending a user data unit, the conditions to be met are that it be small enough
to fit into one TPDU, and that it be a ‘data’ type of unit (rather than control). The
connection must also meet the conditions stated above (eg., no multiplexing). Therefore
the bypass test will be only partly based on headers (as it was in Jacobson’s method); it
will also include some aspects of the state of the protocol layers, shown as the “shared
data” in Figure 2(a).

Packets which fail the bypass test follow the normal processing path through the full
implementation. This raises the problem of ensuring correct interleaving of data units
from the two paths where they rejoin. This is a non-trivial problem because in principle
the separate layers in OSI are asynchronous entities. In this work interleaving is ensured
by further assuming or enforcing that the protocol execution for an ideal data transfer
is atomic with respect to all other operations (send or receive, and by either layer) for
the same connection. This extra assumption is called ‘relative atomicity’ of processing.
Then there is a simple toggle in the flow, switching from one path to the other, and the

5

initiation of the new path at each switch is delayed until the former path is empty. This
delay is simple to control when switching away from the bypass because it is a relatively
simple process; the delay must be carefully enforced for switching the other way.

To be effective, the bypass must go around every layer with an important processing
load, and the window size must be large enough to make the extra speed useful. Larger
window parameter values than those now standard in OSI would be needed to fully
exploit the concept. Bypassing of link processing would assume a capability for large
link-level data units, to avoid segmenting at the link level. In [9], for example, link data
units of 8K bits or more were used.

Initially, the tests will be given for a case without window flow control; it will be
added later in this section.

Sender
Besides the usual protocol entities for Session and Transport layers, there is a send bypass
entity SB, as shown in Figure 2(a), which only operates when sending a data unit from
the user. The bypass entity will be associated with the session service access point,
and will communicate directly with the network (provider) SAP for the connection that
is being bypassed. A particular set of entities (session, transport and bypass) will be
associated with a given user-to-user connection by an initiation mechanism considered
below.

The following protocol entity state data must be shared with the bypass entity (re-
member that we are ignoring window operation at this point):

• session layer major state (read-only by bypass process)

• SPDU-NR, next session PDU number for sending (read-write by bypass process)

• session connection identifier (read-only by bypass process)

• transport layer major state (read-only by bypass)

• TPDU-NR, next transport PDU number for sending (read-write by bypass)

• max TPDU size (read-only by bypass)

• transport connection identifier (read-only by bypass)

• network entity information for sending (eg. SAP identifier) (read-only by bypass)

Besides the above, two test conditions must be accessible to the bypass test:

• session entity empty (entity is idle and no data units are ready for processing in
either direction)

• transport entity empty (entity is idle and no data units are ready for processing in
either direction)

Then the bypass test and operation for send has the form:

SBYPASSTEST = (session layer state = DT) and

(session entity empty) and

(transport layer state = DT) and

(transport entity empty) and

(predicted TPDU length <= TPDUmax)

if SBYPASSTEST then addheader; send NSDU; update; else send SSDU;

6

variable values (counter)fixed values
for the one connection

Transport Header

3 4 5 6 7 8 9 10

LI DST|CDT DST-REF TPDU-NR and EDT

7 15 | 0 ref counter, and EDT = 0

Session Header

2

LI

0

octet

field name

value

1

SI

1

Figure 3: Session and Transport Header Format for the Case of Section 3
(class 2 transport with extended TPDU-NR and EDT format, no segmenting/reassembly
so EDT=0, no flow control so CDT=0)

where “send NSDU” sends to the network entity, while “send SSDU” sends to the session
entity (for non-bypassed units), and “update” increments SPDU-NR and TPDU-NR. The
operation “addheader” adds the combined headers for the two layers to the data in the
form shown in Figure 3, to give exactly the same TPDU that would be constructed by
the two layers together. In the restricted operational cicumstances of this bypass a fixed
header template, with only one variable field for TPDU-NR, can be retained for fast
processing. Acknowledgements may be handled by SPS.

Receiver
At the receiver, the following protocol entity state data must be shared:

• session user entity information for delivering SSDUs

• session layer state (read-only by bypass process)

• SPDU-NR next session PDU number for receiving (read-write by bypass process)

• session connection identifier (read-only by bypass process)

• transport layer state (read-only by bypass)

• TPDU-NR next transport PDU number for receiving (read-write by bypass)

• last TPDU acked (read-write by bypass)

• transport connection identifier (read-only by bypass)

• network layer information for receiving (read-only by bypass)

The same two layer state test conditions as before must be accessible to the bypass
test:

• session entity empty

• transport entity empty

The bypass test is executed on receipt of an incoming NSDU from the network:

7

RBYPASSTEST = (session layer state = DT) and

(session entity empty) and

(transport layer state = DT) and

(transport entity empty) and

(header match)

The header match condition ensures that the data is for the right connection, and has
the expected sequence numbers. It is based on a predicted and stored representation, as
illustrated in Figure 3. The bypass operation for receive has the form:

if RBYPASSTEST then stripheader; deliver SSDU; update; else deliver NSDU;

where “deliver NSDU” sends to the transport entity, while “deliver SSDU” sends to the
session user entity. The operation “stripheader” removes the header component from the
data as a standard, preprogrammed number of octets, and if necessary does the transport
level cyclic redundancy check. The operation “update” increments TPDU-NR, SPDU-
NR and issues acknowledgements as NSDUs (using a preconstructed format into which
the PDU numbers are inserted). Each time an AK is issued the “last TPDU acked” value
is updated.

Comments on Operation of a One-Way Bypass
The specification above assumes that the bypass entity shares data with the standard en-
tities, and that process scheduling can enforce the relative atomicity of bypass processing
with respect to the standard entities it is associated with.

Acknowledgements are received by the standard entities, and their handling is not
accelerated. Since every packet is acked this may become a significant load, and the traffic
through the standard entities may interfere (through the “empty entity” conditions) with
availability of the sending-side bypass. Ideally, by the appropriate use of priorities or by
some other mechanism, the receipt of the AK by the standard entities should always be
completed before the test for the next send is executed. Then a long sequence of user
data packets which meet the conditions on length should all pass through the bypass.

Both the above points indicate how the specification of a bypass interacts more closely
with implementation considerations than is the case with the OSI standards. This is to
be expected when the existence of the bypass is governed by performance goals. The
intention here however is to specify the implementation considerations only as formal
constraints, without saying how they are to be satisfied.

3.3 Additional Features
Adding Window Management
We can bypass with window flow control by adding

1. to the shared data at the sender:

• available transport window credit (read-write by bypass process)
2. to the SBYPASSTEST

• the condition (window credit available)

8

The actual window management can still be done by the transport entity when it
handles an AK, or other incoming PDU with window credit attached. The sender bypass
rejects the unit if there is no window credit, and the data is queued by the transport
entity to be sent by it on receipt of credit. Until the backlog is cleared the (transport
entity empty) condition will fail.

This description provides window functionality, but if the window ever closes the
slower path will be used and the sender may never catch up with the backlog, and may
never be able to re-open the bypass. To avoid this problem the bypass would itself have
to handle AKs and window credits, as discussed under the two-way version below.

Initiation of Bypass Flow
Bypass operation is most useful for certain situations, such as bulk data transfers. At
other times the test overhead may make it unprofitable. The appropriate conditions for
initiating it may be detected and operated on in various ways, such as:

• user initation, by an action from the application level;

• from the quality of service parameters (QOS), as interpreted by the transport layer

• by an automated process based on observing the packet stream.

The details of the initiation process are not a major concern of this paper; any of the
above approaches could be taken. They have different implications for affecting the
implementation of the standard stack, however.

4 Two-way Bypass
Here we consider doing the bypass in both directions. The above specification of send
and receive bypasses are combined into a single process (still atomic, but now triggered
by events either at the session service user or the network service provider) so that each
end has both the send and receive features. Then data transfer will be bypassed in either
direction while AK and window operations will be carried out by the standard entities.
We will now examine some details of the changes that would be required.

Full AK Handling
Further performance improvement might result, in cases with window flow control and
error control, if AKs and window management could be handled by the bypass. For AKs,
the receive bypass makes a second test if RBYPASSTEST fails, as follows:

RAKTEST = (session layer state = DT) and

(session entity empty) and

(transport layer state = DT) and

(transport entity empty) and

(header match)

(packet matches AK template)

which leads to an alternative operation when RBYPASSTEST fails, as:

if RAKTEST then ack-update;

9

Here “ack-update” updates the “last TPDU acked” to the value in the AK, and up-
dates flow control window credits as conveyed by the AK. Similarly, on RBYPASSTEST
the “update” operation ends by processing piggybacked credits in the same way.

On receipt of window credits in cases where there is a backlog of transport data units,
the standard transport entity must then be forced to process its waiting data, as it would
do on receipt of window credits in an AK.

Window Management
If on the other hand the bypass attempts to also send the waiting data units as part of
a single ‘relatively atomic’ operation, it produces messy scenarios. On receipt of window
credits the queue of waiting data may include units that cannot be bypassed, mixed with
some that can. To sort out the bypassable units, a different bypass test is needed because
the data has already been partly processed. Further, when one of the waiting units is sent
through the standard entity it breaks up the atomicity of the bypass processing which
was originally initiated by the receipt of the data unit with the window credits.

A simple-minded solution is to block all data units at the bypass entrance when
window credit is exhausted, and then when credit is received to force their processing.
This forced processing would activate the bypass test on each of the waiting data units in
turn until either the credit or the queue of waiting data is finished. Data units taking the
standard path would be processed to completion before the next was tested, as discussed
earlier, to permit the next one to be bypassed.

5 Experience
A bypass for the OSI Session and Transport Layers along the general lines described above
has been programmed into a protocol performance testbed described elsewhere [12]. The
standard entities in the testbed were implemented on parallel processors, and this both
biased the test against the bypass and also complicated the sharing of data and the
entity empty tests, which were implemented with inter-process messages. Nonetheless,
even in this rather hostile framework, the bypass roughly doubled the throughput of a
long sequence of data packets.

The task architecture of the implementation is shown in Figure 4. A real-time kernel
called Unison [13] was used; Unison has parallel tasks with send-receive-reply messages
and a task can send to or receive from specific ports, shown as little parallelograms within
the larger shapes representing tasks. The processors were MC68020’s on a VME bus.
The two ends of the connection were run on the same backplane, so the net work delay
is insignificant and flow control is not a problem; in any case only Transport level 0 was
implemented so flow control was not an issue.

The protocol bypass concept was applied to an implementation of the OSI session
and transport layers written in C and running on a common bus multiprocessor. The
original software consisted of four layers: a user aplication, a session and transport layer,
and a vestigial network layer. (The latter was simply used to provide the proper interface
to the transport layer and to connect the source and destination together.) This design,
including the modification for bypassing, is illustrated in Figure 4.

The protocol software must be capable of handling traffic in both directions simulta-
neously, therefore layers cannot send messages directly to one and another. If they did,

10

deadlock would arise when two layers tried to communicate with each other at the same
time. Consequently, each layer consists of up to three tasks. The first task implements
the actual functionality of the layer while the others are used to transport data from one
layer to the next.

For protocol bypassing, the original design was augmented by changing the network
and application layer software to reroute messages directly to each other. The bypass is
designed so that the user layer always attempts to send data using the bypass route, the
exception occuring when data must be segmented. Incoming packets are initially routed
through the main protcol software. However, once a data connection is established, the
network layer, through the bypass software, also attempts to route data through the
bypass channel. Packets which fail to match the bypassing criteria are routed in the
normal manner. The modifications to the architecture are indicated by shaded portions
in Figure 4.

Experimental Configurations
In the original design, up to eight processors were used: one processor was assigned to
each of the session and transport entities, to each half of the user-level software, and
to each half of the interface between protocol stacks. This configuration exploited the
maximum degree of parallelism on the hardware. The protocol software could also be
partitioned to run on only two processors. In this configuration, all of the software
making up the source half of the connection ran on one processor, while the destination
half ran on the other.

The bypassing variant of this software was also designed to run on multiple processors.
Since the bulk of the protocol bypass software is found in the user and network layers, no
additional processors are needed. Furthermore, when the bypassing is operational, only
four of the eight processors are active because the session and transport layer tasks are
not used.

Results
Tables 1 and 2 present the throughput of the system when configured with one processor
per party (two processors in the testbed) or four processors per party, (eight processors
in the testbed) respectively. In the latter case each major task in Figure 4 had its own
processor. These tests were conducted using a Class 0 transport connection sending data
in one direction only. The performance improvement by using bypass ranges from 120%
for small packet sizes to 75% for larger packet sizes, when using just two processors. When
tested using the eight-processor configuration, the throughput improvement ranges from
50% down to 25%.

It is notable that a bypass using only one processor per party was uniformly better
than a parallel implementation on four processors per party without bypassing. This is
due to the inherent efficiency of the bypass concept. For messages of 500 bytes and over
the multiprocessor implementation with the bypass performed worse than the unipro-
cessor implementation. This appears to be because of bus saturation, since the bypass
coordination and inter-layer data-passing both placed loads on the bus in the multipro-
cessor case.

11

Figure 4: Protocol Software Task Architecture (one end). The parallelograms represent
 tasks; the arrows are for the direction of sending messages. The shaded components
 implement the bypass (sending on the right, receiving on the left).

12

Message Size Throughput
(octets) (bits/sec)

Standard Bypassed
20 27000 59000
50 65000 143000

100 126000 273000
200 235000 502000
500 473000 1009000

1000 717000 1496000
2000 965000 1845000
5000 1216000 2146000

Table 1: Throughput - One Processor per Party (2 processors in all)

Message Size Throughput
(octets) (bits/sec)

Standard Bypassed
20 47000 70000
50 114000 167000

100 215000 300000
200 387000 525000
500 742000 965000

1000 1057000 1322000
2000 1297000 1608000
5000 1485000 1844000

Table 2: Throughput - Four Processors per Party (8 processors in all)

6 Deriving a Formal Specification for a Bypass
In order to bypass a certain set of layers of a given protocol, with a known formal
specification, we seek a method for formally deriving the bypass from the protocol. This
would avoid hand-derivation, with its attendant likelihood of error. This section describes
an approach which formalizes the discussion of sections 3, 4, 5. The approach is not the
only one possible, and indeed has been deliberately restricted, for simplicity. It has two
steps:

1. restrict the permitted concurrency in the standard protocol specification (let us
call it SPS), without restricting its functionality, by imposing a “single-event”
condition SE; this is always possible.

2. project the restricted specification into a subspecification B for a bypass path. It is
guarded by defined conditions which become part of the bypass test for that path.

For brevity, the remainder of this section only indicates how a formal derivation could
be constructed, based on a LOTOS-like FDT [14]. Define:

13

SPS(u, l) the set of protocol entities to be bypassed, defined as a process
communicating through an upper gate u and a lower gate l,

user(u) the user of the topmost service provided by SPS,
provider(l) the service provider to the bottom-most entity in SPS,
ES the empty-stack condition, satisfied by SPS when all its

protocol entities are blocked awaiting events and all
its FIFOs are empty.

We consider ES to be applied to operations and data units for a single connection.
When ES is true and an event arrives at either u or l it initiates processing by SPS,
and the period until ES is true again is a busy period for SPS.

By adding some mechanism, such as a process scheduler or a screening process which
filters the inputs to SPS, a restricted process SPS ′ (u, l) can be derived which always
processes each input event at u or l until ES is true, that is until all possible interactions
(internal and external) are exhausted, before accepting input again. Since protocol spec-
ifications make no assumption about the arrival time of the next event, this restriction
can always be contructed in such a way to still satisfy the protocol specification and
without introducing deadlocks. That is, SPS ′ is a correct implementation of SPS. We
will not attempt to define SPS ′ formally here. If we denote a generic external event as
‘ul’ (meaning u or l) then one event is processed by STACK, defined as follows:

STACK = ul → SPS ′

This can also be expressed as a combination of a send process SPSS ′ for u, and an
alternative receive process SPSR′ for l:

STACK = ul → SPS ′ = u → SPSS ′|l → SPSR′.

We will define the above notation to permit shared data between the alternative
processes SPSS ′, SPSR′. Now we divide the event stream into components ub, lb and
uln:
ub for those ‘send’ events u for which the data associated with the events satisfies bypass

conditions for sending (e.g., a small enough data unit),

lb similarly for bypassable events l, for receiving,

uln for all the other events, that cannot be bypassed,
and we also introduce a pair of guard conditions gs and gr, which are satisfied if the
internal state of SPS ′ is satisfactory for send bypass, and receive bypass processing,
respectively. The process notation

ub(gs) → SPSS ′

represents an event ub and satisfaction of the guard condition gs together leading to
SPSS ′. gs and gr must satisfy

ub(gs) → SPSS ′ = ub → SPS ′

lb(gr) → SPSR′ = lb → SPS ′

Then

ul → SPS ′ = ub → SPS ′|lb → SPS ′|uln → SPS ′

ul → SPS ′ = ub(gs) → SPSS ′|lb(gr) → SPSR′|uln → SPS ′. (1)

14

Finally we define bypass processes BS for send, BR for receive, in any way that satisfies

ub(gs) → BS = ub(gs) → SPSS ′

lb(gr) → BR = lb(gr) → SPSR′ (2)

The construction (2) implies that SPSS ′, SPSR′, BS and BR have the same restriction
on concurrency as SPS ′. Combining (1) and (2) we obtain

STACK = ul → SPS ′ = ub(gs) → BS|lb(gr) → BR|uln → SPS ′

With recursion the resulting process X is

X = (ub(gs) → BS|lb(gr) → BR|uln → SPS ′); X

This discussion which ends here, opens up a number of further questions about formal
descriptions:

• how to formally describe all the necessary process properties (i.e., is LOTOS able
to do it?);

• how to specify SPS ′, SPSS ′, SPSR′;
• how to specify the guard consitions gs, gr;

• how to split the event stream into the components ub, sb, etc.

• how to derive BS and BR from SPS ′.

7 Effects of a Bypass on the Implementation of the
Standard Stack SPS

An attractive notion is to be able to add a bypass to any standard stack implementation
without modifying the latter at all. This is possible in principle because the tests are
external to the stack; the only requirement is sharing of the stack state data. Because
mutual exclusion is provided by the relative atomicity and empty stack conditions, only
the location and coding of the necessary state must be known. Because our own imple-
mentation in Section 6 did data-sharing and established the empty stack condition with
messages, it required extensive changes to the standard entitites.

In practice it is somewhat doubtful that the empty stack condition can be established
without at least a thorough knowledge of the implementation, as it is not part of the
protocol standard.

8 Conclusions
The present paper has described a bypass or “fast path” concept which may be used
with layered protocols. It has described it informally, described implementation expe-
rience, and discussed how bypasses may be specified formally. It seems that, as an
implementation technique, bypassing offers significant immediate performance payoffs.
The specification problem raises some challenging issues, listed above.

An interesting question opened here is that of deriving a projection of a protocol or
other asynchronous process, into a “subspace” of processes constrained by more-or-less
arbitrary conditions such as those for bypassing. Also a better technique for connecting
and controlling the bypass may be found, which would not require the ES condition, but
rather would allow full concurrency on at least one path.

15

Acknowledgements
Discussions with Luigi Logrippo and Moshe Krieger were helpful in formulating the prob-
lem, as was a course-work project report by Cecilia Geldrez and Yueping Lu on a different
version of the problem.

This research was supported by the Ontario government program of Centers of Excel-
lence, through the Telecom Software Methods Project of TRIO, the Telecommunications
Research Institute of Ontario.

References
[1] Int’l Standard Organization, Information Processing Systems - Open Systems Interconnection –

Part 1: Basic Reference Model, ISO7498-1.

[2] W. Stallings, Handbook of Computer-Communications Standards, vol. 1. New York: Macmillan
Publishing Company, 1987.

[3] M. Kaminski, “Protocols for communicating in the factory,” IEEE Spectrum, April 1986.

[4] W. Zwaenepoel, “Protocols for large data transfers over local networks,” in ACM SIGCOMM
Computer Communication Review, vol. 15, no. 4, Proc. of Ninth Data Communications Symposium,
September 1985.

[5] J. Carter and W. Zwaenepoel, “Optimistic implementation of bulk data transfer protocols,” in
Performance Evaluation Review and Performance ’89, vol. 17, no. 1, ACM SIGMETRICS and
IFIP, May 1989.

[6] E. Nordmark and D. Cheriton, “Experiences from VMTP: How to achieve low response time,” in
Proc. IFIP Workshop on Protocols for High-Speed Networks, pp. 1–15, May 1989.

[7] Protocol Engines Inc., XTP Protocol Definition, version 3.3, December 1988.

[8] L. Svobodova, “Measured performance of transport service in LANs,” Computer Networks and
ISDN Systems, vol. 18, pp. 31–45, 1989.

[9] D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An analysis of TCP processing overhead,”
IEEE Communications Magazine, vol. 27, pp. 23–29, June 1989.

[10] D. Clark, M. Lambert, and L. Zhang, “NETBLT: A high throughput transport protocol,” in Fron-
tiers in Computer Communications Technology: Proc. of the ACM-SIGCOMM ’87, (Stowe, VT),
pp. 353–359, Association for Computing Machinery, August 1987.

[11] C. Smith, “Independent general principles for constructing responsive software systems,” ACM
Trans. on Computer Systems, vol. 4, February 1986.

[12] G. Franks and C. Woodside, “Some software designs for OSI protocols in a Harmony/Unison en-
vironment,” in Proceedings of the Canadian Conference of Electrical and Computer Engineering,
(Montreal, P.Q.), September 1989.

[13] Multiprocessor Toolsmiths Incorporated, Unison Real-Time Multitasking, Multiprocessing Operat-
ing System User’s Guide, 1987.

[14] O.S.I., “LOTOS: A formal description technique based on temporal ordering of observational be-
havior,” International Organization for Standardization, Information Processing Systems, Open
Systems Interconnection, vol. ISO8807, 1988.

16

