Solving Stochastic Rendezvous Networks of Large
Client-Server Systems with Symmetric Replication

by

Amy M. Pan

A thesis submitted to
the Faculty of Graduate Studies and Research
in partial fulfilment of
the requirements for the degree of

Master of Engineering

Ottawa-Carleton Institute for Electrical Engineering
Faculty of Engineering
Department of Systems and Computer Engineering
Carleton University
Ottawa, Ontario, Canada, K1S 5B6

5 September 2001

[1 Copyright 1996, Amy M. Pan

The undersigned recommend to the Faculty of Graduate Studies
and Research acceptance of the thesis

Solving Stochastic Rendezvous Networks of Large Client-Server Systems
with Symmetric Replication
submitted by Amy M. Pan, B.Eng.

in partial fulfillment of the requirements for
the degree of Master of Engineering

Chair, Department of Systems and Computer Engineering

Thesis Supervisor

Carleton University
5 September 2001

Abstract

As industry moves towards distributed client-server systems, the performance of these
systems has gained attention. Distributed systems may consist of a large number of
components with functionality distributed throughout the components. Analytical methods,
which use queueing theory, are suitable for the performance study of large systems.
However, for practical purposes, they may be limited to the size of the system that can be
solved. This thesis extends the performance analysis toolset, Stochastic Rendezvous
Network (SRVN) models and the Layered Queueing Network Solver (LQNS), to handle
large systems with groups of so called replicated components that are homogeneous from
a performance modeling point of view. The analytical method described removes the
limitation on the size of these large systems that can be analyzed by the toolset. The method
includes the use of a simple model definition for large systems and a solver that is quick

and memory efficient.

Page iii

Acknowledgments

| would like to thank my supervisor, Professor C. Murray Woodside, for his guidance
and advice throughout this thesis. | would also like to thank Greg Franks for his assistance
and explanations. Thanks go to my fellow grad students and the performance group for
their support, and to Curtis Hrischuk for the use of his thesis template. | am grateful to my

family and friends for their moral support and encouragement.

Finally, | wish to thank Bell Sygma for funding this research.

Page iv

Table of Contents

Chapter 1.0 Introductionl

1.1 Performance Analysisl
1.2 Motivation4
1.3 Contributions to Research5

1.4 Thesis Organization5

Chapter 2.0 Background7

2.1 SRVN Model7
2.1.1 General Description7
2.1.2 Creating an SRVN Model9
2.2 The Method of Layers (MOL)12
2.3 Queueing Theory13
2.3.1 Chainvs. Class14
2.3.2 Mean Value Analysis (MVA)15
2.3.3 Method of Surrogate Delays20
2.4 Fixed-Point Iterative Methods22
2.4.1 Gauss-Seidel Iteration23
2.4.2 Newton-Raphson Method24

Chapter 3.0 Layered Queueing Network Solver (LQNS)27

3.1 General Overview of the LQNS Tool27

3.2 Solving the SRVN Model28
3.2.1 Mapping A Layer To a Queueing Network28
3.2.2 Solving Between Layers32

Page v

3.3 Implementation Structure33

3.3.1 Classes33

Chapter 4.0 Representation of Replicated Systems36

4.1 Introduction36

4.2 Notation37

4.3 Replicated Systems39
4.4 Identifying Replication46

4.5 Concentrated vs. Diffused Replication47

Chapter 5.0 Solving Models With Replication51

5.1 Introduction51

5.2 Problem Statement52

5.3 Chain Construction55

5.4 Service Time Calculation63
5.5 Interpretation of Results67
5.6 Convergence69

5.7 Implementation76

5.8 Tests81

5.9 Limitations98

Chapter 6.0 Case Study99

6.1 Introduction99

6.2 Capacity Planning for a Large Client-Server System99

Chapter 7.0 Conclusion110

Page vi

7.1 Research Summary110
7.2 Future Work112

References113

Page vii

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:

List of Figures

SRVIN PRASES ...ttt 8
ClEeNt-SErver SYSIEMcccc e e e e e e e 11
SRVN Model of Client-Server SYyStemccooeevviiiiiieveiiceinn e 11
SRVN Model With ENHESoviiiiiiiiiieeece e 12
Closed Queueing NEtWOIK.............uuruiiiiiiiiiee e e e e ea e 14
Exact MVA AlQOTithmueeeiiii s e e e 18
Approximate MVA Algorithm (Bard-Schweitzer)cccccevvvvvveviiiinnnnns 19
7@ RSN] 015 V] (=] o USRS 21
Models for Solving the I/O SyStemcoovvveiiiiiiiiiiiee e 22
Convergence of the Gauss-Seidel Iteration...............cceeeeieiniiieeeeeeeeeeeeeienns 24
Newton-Raphson Methodooorviiiiii e, 25
(O]\ S @ 0] 1= 29
Y0 o] oo (= ES (o T g o [0 = 7 31
Queueing Network for Submodel 2 of Figure 13ccoooeeeeeiiiiiiieeeiiiinns 32
Class Hierarchy Diagram.............uuuuuuuiiiiiiiieeeeeeeeeeeeeeeeeeaesaennsa e e e e e eeeaaes 35
System with Replicated TAaSKSuuvuiiiiiiiieiii e 39
Replicated Representation of Figure 16...........cccoovvvvvviiiiiiiiiiiiiiee e 39
p I =T B [TS Y £S = o 40
Replicated Representation of All Fan-In System (Figure 18) 41
All FaN-OUL SYSTEM ... e e e e e e e e e e eeeaaanee 42
Replicated Representation of All Fan-Out System (Figure 20)................. 43
System with Fan-in and Fan-out.............cccooovviveiiiiicccee e 43
Replicated Notation for FIQUIE 22coooviiieiiiiiiiicieee e, 44
System WIth ENrEScooe e e e e 45

Page viii

Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:

Replicated Representation of System with Entries...........cccceeeeeeiiniieeeeeenn. 46
Deceptive RepliCatioNuuuuuiiiiiiiiee e e e e e e eeaaanees a7
[q=T o] [Tor= T =0 101 o o =] PRSP 48
Concentrated Replication Interpretation of Figure 27cccovvvvvvvvinnnns 49
A Diffused Replication Interpretation of Figure 27...........cccceeeeevivevvvennnns 50
FUITIMOGEL......eeeeee e 53
Replicated Model of Figure 30oovveviiiiiiiiiiiiiee e 53
Queueing Network for Full Model (Figure 30)ccoovvvviiviiiiiiiiciceeeeene. 56
Queueing Network for Replicated Model (Figure 31)........cccovvvvvivvvennnnnnn. 57
Full Model with Task B Replicated 20 TIMEScccevvvvvvvriiiiiiiieeeeeeeeeee, 60
Queueing Network for Full Model of Figure 34...........ooovvvviiiiiiciiieieeeenn. 61
Replicated Model of Figure 34oooveeeeeiiiiiiie e 62
Replicated Queueing Network for Figure 36............cuuvviviiiiiiiiiieieeeeeeeee, 62
Replicated Sub-Queueing Network for Chain L........ccccoeeeviiiiiiiiiiiiciiniiinns 64
General TASKS........ueiiiiieee e 67
Replicated Sub-Queueing Network for Chain 2........ccccoeeeviiiiiiiiiiiiieeeiiinns 68
Replicated Sub-Queueing Network for Chain 3........ccccoeeeviiiiiiiiiiiieeieiiinns 69
Pseudo-Code for “INNer” Herationceceeiiiriiiee e 77
Pseudo-Code for Chain CONSLIUCHONccocvviiiieeiiiiiiiee e 78
Pseudo-Code for ModifyClientServiceTimecoevvvveiiveiiiiiiiieeeeeeeeeeee, 79
Pseudo-Code for waitEXCeptChainccccoeeeeiiiiiiieeeeeeee e 80
Input File for Replication EXample........cccoooviiiiiiiiiiiiieeeeeee e 81
Full Model for Mixed System (Cas€ 2)ccueverirvvriiiiiiiieeeeeeeeeeeeeeeeeeannnnens 87
Replicated Model for Mixed System (Case 2).......cccceevveeeieeeeeeeeeieeeeiieiinnnnns 88
Replicated Model of Multi-Entried System (Case 3)cccvvvvvvvvvvvnniinnnnnn. 90
Replicated Model of Multi-Layered System (Case 4)ccevvvvvevvvvvnnnnns 93

Page ix

Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:

Database SYSIEMuuiiiiiiiie e —————————— 101
SRVN Model of Database SYStemMcccceviiiiiieeiiiiiieeeerrr e 102
SRVN Model With ENtIESovviiiiiiiiiiiie e 106
SRVN Model of Database System with Three Regional Servers............ 107
Performance of Database SYSteMcccooveiiiiiiiiiiiieeeceee e 108
Effect on Performance of Off-Loading to Regional Servers.................... 109

Page x

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:

List of Tables

Cycle Time Results for Replication Example (Case 1)cccccvvvvvnnnnee. 84
Throughput Results for Replication Example (Case 1)ccoeeeveiinnnee 84
Task Utilization Results for Replication Example (Case 1)........ccccccceeee.... 85
Processor Utilization Results for Replication Example (Case 1).............. 85
Cycle Time Results for Mixed System (Case 2)cccccvvvvvvriiiieeieeennnenn. 88
Throughput Results for Mixed System (Case 2)......cccceeeveeeeeeeeeeeiieeeeeinnnnns 89
Task Utilization Results for Mixed System (Case 2)coceeevvvvvvnnnnne. 89
Processor Utilization Results for Mixed System (Case 2)cccvvvveeee. 90
Cycle Time Results for Multi-Entried System (Case 3)..........cccceevvviiinnee 91
Throughput Results for Multi-Entried System (Case 3)cooovviiiinneee 91
Task Utilization Results for Multi-Entried System (Case 3)..................... 92
Processor Utilization Results for Multi-Entried System (Case 3)............. 93
Cycle Time Results for Multi-Layered System (Case 4)cccvvvvvvveeeeen. 94
Throughput Results for Multi-Layered System (Case 4).........cccccvvvvvvnnene. 94
Task Utilization Results for Multi-Layered System (Case 4) 95
Processor Utilization Results for Multi-Layered System (Case 4) 95
Cycle Time Results Using Newton-Raphson (Case 5).........eceevvvviiiiineennnn. 96
Throughput Results for Using Newton-Raphson (Case 5)..............ooeeee. 96
Task Utilization Results for Using Newton-Raphson (Case 5)................. 97
Processor Utilization Results for Using Newton-Raphson (Case 5)......... 97

Page xi

List of Symbols

Replication Notation

Fag Fan-out of task A to B
Fag Fan-in of task B from A
Ka Number of replicas of task A
Sa Phase service time of task A
MVA
D¢k Service demand of chain c at device k
Nc Number of customers in chain ¢
Qx Average number of customers at device k
Qe k Average number of customers at chain c at device k
Re.k Residence time of chain c at device k
Xe Chain ¢ system throughput
Z Think time of chain c

Replication Method

Lis Queue length of chain k at server s

Ny Number of tokens for chain k

Rkm Residence time of chain k at station m

Skt Modified service time of client station t for chain k
Sit Service time of client station t for chain k

Vim Visits to station m by chain k

Wim Waiting time of chain k at station m

Xkm Throughput of chain k at station m

Xm Throughput of station m

Yks Number of visits to server s by chain k
Zy Surrogate delay of chain k

Page xii

Chapter 1.0 Introduction

1.1 Performance Analysis

The performance of distributed systems is gaining interest because of the trend in
industry towards replacing mainframe systems with client-server systems. Client-server
systems for business may contain a large number of components with functionality
distributed throughout the system. Performance studies are conducted to analyze these
large systems for purposes of capacity planning and software performance engineering.
However, the practicality of modeling and analyzing these systems may be limited by the
size of the system. The purpose of this thesis is to provide analytical means whereby very

large client-server systems may be evaluated for their performance.

A client-server system consists of a client entity which is any process that issues
requests to other server processes via a remote procedure call (RPC). The server only
responds to requests and hides the details of the server environment from the client. The
client and server may reside on separate processors and delays may occur in their
communication due to network delays and overhead processing. An example of a client-
server system is a network file server with the applications running on the workstations as
the clients. An entity may act as a server to another entity but may itself be a client
requesting service from another server. In such multi-tiered systems, the performance
issues are more complex and unpredictable since the response time of an entity is not only
dependent on the server it calls directly but also on any other underlying servers. An
example of a multi-tiered client-server system is a distributed on-line transaction
processing (OLTP) system where a transaction manager receives requests from client

application tasks. The transaction manager may translate the requests and forward them on

Page 1

Chapter 1.0: Introduction Page 2

to a database manager. In this case, the transaction manager is an intermediate layer which

acts as a client to the database manager while acting as a server to the application task.

Capacity planning and software performance engineering (SPE) are two activities
which study the performance of systems such as client-server systems. Capacity planning
predicts whether a computer system can support the growth of existing applications, a
change in system parameters and configuration, or the addition of new applications without
violating user-specified service levels such as a specific response time or processor
utilization [Menasce 94]. (The reader is referred to the book by Menasce et al. [Menasce
94] for a complete description of capacity planning.) Software performance engineering
(SPE) is the process of constructing software systems that meet performance objectives.
SPE is used throughput the software engineering life-cycle. It is used to discard
unacceptable designs and to identify designs likely to yield satisfactory performance
results [Menasce 94]. (The reader is referred to the book by Connie Smith [Smith 90] for a
more complete description of SPE.) Both capacity planning and SPE use performance

modeling techniques in the performance analysis of systems.

A performance model represents the behavior of a system in terms of its performance
[Menasce 94]. It may be used to model an existing system or one that is being developed.
The parameters of the model of an existing system may be obtained through measurement
while for future systems the parameters must be estimated or guessed. The parameters of
interest are the service demands and visit ratios of each system entity. In addition, for
transaction processing systems, the parameters needed are the average transaction arrival
rate and the maximum degree of multiprogramming which is the number of transactions
that can be in execution at a given time. For interactive systems, the additional parameters
are the average think time which is the time a user takes before issuing a command, the

number of terminals, and the maximum degree of multiprogramming.

Chapter 1.0: Introduction Page 3

The results of solving the performance model are the performance metrics or measures.
The desired metrics are response times, throughput and utilization. A response time is the
time interval between a user’s request to the system and when the user receives a response
from the system. The throughput s the rate at which the requests are serviced by the system
[Jain 91]. Typically, it is desirable for a system to have a short response time and high
throughput. To improve the performance, the bottleneck of the system must often be found.
The bottleneck is the component with the highest utilization. The utilization of a

component is the fraction of time the component is busy servicing requests [Jain 91].

There are two main ways of solving performance models, simulation and analytical
solutions. Simulation models are based on computer programs that emulate the different
dynamic aspects of a system and their static structure. Simulation models require a great
deal of detail thereby making them expensive to run and develop. Analytical models, on
the other hand, are based on sets of formulae or computational algorithms which provide
the values of desired performance metrics as a function of the set of values of the
performance parameters [Menasce 94]. Although simulation models may provide more
accurate results, analytical models are useful for analyzing large systems since they are
computationally more efficient and their parameters are easier to obtain due to their higher

level of abstraction.

In this thesis, the focus is on analytical methods for solving performance models of
large client-server systems. The Stochastic Rendezvous Network Model (SRVN) proposed
by Woodside [Wood 95a] and the Layered Queueing Network Solver (LQNS) [Franks 94]
[Rolia 95] are the basis for solving such systems. The SRVN is used to model a client-

server system, and LQNS is used to solve the SRVN model.

Chapter 1.0: Introduction Page 4

1.2 Motivation

This research was prompted by the performance study of a large industrial two-tiered
client-server system. The system consists of several local-area networks (LANs) connected
to two mainframes via a wide-area network (WAN) and backbone network. Each LAN
consists of workstations which are serviced by a local server. In turn, the local servers seek
service from the two mainframes. The number of workstations is in the thousands while the
LANSs are in the order of hundreds. Several performance issues are of interest such as where
to deploy the software functionality to give the highest overall system throughput and
where the bottleneck areas are if configurations are changed (e.g. more workstations are
added). Because of the large size of the system, an analytical method is deemed to be more
suitable than simulation in evaluating the performance of the system. This particular
system is just one example of a new and widespread class of systems, as already described.

The research applies to the broader class as well, including multi-tiered systems.

Analytical tools are available for studying the software performance of client-server
systems, but their scope is limited by the size of the system. One such toolset is the
Stochastic Rendezvous Network (SRVN) proposed by Woodside with the underlying
Layered Queueing Network Solver (LQNS). The SRVN model is solved using queueing
theory by the LQNS software tool. For studying large client-server systems (greater than
100 tasks), such as the industrial system in question, a group of client tasks or a group of
server tasks may have similar performance parameters and thus similar performance
metrics. It may also be possible to simplify the model by generalizing some tasks. The
replication of these tasks has the advantage of simplifying the SRVN model representation
of the system as well as in simplifying the computation. The thesis describes a simplified

notation for replication and an algorithm that uses the replication of tasks to save on the

Chapter 1.0: Introduction Page 5

computational time and memory used by the LQNS. In simplifying the SRVN model, the

subsequent presentation of performance metrics is also reduced.

1.3 Contributions to Research

The contributions made by this thesis are:

The details of a model for simplifying the representation of large systems for
performance analysis, suggested by Professor C. Murray Woodside [Wood 95b],

are developed. Fewer entities and interactions are required in the model.

* A method, based on the method of surrogate delays, that enables the solving of the
performance model of large systems is proposed. The method removes the size

limitations on the LQNS solver.

* A Newton-Raphson iteration technique was developed to improve the convergence

of the iteration step of the method.

» The solution strategy of the method was evaluated by examples and a case study of
a real system. The accuracy of the method is best using the Schweitzer

approximate MVA.

1.4 Thesis Organization

The thesis first provides some background material in Chapter 2 on the SRVN model
used to model systems for performance analysis. Queueing theory is reviewed since it is
used to actually solve the SRVN model. Some numerical methods used in the convergence
of the proposed replication algorithm are presented. The LQNS tool which is modified to
apply the replication method is described in Chapter 3. Chapter 4 presents the notation for
representing systems with replication, and Chapter 5 describes the new method proposed

to handle the solving of large systems with replicated tasks. Chapter 5 also gives some test

Chapter 1.0: Introduction Page 6

results for the method on modest-sized systems. The new method is applied in Chapter 6
to a case study of the large industrial system mentioned above. Finally, some conclusions

are drawn in Chapter 7.

Chapter 2.0 Background

2.1 SRVN Model

The Stochastic Rendezvous Network (SRVN), proposed by Woodside et al. [Wood
95a] [Wood 88], is the model used in the performance analysis method discussed in this
thesis. The SRVN performance model is used mainly to model a system with software
gueueing and rendezvous, although hardware elements may also be included in the model.
The model is well-suited for systems with parallel tasks running on a multiprocessor or on
a network, such as a client-server system. The SRVN modeling strategy is described with
its terminology and notation which are used by the Layered Queueing Network Solver
(LQNS) tool discussed in Chapter 3. Modeling a software system as an SRVN model is also

discussed.

2.1.1 General Description

SRVN is used to model a software system consisting of several concurrent tasks
communicating with each other via the rendezvous mechanism. A client task initiates the
rendezvous with a server task and is blocked until a reply from the server is received. The
execution time during which the server services the request is called the first phase service
time. Any operation taken by the server after sending the reply is executed in the second or
subsequent phases. These phases are executed autonomously by the server task and run
concurrently with the client task. In the first phase, the server may rendezvous with other
tasks to service the client request. These are referred to as “included service times”. Figure
1 diagrams the interactions. Asynchronous interactions may also be modeled with the client

task continuing its execution after sending the request.

Page 7

Chapter 2.0: Background Page 8

rendezvous delay

Client (bIOCked) —
request | included reply
service time
Server

request¢ ? reply

phase 1 (service) phase 2

Figure 1: SRVN Phases

When one server provides more than one service, each of these services is modeled as
an “entry” with its own phase service times. In fact, a task is actually a collection of entries
with one message queue. Between tasks, an entry of one task visits or issues requests to the
entry of another a specified number of times. A task always has at least one entry. Thus, an
SRVN model may be described as a directed graph with nodes that are service entries and

arcs that represent visits from one entry to another [Franks 95].

There may be several layers of tasks (represented by parallelograms) interacting with
tasks from various other layers. (See Figure 3 on page 11). However, no cycles are
permitted in the graph. The top layer of tasks consists of pure client tasks referred to as
reference tasks. Reference tasks do not receive requests but only initiate requests. As a
result, reference tasks do not have phase one service times but only phase two service times.
Contrary to reference tasks, pure server tasks do not initiate requests but only receive
requests. The tasks of the middle layers may act as servers and clients. In Figure 3, WS1
and WS2 are reference tasks while MF is a pure server. LS1 and LS2 are servers when

interacting with WS1 and WS2 but are clients when interacting with MF.

Chapter 2.0: Background Page 9

When one task is visited by more than one client task, there is contention and a
queueing delay. Each task can only visit one task at a time. That is, tasks do not have
internal concurrency and may only execute one entry at a time. There is only one queue for
all the entries in a task. However, software tasks may be multi-threaded. Multi-threaded
tasks are modeled as tasks with multiple copies. Pure client tasks are modeled as infinite

servers with no queueing delay, although they may queue for their processors.

2.1.2 Creating an SRVN Model

To model a software system using SRVN, each software entity is represented as a task
in the SRVN model. Each task is associated with the processor it runs on. The processor
itself is also modeled as a task, although it need not be explicitly represented. Several tasks
may share a processor. In the client-server example, Figure 2, there are two LANs each
consisting of two workstations and a local server. The workstations make requests to the
local server which forwards some of the requests to the mainframe. Workstation 4 may also
make direct requests to the mainframe. There is one task running on each of the
workstations, local servers, and mainframe. Hence, there is a one-to-one mapping from the
entities to the SRVN tasks shown in Figure 3. Each task runs on its own processor which

is not shown in Figure 3.

Once the components of the systems are modeled, the entries of the tasks must be
determined followed by the parameters such as the phase service times and the visits. In the
client-server example, the local servers provide screen update information, forward
database requests, and provide report generation information for the workstations. Each of

the functions is mapped to an entry:

* SCR (screen update)

Chapter 2.0: Background Page 10

» DBA (database requests)
* RPT (report generation)

Similarly, the mainframe provides database access and report information services which
are modeled as entries DB and REP. The mainframe also provides service to autonomous
requests from workstation 4. This is modeled as entry OTH. When a request is received by
a server, itis common for the different functions to be part of a general case statement. Each

case is mapped to an entry.

Each entry has its own phase service times. The phase one service time of the local
server and mainframe entries is the execution time of the code invoked in servicing the
client request before a reply is sent back. The second or subsequent phase service time is
the execution time of the code following the reply. For example, the mainframe can return
the database information to the local server request and then execute some clean-up code.
A reference task, such as the workstation, has one implicit entry and, being a pure client,
only has phase two service time. The phase two service time is the execution time of the

code before the rendezvous to a server is invoked.

The visit ratio between entries are the number of rendezvous calls to the server. The
server is assumed to be ready to receive requests and cycles infinitely. The pure client tasks
continually makes requests with a think time in between requests. Tasks may have outside

inputs in which case it is an open or mixed model.

The parameters may be obtained through instrumentation of the code and
measurements. They may also be estimated from experience and expert judgement. Since
the execution times and visits may be random, the average execution times and frequency

of visits are used.

Chapter 2.0: Background Page 11

LAN 1 LAN 2

L Main-
frame

WS - Workstation
LS - Local Server

Figure 2: Client-Server System

WS1 /WSZ/ / WS3/
LS1 /| LS2

MF - Mainframe

Figure 3: SRVN Model of Client-Server System

Chapter 2.0: Background Page 12

WSl WSZ/

LS1 LS2
Scy/DBA RPT SC DBA/RPT

DB /REP/OTH / M

Figure 4: SRVN Model with Entries

2.2 The Method of Layers (MOL)

The method of layers [Rolia 95] [Rolia 92] is the basis of the LQNS “Merged-Layerize”
strategy described in Chapter 3. MOL is used to predict the performance measures of
systems by viewing a performance model as a sequence of layered queueing models
(LQMSs). Each LQM is divided into two complementary models, one for software and one
for devices. The results of solving the two models are combined along with the results of
all the LQMs to obtain the performance measures of the system. The models are solved
using a modified version of Linearizer. (Linearizer is discussed in Sect. 2.3.) The LQNS
“Merged-Layerize” strategy differs here in that devices are not solved in a separate model
per se. However, it does follow MOL in the basic layering strategy and in representing

clients as queueing network job classes.

Chapter 2.0: Background Page 13

2.3 Queueing Theory

The Layered Queueing Network Solver (LQNS) solves an SRVN model by
representing each layer of the model (referred to as a layer submodel) as a network of
gueues and evaluating the submodels analytically. Since queueing networks are well
known, this section reviews them only briefly for completeness. A queueing network
consists of a collection of service centers with customers, referred to as tokens, visiting the
service centers. There are two types of service centers. The queueing station is a service
center at which customers may need to wait in a queue to receive service. A delay server
(or infinite server) is a service center where customers receive immediate service and there
IS no queueing time. In most models of computer systems, computer terminals or

workstations are represented as delay servers.

In an LQNS layer submodel, the client tasks are represented as delay servers and the
server tasks as queueing stations. There are several parameters associated with each service
center. The most obvious is the service time of each service center. That is, the time the
center takes to actually execute a request. The queueing discipline is another parameter
associated with the queueing stations. In the discussions following, the queueing stations
are assumed to be first-come first-served (FCFS). Another parameter is the visit ratio which

represents the routing probability of tokens to the service centers.

There are three types of queueing networks, open, closed and mixed. In an open
gueueing network, customers enter and leave the network. Therefore, the population of the
network may be infinite. An example of an open network is the model for a transaction
processing system. In a closed queueing network, the population is fixed. That is,
customers circulate in the network but never leave it. An example is a batch processing

system. A mixed queueing network consists of customers that enter and leave the network

Chapter 2.0: Background Page 14

as well as those that circulate within the network. Figure 5 shows an example of a closed

gueueing network with one delay server and two queueing stations.

Basically, the inputs, or known parameters, of a queueing network are the service times
and visit ratios. The results that are of interest are the throughput, utilization, and the

waiting times (or queueing time) at each service center.

Delay Server Queueing Station

Q_
I C)—

Queueing Station

Figure 5: Closed Queueing Network

2.3.1 Chain vs. Class

The customers or tokens of a queueing network, which have similar statistical
characteristics, may be grouped into chains or classes. The terms chain and class are often
used interchangeably. However, in this thesis, the definition specified by Chandy and Sauer
[Chandy 78] is taken. A chain specifies a routing in a queueing network. Tokens that visit

the same service centers with the same frequency are grouped into the same chain. Class is

Chapter 2.0: Background Page 15

associated with a local service center. That is, the service times and distributions may be
different for different classes at a service center. In the SRVN model, the concept of class
is associated with the entries of a task. The tokens of the same chain may actually belong
to a different class at a service center. The terms chain and class become equivalent when
the tokens of the same chain belong to the same classes at all the service centers visited.

Chandy and Sauer refer to this as a “global” class [Chandy 78].

2.3.2 Mean Value Analysis (MVA)

MVA is an algorithm employed to solve closed product-form queueing networks in
steady state to give average performance results for delay and throughput. (Refer to [Jain
91] and [Lazow 84] for a definition of product-form.) The algorithm presented here is for
a model with multiple chains or classes. The terms class and chain are equivalent in this
discussion of the MVA. That is, it assumes that classes are “global” and there is one class
per chain.

The MVA algorithm uses three key equations which are basically derived from Little’s

Law and the Arrival Instant Theorem. Little’s Law states the following [Jain 91]:
Mean number of jobs in a system = mean arrival rate X mean time spent in the system

The arrival instant theorem states that, in a product-form queueing network, the queue
length @) seen by a customer of chaion arrival at a centecis equal to the mean queue
length Q) there with the arriving customer removed from the network [Lazow 84]. That

is,

Ao W(N) = QN1 Eq (2.1)

Chapter 2.0: Background Page 16

whereN = (N, ...,N,) Is the workload intensity vector consisting of all chain population

sizes N), andN—1, is the populatioN with one customer of chamremoved.

The three key equations used in the MVA algorithm follow.

« The service center residence ti(fg) for each chain (uses equation (2.1)),

Re k(N) = D¢ ((1+ A, (N)) (queueing stations) Eq (2.2)

R. (N) = Dg (delay server) Eq (2.3)

whereD, \is the total demand of chamat centek (= service time x visits). Note
that the residence time equals the visits of cliahcentek (Y) times the waiting
time W). ThatisRr, = Y, W, -

» Applying Little’s law to the queueing network as a whole, the througlii for
each chain is,

_ Eq (2.4)

whereZ, is the think time for chain andN is the number of tokens for chain

 Applying Little’s law to each service center, the mean queue le¢@th) for chain
c at centek as well as the total mean queue len@y) @t centek are,

Qc’ k(N) = X(;(N)RcY k(N)

_ C _ Eq (2.5)
Qk(N) = Z Qc, k(N)

c=1

Basically, the algorithm consists of finding an arrival-instant queue lerigth) @nd

using this queue length to find the residence time (equation 2.2). The residence time is then
used to derive the throughput (equation 2.4). Finally, from this throughput a new queue

length may be found (equation 2.5).

Chapter 2.0: Background Page 17

There are two approaches in evaluating the three equations, exact and approximate,

which differ in the way the arrival instant queue lengthAg) are computed. In the exact

method, applicable only to product-form queueing network models, equation (2.1) is

evaluated exactly. The trivial solution of the network for populaio(@,(0) = 0 for all

centersk) is used and applied to equations (2.2) to (2.5). From equation (2.5) the queue
length for the next large population with one more customer in one chain is obtained. The
computation proceeds recursively over increasing populations until the target pophlation
is reached. The exact MVA algorithm is given in Figure 6. The exact MVA requires an
evaluation at every possible population less than the target popul&tiorThe

computational complexity increases with the number of chains and centers.

The approximate method often becomes the more practical solution since it does not
require the evaluation of equations (2.2) to (2.5) for all populations from zero to the full
population. Instead, the arrival instant queue lengfag)(are estimated based on the time
averaged queue lengths at the service centers with the full customer populiti@md
iteration is used to improve the estimate. The algorithm is given in Figure 7 [Lazow 84].
Many different functions may be used to estimate the arrival instant queue lefggh (

The Bard-Schweitzer approximation assumes &a{N) is proportional toQ. (N). The

function used is:

o Ne-1 o0 c _
A W(N) = Q(N-1)= ON_ Qe k(N)D+ z Qj,k(N) Eq (2.6)
¢ j=1(j#c)

Chapter 2.0: Background Page 18

Inputs: Outputs:

C = Number of chains &£ = Chain c system throughput

K = Number of service centers kQ = Average number of customers at device|k
Ne = Number of customers in chain c ¢ = Average number of customers of chain ¢ at
Z; = Think time of chain c device k

D¢k = Service demand of chain c at device k . (R= Residence time of chain c at device k

Initialization:
FOR k =1to K DO Q0) =0;

Iteration:
C
FOR N = 1toz N, DO
c=1
FOR each feasible populatiare (ny, ..., n.) with n total customers DO
BEGIN
FORc=1to CDO
FORk=1to KDO
Rei(n) = Do ; (for delay servers)
Re.k(N) = D 1(1+Q((N - 1)) ;(for queueing stations)
FORc=1to CDO
n
XC(ﬁ) = K < 1
Ze+ Y Re (M)
k=1
FORk=1to KDO
FORc=1to CDO
Qe k(N) = Xe(n) R W(n);
C
QM = ¥ QM)
c=1
END;

Figure 6: Exact MVA Algorithm

Chapter 2.0: Background

Page 19

TNputs and Ouipuis: Same as Figure 6 for exact MVA
Initialization:

delta = 0;

FORc=1to CDO

=&

FOR k=1 to K DOQ (N) =

Iteration:
WHILE delta >¢ DO
BEGIN
FORc=1to CDO
FOR k=1to KDO

FORc=1to CDO
FORk=1to KDO
Rc,k(N) = D¢k

X(N) =

END;

o el NYD c N) © i
AcdN)= Qe kN)g+ Y Qj«(N) %Bard-Schweitzer
[

Rc,k(N) = Dc,k(l"'Ac,k(N))

FORc=1to CDO

FOR k=1to KDO
FORc=1to CDO

Qe (N) = X(N) R (N)
delta = max{delta, QN) - Qg \(N) }
old

Qc, k(N) = Qk(N)

Figure 7: Approximate MVA Algorithm (Bard-Schweitzer)

QYN(N) = 0

%Convergence not reached

% Aci(N) = Qy(N - 1)
% =hQuN).... @N))

i=1(j#c)

%for delay servers
%for queueing stations

old

Chapter 2.0: Background Page 20

Another approximate MVA method is Linearizer [Chandy 82]. This method improves
on the Bard-Schweitzer approximation of the queue length at each device. The Linearizer
considers the fact that there is a fractional change in the queue length with the removal of
a token. That is, the fraction of tokens of a chain that are queued at a device changes with
the change in the number of tokens in the system. However, the method does assume that
the fractional change is linear. Linearizer uses the basic Bard-Schweitzer algorithm to
obtain queue length estimates at populablandN-1.. From the two sets of queue lengths,
the change in fraction of tokens at each device for each chain is calculated. The change in

fraction is then applied to the next iteration for new queue length estimates.

All solution schemes, including the “exact MVA”, of the LQNS include

approximations to the waiting time calculation for service time effects and second phase.

2.3.3 Method of Surrogate Delays

The method of surrogate delays is a key concept in the solving of replicated models and
is also employed in the solving of the SRVN models as a whole. The method, proposed by
Jacobson and Lazowska [Jacob 82], is an approximate solution technique for queueing
network models which have resources that are accessed simultaneously or have an overlap
in possession. Basically, the queueing network is split into multiple models. In each model,
the queueing delay encountered at one of the resources is represented as a delay server. The
gueueing delay is obtained from the model in which the resource is explicitly modeled with
the other resources represented by delay servers. The method iterates the queueing delay
estimates between the models until convergence. Figure 8 gives an example used by

Jacobson and Lazowska.

In the example, the disks in an 1/0O system compete for use of a channel to complete

their data transfer to and from memory. The queueing network is broken into two models.

Chapter 2.0: Background Page 21

In the first model,Figure 9(a), the channel is represented by a delay server while the disks
are represented by queueing stations. In the second model, Figure 9(b), the disks are
represented by a delay server and the channel by a queueing station (actually a flow-
equivalent service center).The two models are solved with the queueing delays in one
model used in the other. The delay value for the delay server in one model is set equal to
the delay (queueing and service) computed in the other model. Initially, the delays are set

to the service time only. Then, they are computed iteratively until convergence.

If the MVA algorithm is inspected, it becomes apparent that basically the residence
times of the stations are being estimated using a fixed-point iteration technique, the Gauss-

Seidel iteration. Each submodel expresses equations of the {otm;(x) . In fact, the

approximate MVA is itself a Gauss-Seidel iteration.

DISK
r__

CPU CHANNEL

DISK

LO |

Figure 8: I/O Subsystem

Chapter 2.0: Background Page 22

CPU CPU
O | -— —OLL T [=
Disks
Channel E '] R
Queueing L 1T 1o Channel Disk Queuing
Delay Delay
(@) (b)

Figure 9: Models for Solving the 1/0 System

2.4 Fixed-Point Iterative Methods

Iterative methods may be used to solve a system of non-linear equations, with the

general form given below, where elimination is usually not feasible.

fi(Xg, X5 %) = 0
fo(X1, X9, ... %) = 0 Eq 2.7)

fr(Xg, X0, ..%) = 0

The Gauss-Seidel iteration and the Newton-Raphson method are two such iterative
methods discussed in the next two sections. Both methods are used in solving replicated

systems as proposed in this thesis.

Chapter 2.0: Background Page 23

2.4.1 Gauss-Seidel Iteration

To solve equation (2.7) using the Gauss-Seidel method, the equation is rearranged into

the following form:

Xy = Fi(Xq, X o2 %)
Xy = Fo(Xq, Xg, ... %) Eq (2.8)

X = Fr(Xg, Xo, ... %)

Iterative methods which solve the equation in the form of equation (2.8) are referred to as

fixed-point iterative methods.

Successive estimates of the solution may be computed with the following Gauss-Seidel

iteration [Davis 86]:

n+1 _ n+1 n+1 n+l1 N n n
i TR X T X X X g e Xy) Eq (2.9)

where the subscript denotes the iteration in which the value was computed.

Starting with an initial estimate and continuing, the solution may converge. However,
convergence is not guaranteed. Figure 10 illustrates graphically the sequence of values
calculated by a Gauss-Seidel iteration for a single equatiorm(x) . The fixed-point, S, is
at the intersection of=x and y=F(x). Figure 10 (a) shows a case where the iteration
converges to the solution S, whereas, (b) shows a case where the iteration diverges.

Convergence occurs iF'(s))<1 . In the case of a system of equations, S is a vegisy,(S

-)

Chapter 2.0: Background Page 24

The iteration used in the method of surrogate delays discussed in Section 2.3.3 is
actually a Gauss-Seidel iteration. Each submodel computes a delay which is one of the

components ox, and the other submodel depends on this delay.

v A 9 y=F(x)

Figure 10: Convergence of the Gauss-Seidel Iteration

2.4.2 Newton-Raphson Method

The Newton-Raphson method may be used to solve a system of non-linear equations
with a more rapid convergence than the Gauss-Seidel method. In this method, the next
iteration value is obtained by taking the derivative of the function at the estimation point.
In this section, the Newton-Raphson method is derived solving the system of equations
given in the form of equation (2.8). That is, a fixed-point Newton-Raphson method is
derived as opposed to other derivations ([Davis 86] [Pearson 86]) where the method solves
the system of equations given in the form of equation (2.7). Figure 11 graphically illustrates

the method for a single equatiar: F(x) . The iteration formula is:

Chapter 2.0: Background Page 25

N F(xn)+F’(xn)(xn+l—Xn) Eq (2.10)

y=F(x)
y

y=X

Figure 11: Newton-Raphson Method

Taking the same examples (Figure 10) for the Gauss-Seidel iteration and applying the
Newton-Raphson method, it can be seen that the convergence is quicker. In the case of
Figure 10 (b) the Newton-Raphson version of the iteration actually converges. The
convergence for the Newton-Raphson method is, however, not guaranteed. Refer to the
references by Davis and Pearson ([Davis 86] [Pearson 86]) for a detailed explanation of the

guadratic convergence of the Newton-Raphson Method.

Extending the Newton-Raphson method to a system of equations gives the following

iteration formula:

Chapter 2.0: Background Page 26

n+1

K= F(x 2+1, n+l Xp) + z F('1”1, n+l .xE)EFxl(ml)—x'(n))E Eq (2.11)

where the subscript denotes the iteration in which the value was computed as in
equation (2.9).

It is apparent from equation (2.11) that there is a great deal of work per iteration. At
each iteration all of the functions must be evaluated as well as the derivatives of each

function with respect to each variable. Then, a system of equations must be solved.

The method may be simplified to reduce the work per iteration. In the simplified
Newton-Raphson method, each equation in the system is considered to be an equation for

just one of the unknowns. The resulting simplified iteration is:

n+1

X = RO L)+Da Filx A AR [O) Eq (2.12)

With this simplified method, fewer functions need to be evaluated and a system of
equations does not need to be solved. Again refer to the references by Davis and Pearson

for a detailed discussion of the simplified method.

In summary, the Newton-Raphson method can be used if the derivative of the function
is easily calculated. The method may be used to increase the speed of convergence and, in

some cases, converges where the Gauss-Seidel fails.

Chapter 3.0 Layered Queueing Network
Solver (LONS)

3.1 General Overview of the LQNS Tool

The Layered Queueing Network Solver (LQNS) is the computational tool that was
modified in this research for use in the performance study of large client-server systems.
The LQNS is a software package that can solve the “Stochastic Rendezvous Network”
(SRVN) which models client-server systems as shown in Figure 3 in Chapter 2. This
chapter gives a general understanding of the LQNS tool which is needed to incorporate the
replication modifications discussed later in Chapter 5. Only the aspects of the tool which
are relevant to the modifications are discussed. For example, the LQNS package may be
used to solve SRVN models using several different layering methods. However, the
discussion in this chapter pertains only to the ‘Merged-Layerize’ layering strategy which is

used by the replication modifications.

The LOQNS software is the solver engine behind the user interfaces Timebench and
Igndef [Hubbard 95]. Timebench, a graphical user interface, and Igndef are used to define
the parameters of the SRVN model, such as service time and visits. Both interfaces
generate a description file, referred to as the input file, from the user supplied description
of the SRVN model. The input file contains information about the processors, tasks, entries
and the visits between entries. (See [Petriu 95] for a full description of the input file.) The
user interfaces invoke the LQNS solver which reads the data in the input file and generates
its own internal description of the SRVN model. That is, it stores the SRVN model

information in its own database. The LQNS then solves the SRVN model layer by layer by

Page 27

Chapter 3.0: Layered Queueing Network Solver (LQNS) Page 28

mapping each layer to a queueing network. The results of solving the SRVN model, such
as the throughput and wait times of tasks, are written to an output file. The output file data
is then processed by the user interface, either Timebench or Igndef, and displayed

accordingly.

It should be noted that the LQNS solver may be invoked independently of the user
interfaces. The input file may be generated manually in the specified format [Petriu 95].
The LOQNS solver is then invoked via a command line and the output file generated may be

inspected for the results. The overall mechanism is shown in Figure 12.

3.2 Solving the SRVN Model

The ‘Merged-Layerize’ strategy used in LQNS solves the SRVN model by utilizing the
method of layers [Rolia 92] and the method of surrogate delays [Jacob 82]. The SRVN
model is divided into submodels with each submodel representing a layer of the model.
Subsequently, each submodel is mapped to a product-form queueing network and is solved
by the MVA algorithm. The station delays are iterated between the submodels until
convergence. The following sections provide the details of the submodels and the iteration

between the submodels.

3.2.1 Mapping A Layer To a Queueing Network

Figure 13 shows the submodels for the example SRVN model shown in Figure 3 in
Chapter 2. The submodels correspond to the layers of the SRVN model. The first submodel
consists of the client and server tasks of the first layer of the SRVN model. The second
submodel, however, not only consists of the tasks in the second layer but also client task

WS4 of the first layer. This task is included in the second submodel since it visits a task

Chapter 3.0: Layered Queueing Network Solver (LQNS) Page 29

SRVN MODEL

l

INPUT FILE
(model description)

l

LONS
(Queueing Network)

OUTPUT FILE
(Results)

Figure 12: LQNS Context

(MF) which is in the second layer. The submodels also contain the processors (P1 to P7)
used by each task. The processor allocations are defined in the input file but usually are not
represented in the SRVN model as seen in Figure 3. In the example, each task has its own
processor, but it is possible for tasks to share processors. The processors are represented

and treated as tasks in the LQNS solver

The LQNS reads in the SRVN model description from the input file and stores the

information internally having broken the model up into submodels or layers as described

Chapter 3.0: Layered Queueing Network Solver (LQNS) Page 30

above. The submodels are stored in terms of SRVN parameters. That is, the service time
and visits are stored in reference to client and server task entries. However, these
parameters and submodels must be translated into queueing network terms to solve the
submodels via MVA. Each submodel is mapped to a product-form queueing network. The
clients in each submodel are represented as delay servers and the server tasks are
represented as queueing stations. As an example, Figure 14 shows the queueing network

associated with submodel 2.

A chain is generated in the queueing network for each client task of the SRVN
submodel. The number of tokens in each chain corresponds to the number of copies of a
client task. A chain traverses all the servers visited by a client. Thus, only one chain may
traverse each client (or delay server) but a server (queueing station) may be traversed by
several chains. (This method of constructing the chains is modified for replicated tasks
described later in Chapter 5.) The visit ratio of the tokens of each chain to the queueing
stations corresponds to the visits made by the client to its servers in the SRVN submodel.
The service time of each entry of the server task of the submodel corresponds to the service
time of each class of the queueing station. For the queueing network of submodel 2 shown
in Figure 14, where each task has one entry and one phase, the chains are generated as
follows (N¢ = number of tokens in chain ki) = visits to station m by chain k tokens):

Chainl: N=1

Vist Vips: Vimre
Chain2: N=1

Vois2 Vape VomF
Chain3: N=1

Vawss Vame

Chapter 3.0: Layered Queueing Network Solver (LQNS) Page 31

WS1 WS2 WS3/ WS4
submodel 1
() [] () () [=2] (75

=] [=] [7]
cNORC

[

e

Figure 13: Submodels for Figure 3

submodel 2

submodel 3

P - Processor

Chapter 3.0: Layered Queueing Network Solver (LQNS) Page 32

LS1 PS5

;

LS?2 MF

\
7

WS4

P6

v

Figure 14: Queueing Network for Submodel 2 of Figure 13

3.2.2 Solving Between Layers

Since the SRVN model consists of several interacting layers, the parameters of each
submodel, representing a layer, must somehow relate to the layers or submodels it interacts
with. The method of surrogate delays [Jacob 82] is employed. The delay that a task
encounters in one layer (or submodel) is represented as a surrogate delay in another layer
(or submodel) that also contains that task. For example in Figure 13, the residence time
calculated for client task WS4 in submodel 1 is used as the service time of client task WS4
in solving submodel 2. Likewise, once submodel 2 is solved, its residence time for task
WS4 is used as the service time when solving submodel 1. The service time of a task as a
client is calculated from the residence time or service time of the task at all layers except
its own layer. For server tasks, the service time of the task is obtained by adding all the

delays of that task in all layers. For example, the service time of server task LS1 in

Chapter 3.0: Layered Queueing Network Solver (LQNS) Page 33

submodel 1 is added to the residence time of the same task calculated in submodel 2 to
obtain the task LS1 service time to be used in solving submodel 1. The idle time (or think

time) of a client task is calculated from the utilization of that task when it acts as a server.

The SRVN model is solved by initially solving the submodels from the top layer down.
The service time values are used between submodels. A Gauss-Seidel iteration is
employed, and the submodels are solved until all the service time values reach

convergence. That is, the differences between all the values are less than a defined value

usually in the range of 19

3.3 Implementation Structure

The LQNS tool has been designed using an object-oriented approach and is
implemented in C++. Two models are employed within the LQNS. One model is the SRVN
model and the other is the MVA queueing network model. The components of each model
are mapped to object classes. The class hierarchy diagram for the two models is shown in

Figure 15 [Franks 94]. The notation of Rumbaugh is used [Rumb 91].

3.3.1 Classes
A. Classes for Model Building

These classes are used to store and manipulate the parameters of the SRVN model. The
major components of the SRVN model are tasks and processors. Cleaskesnd
Processordefine these two components respectively. Since processors are essentially
viewed as tasks in the SRVN model, processor objects have some attributes and operations
that are common with task objects. The common features are grouped ifcoléysthe
abstract superclass of subclassaskandProcessor(The notation for this relationship is

the triangle.) Since tasks must run on a processor (task entities are actually clients to the

Chapter 3.0: Layered Queueing Network Solver (LQNS) Page 34

processor entities), there is a many-to-one association between the two classes. The solid
ball at classTaskindicates that many task instances may be associated with one processor
instance, thus modeling the fact that many tasks can run on one processor but a given task

may only run on a single processor.

The entries of the SRVN model are modeled as a separate class. An aggregation
relationship exists between the cldsstry and clas€ntity since a task (or processor) is
essentially a collection of entries in the SRVN model. The diamond notation is used to
denote that entries are part of an entity. The arcs between entries are modeled Ggltlass
An entry may visit or call many other entries. A call is made up of two entries, one from a

client task and one from a server task.

B. Classes for the MVA Solver

These classes are used for solving the queueing network associated with one SRVN
layer submodel. The clasderverrepresents the stations of a queueing network. It is an
abstract superclass of subclasses that represent the different types of stations such as a delay
server and a first-come first-served server. Begverclass is associated with the SRVN
model clas€ntity since the parameters of a queueing network station are mapped from the
SRVN entity parameters. Instances of cl8ssverare used by the clagdVAwhich solves
the queueing network. CladsVAis also an abstract superclass. Its subclasses are the main

types of MVA solvers, exact, Linearizer, and approximate (Schweitzer).

The classLayerizedivides the SRVN model into layers or submodels that are then
solved by clasMVA. This class builds the submodel from the SRVN model classes and
also translates the results of the submodels back to the SRVN model components. The

overall solution of the whole SRVN model is handled by claagerize It is the superclass

Chapter 3.0: Layered Queueing Network Solver (LQNS) Page 35

of the different layering solution strategies used in LQNS, namely, “Merged-Layerize” and

Rolia’s method of layers [Rolia 95].

Layerize

Call oy Eny MVA

Server

y Processor

Figure 15: Class Hierarchy Diagram

Chapter 4.0 Representation of Replicated

Systems

4.1 Introduction

In some large complex systems, it may be possible to find a large number of identical
or nearly identical components. For example, in a transaction processing system, the client
requesters are typically from similar devices and from similar applications. From a
modeling point of view, they may be treated equally if the system they are part of is
symmetric. In the SRVN model, the components are represented as tasks. Tasks that have
the same characteristics and parameters, such as the number of phases, the phase service
times, the entries, the number of visits to servers, may be defined as replicated tasks. Figure
16 gives an example of a system with replicated tasks. In this system, each task has one
entry. The service times for tasks Al, A2, A3, and A4 are equal as are their think times. As
these are pure clients, they have only phase 2 service times. Similarly, the service times for
tasks B1 and B2 are equal. These two tasks may have more than one phase with the
corresponding phase service times. Since the tasks are replicas, their phase service times
are the same. The number of visits between tasks A1 and B1 are equal to the number of
visits between any of the A tasks and task B1. Similarly, the number of visits between the
A tasks and task B2 are equal. Since each task has the same parameters, it can be shown

that their performance characteristics are also equal.

This chapter introduces the notation and model for systems with replicated tasks as
proposed by Woodside [Wood 95b]. The model and notation provides a compact simplified

way of representing large systems with replicated components by representing the replicas

Page 36

Chapter 4.0: Representation of Replicated Systems Page 37

by one component. The connections between replicated components are also represented

once. The model will be referred to as the replicated model or simplified model.

4.2 Notation

To define the notation of the replicated model representation, an example is used.
Figure 17 shows the replicated model representation of the system in Figure 16. For
simplicity, it is assumed that each task has only one entry. The parallelograms represent a
set of tasks (A*, B*) instead of one task (Al, B1 etc.) as in Figure 16. The number of
replicated tasks are defined by K. In Figure 17, parallelogram A* represents the four

identical tasks (A1, A2, A3, A4) by defining K = 4. Likewise, parallelogram B*
represents the two identical tasks B1 and B2 by definipg=#<2. The arcs between the

parallelograms represent the request/reply interaction between task set A* and task set B*
in the example system of Figure 16. However, the arcs may also connect task sets with
single tasks, as is seen in later examples. The visit rate defined on the arc of the full
representation of the system corresponds to the visit rate along the single representative arc
in the replicated model representation. For example, the visit rate from task Al to task B1

(Ya1py Of Figure 16 is equal to the visit rate defined for the arc between task A* and B*

(Yap) Of Figure 17.

There are two additional parameters associated with each arc, the fan-in and fan-out,
which define the model uniquely. The fan-in at a task set represents the number of members
of the requesting task set that make requests to each member of the task set. In the example,
the fan-in, shown in Figure 17 and denoted hyFequals 4 since four member tasks (A1,

A2, A3, A4) of task set A* visit each member (B1, B2) of task set B*. The fan-Buf,

defines the number of members of a task set visited by another task or task set. In the

Chapter 4.0: Representation of Replicated Systems Page 38

example,Fag equals two since each member task of task set A* (e.g. Al) visits two

members of task set B* (B1, B2). As can be seen, the fan-out can be derived from the fan-

in by the following equation:

KAxlfAB = KBXFAB

In addition, since the fan-ol,g must be greater than or equal to one, and the number

of replicas Ky must also be at least one, then

KgXFag2Kp

In defining the replicated model, it is desirable to define both the fan-in and fan-out.
However, since one may be derived from the other, the model is still uniquely defined if
only one is given. The fan-in and fan-out are integers in a perfectly symmetrical system,
but they may be fractional in which case they would represent average fan-out and fan-in

values.

Chapter 4.0: Representation of Replicated Systems Page 39

[[

fan-out =

fan-in =4
B2

Figure 16: System with Replicated Tasks

Ka =4 (number of replicas)
ﬁAB =2 (fan'out)

Fag = 4 (fan-in)

H Kg = 2 (number of replicas)

Figure 17: Replicated Representation of Figure 16

4.3 Replicated Systems

The replicated model may represent many types of systems. One type may consist of a

system that is referred to as an all fan-in system. In this type of system, only the fan-in of

Chapter 4.0: Representation of Replicated Systems Page 40

tasks may be greater than one. The fan-outs are all equal to one. Figure 19 gives the
replicated representation of the all fan-in system shown in Figure 18. In this system, the
fan-out of task A to C is one. The fan-out of task B to C is also one as is the fan-out from
task B to D. Figure 19 also illustrates a system with more than one tier. The replicated
model may represent multi-layer systems. The replication of tasks may occur at any or at
all layers. The replicated model may consist of a mixture of replicated and non-replicated
components as seen in Figure 18. In this system, the A tasks and B tasks are replicated

while tasks C, D, and E are single tasks. In general for an all fan-in system,Figde

equal to one, thek, >Kg

C1 / D1

Figure 18: All Fan-In System

Chapter 4.0: Representation of Replicated Systems Page 41

Figure 19: Replicated Representation of All Fan-In System (Figure 18)

Similarly, it is possible to have a system with only fan-outs. In the case of the all fan-
out system, the fan-outs are all greater than one and the fan-ins are all equal to one. Figure
20 and Figure 21 illustrate such a system. In Figure 21, the fan-in to tasks B and C are one

while the fan-outs of tasks A and B are 2. Again, in general, since the fangnis-equal

to one, thelkg=K, .

A general system consists of both fan-in and fan-out. Figure 22 and Figure 23 illustrate
such a system with various fan-in and fan-out values. Figure 22 is also another example of
a multi-layered, mixed replicated system. That is, the top two layers consist of replicated

tasks while the last layer consists of a non-replicated task.

Chapter 4.0: Representation of Replicated Systems Page 42

In the examples considered, it has been assumed that all tasks have only one entry.
However, it is possible to represent replicated tasks with multiple entries. The entries for a

task or task set may have different fan-ins and fan-outs as shown in Figure 24.

/W
[(=]
=] [5] [=] [

Figure 20: All Fan-Out System

Chapter 4.0: Representation of Replicated Systems

B* Kg =2

Page 43

Figure 21: Replicated Representation of All Fan-Out System (Figure 20)

/AliéAZ:/Bl//BZ/
C1 C2

Figure 22: System with Fan-in and Fan-out

Chapter 4.0: Representation of Replicated Systems Page 44

Figure 23: Replicated Notation for Figure 22

Chapter 4.0: Representation of Replicated Systems Page 45

C1l cl c2 c2 cl c2

Figure 24: System with Entries

Chapter 4.0: Representation of Replicated Systems Page 46

Ky =3 [A
Fap1 = 2 / Fap2 =2

Fab1 =3 Fapz = 3
Kg=2 B bl b2

Fo1c1=2 Fozce™1

Fpic1=2 Poc2™ 1
Kc=2 ¢/ cl c2

Figure 25: Replicated Representation of System with Entries

4.4 ldentifying Replication

The symmetry of the whole system must be considered when defining tasks as being
replicated. For example, in Figure 26, the tasks Al, A2, A3 and A4 have the same service
times and visit ratios to their servers B1 and B2. The B1 and B2 tasks have the same service
times but are not replicated tasks since they visit different tasks C and D. The delays
encountered at tasks B1 and B2 are different, and thus in solving for the whole system, the
updated service times for B1 and B2 are different. Because B1 and B2 are not replicated
tasks, tasks Al, A2, A3, and A4 cannot be considered a replicated group because they in

fact visit different servers. (However, tasks A1 and A2 are replicas as are task A3 and A4.)

Chapter 4.0: Representation of Replicated Systems Page 47

Al A2 A3 A4

/C//E%/{/

Figure 26: Deceptive Replication

4.5 Concentrated vs. Diffused Replication

Given the parameters for a replicated model, such as the number of replicas, fan-in, and
fan-out, it is possible for some systems to have two interpretations of the replicated model.
The two types of replications are defined as concentrated and diffused. The replicated
representation of such a system is shown in Figure 27 [Wood 95b]. The corresponding
concentrated and diffused interpretations of the parameters are shown in Figure 28 and

Figure 29 respectively.

The performance results for both models are the same since the contention for tasks is
the same. The concentrated model consists of two or more submodels. Solving for one
submodel would be sufficient to get the performance results for the whole system.
Therefore, it is reasonable to recommend that the submodel of the concentrated

interpretation for a system be used for analysis since it represents a simpler model.

Chapter 4.0: Representation of Replicated Systems Page 48

[5] 1

fAB=2
FAB:3

B* Kg=4

Figure 27: Replicated Model

Chapter 4.0: Representation of Replicated Systems Page 49

//AZ/ A3
;Bli 582/ 83//84/

[/ [=)

Figure 28: Concentrated Replication Interpretation of Figure 27

Chapter 4.0: Representation of Replicated Systems Page 50
(2] [)]s

[/ [/

Figure 29: A Diffused Replication Interpretation of Figure 27

Chapter 5.0 Solving Models With
Replication

5.1 Introduction

The notation presented in Chapter 4 greatly simplifies the model representation of a
system with replicated components. In order to also simplify the solving of the model, a
new simplified solution is introduced. This replication algorithm is applied by modifying

the Layered Queueing Network Solver (LQNS).

The LQNS has limitations on the size of the system it can solve because of the
computational time involved and the memory limitations. The LQNS can handle systems
of up to 100 server tasks, 100 processors, and 100 client tasks. The computational time of
the LQNS algorithm increases as the number of tasks (clients and servers) in the SRVN
model increases. This occurs since each client or server, in each layer of the SRVN model,
is represented as a station in the representative queueing network to be solved. The MVA
algorithm used by LQNS takes longer to solve with an increase in the number of stations
and chains. In addition, more memory is required to store information about each station.

With more tasks, the LQNS also has more layer submodels to solve.

The replication algorithm proposed enables the LQNS software to solve large systems
with replicated clients and servers in a timely manner with reduced memory requirements.
The algorithm accelerates the solution by analyzing only one of the tasks in a group of
replicas and by using the results for the one task to represent the others. In other words, a
simplified replicated model of the system is solved thereby reducing the number of stations

in the queueing network presented to the MVA algorithm.

Page 51

Chapter 5.0: Solving Models With Replication Page 52

In this chapter, the problem of solving the replicated model is presented. The way to
construct chains for the model and the solution algorithm are described. The convergence
of the algorithm is discussed followed by some implementation details. Finally, the results

of using the algorithm and the limitations of the algorithm are highlighted.

5.2 Problem Statement

The LQNS solves a series of “layer submodels” by representing each submodel as a
gueueing network. It is desired to solve each submodel with a substitute queueing network
in which the replicated stations are represented only once, and still obtain the same results
(or nearly the same results) as if the queueing network for the full submodel had been
solved. (This substitute queueing network will be referred to as the replicated queueing
network.) First, constructing the chains for the replicated queueing network poses some
problems. Secondly, in the replicated queueing network only one station of a set of
replicated stations is used. Therefore, the delays that would be encountered at the other
stations have to be accounted for. The example system shown in Figure 30 and Figure 31

is used to illustrate the problems of solving a “layer submodel”.

Figure 30 represents an SRVN model of the system with replicated tasks. Tasks Al and
A2 have identical parameters such as the same phase service times and visits to tasks C1,
C2, and C3. Likewise, tasks B1 and B2 are replicas as are tasks C1, C2, and C3. Task D1
and D2 are also identical. For simplicity, again, it is assumed the tasks have only one entry
and one phase. Figure 31 shows the same system using the replication notation presented

in Chapter 4.

Chapter 5.0: Solving Models With Replication

Al A2 / Bl/ / BZ/

C1 C2 C3 / Dl/ / D2/

Figure 30: Full Model

KA—2 x 5 KB:2
Fgc=3 -

Fac =3 Fep=1

FAC:2 FBC_Z FBD_ 1

Figure 31: Replicated Model of Figure 30

Page 53

Chapter 5.0: Solving Models With Replication Page 54

To solve the full model of Figure 30, the queueing network that represents this model
must be solved. The queueing network associated with the full model is shown in Figure
32. Note that the example system has only two layers of tasks and therefore, has only one
layer submodel. The client tasks A1 and A2 are mapped to the delay servers Al and A2
respectively. Similarly, tasks B1 and B2 are mapped to the delay servers B1 and B2. The
five server tasks are each represented by a queueing station C1, C2, C3, D1, and D2. The
SRVN service times for each task are mapped to the queueing network service times of
their corresponding stations. The service times for the C stations are equal as are the service
times of the D stations. There are also queueing network service times associated with the

delay servers, §, Sap, Sg1, and &,. The service time relationships are specified below:
Sa1= a2 1= Sc2= 3
Sg1= B2 Sp1= 2

In the terminology being used, the service time of a delay server equates to the service time

of the second phase of the client task in the SRVN model.

The queueing network associated with the replicated model is shown in Figure 33.
Again, the clienttasks A and B of Figure 31 are represented as delay servers in the queueing
network. The server tasks C and D are queueing stations. The service times of the stations

are given below in relation to the service times of the full model:

Sa = Sa1s X=X

Sg = 31 =5

The problem is to be able to solve the replicated queueing network of Figure 33 and
obtain the same results as if the full queueing network of Figure 32 had been solved. If the

full queueing network is solved, the results for each of the tasks in a group of replicas are

the same. For example, the throughput for station C1, C2 and C3 are equal as are their

Chapter 5.0: Solving Models With Replication Page 55

utilizations. The replicated model takes advantage of the symmetry. It is obviously
advantageous to solve for the simpler queueing network of the replicated model (Figure 33)
which has fewer stations. In addition, as the number of replicas increases, the replicated

gueueing network maintains the same number of stations.

5.3 Chain Construction

The queueing network of the full system as seen in Figure 32 is incomplete since the
chains and corresponding visit ratios have not been specified to correspond to the SRVN
model (Figure 30). The visit ratios of the queueing network correspond to the SRVN visit
ratios between client and server tasks. The chains may be constructed for the full model as

follows with the visit ratios specified below (N= number of tokens in chain k; My, =
visits to station m by chain k tokens):

Chain 1: (server set = {Al1, C1, C2, C3})
N]_: 1

Viai=1Vic1=Vic2=Vics

Chain 2: (server set ={A2, C1, C2, C3})
N2: 1

Von2=1Voc1=Voc2=Vacs

Chain 3: (server set ={B1, C1, C2, C3, D1})
N3: 1

Vap1=1; V3c1= V3 c2=Vaca: Vap1

Chain 4: (server set ={B2, C1, C2, C3, D2})
N4 =1

Vap2=1 Vac1=Vac2=Vacs: Va2

Chapter 5.0: Solving Models With Replication Page 56

Al

A

\
T 7o

AR

\
I:

\
i

Figure 32: Queueing Network for Full Model (Figure 30)

Chapter 5.0: Solving Models With Replication Page 57

Q_
—r Lo

Figure 33: Queueing Network for Replicated Model (Figure 31)

The chains are constructed from the point of view of the client tasks. That is, a chain
with one token is associated with each client. The token of chain 1 visits the delay server
Al once and visits stations C1, C2, and C3 an equal number of times. The token of chain 2
visits delay server A2 once and also visits stations C1, C2, and C3 an equal number of
times. (Since the tokens for chains 1 and 2, associated with clients A1 and A2, visit the
same stations with the same visit ratios, these two chains are equivalent and could be

merged into one chain with two tokens (N = 2)). The chains associated with clients B1 and

B2 cannot be combined into one chain since task B1 visits task D1 but task B2 visits D2.

Therefore, chain 3 (BE 1) consists of one token which visits delay server B1 once, stations
C1, C2, C3 an equal number of times, and station D1 once. Similarly, chain & @)

consists of one token which visits delay server B2 once, stations C1, C2, C3 an equal

number of times, and station D2 once. It can be seen that there is contention at stations C1,

Chapter 5.0: Solving Models With Replication Page 58

C2, and C3 where altogether four tokens may visit. There is no contention at stations D1
and D2 since only one token visits these stations. There is also no contention at the delay
servers which have no queues. The queueing network with the defined parameters and

chains does indeed represent the corresponding SRVN model of the system (Figure 30).

For the replicated queueing network (Figure 33), the chains must be constructed so that
the number of tokens contending for each resource or station is the same as in the full
system. That is, there must be four tokens that visit station C, and one token that visits
station D. The chains cannot be constructed in relation to the client as can be seen from this
example. If the chains were constructed as in the full queueing network, chain 1 would
consist of two tokens which visit station A once and station C once. This is consistent with

the SRVN model (Figure 31). However, if chain 2 is allocated with two tokens (sigce K

= 2), two tokens would visit station C which is consistent with the SRVN model, but two

tokens would also visit station D, which is not consistent with the SRVN model. This chain
could be split up into two chains with one token each. However, this would defeat the
purpose of simplifying the full model. If task B represented a large set of replicas, a large

number of chains would be needed. This would again slow down the MVA computation.

To construct the chains for the replicated model, the chains are constructed in relation
to the server. In this way, the correct contention to each station is maintained and the
number of chains required may be reduced. The chains for the example (Figure 31 and
Figure 33) are constructed as follows:

Chain 1: N3 =Fac =2

Via=LVic=Via

Chain 2: N5 = Fgc=2
Viog =1, Vioc=V3c1

Chapter 5.0: Solving Models With Replication Page 59

Chain 3: N3=Fgp =1
Vig=1V3p=V3p1

As can been seen, a chain is constructed for each replicated group of clients that visits
a server. The number of tokens for that chain is the fan-in of that server. For example, chain

1 consists of two tokens since the fan-in of task set C from task set A is io«(E). There

are two replicated tasks A that actually visit each task C. Another chain (chain 2) is
allocated for the two tokens that visit one of the tasks of task set C from the tasks in task
set B. From the chain allocation, it is verified that there are four tokens contending for

station C and one token contending for station D as desired.

From this simple example, the method for constructing the chains for the replicated
model does not seem to reduce the number of chains greatly (from 4 chains for the full
model to 3 for the replicated model). It would even seem that for the full model only three
chains are actually needed since chain 1 and 2 are equivalent. However, the reduced
number of chains becomes very apparent if, in the example, task B were replicated by more
than 2. For example, if task B were replicated by 20 times with the corresponding number
of replicated tasks D (shown in Figure 34), the full model would require a chain for each B
task. Figure 35 shows the corresponding queueing network with the chains specified. For
the replicated model, however, the same three chains specified previously could be used
with the number of tokens for chain 2 increased to 20 (see Figure 36 and Figure 37). The
simplified replicated model and queueing network are virtually unaffected by the increase
in the number of replicas. Only the parameters are affected. In addition, the approximate
MVA computational time would not increase since it is not affected by the number of

tokens in a chain but only by the number of chains and queueing stations.

Chapter 5.0: Solving Models With Replication Page 60

In general for the replicated model, one chain is constructed for each client that visits a
server. Each chain visits one client and one server. Therefore, a server and client may be
traversed by many chains. The number of tokens in a chain is equal to the fan-in of the
client to that server. (The fan-in reflects the number of client replicas that actually visit the
server in the full model.) In essence, the replication of clients is represented by the number

of tokens in the chain.

Bl
—
C1l C2 C3 i D1/ D2

Al A2 m /@

[P2]

Figure 34: Full Model with Task B Replicated 20 Times

Chapter 5.0: Solving Models With Replication

Al

A

Np2=1

.29

)
w

11T

D20

T

Te T Ta T2

Page 61

Figure 35: Queueing Network for Full Model of Figure 34

Chapter 5.0: Solving Models With Replication Page 62

R A o A
Fgc=3 Eor =

Fac =3 Feo =1

_ Fap = 1
Fac=2 Fac =20 BD

Ke=3 [/ © / /Py Kp =20

Figure 36: Replicated Model of Figure 34

Q_
O—

Figure 37: Replicated Queueing Network for Figure 36

Chapter 5.0: Solving Models With Replication Page 63

5.4 Service Time Calculation

In assigning the chains and parameters of the queueing network for the replicated model
(Figure 31), the contention at each station is equivalent to that of the queueing network for
the full model. That is, the number of tokens visiting a station in the replicated model is the
same as the corresponding station in the full model. However, the two queueing networks
are still not equivalent in their solutions since there are delays at the clients for the full

model that must be accounted for in the simplified replicated model.

To account for the delays of the ‘missing’ servers in the replicated model, the delays
that would be seen at these stations are added to the service time of the delay servers (client
tasks). In essence, the method of surrogate delays is employed. The delays of the ‘missing’

stations are added to the service time of the delay servers that also represent the client tasks.

In the replication example discussed (Figure 31), there is only one station C in the
gueueing network of the replicated model (Figure 33), whereas, there are three stations C1,
C2 and C3 in the queueing network of the full model (Figure 30). The replicated queueing
network leaves out two replicated C tasks.To compensate for the delay at the two C stations
seen by the tokens of chain 1 visiting delay server A of the full network, twice the delay
(Ry0) calculated at station C is added to the service time of delay server A. The queueing
network is solved again with this new service time for delay server A. This is repeated until
the delay at station C converges. In essence, the two stations (C2 and C3) for the full
network, are represented as additional delays in the replicated queueing network, shown as
additional shaded delay servers in Figure 38. The modified service time of station A for

chain 1 is given as:

Sia = Sia* (Fac—DRyc Eq (5.1)

Chapter 5.0: Solving Models With Replication Page 64

Where: S'1a = Modified service time of station A for chain 1
Sia = Service time of station A for chain 1
Ric = Residence time of chain 1 at station €;gW;c
Yic = Number of visits to station C by chain 1

W;c = Waiting time of chain 1 at station C (service time
plus queueing time)

S

\ o
K

Figure 38: Replicated Sub-Queueing Network for Chain 1

The compensated delays for the ‘missing’ C stations are also needed for the tokens of
the chains 2 and 3 that visit delay server B. For chain 2, the delay that would be seen at
station D must also be accounted for. This delay may be gotten from the delay of chain 3.

Similarly, for chain 3, the delay seen for the ‘missing’ C stations are gotten from the delay

Chapter 5.0: Solving Models With Replication Page 65

of chain 2. The delays are added to the service times of delay server B for each chain. The

modified service times for delay server B are as follows:

Sip = Sp+ (Fec—1)Ryc +Fap* Rgp Eq (5.2)
Where: S, = Modified service time of station B for chain 2
S = Service time of station B for chain 2
Roc = Residence time of chain 2 at station C
Rsp = Residence time of chain 3 at station D
SéB = S3B+('EBD_1)R3D+'EBCX ch Eq (53)
Where: S’3g = Modified service time of station B for chain 3
S = Service time of station B for chain 3
Roc = Residence time of chain 2 at station C
Rsp = Residence time of chain 3 at station D

In essence the sub-queueing networks of Figure 40 and Figure 41 are solved with the
results (delay at station C,,R and delay at station D, 4g) exchanged between the two.
The modified service times for delay server B are used in the next iteration for solving the
gueueing network. This iteration in solving for the queueing network produces new values
for the delays at station C and D (i.e;Rand Ryp). The iteration is repeated until the delay

value for station C converges and the delay value for station D converges.

Chapter 5.0: Solving Models With Replication Page 66

By using the method of modifying the service times of the client delay servers to
account for the delays at unrepresented replicated stations, the sub-queueing networks of
Figure 38, Figure 40, and Figure 41 are effectively being solved. However, these sub-
networks are not solved separately but are solved together in one invocation of the MVA
solver for the replicated queueing network (Figure 33). The sub-networks are only
presented to explain the method being employed which is essentially the method of

surrogate delays.

In general, the equation to be employed in modifying the client service times for the

replicated model is:

Si = St (Fim= DR+ %ﬁw, X Ry Eq (5.4)
Where: m = Server visited by chaik
t = Client visited by chaik
Sk = Modified service time of client statiorfor chaink
S« = Service time of client statidrfor chaink
Fin = Fan-out of client taskto servem (SRVN model)
Rqn = Residence time of chakat stationm (mis visited
by chaink)
Fiv = Fan-out of client taskto serveiM (SRVN model)

R«m = Residence time of chakat statiorM

K = All other chains besiddsthat visit clientt
M = All other servers besidesinvoked by client

Note: Each chain visits only one source station (client) and one server.

That is, given tasks i, j, | as shown in Figure 39, equation (5.4) may be expressed as:

Stini = Sapi+ (Fi= DR+ 5 Fi> Ry Eq (55)
J

Chapter 5.0: Solving Models With Replication Page 67

Where: () = Chain that represents clidnequesting service
from server task

Figure 39: General Tasks

5.5 Interpretation of Results

The throughput results obtained from solving the replicated queueing network with the
modified service times must be interpreted to obtain the throughput at each client task. The
throughput of the client for a particular chain must be divided by the number of tokens in
that chain. For example, in the replicated example (Figure 31 and Figure 33), the
throughput for station or task A, g is given as followsx, = x;,/N, Wwhere 2, is the
throughput of chain 1 at station A. The throughput of any chain that visits station A may be
used to obtain the throughput of station A. The same throughput should be obtained. For
example, for client B in the replication example, the following holds true:

Xg = X,p/N, = X55/N5. The throughput result is modified because the throughput obtained

for a chain is the throughput of the chain which has the replicated number of tokens

Chapter 5.0: Solving Models With Replication Page 68

representing the number of replicated clients. Therefore, to obtain the throughput of one

replica client, the throughput of the chain must be divided by the number of tokens.

A

— i
SO

Figure 40: Replicated Sub-Queueing Network for Chain 2

Chapter 5.0: Solving Models With Replication Page 69

Figure 41: Replicated Sub-Queueing Network for Chain 3

5.6 Convergence

The method of surrogate delays, employed by the replication algorithm, is basically a
Gauss-Seidel iteration (See Section 2.4). The surrogate dglagf(a chaink at a delay
server is calculated from the waiting times of all chains that visit that delay safijgy (

wherem is the server visited by chak). Note that for the particular chain set up used in
the replication algorithm, each chain visits one delay server and one queueing server/
station. From inspection of the MVA algorithm (Refer to Section 2.3.2), it is evident that

the waiting timesW,,, are functions of the surrogate delays,(Z, ... Zx) whereK is the
maximum number of chains that visits the delay server. (NoteRfat Y, Wim Where
Ykm€quals the number of visit to servarby chaink.) Thus, the Gauss-Seidel function for

the replication algorithm can be written as:

Chapter 5.0: Solving Models With Replication Page 70

K
1
0= Y Wi = (@2, Z0) Eq (5.6)
I'=1;0m

whereCy,, = (Constant Fan-Out Ternk)) x Y, = TotalVisits from chair to servem.

Sincek ranges from 1 td&, equation (5.6) represents a set of non-linear equations to be
solved. The Gauss-Seidel iteration is used to solve this set of non-linear equations, as

shown below:

V4 RN M0 R4 R R0

(+1) _ ¢ o+ M) ()
v SRR Y A S L 4 Eq6.7)

Z(Kn+1) - fK(Z(1n+1), Z(2n+l), ---Z(Kn))

The convergence of the Gauss-Seidel iteration is not guaranteed. In fact, for some cases
of heavy utilization of a queueing server, the iteration oscillates or converges very slowly.
(This was actually observed in the example case described in Section 5.3 with twenty B
tasks shown in Figure 36.) To counter the convergence problem, the implementation of the
algorithm provides an option whereby a simplified Newton-Raphson method may be
employed instead of the Gauss-Seidel iteration. The Newton-Raphson method is chosen
since it may converge where a Gauss-Seidel iteration fails to converge and also converges
more rapidly than the Gauss-Seidel method (See Chapter 2). ([Chow 83] and [Souza 84]
discuss the use of the Newton-Raphson method to accelerate convergence. [Eager 84] and
[Patti 90] also discuss convergence issues.) However, unfortunately, the Newton-Raphson
method also does not guarantee convergence, In fact, in some cases, it may even cause an
iteration to diverge. It is for this reason that the method is used only as an option when the

Gauss-Seidel iteration fails to converge.

Chapter 5.0: Solving Models With Replication Page 71

A simplified version of the Newton-Raphson is implemented since the full method
requires a considerable amount of work per iteration and is thus less practical. This will
become apparent as the equations for the Newton-Raphson iteration are developed
below.The full Newton-Raphson method is applied to equation (5.6) giving the new

iteration function:

zZ"Y = 12, 20,20 + Z (z<“) z8, zOHz" P -z™ME k=1..K Eq(s8)
Equation (5.8) represents the following set of non-linear equations to be solved:

2000 = f 2, 2, 20 Z (z(”> 20, 2z -2

(+1) _ ¢ (04D S0) (+1) S SN0+ 1) _ (0]
20D = 2z Lz + Z 2D 2 2zt D A
A) 2l H s Eq (5.9)

K
Z(n+1) f (Z(n+l) Z(n+1) --Z(Kn))+ Z D]]O (Z(n+l) Z(n+1) Z(n))%z(n+l) Z(n))|:|

The Newton-Raphson method involves setting a set of non-linear equations and finding

the partial derivative of each function with respect to each variable 4,, ... Z).

Evidently the work for each iteration is enormous especially if there are many chains which
increases the number of equations to be solved. The simplified Newton-Raphson method
may be used to produce more manageable equations. In this method, the derivative is taken
with respect only to one variable. That is, each equation is regarded as though it were an
equation for just one of the unknowns [Davis 86].With the simplified Newton-Raphson
method, a set of non-linear equations need not be solved per iteration. The simplified

Newton-Raphson function, shown below, is used instead of equation (5.8):

Chapter 5.0: Solving Models With Replication Page 72

VARSI 04 s R Ak B DT"’ 1@ 20, L ZOHZ V-2 k=1.k Eq (5.10)
zk

The expanded form is:

(+1) _ ¢ M S S0, 00 ¢ ()) S (\[n+1)_ 0
2" = 2z, .z)+gflfl(zl 2y, 2 OHZT -2

(n+1) _ (n+1) (n) (ny, 00 (n+1) (n) (N 7(n+1) _ ()
VA = f,(Z VA 4 + f(Z 257, . 2 VA -Z
2 AZ1 2 K) %z, AZ1 2 K)Ek 2 2) Eq (5.11)

(n+1) _ (n+1) S(+1) (n), 00 (n+1) S(+1) S5 (+1)_ ()
z = f 2" 202+ f .z Z0 Lz z -z
K kl£1 2 K Bz, K“1 2 K EF K K

Substituting in the value for, ", z{", ...z{") from equation (5.6) into equation (5.10)

gives:
1 < O & O 1
+ +
2 =S Wi+ Dy Y Cy W, 0z P _ z{My Eq (5.12)
I =1;0m k= 1;0m a

It seems probable that the major effect of a chang&invill be on its own chain
performance, i.e. oW, Therefore, only thé\,, term in the second summation in
equation (5.12) is retained. This also simplifies the calculation. The resulting iteration

function is used:

K
(n+1) _ 0 6Wan (h+1) (n)
z = 5 CigWin* Lyl 00Z -z" Eq (5.13)
k <. ImY Im 0 km Zk 0 k k

This is the Gauss-Seidel iteration with an additional term. The partial derivative of the

waiting time W) may be evaluated as follows using the Schweitzer approximation to the

arrival instant queue length (Refer to Section 2.3.2):

Chapter 5.0: Solving Models With Replication Page 73

N, -1
Wk O EhkmSKm Eq (5-14)

Wi o Nk=1 Oy

9z, N, 0z, xm Eq (5.15)
Where: ngn = Average number of tokens for ch&iat servem

Ny = Total number of tokens for chakn

St = Service time of server m for chain

To evaluate equation (5.15) further, an assumption is made that a chardgeai ,

changes the number of tokens of cHaat the delay station proportionally. That is,

Nk = Xi [Zy
An, = X, 02, Eq (5.16)
Where: X = Throughput of chaik

The -an,, tokens that are taken away from the delay server are distributed to the server

gueue in proportion to those already there. Therefore,
AR, = —An, x —km _ _§< Az, Ckm [0 Eq (5.17)
km zk N -1 k kDN_k_]_D q (.

Substituting into equation (5.15) gives the following:

aﬂkm = _X l7‘km

37, = XN 5m Eq (5.18)

Chapter 5.0: Solving Models With Replication Page 74

Returning to equation (5.13), the simplified Newton-Raphson function may be

evaluated as follows:

K —
1 Ny 1
rAR S clmwlm+ckmtg—xk,\l—:‘[aﬂ.gt(z‘kn+)z Eq (5.19)
I =1;0m

Let,
n
a=Cyp [@(kNL:“ St Eq (5.20)

and solving forz"*? gives the final update function:

K
CIm\NIm +ta DZ(kn)

Z(kn+l) — =1,0m Eq (5.21)

l+a

In terms of the SRVN model and the LQNS replication implementation, the service

time is modified as follows from equation (5.4):

s+n = gy zn D Eq (5.22)

The modification is similar to equation (5.4) used for the Gauss-Seidel iteration except

with the additional terms in th& expression. The SRVN terms to evaluateare:

K

CimWim = ('Ets_l)Rks"' g Fig X Ru'c
I:%Dm o) T s Eq (5.23)

Chapter 5.0: Solving Models With Replication Page 75

_ Ly S, Y, ()
a = (Fis—1) EEL—“ ",i?k‘s "S‘é Eq (5.24)

Where: S = Server visited by chaik

t = Client visited by chaik

Sk = Modified service time of client statiorfor chaink

S« = Service time of client statidrfor chaink

Fis = Fan-out of client taskto servers (SRVN model)

R = Residence time of chakat statiors (s is visited
by chaink)

Fis = Fan-out of client taskto serverS (SRVN model)

R.o = Residence time of chajn at station

K = Set of all other chains besidethat visit client

S = Set of all other servers besidesvoked by client

Xy = Throughput of chaik (MVA gueueing network
parameter)

Ls = Queue length of chalknat serves (queueing
network parameter)

Ss = Service time of chaik at serves (queueing
network parameter)

Yis = Number of visits of chaik to server s (queueing
network parameter)

(\'% = Number of tokens for chalk(queueing network
parameter)

Note: Each chain visits only one client (delay server) and one server.

Chapter 5.0: Solving Models With Replication Page 76

5.7 Implementation

The replication algorithm with the simplified Newton-Raphson method was
implemented in the LQNS software. As discussed in Chapter 3, the LQNS is presented with
an SRVN model with possibly several layers. Each layer is transformed into a queueing
network submodel and solved via the MVA solver. The method of surrogate delays is used
to account for the interaction between the layers. Thus, there is a Gauss-Seidel iteration

between the results of the submodels.

The replication algorithm is applied at the submodel level and does not involve the
iteration between submodels. The MVA solver code that solves each submodel was not
changed. Only the input parameters presented to the MVA solver were manipulated to get
the required results. The parameters were obtained by modifications mainly to the chain

construction and service time calculation areas of the software.

Although the replication algorithm does not involve the inter-submodel iteration,
referred to as the “outer” iteration, the algorithm does include an iteration of its own within
the submodel, referred to as the “inner” iteration. The “inner” iteration is the Gauss-Seidel
iteration or Newton-Raphson method discussed in the previous sections in which the
service times for delay servers are modified. The check for the convergence of the iteration
occurs after each invocation to the MVA solver. If convergence has not occurred, the
service time values for delay servers (or client tasks) are modified and the MVA solver is
invoked again. The pseudo-code for method Layerize::solveLayer shown in Figure 42
illustrates the “inner” iteration. Note that the inputs to this method are SRVN model

parameters such as client task objects and server entity objects.

Chapter 5.0: Solving Models With Replication Page 77

Layerize::solveLayer(clients, servers, layer number, validity flag)
BEGIN
Initialize values;
MakeChains; %Create chains and associate them with clients and servers
Create the clients for the MVA model;
Create the servers for the MVA model;
DO replication iteration
Initialize values;
Set validity flag to false;
IF first iteration
IF layer has replicated tasks
ModifyClientServiceTime for each client;
ELSE
Set validity flag to true;
Set iteration count to limit; %Layer has no replicated tasks.
Set convergence to false; %Execute loop only once.
ENDIF;
ELSE
ModifyClientServiceTime for each client;
ENDIF;

IF convergence
Set validity flag to true;
Exit iteration loop
ENDIF;

Generate MVA model, %Open and closed
Solve Model;.
Store results from MVA model to SRVN model;
WHILE (iteration limit not reached);
Cleanup;
RETURN validity flag;
END

Figure 42: Pseudo-Code for “Inner” Iteration

The chains for the MVA model are constructed in method Layerize::makeChains. The
chains are allocated differently for replicated and non-replicated client tasks. If a certain

client task is not replicated, one chain is constructed for all tokens that visit that client and

Chapter 5.0: Solving Models With Replication Page 78

all its servers. If the client task is replicated, one chain is constructed for each server path.

The pseudo-code is shown in Figure 43.

Layerize::makeChains(clients, servers, customers vector, thinktime vector, priority vector,
clientChains vector, serverChains vector)
BEGIN
Initialize values;
FOR all clients %Create chains and associate them with clients and servers
Get all servers for this client;
IF client is NOT replicated
Increment chain number k;
Add chain number k to clientChain vector;
Set thinktime to client idle time;
Set number of customers and priority;
Add chain number k to all servers of this client;
ELSE
%Replicated case
FOR all servers of this client
Increment chain number k;
Add chain number k to serverChains;
Add chain number k to clientChains;
Set thinktime, number of customers, priority;
ENFOR;
ENDIF;
RETURN number of chains;
END
Figure 43: Pseudo-Code for Chain Construction

The method Task::modifyClientServiceTime is applied to each replicated client task to
modify the service time to account for the “missing” replicated tasks. A service time is
associated with each chain that visits each entry of the client task. As a consequence, there

are two loops; a loop through all entries, and an inner loop through all chains to an entry.

Chapter 5.0: Solving Models With Replication Page 79

Task::ModifyClientServiceTime
BEGIN
Initialize values;
FOR all entries of this client task
IF first iteration
initialize;
ENDIF;

FOR all chains of this entry
FOR all phases of this entry
Set the service time to Entry->waitExceptChain;
ENDFOR,;
ENDFOR,;
ENDFOR,;
RETURN delta value;
END

Figure 44: Pseudo-Code for ModifyClientServiceTime

The method Entry::waitExceptChain is where the service time is actually modified. The
method is called for each entry with an input parameter of the chain. To modify the service
time of the entry for a particular chain, the resident times of all entries that the entry calls
is obtained. The service time is modified according to equation (5.4) and according to

equation (5.22) if the Newton-Raphson method is used.

The input file format for the LQNS solver, shown in Figure 46, is used to specify the
SRVN model with replicated tasks. The last lines specifies the fan-in and fan-out with the
notation ‘i’ for fan-in and ‘o’ for fan-out. The first grouping, the paragraph beginning with

‘P’, specifies the processors which may also be replicated. The replication is specified with

Chapter 5.0: Solving Models With Replication Page 80

Entry::waitExceptChain
BEGIN
Initialize values;
FOR all calls from this entry
IF chain k does not visit the task called
sum = sum + (delay to this task) (fanout of this entry to called task);
ELSE
sum = sum + (delay to this task) (fanout-1 of this entry to called task);

IF first iteration
Initialize
ELSE
Calculate the Newton-Raphson factor F; %Equation (5.20)
ENDIF;
Calculate delta values;
Store service time values;
ENDIF;
ENDFOR,;
Repeat above code for processor task.
sum = sum + F(oldsum)
sum = sum/(1+F) %Equation (5.22)
RETURN sum;
END

Figure 45: Pseudo-Code for waitExceptChain

an ‘r’ followed by the replication factor. The same notation is used for tasks which are
shown in the paragraph beginning with ‘T". (Refer to [Petriu 95] for a detailed description

of the input file.)

Chapter 5.0: Solving Models With Replication Page 81

SRVN Model Description File

G “*0.000010 50 10 0.900000 -1

P4 # 4 processors

pAlfr2 #r2 for 2 replicas

pBlfr2

pClfr3

pD1fr2

-1
T4 # 4 tasks

tAlrAl-1A10r2 # r2 for 2 replicas

tB1rB1-1B10r2 # Each task has an entry of the same name

tClnC1-1C10r3
tD1nD1-1D10r2
-1

E4

s A1 0.000000 2.000000 -1

y A1l C1 0.000000 2.000000 -1

s B10.000000 4.000000 -1

y B1 C1 0.000000 3.000000 -1

y B1 D1 0.000000 4.000000 -1

s C1 3.000000 0.000000 -1

s D1 5.000000 0.000000 -1

iAlCl12-1 # i specifies fan-in for entry Al to entry C1
0Al1C13-1 # o specifies fan-out
iB1C12-1

0B1C13-1

iBID11-1

oB1D11-1
-1

Figure 46: Input File for Replication Example

5.8 Tests

To test the solution method for replicated systems, several models in their simplified
replicated forms and their corresponding full model forms were solved using LQNS. The
results from the replication algorithm were compared with the results of solving the full
model using exact MVA and the Bard-Schweitzer approximation. Five cases are presented
below. Case 1 is the example system discussed consisting of two layers of tasks with both

fan-in and fan-out. Case 2 is a mixed model with both replicated and non-replicated tasks.

Chapter 5.0: Solving Models With Replication Page 82

Case 3 verifies that the replication method can solve for tasks with multiple entries. Case 4
is a multi-layered system with replicated tasks. Finally, in Case 5, the example of Figure
36, which failed to converge with the Gauss-Seidel iteration, is solved using the Newton-

Raphson method in the solution method.

The example system discussed, Case 1, in its full model form (Figure 30) as well as its
replicated model form (Figure 31), was solved using the LQNS tool with the replication
modifications. The figures do not show processor allocation. However, the processor
allocation is specified in the corresponding input files (Figure 46) which describe the
models. In the models solved, one task is assigned one unique processor. The following

input parameters were used:

Full Model Replicated Model
Sp1 = Sa2 = Saz=2 S=2
Sp1= 2= 4 =4
Sc1= 2= 3= 3 =3
Sp1=2=5 $=5
Viar=1 Via=1
Vic1=Vic2= Vic3=2 Vic=2
Vone=1 Vog=1
Va.c1=V2,c2= V2,c3=2 Voc=3
Vip1=1 Vag=1
V3c1=V3c2= V3c3=3 V3p=4
Visp1=4

Vage=1

Vac1=Vac2=Vac3=3
Vap2=4

Chapter 5.0: Solving Models With Replication Page 83

Three different queueing network solvers were used: the Schweitzer approximation,
Linearizer, and the exact MVA. The results for solving the full system and for solving the
simplified replicated system are shown in Tables 1 to 4. The cycle time result includes the
service time of a task plus the rendezvous delay time it encounters with its servers. The
results of solving the full model using the exact MVA are used to compare the replication
results. It is seen that the replication algorithm works best with the Schweitzer
approximation with an error of less than 5%. The replication algorithm using the exact

MVA and the Linearizer provide fairly high errors, up to 12%.

The higher errors for the exact MVA and Linearizer may be explained by inspecting the
MVA algorithm. (Refer to Section 2.3.2.) Modifying the service time of the client delay
server with the delay at the ‘missing’ stations is essentially estimating viatues (resident
times of chains at the stations) in the MVA algorithm. However, in the case of the exact
MVA and Linearizer, theR value for different populations are required in the MVA
iteration. For the exact MVA, thR value for populations frord to N is required. For the

Linearizer, theR values for populatioN andN-1, are required. By modifying the service

time of the client, an estimation &for a population oN is used, which is fixed throughout
the iteration. That s, it is used even though for the exact MV/ARamlue for the range of
populationd) to N is needed. The estimation f&is incorrect and therefore produces big

errors in the exact MVA and Linearizer.

The error for the Schweitzer approximation is low since, in this algorithm, only the
delays for populatio™N are needed. In this case, the estima®ad correct, or nearly so.
The error in the results is due to the Schweitzer approximation itself. The Schweitzer
approximation results for the full models are very close to their corresponding replicated
model results also using Schweitzer. In addition, the error for the cycle time result is

increased since the cycle time is obtained by multiplying the calculated delay at the client

Chapter 5.0: Solving Models With Replication

by the number of visits to a server. In other words, the error from the replication algorithm

appears in the delay result of the client (delay server) which is magnified in the client cycle

time result by the number of visits.

Page 84

Table 1: Cycle Time Results for Replication Example (Case 1)

Task | Full Model Full quel Replicz_ated YErTOr
Name| (Exact MVA) (Schweitzer) (Schweitzer)
Phase| Phase | Phase| Phase | Phase | Phase | Exact Schweitz
1 2 1 2 1 2 MVA
A 0 33.092 0 33.7538 0 33.748 2 -0.01
B 0 73.564 0 74.014 0 74.007 0.6 -0.01
C 3 0 3 0 3 0 0 0
D 5 0 5 0 5 0 0 0
Task | Full Model Full Model Replicated Replicated
Name| (Exact MVA) (Schweitzer) (Linearizer) (Exact MVA)
Phase| Phase | Phase| Phase | Phase| Phase | Phase| Phase
1 2 1 2 1 2 1 2
A 0 33.092 0 33.753 0 31.443 0 31.466
B 0 73.564 0 74.014 0 71.370 0 71.419
C 3 0 3 0 3 0 3 0
D 5 0 5 0 5 0 5 0

Table 2: Throughput Results for Replication Example (Case 1)

Task | Full Model Full quel Replicqted %ErTOr
Name| (Exact MVA) (Schweitzer) (Schweitzer)
Exact MVA Schweitzer
A 0.0302184 0.0296272 0.0296307 -1.6 0.01
B 0.0135935 0.0135109 0.0135120 -0.6 0.01
C 0.2024350 0.1995740 0.1995950 -1.4 0.01
D 0.0543741 0.0540435 0.0540480 -0.6 0.01
Task | Full Model Full Model Replicated Replicated
Name| (Exact MVA) (Schweitzer) | (Linearizer) (Exact MVA)
A 0.0302184 0.0296272 0.0318026 0.0317800
B 0.0135935 0.0135109 0.0140113 0.0140016
cC 0.2024350 0.1995740 0.211278(0.21113Q0
D 0.0543741 0.0540435 0.0560451 0.0560064

Chapter 5.0: Solving Models With Replication Page 85

Table 3: Task Utilization Results for Replication Example (Case 1)

Task Full Model Full Mo_del Replicz_ited YErTOr
(Exact MVA) (Schweitzer) (Schweitzer)
Phase 1| Phase? Phas¢1l Phade2 Phddease | Exact | Schw
1 2 MVA
A 0 1 0 1 0 0.999¢ 0 0
B 0 1 0 1 0 0.9999 0 0
C | 0.60730 0 0.5987p 0 0.5987 0 -14 0
D | 0.27187 0 0.27021L 0 0.2702 0 -0.6 0
Task Full Model Full quel R_eplicated Replicated
(Exact MVA) (Schweitzer) (Linearizer) (Exact MVA)
Phase1l| Phase?2 Phas¢l Phade2 Phasel |Mase 1| Phase
2 2
A 0 1 0 1 0 0.999 0 0.999
B 0 1 0 1 0 0.999 0 0.999
C | 0.60730 0 0.5987p 0 0.63383 @ 0.63338 0
D | 0.27187 0 0.27021 0 0.28022 q 0.28003 0

Table 4: Processor Utilization Results for Replication Example (Case 1)

Full Model

Processof Ful Mo_del Replicqted %Error
(Exact MVA) (Schweitzer) (Schweitzer)
Exact MVA Schweitzer
A 0.0604367 0.0592544 0.0592613 -2 0.01
B 0.0543741 0.0540435 0.0540481 -0.6 0.01
C 0.6073040 0.5987220 0.5987850 -14 0.01
D 0.2718700 0.2702180 0.2702400 -0.6 0.01
Processol Full Model Full quel R_eplicgted Replicated
(Exact MVA) (Schweitzer) | (Linearizer) (Exact MVA)
A 0.0604367 0.0592544 0.0636053 0.0635599
B 0.0543741 0.0540435 0.0560452 0.0560066
C 0.6073040 0.5987220 0.633835(0.6333890
D 0.2718700 0.2702180 0.280226(0.2800320

The replication algorithm may be used to solve several different configurations of

SRVN models. It can handle a model with a mix of replicated and non-replicated tasks,

Chapter 5.0: Solving Models With Replication Page 86

models with multiple entries, and multi-layered models. An example of a mixed model,
Case 2, is shown in Figure 47 and Figure 48 with the results of solving the system shown
in Tables 5-8. A model with multiple entries, Case 3, (Figure 49) and a model with multiple
layers, Case 4, (Figure 50) were also solved with the results shown in Tables 9-16. Finally,
the example of Figure 36, Case 5, which has twenty B tasks and does not converge using
the Gauss-Seidel iteration, is solved using the simplified Newton-Raphson method. It

converges using the Newton-Raphson option but diverges otherwise.

As with Case 1, the Schweitzer approximation gives the closest results to the full
system. The multi-layered example, Case 4, produces higher errors than the single-layered
examples since the errors encountered at each submodel layer tend to propagate to the other
submodel layers. Despite the errors, the advantages of the replication are obvious when
comparing the calculation time, the ease of reading the results, and the simplification of the
input (input file format) between the full model and the replicated model. The summary of
results for the replicated system is much more compact than for the streams of data for the
full system. But mainly it can be seen that the SRVN model with its input file are simple
for the replication model as compared to the full model. If more replicas are added, the

change to the replicated model is trivial but is quite cumbersome for the full model.

Since the Schweitzer MVA approximation gives the best results, the space and time
complexity relative to this algorithm is discussed. The space requirements for Schweitzer
is proportional to the product of the number of chatBsand the number of station, i.e.

O(CN). The time requirement per iteration of the algorithm is also proportional to this
product. The replication algorithm reduces the number of chains and the number of stations

needed, thereby reducing the space and time requirement for each Schweitzer iteration by

M
O(Y (Km=1)), whereK,,, is the number of replicas at servarandM is the total number
m=1

Chapter 5.0: Solving Models With Replication Page 87

M
of replicated task setdN(= S K.,)- The replication iteration introduced for solving each

m=1
submodel increases the time by an unknown factor. Finally, the time complexity for one

iteration of the LQNS inter-layer submodel solution (i.e. the “outer iteration” mentioned in
M
Section 5.7) iO(LN) or O(L(S «,,)?), where L is the number of layers [Rolia 92]. (This
m=1

is derived from the time complexity of one iteration of Schweitzer which(EN).) Since

the replication algorithm reduces the number of stations by representing a set of replicas by

one station, the time complexity of one LQNS iteration is reduce@(tdvi?), or by a factor
of %%2 .

In executing the test cases, the times for solving the replicated models were found to be
shorter than for the full models. All test cases were run on an HP 9000/735 workstation.
For Case 5, with around 20 tasks, the time difference was especially visible with the
replication model taking less than a second to solve in contrast to the full model which took

around 9 minutes.

Al /Bl/ /BZ/... B5

Cl Cc2 C3 D1

Figure 47: Full Model for Mixed System (Case 2)

Chapter 5.0: Solving Models With Replication

[/

v

'_:BC:?’

FBC:5

[P/

Page 88

Figure 48: Replicated Model for Mixed System (Case 2)

Table 5: Cycle Time Results for Mixed System (Case 2)

Task | Full Model Full quel Replicgted % Error
Name| (Exact MVA) (Schweitzer) (Schweitzer)
Phase| Phase | Phase| Phase | Phase | Phase | Exact | Schw
1 2 1 2 1 2 MVA
A 0 63.108 0 65.221 0 65.205 3 -0.02
B 0 188.59 0 188.98 0 188.92 0.2 -0.03
C 3 0 3 0 3 0 0 0
D 5 0 5 0 5 0 0 0
Task | Full Model Full Model Replicated Replicated
Name| (Exact MVA) (Schweitzer) (Linearizer) (Exact MVA)
Phase| Phase | Phase| Phase | Phase| Phase | Phase| Phase
1 2 1 2 1 2 1 2
A 0 63.108 0 65.221 0 59.387 0 59.7p4
B 0 188.59 0 188.98 0 176.26 0 176,93
C 3 0 3 0 3 0 3 0
D 5 0 5 0 5 0 5 0

Chapter 5.0: Solving Models With Replication

Page 89
Table 6: Throughput Results for Mixed System (Case 2)
Task | Full Model Full Mo_del Replicz_ated %ErTOr
Name| (Exact MVA) (Schweitzer) (Schweitzer)
Exact | Schw
MVA
A 0.01584580 0.0153323 0.0153363(-3 0.02
B 0.00530251 0.0052914 0.00529328 -0{1 0.p3
C 0.23312500 0.2311960 0.23127400 -0,8 0.03
D 0.10605000 0.1058280 0.10586600 -0{2 0.p3
Task | Full Model Full Model Replicated Replicated
Name| (Exact MVA) (Schweitzer) | (Linearizer) (Exact MVA)
A 0.01584580 0.0153323 0.0168388D 0.01674980
B 0.00530251 0.0052914 0.00567356 0.00565196
C 0.23312500 0.2311960 0.24909100 0.24806700
D 0.10605000 0.1058280 0.11347100 0.11303900
Table 7: Task Utilization Results for Mixed System (Case 2)
Full Model Full Model Replicated
Task (Exact MVA) (Schweitzer) (Scr?weitzer) % Error
Phase 1| Phase? Phas¢1l Phade2 Phadease | Exact | Schw
1 2 MVA
A 0 0.99999 0 0.999999 0 1 0 0
B 0 0.99999 0 0.999999 0 1 0 0
C | 0.69938 0 0.6935P 0 0.6938 0 -0.7 0.04
D | 0.53025 0 0.52914 0 0.5293 0 -0.4 0.p3
Task Full Model Full quel R_eplic_ated Replicated
(Exact MVA) (Schweitzer) (Linearizer) (Exact MVA)
Phase 1] Phase? Phas¢l Phage2 Phasel |Miese 1| Phase
2 2
A 0 0.99999 0 0.999999 0 1 0 1
B 0 0.99999 0 0.999999 0 1 0 1
C | 0.69938 0 0.6935P 0 0.74727 (0.74420
D | 0.53025 0 0.52914 0 0.56786 G 0.56520 0

Chapter 5.0: Solving Models With Replication

Figure 49: Replicated Model of Multi-Entried System (Case 3)

Page 90
Table 8: Processor Utilization Results for Mixed System (Case 2)
Processo Full Model Full Model Replicated % Error
(Exact MVA) | (Schweitzer) | (Schweitzer) °
Exact MVA Schweitzer
A 0.0410406 0.0397106 0.0397210 -3 0.02
B 0.0243915 0.0243404 0.0243491 -0.2 0.03
C 0.6993750 0.6935880 0.6938210 -0.8 0.04
D 0.5302510 0.5291400 0.5293280, -0.2 0.03
Processo Full Model Full Model Replicated Replicated
(Exact MVA) (Schweitzer) | (Linearizer) (Exact MVA)
A 0.0410406 0.0397106 0.0436125 0.0433807
B 0.0243915 0.0243404 0.0260984 0.0259990
C 0.6993750 0.6935880 0.747273(0.74420Q0
D 0.5302510 0.5291400 0.567356(0.5651960
Kg =10
l_:BD =1
FBD =1
KD =10

Page 91

Chapter 5.0: Solving Models With Replication
Table 9: Cycle Time Results for Multi-Entried System (Case 3)
Entry Full FuII_ Repllcz_ated % Error
Name| (Exact MVA) (Schweitzer) (Schweitzer)
Phase| Phase | Phase| Phase | Phase | Phase | Exact | Schw
1 2 1 2 1 2 MVA
A 0 148.45 0 150.16 0 150.14 1 -0.01
B 0 267.03 0 268.96 0 268.92 0.7 -0.01
cl 3 0 3 0 3 0 0 0
c2 3 0 3 0 3 0 0 0
di 5 0 5 0 5 0 0 0
d2 5 0 5 0 5 0 0 0
Entry Full Full Replicated Replicated
Name| (Exact MVA) (Schweitzer) (Linearizer) (Exact MVA)
Phase| Phase | Phase| Phase | Phase| Phase | Phase| Phase
1 2 1 2 1 2 1 2
A 0 148.45 0 150.16 0 133.63 0 135.50
B 0 267.03 0 268.96 0 248.05 0 25042
cl 3 0 3 0 3 0 3 0
c2 3 0 3 0 3 0 3 0
di 5 0 5 0 5 0 5 0
dz 5 0 5 0 5 0 5 0
Table 10: Throughput Results for Multi-Entried System (Case 3)
Entry | Full Model Full Mo_del Replicgted % Error
Name| (Exact MVA) | (Schweitzer) | (Schweitzer)
Exact MVA Schweitzer
A 0.00673588 0.00665915 0.00666024 -1 0.02
B 0.00374483 0.00371797 0.00371856 -0.7 0.03
cl 0.13928900 0.1381760(0.1381980D -0.7 0.01
c2 0.13928900 0.1381760(0.1381980p -0.7 0.01
di 0.01497930 0.0148719(0.0148742p -0.7 0.02
d2 0.01497930 0.0148719(0.0148742p -0.7 0.02

Chapter 5.0: Solving Models With Replication

Entry | Full Model Full Model Replicated Replicated

Name| (Exact MVA) (Schweitzer) | (Linearizer) (Exact MVA)
A 0.00673588 0.00665915 0.00748333 0.007379p4
B 0.00374483 0.00371797 0.00403132 0.00399326
cl 0.13928900 0.1381760(0.15087300 0.1493180
c2 0.13928900 0.1381760(0.15087300 0.1493180
di 0.01497930 0.0148719(0.01612530 0.0159780
d2 0.01497930 0.0148719(0.01612530 0.0159780

Page 92

Table 11: Task Utilization Results for Multi-Entried System (Case 3)

Entry Full Model Full Mo_del Replicgted % Error
Name (Exact MVA) (Schweitzer) (Schweitzer)
Phase 1] Phase? Phas¢1 Phade2 Pha&ease | Exact Schw
1 2 MVA
A 0 0.99999 0 0.999999 0 1 0 0
B 0 0.99999 0 0.999999 0 1 0 0
cl | 0.41786 0 0.41453 0 0.4146 0 -0.7 0,02
c2 | 0.417871 0 0.414583 0 0.4146 0 -0.7 0402
dl | 0.0749¢ 0 0.07436 0 0.0744 0 -0.7 005
d2 | 0.0749¢ 0 0.07436 0 0.0744 0 -0.7 005
Entry Full Model Full Model Replicated Replicated
Name (Exact MVA) (Schweitzer) (Linearizer) (Exact MVA)
Phase 1 Phase2 Phas¢l Phase2 Phasel |Mase 1| Phase
2 2
A 0 0.99999 0 0.999999 O 1 0 1
B 0 0.99999 0 0.999999 O 1 0 1
cl | 0.41786 0 0.41453 0 0.45262 @ 0.44795 0
c2 | 0.417871 0 0.41453 0 0.45262 0 0.44795 0
dl | 0.0749¢ 0 0.07436 0 0.080p3 0.07987
d2 | 0.07494 0 0.07436 0 0.08063 0.07987

Chapter 5.0: Solving Models With Replication

Page 93

Table 12: Processor Utilization Results for Multi-Entried System (Case 3)

Processor Full Model Full quel Replicz_;lted % Error
(Exact MVA) (Schweitzer) (Schweitzer)
Exact MVA Schweitzer
A 0.0134718 0.0133183 0.0133205 -1 0.07
B 0.0149793 0.0148719 0.0148742 -0.6 0.02
C 0.8357310 0.8290540 0.8291860 -0.7 0.01
D 0.1497930 0.1487190 0.1487420 -0.6 0.02
Processor Full Model Full quel R_eplicgted Replicated
(Exact MVA) (Schweitzer) | (Linearizer) (Exact MVA)
A 0.0134718 0.0133183 0.0149667 0.0147599
B 0.0149793 0.0148719 0.0161253 0.0159730
C 0.8357310 0.8290540 0.905238(0.8959050
D 0.1497930 0.1487190 0.161253(0.15973d0

[7] e

?ABZZ

B*

FAB:4

KB:2

ﬁBCZZ

Figure 50: Replicated Model of Multi-Layered System (Case 4)

Chapter 5.0: Solving Models With Replication

Page 94
Table 13: Cycle Time Results for Multi-Layered System (Case 4)
Entry Full FuII_ Repllcz_ited % Error
Name| (Exact MVA) (Schweitzer) (Schweitzer)
Phase| Phase | Phase| Phase | Phase | Phase | Exact | Schw
1 2 1 2 1 2 MVA
A 0 17.805 0 18.225 0 18.224 2 -0.01
B | 3.5071 0 3.562H 0 3.5627 0 1.6 -0.01
C 1 0 1 0 1 0 0 0
Entry Full Full Replicated Replicated
Name| (Exact MVA) (Schweitzer) (Linearizer) (Exact MVA)
Phase| Phase | Phase| Phase | Phase| Phase | Phase| Phase
1 2 1 2 1 2 1 2
A 0 17.805 0 18.225 0 16.525 0 16.5p9
B | 3.5071 0 3.562H 0 3.5210 0 3.5162 0
C 1 0 1 0 1 0 1 0

Table 14: Throughput Results for Multi-Layered System (Case 4)

Task Full Model Full quel Replicgted % Error
Name| (Exact MVA) (Schweitzer) (Schweitzer)
Exact MVA Schweitzer
A 0.0561653 0.0548689 0.0548741 -2 0.02
B 0.2246610 0.2194760 0.2194960 -2 0.02
C 0.4493220 0.4389510 0.4389930 -2 0.01
Task | Full Model Full Model Replicated Replicated
Name| (Exact MVA) (Schweitzer) | (Linearizer) (Exact MVA)
A 0.0561653 0.0548689 0.0605136 0.0604992
B 0.2246610 0.2194760 0.242054(0.2419970
C 0.4493220 0.4389510 0.484109(0.4839930

Chapter 5.0: Solving Models With Replication

Page 95
Table 15: Task Utilization Results for Multi-Layered System (Case 4)
Full Model Full Model Replicated o
Task| Exact MVA) (Schweitzer) | (Schweitzer) | 70 EMOf
Phase 1| Phase2? Phase¢l Phase2 Phd¥ease | Exact | Schw
1 2 MVA
A 0 1 0 1 1 0 0
B | 0.78791 0 0.7819 0 0.7820 0 -0.7 0.01
C | 0.44932 0 0.4384 0 0.4390 0 -2 0.02
Task Full Model Full Model Replicated Replicated
(Exact MVA) (Schweitzer) (Linearizer) (Exact MVA)
Phase 1| Phase? Phas¢l Phade2 Phasel |Miese 1| Phage
2 2
A 0 1 0 1 0 1 0 1
B | 0.78791 0 0.7819 0 0.85228 @ 0.85092 D
C | 0.44932 0 0.4384 0 0.48411 (0.48399 0

Table 16: Processor Utilization Results for Multi-Layered System (Case 4)

Processor Full Model Full quel Replic:?\ted % Error
(Exact MVA) (Schweitzer) (Schweitzer)
Exact MVA Schweitzer
A 0.0561653 0.0548689 0.0548741 -2 0.02
B 0.2246610 0.2194760 0.2194960 -2 0.01
C 0.4493220 0.4389510 0.4389930 -2 0.01
Processor Full Model Full quel R_eplicgted Replicated
(Exact MVA) (Schweitzer) | (Linearizer) (Exact MVA)
A 0.0561653 0.0548689 0.0605136 0.0604992
B 0.2246610 0.2194760 0.242054(0.2419970
C 0.4493220 0.4389510 0.484109(0.4839930

Chapter 5.0: Solving Models With Replication

Page 96
Table 17: Cycle Time Results Using Newton-Raphson (Case 5)
Entr Full Full Replicated
Namye (Exact MVA) (Schweitzer) (Scr?weitzer) % Error
Phase| Phase | Phase| Phase | Phase | Phase | Exact | Schw
1 2 1 2 1 2 MVA
A 0 132.23 0 132.89 0 132.82 04 -0.05
B 0 220.32 0 221.1y 0 221.06 0.3 -0.04
C 3 0 3 0 3 0 0 0
D 5 0 5 0 5 0 0 0
Entry Full Full Replicated Replicated
Name| (Exact MVA) (Schweitzer) (Linearizer) (Exact MVA)
Phase| Phase | Phase| Phase | Phase| Phase | Phase| Phase
1 2 1 2 1 2 1 2
A 0 132.23 0 132.89 0 121.90 0 122.38
B 0 220.32 0 221.1y 0 206.36 0 207,01
C 3 0 3 0 3 0 3 0
D 5 0 5 0 5 0 5 0
Table 18: Throughput Results for Using Newton-Raphson (Case 5)
Task Full Model Full Mo_del Replicz_ated % Error
Name| (Exact MVA) (Schweitzer) (Schweitzer)
Exact MVA Schweitzer
A 0.00756260 0.00752531 0.00752928 -0.4 0.05
B 0.00453883 0.00452144 0.00452359 -0.3 0.05
C 0.30258000 0.30138700 0.30153200 -0.3 0.05
D 0.01815530 0.0180857Q 0.01809430 -0.3 0.05
Task | Full Model Full Model Replicated Replicated
Name| (Exact MVA) (Schweitzer) | (Linearizer) (Exact MVA)
A 0.00756260 0.00752531 0.0082035¢ 0.00817116
B 0.00453883 0.00452144 0.00484581 0.00483068
C 0.30258000 0.30138700 0.32356300 0.32252500
D 0.01815530 0.0180857Q 0.01938320 0.01932270

Chapter 5.0: Solving Models With Replication

Page 97

Table 19: Task Utilization Results for Using Newton-Raphson (Case 5)

Task Full Model Full quel Replicz_ited % Error
(Exact MVA) (Schweitzer) (Schweitzer)
Phase 1| Phase?2 Phas¢1l Phage2 Phasel Plaset | Schw
2 MVA
A 0 0.99999¢ 0 0.999999 0 1 0 0
B 0 0.999999 0 0.999999 0 1 0 0
C | 0.90774 0 0.9041p 0 0.90460 0 -0.3 0,05
D | 0.09078 0 0.090483 0 0.09047 0 -0.3 0.04
Task Full Model Full quel R_eplicated Replicated
(Exact MVA) (Schweitzer) (Linearizer) (Exact MVA)
Phase 1l Phase? Phas¢1l Phase2 Phasel |Faese 1| Phage
2 2
A 0 0.99999¢ 0 0.999999 O 1 0 1
B 0 0.999999 0 0.999999 O 1 0 1
C | 0.90774 0 0.90416 0 0.97069 0.96758 0
D | 0.09078 0 0.090483 0 0.09692 G 0.09661 D

Table 20: Processor Utilization Results for Using Newton-Raphson (Case 5)

Processor Full Model Full quel Replicz_;lted % Error
(Exact MVA) (Schweitzer) (Schweitzer)
Exact MVA Schweitzer
A 0.0151252 0.0150506 0.0150586 -0.5 0.05
B 0.0181553 0.0180857 0.0180943 -0.3 0.05
C 0.9077410 0.9041620 0.9045970 -0.3 0.04
D 0.0907766 0.0904287 0.0904717 -0.3 0.05
Processor Full Model Full quel R_eplicgted Replicated
(Exact MVA) (Schweitzer) | (Linearizer) (Exact MVA)
A 0.0151252 0.0150506 0.0164071 0.0163423
B 0.0181553 0.0180857 0.0193837 0.0193227
C 0.9077410 0.9041620 0.970688(0.9675760
D 0.0907766 0.0904287 0.0969161 0.0966135

Chapter 5.0: Solving Models With Replication Page 98

5.9 Limitations

From the analysis of the results in Section 5.8, it can be seen that the replication
algorithm should use the Schweitzer approximation for the best results. Other limitations

exist which may be removed in future work.

The current implementation of the replication algorithm can handle multiple entries for
each task. However, the entries of a task must have the same fan-out and fan-in values. It
may be noted that the usefulness of having entries with different fan-out and fan-in values
is questionable. In other words, what kind of system would need this modeling capability

keeping in mind that the symmetry of the system must be maintained.

Another limitation of the current implementation also deals with the symmetry issue.
The processors associated with the tasks in the SRVN model are treated as servers. (The
processors are not shown explicitly but are specified in the model in the input file.)
Therefore, they have exactly the same restrictions as tasks. That is, a replicated group of

tasks must be allocated either to one processor or to a replicated group of processors.

Finally, convergence of the algorithm is not guaranteed. The simplified Newton-
Raphson method may be applied when the Gauss-Seidel iteration fails to converge.

However, it too may not converge in some cases.

Chapter 6.0 Case Study

6.1 Introduction

As the trend towards distributed computing continues, many systems in industry have
been converted to a client-server architecture with some being multi-tiered. Multi-tiered
systems are systems with server entities that act as servers to some entities and as clients to
others. Some systems may contain a large number of components especially if the system
spans geographic boundaries. The importance of performance analysis of these systems
becomes apparent and, in some cases, critical as the configurations of these systems evolve.
Before any changes are made to the system, the performance of the system must be
predicted to avoid any degradation or total inoperability of the system. Capacity planning
studies are conducted which include performance evaluation techniques. Performance
evaluation consists of defining the goals of a performance study, creating a performance
model for the system, deciding on the performance metrics, measuring or estimating the
performance model parameters, selecting and modeling the workload, solving the

performance model with the appropriate evaluation techniques, and reporting the results.

The Layered Queueing Network Solver (LQNS) with replication modifications, as
discussed in Chapters 4 and 5, may be used to predict system performance of large multi-
tiered client-server systems. In this chapter, a simple study of a real industrial system is

conducted to demonstrate a practical application of the LQNS tool with replication.

6.2 Capacity Planning for a Large Client-Server System

To demonstrate the solving of replicated systems, a study of a large industrial client-

server system is presented. The study is based on data from the capacity planning study

Page 99

Chapter 6.0: Case Study Page 100

conducted by Shen [Shen 96]. The structure of the system is shown in Figure 51 on page
101. The main function of the network is to provide database access to the users of the
system. The large database system consists of thousands of workstations (or PC’s)
submitting transactions to two databases, called RF and BC, stored on two separate
mainframes. The workstations are connected to a local area network (LAN) and access the
databases via a LAN server (PC or workstation). The LAN server also provides some local
service to the workstations. Some of the LAN’s are connected to the backbone network
(FDDI (Fiber Distributed Data Interface)) and others are connected to a wide area network

(WAN). There may be other traffic on the network besides the database transactions.

To simplify the modeling of the database system, some assumptions are made. All the
LAN'’s are assumed to be token ring with the same traffic factor and workload. That is, the
number of workstations attached to each LAN is the same, 10. The number of LAN’s
attached to the WAN is the same as the number of LAN’s attached to the backbone. The
workstations are modeled as equivalent entities producing similar workloads. With the
simplifications, the database system has symmetric properties and can be easily modeled
into an SRVN model using the simplified notation as shown in Figure 52 on page 102.
The workstations, or more appropriately the tasks running on the workstations, are mod-
eled as client tasks. The LAN server is modeled as a FCFS (first-come first-served) server
task. In fact, it is also a client to the database servers. The two databases are modeled as
FCFS server tasks in the bottom layer. The LAN is a token ring and its delay has been
modeled as a delay server. Similarly, the WAN and backbone delays have been modeled
as delay servers. For purposes of this study, which is concerned with the performance of

the whole system rather than individual components of the system, the front-end processor

Chapter 6.0: Case Study

Backbone Network

FEP

Page 101

Wide Area Network

Front End Processor

FEP

RF-DB Server
(Mainframe)

BC-DB Server
(Mainframe)

Figure 51: Database System

Chapter 6.0: Case Study Page 102

FwseL =1 FwswL =1
fWSB =1 fWSW =
FwseL =1 FwswL =1
Kiang =NxJ /LAN g
DELAY
KLANB = NxI
FWSB =N I:WSW =N
K =J
N E M o
Fisgg =1 Fisww =1
Flsgg=1 Flsww =1

BACKBONE
DELAY

KBB:J

Kwan =1
FLser =4

KRDB:]' KBDB:1

WS - Workstation

LS - LAN Server

| - Number of LANs on WAN

J - Number of LANs on Backbone

N - Number of Workstations per LAN

Figure 52: SRVN Model of Database System

Chapter 6.0: Case Study Page 103

and disks are not of great importance and have not been modeled. Their effects have been

incorporated into the parameters of the database server tasks.

A characterization of the workload and the parameters of the model, such as the ser-
vice times of each task and the number of visits between tasks, must be obtained to use the
model for performance prediction. Both may be obtained from measurements and obser-
vations of the actual system in operation. From measurements collected on the response
time of different transactions at the workstations, the workload is characterized into four
types: heavy transactions to the RF database, light transactions to the RF database, heavy
transactions to the BC database, and light transactions to the BC database [Shen 96].
These workload types have been represented in the SRVN model by different entries in
the database tasks. The workload that only requires the LAN server is represented as an
entry in the LAN server task. From the measurements, the think time at the workstations
was determined to be 15 seconds. However, since other measurement data was scarce, the
rest of the parameters for the model are very rough educated estimates. The following

parameters are used:

Service Time of LAN Server for Local Service = 0.03 seconds
Service Time of LAN Server for Database Service = 0.01 seconds
Service Time of RF Database Light Transactions = 0.04 seconds
Service Time of RF Database Heavy Transactions = 0.08 seconds
Service Time of BC Database Light Transactions = 0.08 seconds
Service Time of BC Database Heavy Transactions = 0.16 seconds
Service Time of LAN delay = 0.00039 seconds
Service Time of WAN delay = 0.04 seconds

Service Time of Backbone delay = 0.02 seconds

Chapter 6.0: Case Study Page 104

The mainframe for the BC database also receives work from other non-database appli-
cations and takes up 50% of its CPU time. The service time given above is the effective
service time which is the actual service time divided by 0.5 (effective service time = ser-
vice time/(1 - utilization of non-database applications)). The LAN, WAN, and backbone
delays have been calculated with the equations in Shen’s thesis (Equation 12 of [Shen 96])
with the same parameter assumptions and traffic factors. The WAN rate is assumed to be

50,000 bits/second and the backbone FDDI rate is assumed to BebitzA@cond.

The visits between tasks are estimated from observations of the system. There are two
visits to the LAN, WAN, and backbone servers. One delay is encountered when request-
ing a service and one delay is encountered for the response. It is assumed that the worksta-
tion on the average makes two requests to the LAN server for database service for every
one request that only involves the LAN server. Therefore, the visit ratio is 2/3 to entry
LSpg and 1/3 for entry LS. Similarly, it is estimated that there are 5 requests to the RF
database for every request to the BC database. The request for a light or heavy transaction
is equal. Therefore, the visit ratio to the BC light entry or heavy entry is (1/6)(1/2)=1/12.

The visit ratio to the RF database is in total 5/6.

The completed SRVN model, as shown in Figure 53, may be used to study the perfor-
mance of the system under varying configurations and parameters. In the first analysis, the
change in the response time at the workstations is studied when the number of worksta-
tions in the system is increased. There are ten workstations attached to each LAN. The
number of workstations is increased by attaching new LAN'’s to the network. The SRVN
model is solved several times by varying the number of LAN servers. Figure 55 shows a
graph of the change in response time as seen at the client workstation. As expected, the
response time increases with the number of workstations. The response time increases dra-

matically at more than 300 clients since the RF database saturates between 300 and 400

Chapter 6.0: Case Study Page 105

clients. The RF database is the first component to saturate and is the bottleneck of the sys-

tem. After saturation, the response time continues to increase linearly.

The second analysis seeks to determine the effect of regional servers to off-load the
work at the RF database. The regional servers are given the same parameters and entries
as the RF database. The visit ratios to the regional servers and RF database are determined
by the fraction of RF database requests that are routed to the regional servers. The SRVN
model with three regional servers is shown in Figure 54. Figure 55 shows the increase in
the response time seen at the client with 20% of the RF database traffic routed to the
regional servers. Clearly, the response time at the client is improved and the RF database
saturates between 400 and 500 clients. Finally, the effect of changing the fraction of traffic
going to the regional servers is studied. Figure 56 shows the response time at the client for
a system with 600 workstations when the fraction of off-loaded traffic is varied. The
response time decreases with the increase in the fraction of RF database traffic going to

the regional servers.

Chapter 6.0: Case Study Page 106

FwseL =1 B FwswL =1
Fwsg =1 Fwsw =1
FWSBL =1 FWSWL =1
Kiang =10xJ /LANp
DELAY
KLANB = 10xI
FWSB =10 I:WSW =10
K =J
LSB } KLSW =
Fisgg=1 Fisww =1
Fiseg=1 Flsww =1
Flsws =1
BACKBONE
DELAY
KBB =J KWAN =

Flsws =1

/QDBl/RDB /éDB/BDB/ _
Kro =1 Kepg =1

WS - Workstation (10 attached to each LAN)

LSB, - LAN Server Entry for Local Service

LSBpg - LAN Server Entry for Database Access

RDB, - Light Transactions for Remote Forms Database

RDBy - Heavy Transactions for Remote Forms Database
BDB, - Light Transactions for Billing and Collections Database
BDBy - Heavy Transactions for Billing and Collection Database
| - Number of LANs on WAN

J - Number of LANs on Backbone

Figure 53: SRVN Model with Entries

Chapter 6.0: Case Study Page 107

FwseL =1 B B FwswL =1
Fwsg =1 Fwsw =1
FwssL = FwswL =
Kiang =10xJ /LANpg
DELAY
K ang = 10x]
FWSB =10 I:WSW =10

Kisw =1

Frsww =1

Frsww =1

Fiswg =1

BACKBONE
DELAY

KBB =J KWAN =
LSBR = Flswr =1 Flsws =1

RS /RS, /QDB RDB /éDB/BDB/

Krs=3 Krpg =1 Keps =1

WS - Workstation (10 attached to each LAN)

LSB, - LAN Server Entry for Local Service

LSBpg - LAN Server Entry for Database Access

RDB, - Light Transactions for Remote Forms Database
RDBy - Heavy Transactions for Remote Forms Database
BDB, - Light Transactions for Billing and Collections Database
BDBy - Heavy Transaction for Billing and Collection Database
RS, - Light Transaction at Regional Server

RSy - Heavy Transaction at Regional Server

| - Number of LANs on WAN

J - Number of LANs on Backbone

Figure 54: SRVN Model of Database System with Three Regional Servers

Chapter 6.0: Case Study Page 108

Without Regional Servers

Response Time at Client (seconds)

With Regional Servers
Taking 20% of Requests

Number of Users of RF Database

Figure 55: Performance of Database System

Chapter 6.0: Case Study Page 109

Response Time at Client (second)

Fraction of Transactions to Regional Servers with 600 RF Users

Figure 56: Effect on Performance of Off-Loading to Regional Servers

Chapter 7.0 Conclusion

7.1 Research Summary

As distributed computer systems, such as client-server systems, increase in size and
complexity, the need to evaluate the performance of these systems becomes critical. There
often exist components in these systems which are similar from a performance modeling
point of view. These components, referred to as being replicated, have the same
performance parameters. Consequently, their performance measures predicted from the

performance models are also equal.

This thesis has presented a method that takes advantage of the replication of
components to simplify the modeling of large systems and to solve the performance models
for these systems. The method modifies the Stochastic Rendezvous Network (SRVN) and
Layered Queueing Network Solver (LQNS) performance analysis toolset to enable the

toolset to analyze large systems in an efficient manner.

One of the big advantages, presented in the thesis, is a simplified notation representing
large systems with replicated component. A set of replicated components is represented by
one entity with a notation representing the number of replicas. The connection between
replicated components is also represented once with a fan-in and fan-out notation. The
proposed representation thereby reduces the number of entities and connections needed to
define a large system. The graphical model is simplified as well as the text description file
of the model. The results of solving the SRVN model are also compacted since the
performance measures for one entity is presented instead of a repetition of the same results

for replicated components.

Page 110

Chapter 7.0: Conclusion Page 111

The LQNS, which solves the SRVN model, has been modified to enable the solving of
large models with any combination of replicated and non-replicated components. The
underlying MVA solver for queueing submodels, which is in LQNS, has not been touched.
Instead, the queueing network presented to the MVA solver is modified to take full
advantage of the replication. The chains for replicated components are assigned with
respect to the server rather than with respect to the client as in non-replicated components.
Each chain visits one client and one server for replicated components. A set of replicated
components is represented by one station in the queueing network. The method of surrogate
delays is employed to account for the delays of the non-represented replicated components.
The method is implemented in the form of modifying the service time of the client entity

given in equation (5.4) in Section 5.4.

The question of convergence of the method which is basically a Gauss-Seidel iteration
has been addressed. There were some difficulties getting the iterative solution to converge
for some cases. A simplified Newton-Raphson method was applied instead of the Gauss-
Seidel iteration in cases where the latter fails to converge. The new update equation for the
service time is equation (5.22) in Sect 5.6. This was effective in all cases that were tested.
Unfortunately, convergence is not theoretically guaranteed even with the Newton-Raphson

method.

Several models with replicated components were solved using the full representation
and the simplified representation. The results were compared. It is evident that using the
Schweitzer MVA approximation to solve the queueing submodels, with the replication
method, provides the best results. The reason is found in the nature of the method of
surrogate delays where the service time of the delay centre representing the ‘missing’
station is obtained for a full populatidd. The Schweitzer method uses the estimated times

for population N whereas the exact MVA and Linearizer require values for other

Chapter 7.0: Conclusion Page 112

populations besid®&. Thus, an error is introduced. This source of error has not been
identified in other research based on surrogate delays. The results were excellent for single-
layered models but are less accurate for multi-layered models. The reason is the errors
produced in the solving of one layer submodel propagates to the solution of other layer

submodels.

It is hoped that the work carried out in this thesis may be beneficial to performance
engineers studying large systems with replicated components, in particular distributed
client-server systems. The replicated method was applied to a real industrial system to
illustrate its use. The strategy presented enables large systems to be analyzed using a simple

model definition and a solver (LQNS) that provides relatively quick and accurate results.

7.2 Future Work

Further work may be done to eliminate the limitations of the replication method as
described in Section 5.9. The most important research is studying the convergence of the
replication method. The simplified Newton-Raphson method implemented does not
guarantee convergence. The full Newton-Raphson method may be implemented but
requires a great deal of work per iteration. The calculation would require matrix
manipluation for solving a set of equations. Even the full Newton-Raphson method does
not guarantee convergence. Other methods of convergence could be considered such as
those suggested in [Zahor 88], where the mean queue length is used as the metric by which
errors are measured, [Bard 81], and the standard numerical methods described in [Davis 86]

and [Pearson 86].

REFERENCES

[Bard 81]

[Chandy 78]

[Chandy 82]

[Chow 83]

[Davis 86]

[Eager 84]

[Franks 94]

[Hubbard 95]

[Jacob 82]

[Jain 91]

[Lazow 84]

[Menasce 94]

[Patti 90]

Y. Bard. “A Simple Approach to System Modeling.” North Holland
Performance Evaluatiqri(1981) 225-248.

K. Mani Chandy and C. H. Sauer. “Approximate Methods for Analyzing
Queueing Network Models of Computing SystemsComputing
SurveysVol. 10, No. 3, Sept. 1978.

K. Mani Chandy and Doug Neuse. “Linearizer: A heuristic algorithm
for queueing network models of computing system&ACM
25(2):126-134, February 1982.

W. Chow. “Approximations for Large Scale Closed Queueing
Networks.” North HollandPerformance Evaluatiqr8 (1983) 1-12.

G. de Vahl DavisNumerical Methods in Engineering and Science
Allen Unwin (Publishers) Ltd, London, 1986.

D. Eager, K. Sevcik. “An Analysis of an Approximation Algorithm for
Queueing Networks.” North HollandPerformance Evaluatign4
(1984) 275-284.

G. Franks. “Layered Queueing Network Solver Software Design.
Department of Systems and Computer Engineering, Carleton
University, 1994.

A. Hubbard, G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia, C.
M. Woodside. “A Toolset for Performance Engineering and Software
Design of Client-Server Systems.” North HollandPerformance
Evaluation 24 (1995) 117-136.

P.A. Jacobson and E.D. Lazowska. “Analyzing queueing networks with
simultaneous resource possessiofdmmunications of the ACM
25(2):142-151, February 1982.

R. Jain.The Art of Computer Systems Performance Analy&in
Wiley & Sons, New York, New York, 1991.

E.D. Lazowska, J.Zahorjan, G.S. Graham, and K.C. Sevcik.
Quantitative System Performanc®rentice-Hall, Inc., Englewood
Cliffs, N.J. 07632, 1984.

D. Menasce, V. Almeida, L. DowdyCapacity Planning and
Performance ModelingPrentice-Hall, Inc., Englewood Cliffs, N.J.
07632, 1994.

Kr. R. Pattipati, M. M. Kostreva, J. L. Teele. “Approximate Mean Value

Page 113

REFERENCES

[Pearson 86]

[Petriu 95]

[Rolia 92]

[Rolia 95]

[Rumb 91]

[Shen 96]

[Smith 90]

[Souza 84]

[Wood 88]

[Wood 95a]

[Wood 95b]

[Zahor 88]

Page 114

Analysis Algorithms for Queueing Networks; Existence, Uniqueness,
and Convergence Result€€bmputing MachineryVol. 37, No. 3, July
1990, pp. 643-673.

C. E. PearsoNumerical Methods in Engineering and Scienv@n
Nostrand Reinhold Company, Inc., New York, 1986.

D. Petriu, G. Franks, A. Hubbard. “SRVN Input File Format.”
Department of Systems and Computer Engineering, Carleton
University, 1995.

J.A. RoliaPredicting the Performance of Software Systepid thesis,
University of Toronto, January 1992.

J.A. Rolia and K.C. Sevcik. “The Method of LayertEEE Trans. on
Software Engineeringsol. 21, no. 8, Aug. 1995.

J. Rumbaugh, M. Blaha, W. Premerlarni, F. Eddy, W. Lorer@bject-
Oriented Modeling and DesigiPrentice-Hall, Inc., Englewood Cliffs,
N.J. 07632, 1991.

Y. Shen. “A Capacity Planning Model for a Large Client-Server
System.” Masters Thesis, Carleton University, 1996.

C. Smith.Performance Engineering of Software Systemddison-
Wesley Publishing Co., New York, NY, 1990.

E. deSouza e Silva, S. S. Lavenberg, R. R. Muntz. “A Perspective on
Iterative Methods for Approximate Analysis of Closed Queueing
Networks.” North HollandMathematical Computer Performance and
Reliability, 1984.

C. M. Woodside, “Throughput Calculation for Basic Stochastic
Rendezvous Networks.” North HollandPerformance Evaluatign9
(1988/89) 143-160.

C. M. Woodside, J. E. Neilson, D. C. Petriu, and S. Majumdar. “The
Stochastic Rendezvous Network Model for Performance of Client-
Server-Like Distributed SoftwarelEEE Trans. on Computersol. 44,

no. 1, Jan. 1995.

C. M. Woodside. “Replicated Components in LQONS (Layered
Queueing Network Solver).” Department of Systems and Computer
Engineering, Carleton University, March 1995.

J. Zahorjan, D. Eager, H. Sweillam. “Accuracy, Speed, and
Convergence of Approximate Mean Value Analysis.” North Holland
Performance Evaluatiqr8 (1988) 255-270.

	Solving Stochastic Rendezvous Networks of Large Client-Server Systems with Symmetric Replication
	by
	Amy M. Pan
	The undersigned recommend to the Faculty of Graduate Studies
	and Research acceptance of the thesis
	Solving Stochastic Rendezvous Networks of Large Client-Server Systems with Symmetric Replication
	submitted by Amy M. Pan, B.Eng.
	in partial fulfillment of the requirements for
	the degree of Master of Engineering
	Carleton University
	5 September 2001

	Abstract
	Acknowledgments
	Table of Contents
	Chapter 1.0 Introduction 1
	Chapter 2.0 Background 7
	Chapter 3.0 Layered Queueing Network Solver (LQNS) 27
	Chapter 4.0 Representation of Replicated Systems 36
	Chapter 5.0 Solving Models With Replication 51
	Chapter 6.0 Case Study 99
	Chapter 7.0 Conclusion 110
	References 113

	List of Figures
	List of Tables
	List of Symbols
	Replication Notation
	MVA
	Replication Method
	Chapter 1.0 Introduction
	1.1 Performance Analysis
	1.2 Motivation
	1.3 Contributions to Research
	1.4 Thesis Organization

	Chapter 2.0 Background
	2.1 SRVN Model
	2.1.1 General Description
	Figure 1: SRVN Phases

	2.1.2 Creating an SRVN Model
	Figure 2: Client-Server System
	Figure 3: SRVN Model of Client-Server System
	Figure 4: SRVN Model with Entries

	2.2 The Method of Layers (MOL)
	2.3 Queueing Theory
	Figure 5: Closed Queueing Network
	2.3.1 Chain vs. Class
	2.3.2 Mean Value Analysis (MVA)
	Eq (2.1)
	(queueing stations) Eq (2.2)
	(delay server) Eq (2.3)
	Eq (2.4)
	Eq (2.5)
	Eq (2.6)
	Figure 6: Exact MVA Algorithm
	Figure 7: Approximate MVA Algorithm (Bard-Schweitzer)

	2.3.3 Method of Surrogate Delays
	Figure 8: I/O Subsystem
	Figure 9: Models for Solving the I/O System

	2.4 Fixed-Point Iterative Methods
	Eq (2.7)
	2.4.1 Gauss-Seidel Iteration
	Eq (2.8)
	Eq (2.9)
	Figure 10: Convergence of the Gauss-Seidel Iteration

	2.4.2 Newton-Raphson Method
	Eq (2.10)
	Figure 11: Newton-Raphson Method
	Eq (2.11)
	Eq (2.12)

	Chapter 3.0 Layered Queueing Network Solver (LQNS)
	3.1 General Overview of the LQNS Tool
	Figure 12: LQNS Context

	3.2 Solving the SRVN Model
	3.2.1 Mapping A Layer To a Queueing Network
	Figure 13: Submodels for Figure 3
	Figure 14: Queueing Network for Submodel 2 of Figure 13

	3.2.2 Solving Between Layers

	3.3 Implementation Structure
	3.3.1 Classes
	Figure 15: Class Hierarchy Diagram

	Chapter 4.0 Representation of Replicated Systems
	4.1 Introduction
	4.2 Notation
	Figure 16: System with Replicated Tasks
	Figure 17: Replicated Representation of Figure 16

	4.3 Replicated Systems
	Figure 18: All Fan-In System
	Figure 19: Replicated Representation of All Fan-In System (Figure 18)
	Figure 20: All Fan-Out System
	Figure 21: Replicated Representation of All Fan-Out System (Figure 20)
	Figure 22: System with Fan-in and Fan-out
	Figure 23: Replicated Notation for Figure 22
	Figure 24: System with Entries
	Figure 25: Replicated Representation of System with Entries

	4.4 Identifying Replication
	Figure 26: Deceptive Replication

	4.5 Concentrated vs. Diffused Replication
	Figure 27: Replicated Model
	Figure 28: Concentrated Replication Interpretation of Figure 27
	Figure 29: A Diffused Replication Interpretation of Figure 27

	Chapter 5.0 Solving Models With Replication
	5.1 Introduction
	5.2 Problem Statement
	Figure 30: Full Model
	Figure 31: Replicated Model of Figure 30

	5.3 Chain Construction
	Figure 32: Queueing Network for Full Model (Figure 30)
	Figure 33: Queueing Network for Replicated Model (Figure 31)
	Figure 34: Full Model with Task B Replicated 20 Times
	Figure 35: Queueing Network for Full Model of Figure 34
	Figure 36: Replicated Model of Figure 34
	Figure 37: Replicated Queueing Network for Figure 36

	5.4 Service Time Calculation
	Eq (5.1)
	Figure 38: Replicated Sub-Queueing Network for Chain 1
	Eq (5.2)
	Eq (5.3)
	Eq (5.4)
	Eq (5.5)

	Figure 39: General Tasks

	5.5 Interpretation of Results
	Figure 40: Replicated Sub-Queueing Network for Chain 2
	Figure 41: Replicated Sub-Queueing Network for Chain 3

	5.6 Convergence
	Eq (5.6)
	Eq (5.7)
	Eq (5.8)
	. Eq (5.9)
	Eq (5.10)
	Eq (5.11)
	Eq (5.12)
	Eq (5.13)
	Eq (5.14)
	Eq (5.15)
	Eq (5.16)
	Eq (5.17)
	Eq (5.18)
	Eq (5.19)
	Eq (5.20)
	Eq (5.21)
	Eq (5.22)
	Eq (5.23)
	Eq (5.24)

	5.7 Implementation
	Figure 42: Pseudo-Code for “Inner” Iteration
	Figure 43: Pseudo-Code for Chain Construction
	Figure 44: Pseudo-Code for ModifyClientServiceTime
	Figure 45: Pseudo-Code for waitExceptChain
	Figure 46: Input File for Replication Example

	5.8 Tests
	Table 1: Cycle Time Results for Replication Example (Case 1)
	Table 2: Throughput Results for Replication Example (Case 1)
	Table 3: Task Utilization Results for Replication Example (Case 1)
	Table 4: Processor Utilization Results for Replication Example (Case 1)
	Figure 47: Full Model for Mixed System (Case 2)
	Figure 48: Replicated Model for Mixed System (Case 2)
	Table 5: Cycle Time Results for Mixed System (Case 2)
	Table 6: Throughput Results for Mixed System (Case 2)
	Table 7: Task Utilization Results for Mixed System (Case 2)
	Table 8: Processor Utilization Results for Mixed System (Case 2)
	Figure 49: Replicated Model of Multi-Entried System (Case 3)
	Table 9: Cycle Time Results for Multi-Entried System (Case 3)
	Table 10: Throughput Results for Multi-Entried System (Case 3)
	Table 11: Task Utilization Results for Multi-Entried System (Case 3)
	Table 12: Processor Utilization Results for Multi-Entried System (Case 3)
	Figure 50: Replicated Model of Multi-Layered System (Case 4)
	Table 13: Cycle Time Results for Multi-Layered System (Case 4)
	Table 14: Throughput Results for Multi-Layered System (Case 4)
	Table 15: Task Utilization Results for Multi-Layered System (Case 4)
	Table 16: Processor Utilization Results for Multi-Layered System (Case 4)
	Table 17: Cycle Time Results Using Newton-Raphson (Case 5)
	Table 18: Throughput Results for Using Newton-Raphson (Case 5)
	Table 19: Task Utilization Results for Using Newton-Raphson (Case 5)
	Table 20: Processor Utilization Results for Using Newton-Raphson (Case 5)

	5.9 Limitations

	Chapter 6.0 Case Study
	6.1 Introduction
	6.2 Capacity Planning for a Large Client-Server System
	Figure 51: Database System
	Figure 52: SRVN Model of Database System
	Figure 53: SRVN Model with Entries
	Figure 54: SRVN Model of Database System with Three Regional Servers
	Figure 55: Performance of Database System
	Figure 56: Effect on Performance of Off-Loading to Regional Servers

	Chapter 7.0 Conclusion
	7.1 Research Summary
	7.2 Future Work

	REFERENCES

