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Abstract

As industry moves towards distributed client-server systems, the performance of these

systems has gained attention. Distributed systems may consist of a large number of

components with functionality distributed throughout the components. Analytical methods,

which use queueing theory, are suitable for the performance study of large systems.

However, for practical purposes, they may be limited to the size of the system that can be

solved. This thesis extends the performance analysis toolset, Stochastic Rendezvous

Network (SRVN) models and the Layered Queueing Network Solver (LQNS), to handle

large systems with groups of so called replicated components that are homogeneous from

a performance modeling point of view. The analytical method described removes the

limitation on the size of these large systems that can be analyzed by the toolset. The method

includes the use of a simple model definition for large systems and a solver that is quick

and memory efficient.
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Chapter 1.0  Introduction

1.1  Performance Analysis

The performance of distributed systems is gaining interest because of the tre

industry towards replacing mainframe systems with client-server systems. Client-s

systems for business may contain a large number of components with function

distributed throughout the system. Performance studies are conducted to analyze

large systems for purposes of capacity planning and software performance engine

However, the practicality of modeling and analyzing these systems may be limited b

size of the system. The purpose of this thesis is to provide analytical means whereby

large client-server systems may be evaluated for their performance.

A client-server system consists of a client entity which is any process that is

requests to other server processes via a remote procedure call (RPC). The serve

responds to requests and hides the details of the server environment from the clien

client and server may reside on separate processors and delays may occur in

communication due to network delays and overhead processing. An example of a c

server system is a network file server with the applications running on the workstatio

the clients. An entity may act as a server to another entity but may itself be a c

requesting service from another server. In such multi-tiered systems, the perform

issues are more complex and unpredictable since the response time of an entity is no

dependent on the server it calls directly but also on any other underlying servers

example of a multi-tiered client-server system is a distributed on-line transac

processing (OLTP) system where a transaction manager receives requests from

application tasks. The transaction manager may translate the requests and forward th
Page 1
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to a database manager. In this case, the transaction manager is an intermediate laye

acts as a client to the database manager while acting as a server to the application 

Capacity planning and software performance engineering (SPE) are two activ

which study the performance of systems such as client-server systems. Capacity pla

predicts whether a computer system can support the growth of existing applicatio

change in system parameters and configuration, or the addition of new applications w

violating user-specified service levels such as a specific response time or proc

utilization [Menasce 94]. (The reader is referred to the book by Menasce et al. [Men

94] for a complete description of capacity planning.) Software performance engine

(SPE) is the process of constructing software systems that meet performance obje

SPE is used throughput the software engineering life-cycle. It is used to dis

unacceptable designs and to identify designs likely to yield satisfactory perform

results [Menasce 94]. (The reader is referred to the book by Connie Smith [Smith 90]

more complete description of SPE.) Both capacity planning and SPE use perform

modeling techniques in the performance analysis of systems.

A performance model represents the behavior of a system in terms of its perform

[Menasce 94]. It may be used to model an existing system or one that is being devel

The parameters of the model of an existing system may be obtained through measur

while for future systems the parameters must be estimated or guessed. The parame

interest are the service demands and visit ratios of each system entity. In additio

transaction processing systems, the parameters needed are the average transactio

rate and the maximum degree of multiprogramming which is the number of transac

that can be in execution at a given time. For interactive systems, the additional param

are the average think time which is the time a user takes before issuing a comman

number of terminals, and the maximum degree of multiprogramming.
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The results of solving the performance model are the performance metrics or mea

The desired metrics are response times, throughput and utilization. A response time

time interval between a user’s request to the system and when the user receives a re

from the system. The throughput is the rate at which the requests are serviced by the s

[Jain 91]. Typically, it is desirable for a system to have a short response time and

throughput. To improve the performance, the bottleneck of the system must often be f

The bottleneck is the component with the highest utilization. The utilization o

component is the fraction of time the component is busy servicing requests [Jain 91

There are two main ways of solving performance models, simulation and analy

solutions. Simulation models are based on computer programs that emulate the dif

dynamic aspects of a system and their static structure. Simulation models require a

deal of detail thereby making them expensive to run and develop. Analytical model

the other hand, are based on sets of formulae or computational algorithms which pr

the values of desired performance metrics as a function of the set of values o

performance parameters [Menasce 94]. Although simulation models may provide

accurate results, analytical models are useful for analyzing large systems since th

computationally more efficient and their parameters are easier to obtain due to their h

level of abstraction.

In this thesis, the focus is on analytical methods for solving performance mode

large client-server systems. The Stochastic Rendezvous Network Model (SRVN) prop

by Woodside [Wood 95a] and the Layered Queueing Network Solver (LQNS) [Franks

[Rolia 95] are the basis for solving such systems. The SRVN is used to model a c

server system, and LQNS is used to solve the SRVN model.
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1.2  Motivation

This research was prompted by the performance study of a large industrial two-t

client-server system. The system consists of several local-area networks (LANs) conn

to two mainframes via a wide-area network (WAN) and backbone network. Each L

consists of workstations which are serviced by a local server. In turn, the local servers

service from the two mainframes. The number of workstations is in the thousands whi

LANs are in the order of hundreds. Several performance issues are of interest such as

to deploy the software functionality to give the highest overall system throughput

where the bottleneck areas are if configurations are changed (e.g. more workstatio

added). Because of the large size of the system, an analytical method is deemed to b

suitable than simulation in evaluating the performance of the system. This parti

system is just one example of a new and widespread class of systems, as already des

The research applies to the broader class as well, including multi-tiered systems.

Analytical tools are available for studying the software performance of client-se

systems, but their scope is limited by the size of the system. One such toolset

Stochastic Rendezvous Network (SRVN) proposed by Woodside with the under

Layered Queueing Network Solver (LQNS). The SRVN model is solved using queu

theory by the LQNS software tool. For studying large client-server systems (greater

100 tasks), such as the industrial system in question, a group of client tasks or a gro

server tasks may have similar performance parameters and thus similar perform

metrics. It may also be possible to simplify the model by generalizing some tasks.

replication of these tasks has the advantage of simplifying the SRVN model represen

of the system as well as in simplifying the computation. The thesis describes a simp

notation for replication and an algorithm that uses the replication of tasks to save o
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computational time and memory used by the LQNS. In simplifying the SRVN model,

subsequent presentation of performance metrics is also reduced.

1.3  Contributions to Research

The contributions made by this thesis are:

• The details of a model for simplifying the representation of large systems

performance analysis, suggested by Professor C. Murray Woodside [Wood

are developed. Fewer entities and interactions are required in the model.

• A method, based on the method of surrogate delays, that enables the solving

performance model of large systems is proposed. The method removes the

limitations on the LQNS solver.

• A Newton-Raphson iteration technique was developed to improve the converg

of the iteration step of the method.

• The solution strategy of the method was evaluated by examples and a case st

a real system. The accuracy of the method is best using the Schwe

approximate MVA.

1.4  Thesis Organization

The thesis first provides some background material in Chapter 2 on the SRVN m

used to model systems for performance analysis. Queueing theory is reviewed sinc

used to actually solve the SRVN model. Some numerical methods used in the conver

of the proposed replication algorithm are presented. The LQNS tool which is modifie

apply the replication method is described in Chapter 3. Chapter 4 presents the notati

representing systems with replication, and Chapter 5 describes the new method pro

to handle the solving of large systems with replicated tasks. Chapter 5 also gives som
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results for the method on modest-sized systems. The new method is applied in Cha

to a case study of the large industrial system mentioned above. Finally, some conclu

are drawn in Chapter 7.
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Chapter 2.0  Background

2.1  SRVN Model

The Stochastic Rendezvous Network (SRVN), proposed by Woodside et al. [W

95a] [Wood 88], is the model used in the performance analysis method discussed i

thesis. The SRVN performance model is used mainly to model a system with soft

queueing and rendezvous, although hardware elements may also be included in the

The model is well-suited for systems with parallel tasks running on a multiprocessor o

a network, such as a client-server system. The SRVN modeling strategy is describe

its terminology and notation which are used by the Layered Queueing Network So

(LQNS) tool discussed in Chapter 3. Modeling a software system as an SRVN model is

discussed.

2.1.1  General Description

SRVN is used to model a software system consisting of several concurrent

communicating with each other via the rendezvous mechanism. A client task initiate

rendezvous with a server task and is blocked until a reply from the server is received

execution time during which the server services the request is called the first phase s

time. Any operation taken by the server after sending the reply is executed in the seco

subsequent phases. These phases are executed autonomously by the server task

concurrently with the client task. In the first phase, the server may rendezvous with

tasks to service the client request. These are referred to as “included service times”. F

1 diagrams the interactions. Asynchronous interactions may also be modeled with the

task continuing its execution after sending the request.
Page 7
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Figure 1: SRVN Phases

When one server provides more than one service, each of these services is mod

an “entry” with its own phase service times. In fact, a task is actually a collection of en

with one message queue. Between tasks, an entry of one task visits or issues reques

entry of another a specified number of times. A task always has at least one entry. Th

SRVN model may be described as a directed graph with nodes that are service entri

arcs that represent visits from one entry to another [Franks 95].

There may be several layers of tasks (represented by parallelograms) interacting

tasks from various other layers. (See Figure 3 on page 11). However, no cycle

permitted in the graph. The top layer of tasks consists of pure client tasks referred

reference tasks. Reference tasks do not receive requests but only initiate requests

result, reference tasks do not have phase one service times but only phase two service

Contrary to reference tasks, pure server tasks do not initiate requests but only re

requests. The tasks of the middle layers may act as servers and clients. In Figure 3

and WS2 are reference tasks while MF is a pure server. LS1 and LS2 are servers

interacting with WS1 and WS2 but are clients when interacting with MF.

Client

Server

request reply

rendezvous delay

replyrequest

phase 1 (service) phase 2

(blocked)

included
service time
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When one task is visited by more than one client task, there is contention a

queueing delay. Each task can only visit one task at a time. That is, tasks do not

internal concurrency and may only execute one entry at a time. There is only one que

all the entries in a task. However, software tasks may be multi-threaded. Multi-thre

tasks are modeled as tasks with multiple copies. Pure client tasks are modeled as i

servers with no queueing delay, although they may queue for their processors.

2.1.2  Creating an SRVN Model

To model a software system using SRVN, each software entity is represented as

in the SRVN model. Each task is associated with the processor it runs on. The proc

itself is also modeled as a task, although it need not be explicitly represented. Severa

may share a processor. In the client-server example, Figure 2, there are two LANs

consisting of two workstations and a local server. The workstations make requests

local server which forwards some of the requests to the mainframe. Workstation 4 ma

make direct requests to the mainframe. There is one task running on each o

workstations, local servers, and mainframe. Hence, there is a one-to-one mapping fro

entities to the SRVN tasks shown in Figure 3. Each task runs on its own processor w

is not shown in Figure 3.

Once the components of the systems are modeled, the entries of the tasks m

determined followed by the parameters such as the phase service times and the visits

client-server example, the local servers provide screen update information, for

database requests, and provide report generation information for the workstations. E

the functions is mapped to an entry:

• SCR (screen update)
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• DBA (database requests)

• RPT (report generation)

Similarly, the mainframe provides database access and report information services

are modeled as entries DB and REP. The mainframe also provides service to auton

requests from workstation 4. This is modeled as entry OTH. When a request is receiv

a server, it is common for the different functions to be part of a general case statement

case is mapped to an entry.

Each entry has its own phase service times. The phase one service time of the

server and mainframe entries is the execution time of the code invoked in servicin

client request before a reply is sent back. The second or subsequent phase service

the execution time of the code following the reply. For example, the mainframe can re

the database information to the local server request and then execute some clean-u

A reference task, such as the workstation, has one implicit entry and, being a pure c

only has phase two service time. The phase two service time is the execution time

code before the rendezvous to a server is invoked.

The visit ratio between entries are the number of rendezvous calls to the server

server is assumed to be ready to receive requests and cycles infinitely. The pure clien

continually makes requests with a think time in between requests. Tasks may have o

inputs in which case it is an open or mixed model.

The parameters may be obtained through instrumentation of the code

measurements. They may also be estimated from experience and expert judgement

the execution times and visits may be random, the average execution times and freq

of visits are used.
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Figure 2: Client-Server System

Figure 3: SRVN Model of Client-Server System

Main-
frame

WS - Workstation

LS - Local Server

WS4

LS2
WS3

LAN 1 LAN 2

WS2

LS1
WS1

WS1 WS2 WS3 WS4

LS1 LS2

MFMF - Mainframe
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Figure 4: SRVN Model with Entries

2.2  The Method of Layers (MOL)

The method of layers [Rolia 95] [Rolia 92] is the basis of the LQNS “Merged-Layeri

strategy described in Chapter 3. MOL is used to predict the performance measu

systems by viewing a performance model as a sequence of layered queueing m

(LQMs). Each LQM is divided into two complementary models, one for software and

for devices. The results of solving the two models are combined along with the resu

all the LQMs to obtain the performance measures of the system. The models are s

using a modified version of Linearizer. (Linearizer is discussed in Sect. 2.3.) The LQ

“Merged-Layerize” strategy differs here in that devices are not solved in a separate m

per se. However, it does follow MOL in the basic layering strategy and in represen

clients as queueing network job classes.

WS1 WS2 WS3 WS4

SCR DBA RPT SCR DBA RPT

DB REP OTH

LS1 LS2

MF
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2.3  Queueing Theory

The Layered Queueing Network Solver (LQNS) solves an SRVN model

representing each layer of the model (referred to as a layer submodel) as a netw

queues and evaluating the submodels analytically. Since queueing networks are

known, this section reviews them only briefly for completeness. A queueing netw

consists of a collection of service centers with customers, referred to as tokens, visitin

service centers. There are two types of service centers. The queueing station is a s

center at which customers may need to wait in a queue to receive service. A delay s

(or infinite server) is a service center where customers receive immediate service and

is no queueing time. In most models of computer systems, computer termina

workstations are represented as delay servers.

In an LQNS layer submodel, the client tasks are represented as delay servers a

server tasks as queueing stations. There are several parameters associated with each

center. The most obvious is the service time of each service center. That is, the tim

center takes to actually execute a request. The queueing discipline is another para

associated with the queueing stations. In the discussions following, the queueing st

are assumed to be first-come first-served (FCFS). Another parameter is the visit ratio w

represents the routing probability of tokens to the service centers.

There are three types of queueing networks, open, closed and mixed. In an

queueing network, customers enter and leave the network. Therefore, the population

network may be infinite. An example of an open network is the model for a transac

processing system. In a closed queueing network, the population is fixed. Tha

customers circulate in the network but never leave it. An example is a batch proce

system. A mixed queueing network consists of customers that enter and leave the ne
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as well as those that circulate within the network. Figure 5 shows an example of a c

queueing network with one delay server and two queueing stations.

Basically, the inputs, or known parameters, of a queueing network are the service

and visit ratios. The results that are of interest are the throughput, utilization, and

waiting times (or queueing time) at each service center.

2.3.1  Chain vs. Class

The customers or tokens of a queueing network, which have similar statis

characteristics, may be grouped into chains or classes. The terms chain and class ar

used interchangeably. However, in this thesis, the definition specified by Chandy and

[Chandy 78] is taken. A chain specifies a routing in a queueing network. Tokens that

the same service centers with the same frequency are grouped into the same chain. C

Delay Server

Figure 5: Closed Queueing Network

Queueing Station

Queueing Station
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associated with a local service center. That is, the service times and distributions m

different for different classes at a service center. In the SRVN model, the concept of

is associated with the entries of a task. The tokens of the same chain may actually b

to a different class at a service center. The terms chain and class become equivalen

the tokens of the same chain belong to the same classes at all the service centers

Chandy and Sauer refer to this as a “global” class [Chandy 78].

2.3.2  Mean Value Analysis (MVA)

MVA is an algorithm employed to solve closed product-form queueing network

steady state to give average performance results for delay and throughput. (Refer to

91] and [Lazow 84] for a definition of product-form.) The algorithm presented here is

a model with multiple chains or classes. The terms class and chain are equivalent i

discussion of the MVA. That is, it assumes that classes are “global” and there is one

per chain.

The MVA algorithm uses three key equations which are basically derived from Litt

Law and the Arrival Instant Theorem. Little’s Law states the following [Jain 91]:

Mean number of jobs in a system = mean arrival rate x mean time spent in the sy

The arrival instant theorem states that, in a product-form queueing network, the q

length (Ac,k) seen by a customer of chainc on arrival at a centerk is equal to the mean queue

length (Qk) there with the arriving customer removed from the network [Lazow 84]. T

is,

 Eq  (2.1)Ac k, N( ) Qk N 1c–( )=
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where is the workload intensity vector consisting of all chain populat

sizes (Nc), and  is the populationN with one customer of chainc removed.

The three key equations used in the MVA algorithm follow.

•  The service center residence time (Rc,k) for each chain (uses equation (2.1) ),

 (queueing stations)  Eq  (2.2)

 (delay server )  Eq  (2.3)

whereDc,k is the total demand of chainc at centerk (= service time x visits). Note
that the residence time equals the visits of chainc at centerk (Yc,k) times the waiting
time (Wc,k). That is, .

• Applying Little’s law to the queueing network as a whole, the throughput(Xc) for
each chain is,

 Eq  (2.4)

whereZc is the think time for chainc andNc is the number of tokens for chainc.

• Applying Little’s law to each service center, the mean queue length(Qc,k) for chain
c at centerk as well as the total mean queue length (Qk) at centerk are,

 Eq  (2.5)

Basically, the algorithm consists of finding an arrival-instant queue length (Ac,k) and

using this queue length to find the residence time (equation 2.2). The residence time i

used to derive the throughput (equation 2.4). Finally, from this throughput a new q

length may be found (equation 2.5).

N N1 … Nc, ,( )=

N 1c–

Rc k, N( ) Dc k, 1 Ac k, N( )+( )=

Rc k, N( ) Dc k,=

Rc k, Yc k, Wc k,=

Xc N( )
Nc

Zc Rc k, N( )
k 1=

K

∑+

-------------------------------------------=

Qc k, N( ) Xc N( )Rc k, N( )=

Qk N( ) Qc k, N( )
c 1=

C

∑=
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There are two approaches in evaluating the three equations, exact and approx

which differ in the way the arrival instant queue lengths (Ac,k) are computed. In the exac

method, applicable only to product-form queueing network models, equation (2.

evaluated exactly. The trivial solution of the network for population0 (Qk(0) = 0 for all

centersk) is used and applied to equations (2.2) to (2.5). From equation (2.5) the q

length for the next large population with one more customer in one chain is obtained

computation proceeds recursively over increasing populations until the target populatN

is reached. The exact MVA algorithm is given in Figure 6. The exact MVA requires

evaluation at every possible population less than the target populationN. The

computational complexity increases with the number of chains and centers.

The approximate method often becomes the more practical solution since it doe

require the evaluation of equations (2.2) to (2.5) for all populations from zero to the

population. Instead, the arrival instant queue lengths (Ac,k) are estimated based on the tim

averaged queue lengths at the service centers with the full customer population (N), and

iteration is used to improve the estimate. The algorithm is given in Figure 7 [Lazow

Many different functions may be used to estimate the arrival instant queue length (Ac,k).

The Bard-Schweitzer approximation assumes thatAc,k(N) is proportional toQc,k(N). The

function used is:

 Eq  (2.6)Ac k, N( ) Qk N 1c–( )
Nc 1–

Nc
---------------Qc k, N( ) 

  Qj k, N( )
j 1 j c≠( );=

C

∑+≈=
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Inputs: Outputs:

C = Number of chains Xc = Chain c system throughput

K = Number of service centers Qk = Average number of customers at device k

Nc = Number of customers in chain c Qc,k = Average number of customers of chain c at

Zc = Think time of chain c device k

Dc,k = Service demand of chain c at device k Rc,k = Residence time of chain c at device k

Initialization:

FOR k = 1 to K DO Qk(0) = 0;

Iteration:

FOR n = 1 to  DO

FOR each feasible population  with n total customers DO

BEGIN

FOR c = 1 to C DO

FOR k = 1 to K DO

Rc,k(n) = Dc,k  ; (for delay servers)

Rc,k(n) = Dc,k(1+Qk(n - 1c)) ;(for queueing stations)

FOR c = 1 to C DO

 ;

FOR k = 1 to K DO

FOR c = 1 to C DO

Qc,k(n) = Xc(n) Rc,k(n);

END;

Nc
c 1=

C

∑

n n1 … nc, ,( )≡

Xc n( )
nc

Zc Rc k, n( )
k 1=

K

∑+

-----------------------------------------=

Qk n( ) Qc k, n( )
c 1=

C

∑=

Figure 6:  Exact MVA Algorithm
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Inputs and Outputs: Same as Figure 6 for exact MVA

Initialization:

delta = 0;

FOR c = 1 to C DO

FOR k = 1 to K DO  ;

Iteration:

WHILE delta >  DO %Convergence not reached

BEGIN

FOR c = 1 to C DO

FOR k = 1 to K DO

% Ac,k(N) = Qk(N - 1c)

 %  = hc(Q1,k(N), . . . , QC,k(N) )

Ac,k(N) =  %Bard-Schweitzer

FOR c = 1 to C DO

FOR k = 1 to K DO

Rc,k(N) = Dc,k %for delay servers

Rc,k(N) = Dc,k(1+Ac,k(N)) %for queueing stations

FOR c = 1 to C DO

FOR k = 1 to K DO

FOR c = 1 to C DO

Qc,k(N) = Xc(N) Rc,k(N)

delta = max{delta, Qc,k(N) -  }

 = Qc,k(N)

END;

Qc k, N( )
Nc

K
------= Qc k,

old
N( ) 0=

ε

Nc 1–

Nc
---------------Qc k, N( ) 

  Qj k, N( )
j 1 j c≠( );=

C

∑+

Xc N( )
Nc

Zc Rc k, N( )
k 1=

K

∑+

-------------------------------------------=

Qc k,
old

N( )

Qc k,
old

N( )

Figure 7: Approximate MVA Algorithm (Bard-Schweitzer)
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Another approximate MVA method is Linearizer [Chandy 82]. This method impro

on the Bard-Schweitzer approximation of the queue length at each device. The Line

considers the fact that there is a fractional change in the queue length with the remo

a token. That is, the fraction of tokens of a chain that are queued at a device change

the change in the number of tokens in the system. However, the method does assum

the fractional change is linear. Linearizer uses the basic Bard-Schweitzer algorith

obtain queue length estimates at populationN andN-1c. From the two sets of queue lengths

the change in fraction of tokens at each device for each chain is calculated. The cha

fraction is then applied to the next iteration for new queue length estimates.

All solution schemes, including the “exact MVA”, of the LQNS includ

approximations to the waiting time calculation for service time effects and second ph

2.3.3  Method of Surrogate Delays

The method of surrogate delays is a key concept in the solving of replicated model

is also employed in the solving of the SRVN models as a whole. The method, propos

Jacobson and Lazowska [Jacob 82], is an approximate solution technique for que

network models which have resources that are accessed simultaneously or have an o

in possession. Basically, the queueing network is split into multiple models. In each m

the queueing delay encountered at one of the resources is represented as a delay ser

queueing delay is obtained from the model in which the resource is explicitly modeled

the other resources represented by delay servers. The method iterates the queuein

estimates between the models until convergence. Figure 8 gives an example us

Jacobson and Lazowska.

In the example, the disks in an I/O system compete for use of a channel to com

their data transfer to and from memory. The queueing network is broken into two mo
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In the first model,Figure 9(a), the channel is represented by a delay server while the

are represented by queueing stations. In the second model, Figure 9(b), the dis

represented by a delay server and the channel by a queueing station (actually a

equivalent service center).The two models are solved with the queueing delays in

model used in the other. The delay value for the delay server in one model is set eq

the delay (queueing and service) computed in the other model. Initially, the delays a

to the service time only. Then, they are computed iteratively until convergence.

If the MVA algorithm is inspected, it becomes apparent that basically the reside

times of the stations are being estimated using a fixed-point iteration technique, the G

Seidel iteration. Each submodel expresses equations of the form . In fact, the

approximate MVA is itself a Gauss-Seidel iteration.

Figure 8: I/O Subsystem

xi Fi xi( )=

.

.

.

CHANNELCPU

DISK

DISK
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Figure 9: Models for Solving the I/O System

2.4  Fixed-Point Iterative Methods

Iterative methods may be used to solve a system of non-linear equations, wit

general form given below, where elimination is usually not feasible.

 Eq  (2.7)

The Gauss-Seidel iteration and the Newton-Raphson method are two such ite

methods discussed in the next two sections. Both methods are used in solving repl

systems as proposed in this thesis.

.

CPU

Disks

Channel
Queueing

CPU

.

Delay
Channel Disk Queuing

Delay

(b)(a)

f 1 x1 x2 …xk, ,( ) 0=

f 2 x1 x2 …xk, ,( ) 0=

…
f k x1 x2 …xk, ,( ) 0=
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2.4.1  Gauss-Seidel Iteration

To solve equation (2.7) using the Gauss-Seidel method, the equation is rearrange

the following form:

 Eq  (2.8)

Iterative methods which solve the equation in the form of equation (2.8) are referred

fixed-point iterative methods.

Successive estimates of the solution may be computed with the following Gauss-S

iteration [Davis 86]:

 Eq  (2.9)

where the subscriptn denotes the iteration in which the value was computed.

Starting with an initial estimate and continuing, the solution may converge. Howe

convergence is not guaranteed. Figure 10 illustrates graphically the sequence of

calculated by a Gauss-Seidel iteration for a single equation . The fixed-point,

at the intersection ofy=x and y=F(x). Figure 10 (a) shows a case where the iterati

converges to the solution S, whereas, (b) shows a case where the iteration div

Convergence occurs if . In the case of a system of equations, S is a vector (S1, S2,

. . . Sk).

x1 F1 x1 x2 …xk, ,( )=

x2 F2 x1 x2 …xk, ,( )=

…
xk Fk x1 x2 …xk, ,( )=

xi
n 1+

Fi x1
n 1+

x2
n 1+ …xi 1–

n 1+
x, i

n
xi 1+

n …xk
n, ,, ,( )=

x F x( )=

F′ S( ) 1<
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The iteration used in the method of surrogate delays discussed in Section 2.

actually a Gauss-Seidel iteration. Each submodel computes a delay which is one

components of x, and the other submodel depends on this delay.

2.4.2  Newton-Raphson Method

The Newton-Raphson method may be used to solve a system of non-linear equ

with a more rapid convergence than the Gauss-Seidel method. In this method, the

iteration value is obtained by taking the derivative of the function at the estimation p

In this section, the Newton-Raphson method is derived solving the system of equa

given in the form of equation (2.8). That is, a fixed-point Newton-Raphson metho

derived as opposed to other derivations ([Davis 86] [Pearson 86]) where the method s

the system of equations given in the form of equation (2.7). Figure 11 graphically illustr

the method for a single equation . The iteration formula is:

y=F(x)
y=x

xx

yy y=F(x)
y=x

x0x1x2S x2x1x0S

(a) (b)

Figure 10: Convergence of the Gauss-Seidel Iteration

x F x( )=
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Figure 11:  Newton-Raphson Method

Taking the same examples (Figure 10) for the Gauss-Seidel iteration and applyin

Newton-Raphson method, it can be seen that the convergence is quicker. In the c

Figure 10 (b) the Newton-Raphson version of the iteration actually converges.

convergence for the Newton-Raphson method is, however, not guaranteed. Refer

references by Davis and Pearson ([Davis 86] [Pearson 86]) for a detailed explanation

quadratic convergence of the Newton-Raphson Method.

Extending the Newton-Raphson method to a system of equations gives the follo

iteration formula:

x
n 1+

F x
n( ) F′ x

n( ) x
n 1+

x
n

–( )+=

y=F(x)

y=x

x

y

xnS xn+1
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 Eq  (2.11)

where the subscriptn denotes the iteration in which the value was computed as

equation (2.9).

It is apparent from equation (2.11) that there is a great deal of work per iteration

each iteration all of the functions must be evaluated as well as the derivatives of

function with respect to each variable. Then, a system of equations must be solved.

The method may be simplified to reduce the work per iteration. In the simplif

Newton-Raphson method, each equation in the system is considered to be an equat

just one of the unknowns. The resulting simplified iteration is:

 Eq  (2.12)

With this simplified method, fewer functions need to be evaluated and a system

equations does not need to be solved. Again refer to the references by Davis and P

for a detailed discussion of the simplified method.

In summary, the Newton-Raphson method can be used if the derivative of the fun

is easily calculated. The method may be used to increase the speed of convergence

some cases, converges where the Gauss-Seidel fails.

xi
n 1+

Fi x1
n 1+

x2
n 1+ …xk

n, ,( )
xl∂
∂

Fi x1
n 1+

x2
n 1+ …xk

n, ,( ) 
  xl

n 1+( )
xl

n( )
–( ) 

 

l 1=

k

∑+=

xi
n 1+

Fi x1
n 1+

x2
n 1+ …xk

n, ,( )
xi∂
∂

Fi x1
n 1+

x2
n 1+ …xk

n, ,( ) 
  xi

n 1+( )
xi
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Chapter 3.0  Layered Queueing Network

Solver (LQNS)

3.1  General Overview of the LQNS Tool

The Layered Queueing Network Solver (LQNS) is the computational tool that

modified in this research for use in the performance study of large client-server sys

The LQNS is a software package that can solve the “Stochastic Rendezvous Netw

(SRVN) which models client-server systems as shown in Figure 3 in Chapter 2.

chapter gives a general understanding of the LQNS tool which is needed to incorpora

replication modifications discussed later in Chapter 5. Only the aspects of the tool w

are relevant to the modifications are discussed. For example, the LQNS package m

used to solve SRVN models using several different layering methods. However

discussion in this chapter pertains only to the ‘Merged-Layerize’ layering strategy whi

used by the replication modifications.

The LQNS software is the solver engine behind the user interfaces Timebench

lqndef [Hubbard 95]. Timebench, a graphical user interface, and lqndef are used to d

the parameters of the SRVN model, such as service time and visits. Both inter

generate a description file, referred to as the input file, from the user supplied descri

of the SRVN model. The input file contains information about the processors, tasks, e

and the visits between entries. (See [Petriu 95] for a full description of the input file.)

user interfaces invoke the LQNS solver which reads the data in the input file and gene

its own internal description of the SRVN model. That is, it stores the SRVN mo

information in its own database. The LQNS then solves the SRVN model layer by laye
Page 27
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mapping each layer to a queueing network. The results of solving the SRVN model,

as the throughput and wait times of tasks, are written to an output file. The output file

is then processed by the user interface, either Timebench or lqndef, and disp

accordingly.

It should be noted that the LQNS solver may be invoked independently of the

interfaces. The input file may be generated manually in the specified format [Petriu

The LQNS solver is then invoked via a command line and the output file generated m

inspected for the results. The overall mechanism is shown in Figure 12.

3.2  Solving the SRVN Model

The ‘Merged-Layerize’ strategy used in LQNS solves the SRVN model by utilizing

method of layers [Rolia 92] and the method of surrogate delays [Jacob 82]. The S

model is divided into submodels with each submodel representing a layer of the m

Subsequently, each submodel is mapped to a product-form queueing network and is

by the MVA algorithm. The station delays are iterated between the submodels

convergence. The following sections provide the details of the submodels and the ite

between the submodels.

3.2.1  Mapping A Layer To a Queueing Network

Figure 13 shows the submodels for the example SRVN model shown in Figure

Chapter 2. The submodels correspond to the layers of the SRVN model. The first subm

consists of the client and server tasks of the first layer of the SRVN model. The se

submodel, however, not only consists of the tasks in the second layer but also clien

WS4 of the first layer. This task is included in the second submodel since it visits a
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(MF) which is in the second layer. The submodels also contain the processors (P1

used by each task. The processor allocations are defined in the input file but usually a

represented in the SRVN model as seen in Figure 3. In the example, each task has i

processor, but it is possible for tasks to share processors. The processors are repr

and treated as tasks in the LQNS solver

The LQNS reads in the SRVN model description from the input file and stores

information internally having broken the model up into submodels or layers as desc

SRVN MODEL

INPUT FILE

LQNS

(Queueing Network)

OUTPUT FILE

(Results)

(model description)

Figure 12: LQNS Context
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above. The submodels are stored in terms of SRVN parameters. That is, the servic

and visits are stored in reference to client and server task entries. However,

parameters and submodels must be translated into queueing network terms to so

submodels via MVA. Each submodel is mapped to a product-form queueing network

clients in each submodel are represented as delay servers and the server tas

represented as queueing stations. As an example, Figure 14 shows the queueing n

associated with submodel 2.

A chain is generated in the queueing network for each client task of the SR

submodel. The number of tokens in each chain corresponds to the number of copie

client task. A chain traverses all the servers visited by a client. Thus, only one chain

traverse each client (or delay server) but a server (queueing station) may be travers

several chains. (This method of constructing the chains is modified for replicated

described later in Chapter 5.) The visit ratio of the tokens of each chain to the queu

stations corresponds to the visits made by the client to its servers in the SRVN subm

The service time of each entry of the server task of the submodel corresponds to the s

time of each class of the queueing station. For the queueing network of submodel 2 s

in Figure 14, where each task has one entry and one phase, the chains are gener

follows ( Nk = number of tokens in chain k; Vkm = visits to station m by chain k tokens):

Chain 1: N1 = 1

V1,LS1; V1,P5 ; V1,MF

Chain 2: N2 = 1

V2,LS2; V2,P6; V2,MF

Chain 3: N3 = 1

V3,WS4; V3,MF
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Figure 13: Submodels for Figure 3

WS1 WS2 WS3 WS4

LS1 LS2

LS1 LS2

MF

MF

WS4

P4P3P2P1

P5 P6

P7

submodel 1

submodel 2

submodel 3

P - Processor
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Figure 14: Queueing Network for Submodel 2 of Figure 13

3.2.2  Solving Between Layers

Since the SRVN model consists of several interacting layers, the parameters of

submodel, representing a layer, must somehow relate to the layers or submodels it in

with. The method of surrogate delays [Jacob 82] is employed. The delay that a

encounters in one layer (or submodel) is represented as a surrogate delay in anothe

(or submodel) that also contains that task. For example in Figure 13, the residence

calculated for client task WS4 in submodel 1 is used as the service time of client task

in solving submodel 2. Likewise, once submodel 2 is solved, its residence time for

WS4 is used as the service time when solving submodel 1. The service time of a tas

client is calculated from the residence time or service time of the task at all layers ex

its own layer. For server tasks, the service time of the task is obtained by adding a

delays of that task in all layers. For example, the service time of server task LS

P5

MF

P6

LS2

LS1

WS4
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submodel 1 is added to the residence time of the same task calculated in submod

obtain the task LS1 service time to be used in solving submodel 1. The idle time (or

time) of a client task is calculated from the utilization of that task when it acts as a ser

The SRVN model is solved by initially solving the submodels from the top layer do

The service time values are used between submodels. A Gauss-Seidel iterat

employed, and the submodels are solved until all the service time values r

convergence. That is, the differences between all the values are less than a defined

usually in the range of 10-6.

3.3  Implementation Structure

The LQNS tool has been designed using an object-oriented approach an

implemented in C++. Two models are employed within the LQNS. One model is the SR

model and the other is the MVA queueing network model. The components of each m

are mapped to object classes. The class hierarchy diagram for the two models is sho

Figure 15 [Franks 94]. The notation of Rumbaugh is used [Rumb 91].

3.3.1  Classes

A. Classes for Model Building

These classes are used to store and manipulate the parameters of the SRVN mod

major components of the SRVN model are tasks and processors. ClassesTask and

Processordefine these two components respectively. Since processors are esse

viewed as tasks in the SRVN model, processor objects have some attributes and ope

that are common with task objects. The common features are grouped in classEntity, the

abstract superclass of subclassesTaskandProcessor. (The notation for this relationship is

the triangle.) Since tasks must run on a processor (task entities are actually clients
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processor entities), there is a many-to-one association between the two classes. Th

ball at classTaskindicates that many task instances may be associated with one proc

instance, thus modeling the fact that many tasks can run on one processor but a give

may only run on a single processor.

The entries of the SRVN model are modeled as a separate class. An aggre

relationship exists between the classEntry and classEntity since a task (or processor) i

essentially a collection of entries in the SRVN model. The diamond notation is use

denote that entries are part of an entity. The arcs between entries are modeled by clasCall.

An entry may visit or call many other entries. A call is made up of two entries, one fro

client task and one from a server task.

B. Classes for the MVA Solver

These classes are used for solving the queueing network associated with one S

layer submodel. The classServerrepresents the stations of a queueing network. It is

abstract superclass of subclasses that represent the different types of stations such as

server and a first-come first-served server. TheServerclass is associated with the SRVN

model classEntitysince the parameters of a queueing network station are mapped from

SRVN entity parameters. Instances of classServerare used by the classMVAwhich solves

the queueing network. ClassMVA is also an abstract superclass. Its subclasses are the

types of MVA solvers, exact, Linearizer, and approximate (Schweitzer).

The classLayerizedivides the SRVN model into layers or submodels that are th

solved by classMVA. This class builds the submodel from the SRVN model classes

also translates the results of the submodels back to the SRVN model components

overall solution of the whole SRVN model is handled by classLayerize. It is the superclass
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and
of the different layering solution strategies used in LQNS, namely, “Merged-Layerize”

Rolia’s method of layers [Rolia 95].

Figure 15: Class Hierarchy Diagram

Task Processor

Entity MVA

Layerize

Server

Call Entry
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Chapter 4.0 Representation of Replicated

Systems

4.1  Introduction

In some large complex systems, it may be possible to find a large number of iden

or nearly identical components. For example, in a transaction processing system, the

requesters are typically from similar devices and from similar applications. Fro

modeling point of view, they may be treated equally if the system they are part o

symmetric. In the SRVN model, the components are represented as tasks. Tasks tha

the same characteristics and parameters, such as the number of phases, the phase

times, the entries, the number of visits to servers, may be defined as replicated tasks.

16 gives an example of a system with replicated tasks. In this system, each task ha

entry. The service times for tasks A1, A2, A3, and A4 are equal as are their think time

these are pure clients, they have only phase 2 service times. Similarly, the service tim

tasks B1 and B2 are equal. These two tasks may have more than one phase w

corresponding phase service times. Since the tasks are replicas, their phase servic

are the same. The number of visits between tasks A1 and B1 are equal to the num

visits between any of the A tasks and task B1. Similarly, the number of visits betwee

A tasks and task B2 are equal. Since each task has the same parameters, it can be

that their performance characteristics are also equal.

This chapter introduces the notation and model for systems with replicated tas

proposed by Woodside [Wood 95b]. The model and notation provides a compact simp

way of representing large systems with replicated components by representing the re
Page 36
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by one component. The connections between replicated components are also repre

once. The model will be referred to as the replicated model or simplified model.

4.2  Notation

To define the notation of the replicated model representation, an example is

Figure 17 shows the replicated model representation of the system in Figure 16

simplicity, it is assumed that each task has only one entry. The parallelograms repre

set of tasks (A*, B*) instead of one task (A1, B1 etc.) as in Figure 16. The numbe

replicated tasks are defined by K. In Figure 17, parallelogram A* represents the

identical tasks (A1, A2, A3, A4) by defining KA = 4. Likewise, parallelogram B*

represents the two identical tasks B1 and B2 by defining KB = 2. The arcs between the

parallelograms represent the request/reply interaction between task set A* and task

in the example system of Figure 16. However, the arcs may also connect task set

single tasks, as is seen in later examples. The visit rate defined on the arc of th

representation of the system corresponds to the visit rate along the single representa

in the replicated model representation. For example, the visit rate from task A1 to tas

(YA1B1) of Figure 16 is equal to the visit rate defined for the arc between task A* and

(YAB) of Figure 17.

There are two additional parameters associated with each arc, the fan-in and fa

which define the model uniquely. The fan-in at a task set represents the number of me

of the requesting task set that make requests to each member of the task set. In the ex

the fan-in, shown in Figure 17 and denoted by FAB, equals 4 since four member tasks (A1

A2, A3, A4) of task set A* visit each member (B1, B2) of task set B*. The fan-out,FAB,

defines the number of members of a task set visited by another task or task set.
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example,FAB equals two since each member task of task set A* (e.g. A1) visits

members of task set B* (B1, B2). As can be seen, the fan-out can be derived from th

in by the following equation:

In addition, since the fan-outFAB must be greater than or equal to one, and the num

of replicas KA must also be at least one, then

In defining the replicated model, it is desirable to define both the fan-in and fan-

However, since one may be derived from the other, the model is still uniquely defin

only one is given. The fan-in and fan-out are integers in a perfectly symmetrical sys

but they may be fractional in which case they would represent average fan-out and f

values.

K A FAB× KB FAB×=

KB FAB× K A≥
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4.3  Replicated Systems

The replicated model may represent many types of systems. One type may consi

system that is referred to as an all fan-in system. In this type of system, only the fan

A1 A2 A3 A4

B1 B2

fan-out = 2

fan-in = 4

Figure 16: System with Replicated Tasks

A*

B*

KA = 4 (number of replicas)

KB = 2 (number of replicas)

FAB = 2 (fan-out)

FAB = 4 (fan-in)

Figure 17: Replicated Representation of Figure 16
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tasks may be greater than one. The fan-outs are all equal to one. Figure 19 give

replicated representation of the all fan-in system shown in Figure 18. In this system

fan-out of task A to C is one. The fan-out of task B to C is also one as is the fan-out

task B to D. Figure 19 also illustrates a system with more than one tier. The replic

model may represent multi-layer systems. The replication of tasks may occur at any

all layers. The replicated model may consist of a mixture of replicated and non-replic

components as seen in Figure 18. In this system, the A tasks and B tasks are rep

while tasks C, D, and E are single tasks. In general for an all fan-in system, sinceFAB is

equal to one, then  .K A KB≥

A1 A2 B1 B2

C1 D1

B3

E1

Figure 18: All Fan-In System
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Similarly, it is possible to have a system with only fan-outs. In the case of the all

out system, the fan-outs are all greater than one and the fan-ins are all equal to one.

20 and Figure 21 illustrate such a system. In Figure 21, the fan-in to tasks B and C ar

while the fan-outs of tasks A and B are 2. Again, in general, since the fan-in, FAB, is equal

to one, then .

A general system consists of both fan-in and fan-out. Figure 22 and Figure 23 illus

such a system with various fan-in and fan-out values. Figure 22 is also another exam

a multi-layered, mixed replicated system. That is, the top two layers consist of replic

tasks while the last layer consists of a non-replicated task.

A*

C*

E* KE = 1

KA = 2

FAC = 1

FAC = 2

KC = 1 D* KD = 1

B* KB = 3

FBD = 1

FBD = 3

FDE = 1

FDE = 1

FCE = 1

FCE = 1

FBC = 1

FBC = 3

Figure 19: Replicated Representation of All Fan-In System (Figure 18)

KB K A≥
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In the examples considered, it has been assumed that all tasks have only one

However, it is possible to represent replicated tasks with multiple entries. The entries

task or task set may have different fan-ins and fan-outs as shown in Figure 24.

A1

B1 B2

C1 C2 C3 C4

Figure 20: All Fan-Out System
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A*

B*

KA = 1

KB = 2

FAB = 2

FAB = 1

C* KC = 4

FBC = 2

FBC = 1

Figure 21: Replicated Representation of All Fan-Out System (Figure 20)

A1 A2 B1 B2

C1 C2

D1

Figure 22: System with Fan-in and Fan-out
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A*

C*

D* K D = 1

KA = 2

FAC = 2

FAC = 2

KC = 2

B* KB = 2

FBC = 1

FBC = 1

FCD = 1

FCD = 2

Figure 23: Replicated Notation for Figure 22
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A1 A2 A3

b1 b2B1 b1 b2B2

c1 c2C1 c1 c2C2

Figure 24: System with Entries
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4.4  Identifying Replication

The symmetry of the whole system must be considered when defining tasks as

replicated. For example, in Figure 26, the tasks A1, A2, A3 and A4 have the same se

times and visit ratios to their servers B1 and B2. The B1 and B2 tasks have the same s

times but are not replicated tasks since they visit different tasks C and D. The d

encountered at tasks B1 and B2 are different, and thus in solving for the whole system

updated service times for B1 and B2 are different. Because B1 and B2 are not repli

tasks, tasks A1, A2, A3, and A4 cannot be considered a replicated group because t

fact visit different servers. (However, tasks A1 and A2 are replicas as are task A3 and

Figure 25: Replicated Representation of System with Entries

A

b1 b2

c1 c2

KA = 3

KB = 2

KC = 2

FAb1 = 2

FAb1 = 3

Fb1c1 = 2

Fb1c1 = 2

FAb2 = 2

FAb2 = 3

Fb2c2 = 1

Fb2c2 = 1

B

C
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4.5  Concentrated vs. Diffused Replication

Given the parameters for a replicated model, such as the number of replicas, fan-i

fan-out, it is possible for some systems to have two interpretations of the replicated m

The two types of replications are defined as concentrated and diffused. The repli

representation of such a system is shown in Figure 27 [Wood 95b]. The correspo

concentrated and diffused interpretations of the parameters are shown in Figure 2

Figure 29 respectively.

The performance results for both models are the same since the contention for ta

the same. The concentrated model consists of two or more submodels. Solving fo

submodel would be sufficient to get the performance results for the whole sys

Therefore, it is reasonable to recommend that the submodel of the concen

interpretation for a system be used for analysis since it represents a simpler model.

A1 A2 A3 A4

B1 B2

C

Figure 26: Deceptive Replication

DE
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A*

B*

KA = 6

KB = 4

FAB = 2

FAB = 3

C* KC = 2

FBC = 1

FBC = 2

Figure 27: Replicated Model
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A1 A2 A3

B1 B2

C1

A4 A5 A6

B3 B4

C2

Figure 28: Concentrated Replication Interpretation of Figure 27
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A1 A2 A3

B1 B2

C1

A4 A5 A6

B3 B4

C2

Figure 29: A Diffused Replication Interpretation of Figure 27
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Chapter 5.0  Solving Models With

Replication

5.1  Introduction

The notation presented in Chapter 4 greatly simplifies the model representation

system with replicated components. In order to also simplify the solving of the mod

new simplified solution is introduced. This replication algorithm is applied by modify

the Layered Queueing Network Solver (LQNS).

The LQNS has limitations on the size of the system it can solve because o

computational time involved and the memory limitations. The LQNS can handle sys

of up to 100 server tasks, 100 processors, and 100 client tasks. The computational t

the LQNS algorithm increases as the number of tasks (clients and servers) in the S

model increases. This occurs since each client or server, in each layer of the SRVN m

is represented as a station in the representative queueing network to be solved. The

algorithm used by LQNS takes longer to solve with an increase in the number of sta

and chains. In addition, more memory is required to store information about each st

With more tasks, the LQNS also has more layer submodels to solve.

The replication algorithm proposed enables the LQNS software to solve large sys

with replicated clients and servers in a timely manner with reduced memory requirem

The algorithm accelerates the solution by analyzing only one of the tasks in a grou

replicas and by using the results for the one task to represent the others. In other wo

simplified replicated model of the system is solved thereby reducing the number of sta

in the queueing network presented to the MVA algorithm.
Page 51
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In this chapter, the problem of solving the replicated model is presented. The w

construct chains for the model and the solution algorithm are described. The conver

of the algorithm is discussed followed by some implementation details. Finally, the re

of using the algorithm and the limitations of the algorithm are highlighted.

5.2  Problem Statement

The LQNS solves a series of “layer submodels” by representing each submode

queueing network. It is desired to solve each submodel with a substitute queueing ne

in which the replicated stations are represented only once, and still obtain the same r

(or nearly the same results) as if the queueing network for the full submodel had

solved. (This substitute queueing network will be referred to as the replicated queu

network.) First, constructing the chains for the replicated queueing network poses

problems. Secondly, in the replicated queueing network only one station of a s

replicated stations is used. Therefore, the delays that would be encountered at the

stations have to be accounted for. The example system shown in Figure 30 and Fig

is used to illustrate the problems of solving a “layer submodel”.

Figure 30 represents an SRVN model of the system with replicated tasks. Tasks A

A2 have identical parameters such as the same phase service times and visits to ta

C2, and C3. Likewise, tasks B1 and B2 are replicas as are tasks C1, C2, and C3. Ta

and D2 are also identical. For simplicity, again, it is assumed the tasks have only one

and one phase. Figure 31 shows the same system using the replication notation pre

in Chapter 4.
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A1 A2 B1 B2

C1 C2 C3 D1 D2

Figure 30: Full Model

A B

C D
KD = 2KC = 3

FBD = 1

FBD = 1

KB = 2

FAC = 2

KA = 2

FAC = 3
FBC = 3

FBC = 2

Figure 31: Replicated Model of Figure 30
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To solve the full model of Figure 30, the queueing network that represents this m

must be solved. The queueing network associated with the full model is shown in F

32. Note that the example system has only two layers of tasks and therefore, has on

layer submodel. The client tasks A1 and A2 are mapped to the delay servers A1 an

respectively. Similarly, tasks B1 and B2 are mapped to the delay servers B1 and B2

five server tasks are each represented by a queueing station C1, C2, C3, D1, and D

SRVN service times for each task are mapped to the queueing network service tim

their corresponding stations. The service times for the C stations are equal as are the

times of the D stations. There are also queueing network service times associated w

delay servers, SA1, SA2, SB1, and SB2. The service time relationships are specified below

SA1 = SA2 ;  SC1= SC2 = SC3

SB1 = SB2 ;  SD1 = SD2

In the terminology being used, the service time of a delay server equates to the servic

of the second phase of the client task in the SRVN model.

The queueing network associated with the replicated model is shown in Figure

Again, the client tasks A and B of Figure 31 are represented as delay servers in the que

network. The server tasks C and D are queueing stations. The service times of the s

are given below in relation to the service times of the full model:

SA = SA1 ;  SC = SC1

SB = SB1 ;  SD = SD1

The problem is to be able to solve the replicated queueing network of Figure 33

obtain the same results as if the full queueing network of Figure 32 had been solved.

full queueing network is solved, the results for each of the tasks in a group of replica

the same. For example, the throughput for station C1, C2 and C3 are equal as ar
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utilizations. The replicated model takes advantage of the symmetry. It is obvio

advantageous to solve for the simpler queueing network of the replicated model (Figu

which has fewer stations. In addition, as the number of replicas increases, the repl

queueing network maintains the same number of stations.

5.3  Chain Construction

The queueing network of the full system as seen in Figure 32 is incomplete sinc

chains and corresponding visit ratios have not been specified to correspond to the S

model (Figure 30). The visit ratios of the queueing network correspond to the SRVN

ratios between client and server tasks. The chains may be constructed for the full mo

follows with the visit ratios specified below (Nk = number of tokens in chain k; Vk,m =

visits to station m by chain k tokens):

Chain 1: (server set = {A1, C1, C2, C3} )

N1 = 1

V1,A1 = 1; V1,C1 = V1,C2 = V1,C3

Chain 2:  (server set = {A2, C1, C2, C3} )

N2 = 1

V2,A2 = 1; V2,C1 = V2,C2 = V2,C3

Chain 3:  (server set = {B1, C1, C2, C3, D1} )

 N3 = 1

V3,B1 = 1; V3,C1 = V3,C2 = V3,C3 ; V3,D1

Chain 4:  (server set = {B2, C1, C2, C3, D2} )

N4 = 1

V4,B2 = 1; V4,C1 = V4,C2 = V4,C3 ; V4,D2
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C1

C2

C3

D1

D2

A1

B1

B2

A2

Figure 32: Queueing Network for Full Model (Figure 30)
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The chains are constructed from the point of view of the client tasks. That is, a c

with one token is associated with each client. The token of chain 1 visits the delay s

A1 once and visits stations C1, C2, and C3 an equal number of times. The token of ch

visits delay server A2 once and also visits stations C1, C2, and C3 an equal numb

times. (Since the tokens for chains 1 and 2, associated with clients A1 and A2, vis

same stations with the same visit ratios, these two chains are equivalent and cou

merged into one chain with two tokens (N = 2)). The chains associated with clients B1

B2 cannot be combined into one chain since task B1 visits task D1 but task B2 visits

Therefore, chain 3 (N3= 1) consists of one token which visits delay server B1 once, stati

C1, C2, C3 an equal number of times, and station D1 once. Similarly, chain 4 (N4 = 1)

consists of one token which visits delay server B2 once, stations C1, C2, C3 an

number of times, and station D2 once. It can be seen that there is contention at statio

C

D

B

A

Figure 33: Queueing Network for Replicated Model (Figure 31)
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C2, and C3 where altogether four tokens may visit. There is no contention at station

and D2 since only one token visits these stations. There is also no contention at the

servers which have no queues. The queueing network with the defined paramete

chains does indeed represent the corresponding SRVN model of the system (Figure

For the replicated queueing network (Figure 33), the chains must be constructed s

the number of tokens contending for each resource or station is the same as in th

system. That is, there must be four tokens that visit station C, and one token that

station D. The chains cannot be constructed in relation to the client as can be seen fro

example. If the chains were constructed as in the full queueing network, chain 1 w

consist of two tokens which visit station A once and station C once. This is consistent

the SRVN model (Figure 31). However, if chain 2 is allocated with two tokens (sinceB

= 2), two tokens would visit station C which is consistent with the SRVN model, but

tokens would also visit station D, which is not consistent with the SRVN model. This ch

could be split up into two chains with one token each. However, this would defea

purpose of simplifying the full model. If task B represented a large set of replicas, a l

number of chains would be needed. This would again slow down the MVA computa

To construct the chains for the replicated model, the chains are constructed in re

to the server. In this way, the correct contention to each station is maintained an

number of chains required may be reduced. The chains for the example (Figure 3

Figure 33) are constructed as follows:

Chain 1: N’1 = FAC = 2

V’ 1A = 1; V’1C = V1,C1

Chain 2: N’2 = FBC = 2

V’ 2B = 1; V’2C= V3,C1
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Chain 3: N’3 = FBD = 1

V’ 3B = 1; V’3D = V3,D1

As can been seen, a chain is constructed for each replicated group of clients that

a server. The number of tokens for that chain is the fan-in of that server. For example,

1 consists of two tokens since the fan-in of task set C from task set A is two (FAC = 2). There

are two replicated tasks A that actually visit each task C. Another chain (chain 2

allocated for the two tokens that visit one of the tasks of task set C from the tasks in

set B. From the chain allocation, it is verified that there are four tokens contending

station C and one token contending for station D as desired.

From this simple example, the method for constructing the chains for the replic

model does not seem to reduce the number of chains greatly (from 4 chains for th

model to 3 for the replicated model). It would even seem that for the full model only th

chains are actually needed since chain 1 and 2 are equivalent. However, the re

number of chains becomes very apparent if, in the example, task B were replicated by

than 2. For example, if task B were replicated by 20 times with the corresponding nu

of replicated tasks D (shown in Figure 34), the full model would require a chain for ea

task. Figure 35 shows the corresponding queueing network with the chains specified

the replicated model, however, the same three chains specified previously could be

with the number of tokens for chain 2 increased to 20 (see Figure 36 and Figure 37)

simplified replicated model and queueing network are virtually unaffected by the incr

in the number of replicas. Only the parameters are affected. In addition, the approx

MVA computational time would not increase since it is not affected by the numbe

tokens in a chain but only by the number of chains and queueing stations.
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In general for the replicated model, one chain is constructed for each client that vi

server. Each chain visits one client and one server. Therefore, a server and client m

traversed by many chains. The number of tokens in a chain is equal to the fan-in o

client to that server. (The fan-in reflects the number of client replicas that actually visi

server in the full model.) In essence, the replication of clients is represented by the nu

of tokens in the chain.

A1 A2 B1 B2

C1 C2 C3 D1 D2

B20

D20

. . .

. . .

Figure 34: Full Model with Task B Replicated 20 Times
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C1

C2

C3

D1

D2

D3

.

.

.

.

N1 = 1
N2 = 1
N3 = 1
N4 = 1
N5 = 1

N22 = 1
D20

.

.

.

Figure 35: Queueing Network for Full Model of Figure 34

A1

B1

B20

A2

.

.

.
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A B

C D
KD = 20KC = 3

FBD = 1

FBD = 1

KB = 20

FAC = 2

KA = 2

FAC = 3
FBC = 3

FBC = 20

Figure 36: Replicated Model of Figure 34

C

D

B

A

N’1 = 2
N’2 = 20
N’3 = 1

Figure 37: Replicated Queueing Network for Figure 36
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5.4  Service Time Calculation

In assigning the chains and parameters of the queueing network for the replicated

(Figure 31), the contention at each station is equivalent to that of the queueing netwo

the full model. That is, the number of tokens visiting a station in the replicated model is

same as the corresponding station in the full model. However, the two queueing netw

are still not equivalent in their solutions since there are delays at the clients for the

model that must be accounted for in the simplified replicated model.

To account for the delays of the ‘missing’ servers in the replicated model, the de

that would be seen at these stations are added to the service time of the delay servers

tasks). In essence, the method of surrogate delays is employed. The delays of the ‘m

stations are added to the service time of the delay servers that also represent the clien

In the replication example discussed (Figure 31), there is only one station C in

queueing network of the replicated model (Figure 33), whereas, there are three statio

C2 and C3 in the queueing network of the full model (Figure 30). The replicated queu

network leaves out two replicated C tasks.To compensate for the delay at the two C st

seen by the tokens of chain 1 visiting delay server A of the full network, twice the d

(R1C) calculated at station C is added to the service time of delay server A. The queu

network is solved again with this new service time for delay server A. This is repeated

the delay at station C converges. In essence, the two stations (C2 and C3) for th

network, are represented as additional delays in the replicated queueing network, sho

additional shaded delay servers in Figure 38. The modified service time of station A

chain 1 is given as:

 Eq (5.1)S1A
′ S1A FAC 1–( )R1C+=
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Where: S’1A = Modified service time of station A for chain 1

S1A = Service time of station A for chain 1

R1C = Residence time of chain 1 at station C =Y1CW1C

Y1C = Number of visits to station C by chain 1

W1C = Waiting time of chain 1 at station C (service time

plus queueing time)

The compensated delays for the ‘missing’ C stations are also needed for the toke

the chains 2 and 3 that visit delay server B. For chain 2, the delay that would be se

station D must also be accounted for. This delay may be gotten from the delay of ch

Similarly, for chain 3, the delay seen for the ‘missing’ C stations are gotten from the d

C

D

B

A C2
C3

Figure 38: Replicated Sub-Queueing Network for Chain 1
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of chain 2. The delays are added to the service times of delay server B for each chain

modified service times for delay server B are as follows:

 Eq (5.2)

Where: S’2B = Modified service time of station B for chain 2

S2B = Service time of station B for chain 2

R2C = Residence time of chain 2 at station C

R3D = Residence time of chain 3 at station D

 Eq (5.3)

Where: S’3B = Modified service time of station B for chain 3

S3B = Service time of station B for chain 3

R2C = Residence time of chain 2 at station C

R3D = Residence time of chain 3 at station D

In essence the sub-queueing networks of Figure 40 and Figure 41 are solved wi

results (delay at station C, R2C, and delay at station D, R3D) exchanged between the two

The modified service times for delay server B are used in the next iteration for solving

queueing network. This iteration in solving for the queueing network produces new va

for the delays at station C and D (i.e. R2Cand R3D). The iteration is repeated until the dela

value for station C converges and the delay value for station D converges.

S2B
′ S2B FBC 1–( )R2C FBD R3D×+ +=

S3B
′ S3B FBD 1–( )R3D FBC R2C×+ +=
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By using the method of modifying the service times of the client delay server

account for the delays at unrepresented replicated stations, the sub-queueing netw

Figure 38, Figure 40, and Figure 41 are effectively being solved. However, these

networks are not solved separately but are solved together in one invocation of the

solver for the replicated queueing network (Figure 33). The sub-networks are

presented to explain the method being employed which is essentially the metho

surrogate delays.

In general, the equation to be employed in modifying the client service times for

replicated model is:

 Eq (5.4)

Where: m = Server visited by chaink

t = Client visited by chaink

S’kt = Modified service time of client stationt for chaink

Skt = Service time of client stationt for chaink

Ftm = Fan-out of client taskt to serverm (SRVN model)

Rkm = Residence time of chaink at stationm (m is visited

by chaink)

FtM = Fan-out of client taskt to serverM (SRVN model)

RKM = Residence time of chainK at stationM

K = All other chains besidesk that visit clientt

M = All other servers besides m invoked by clientt

Note: Each chain visits only one source station (client) and one server.

That is, given tasks i, j, l as shown in Figure 39, equation (5.4) may be expresse

 Eq (5.5)

Skt
′ Skt Ftm 1–( )Rkm FtM

M∀
∑ RKM×+ +=

S ij( ) i
′ S ij( ) i Fij 1–( )R ij( ) j Fil

l j≠
∑ R il( ) l×+ +=
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Where: (ij ) = Chain that represents clienti requesting service

 from server taskj.

Figure 39: General Tasks

5.5  Interpretation of Results

The throughput results obtained from solving the replicated queueing network with

modified service times must be interpreted to obtain the throughput at each client task

throughput of the client for a particular chain must be divided by the number of token

that chain. For example, in the replicated example (Figure 31 and Figure 33)

throughput for station or task A, XA, is given as follows: where X1A is the

throughput of chain 1 at station A. The throughput of any chain that visits station A ma

used to obtain the throughput of station A. The same throughput should be obtained

example, for client B in the replication example, the following holds tru

. The throughput result is modified because the throughput obtai

for a chain is the throughput of the chain which has the replicated number of to

i

j l . . . .

XA X1A N1⁄=

XB X2B N2⁄ X3B N3⁄= =
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representing the number of replicated clients. Therefore, to obtain the throughput o

replica client, the throughput of the chain must be divided by the number of tokens.

C

C2 C3 D

A

B

Figure 40: Replicated Sub-Queueing Network for Chain 2
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5.6  Convergence

The method of surrogate delays, employed by the replication algorithm, is basica

Gauss-Seidel iteration (See Section 2.4). The surrogate delay (Zk) of a chaink at a delay

server is calculated from the waiting times of all chains that visit that delay server (Wkm,

wherem is the server visited by chaink). Note that for the particular chain set up used

the replication algorithm, each chain visits one delay server and one queueing s

station. From inspection of the MVA algorithm (Refer to Section 2.3.2), it is evident t

the waiting times,Wkm, are functions of the surrogate delays (Z1, Z2 ... ZK) whereK is the

maximum number of chains that visits the delay server. (Note thatRkm = YkmWkm where

Ykmequals the number of visit to servermby chaink.) Thus, the Gauss-Seidel function fo

the replication algorithm can be written as:

DB C1 C2 C3

Figure 41: Replicated Sub-Queueing Network for Chain 3
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 Eq (5.6)

whereClm = (Constant Fan-Out Term (F) ) x Ylm = TotalVisits from chainl to serverm.

Sincek ranges from 1 toK, equation (5.6) represents a set of non-linear equations to

solved. The Gauss-Seidel iteration is used to solve this set of non-linear equation

shown below:

 Eq (5.7)

The convergence of the Gauss-Seidel iteration is not guaranteed. In fact, for some

of heavy utilization of a queueing server, the iteration oscillates or converges very slo

(This was actually observed in the example case described in Section 5.3 with twe

tasks shown in Figure 36.) To counter the convergence problem, the implementation

algorithm provides an option whereby a simplified Newton-Raphson method ma

employed instead of the Gauss-Seidel iteration. The Newton-Raphson method is c

since it may converge where a Gauss-Seidel iteration fails to converge and also conv

more rapidly than the Gauss-Seidel method (See Chapter 2). ([Chow 83] and [Souz

discuss the use of the Newton-Raphson method to accelerate convergence. [Eager

[Patti 90] also discuss convergence issues.) However, unfortunately, the Newton-Ra

method also does not guarantee convergence, In fact, in some cases, it may even c

iteration to diverge. It is for this reason that the method is used only as an option whe

Gauss-Seidel iteration fails to converge.

Zk
n 1+( )

ClmWlm
l 1 m∀;=

K

∑ f k Z1
n( )

Z2
n( ) … ZK

n( ),, ,( )= =

Z1
n 1+( )

f 1 Z1
n( )

Z2
n( ) …ZK

n( ), ,( )=

Z2
n 1+( )

f 2 Z1
n 1+( )

Z2
n( ) …ZK

n( ), ,( )=

…

ZK
n 1+( )

f K Z1
n 1+( )

Z2
n 1+( ) …ZK

n( ), ,( )=
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A simplified version of the Newton-Raphson is implemented since the full met

requires a considerable amount of work per iteration and is thus less practical. This

become apparent as the equations for the Newton-Raphson iteration are deve

below.The full Newton-Raphson method is applied to equation (5.6) giving the

iteration function:

 Eq (5.8)

Equation (5.8) represents the following set of non-linear equations to be solved:

.  Eq (5.9)

The Newton-Raphson method involves setting a set of non-linear equations and fin

the partial derivative of each function with respect to each variable (Z1, Z2, ... ZK).

Evidently the work for each iteration is enormous especially if there are many chains w

increases the number of equations to be solved. The simplified Newton-Raphson m

may be used to produce more manageable equations. In this method, the derivative is

with respect only to one variable. That is, each equation is regarded as though it we

equation for just one of the unknowns [Davis 86].With the simplified Newton-Raph

method, a set of non-linear equations need not be solved per iteration. The simp

Newton-Raphson function, shown below, is used instead of equation (5.8):

Zk
n 1+( )

f k Z1
n( )

Z2
n( ) …ZK

n( ), ,( )
Zl∂
∂

f k Z1
n( )

Z2
n( ) …ZK
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  Zl
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n( )
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 

l 1=

K

∑+= k 1 …K,=

Z1
n 1+( )

f 1 Z1
n( )

Z2
n( ) …ZK

n( ), ,( )
Zl∂
∂

f 1 Z1
n( )

Z2
n( ) …ZK

n( ), ,( ) 
  Zl

n 1+( )
Zl

n( )
–( ) 

 

l 1=

K

∑+=

Z2
n 1+( )

f 2 Z1
n 1+( )

Z2
n( ) …ZK

n( ), ,( )
Zl∂
∂

f 2 Z1
n 1+( )

Z2
n( ) …ZK

n( ), ,( ) 
  Zl

n 1+( )
Zl

n( )
–( ) 

 

l 1=

K

∑+=

…

ZK
n 1+( )

f K Z1
n 1+( )

Z2
n 1+( ) …ZK

n( ), ,( )
Zl∂
∂

f K Z1
n 1+( )

Z2
n 1+( ) …ZK

n( ), ,( ) 
  Zl

n 1+( )
Zl

n( )
–( ) 

 

l 1=

K

∑+=



Chapter 5.0: Solving Models With Replication Page 72

0)

tion

f the

the
 Eq (5.10)

The expanded form is:

 Eq (5.11)

Substituting in the value for from equation (5.6) into equation (5.1

gives:

 Eq (5.12)

It seems probable that the major effect of a change inZk will be on its own chain

performance, i.e. onWkm. Therefore, only theWkm term in the second summation in

equation (5.12) is retained. This also simplifies the calculation. The resulting itera

function is used:

 Eq (5.13)

This is the Gauss-Seidel iteration with an additional term. The partial derivative o

waiting time (Wkm) may be evaluated as follows using the Schweitzer approximation to

arrival instant queue length (Refer to Section 2.3.2):
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 Eq (5.14)

 Eq (5.15)

Where: nkm = Average number of tokens for chaink at serverm

Nk = Total number of tokens for chaink

Skm = Service time of server m for chaink

To evaluate equation (5.15) further, an assumption is made that a change inZk, ,

changes the number of tokens of chaink at the delay station proportionally. That is,

 Eq (5.16)

Where: Xk = Throughput of chaink

The tokens that are taken away from the delay server are distributed to the s

queue in proportion to those already there. Therefore,

 Eq (5.17)

Substituting into equation (5.15) gives the following:

 Eq (5.18)

Wkm

Nk 1–

Nk
--------------- nkmSkm⋅≅

Zk∂
∂Wkm Nk 1–

Nk
---------------

Zk∂
∂nkm Skm⋅ ⋅≅

Zk∆

nzk Xk Zk⋅=

n∆ zk Xk Zk∆⋅=

nzk∆–

n∆ km nzk

nkm

Nk 1–
---------------×∆– Xk Zk∆

nkm

Nk 1–
---------------⋅ ⋅ 

 –= =

Zk∂
∂Wkm Xk

nkm

Nk
---------– Skm⋅=
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Returning to equation (5.13), the simplified Newton-Raphson function may

evaluated as follows:

 Eq (5.19)

Let,

 Eq (5.20)

and solving for  gives the final update function:

 Eq (5.21)

In terms of the SRVN model and the LQNS replication implementation, the ser

time is modified as follows from equation (5.4):

 Eq (5.22)

The modification is similar to equation (5.4) used for the Gauss-Seidel iteration ex

with the additional terms in theZk expression. The SRVN terms to evaluateZk are:

 Eq (5.23)
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Where: s = Server visited by chaink

t = Client visited by chaink

S’kt = Modified service time of client stationt for chaink

Skt = Service time of client stationt for chaink

Fts = Fan-out of client taskt to server s (SRVN model)

Rks = Residence time of chaink at stations (s is visited

 by chaink)

FtS = Fan-out of client taskt to serverS (SRVN model)

= Residence time of chain  at station

K = Set of all other chains besidesk that visit clientt

S = Set of all other servers besidess invoked by clientt

Xk = Throughput of chaink (MVA queueing network

 parameter)

Lks = Queue length of chaink at servers (queueing

 network parameter)

Sks = Service time of chaink at servers (queueing

 network parameter)

Yks = Number of visits of chaink to server s (queueing

 network parameter)

Nk = Number of tokens for chaink (queueing network

 parameter)

Note: Each chain visits only one client (delay server) and one server.

α Fts 1–( )
XkLksSksYks

Nk
------------------------------- 

 
n( )

⋅=

Rµ σ, µ σ
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5.7  Implementation

The replication algorithm with the simplified Newton-Raphson method w

implemented in the LQNS software. As discussed in Chapter 3, the LQNS is presented

an SRVN model with possibly several layers. Each layer is transformed into a queu

network submodel and solved via the MVA solver. The method of surrogate delays is

to account for the interaction between the layers. Thus, there is a Gauss-Seidel ite

between the results of the submodels.

The replication algorithm is applied at the submodel level and does not involve

iteration between submodels. The MVA solver code that solves each submodel wa

changed. Only the input parameters presented to the MVA solver were manipulated

the required results. The parameters were obtained by modifications mainly to the

construction and service time calculation areas of the software.

Although the replication algorithm does not involve the inter-submodel iterat

referred to as the “outer” iteration, the algorithm does include an iteration of its own wi

the submodel, referred to as the “inner” iteration. The “inner” iteration is the Gauss-S

iteration or Newton-Raphson method discussed in the previous sections in whic

service times for delay servers are modified. The check for the convergence of the ite

occurs after each invocation to the MVA solver. If convergence has not occurred

service time values for delay servers (or client tasks) are modified and the MVA solv

invoked again. The pseudo-code for method Layerize::solveLayer shown in Figur

illustrates the “inner” iteration. Note that the inputs to this method are SRVN mo

parameters such as client task objects and server entity objects.
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The chains for the MVA model are constructed in method Layerize::makeChains.

chains are allocated differently for replicated and non-replicated client tasks. If a ce

client task is not replicated, one chain is constructed for all tokens that visit that clien

Layerize::solveLayer(clients, servers, layer number, validity flag)

BEGIN

Initialize values;

MakeChains; %Create chains and associate them with clients and servers

Create the clients for the MVA model;

Create the servers for the MVA model;

DO replication iteration

Initialize values;

Set validity flag to false;

IF first iteration

IF layer has replicated tasks

ModifyClientServiceTime for each client;

ELSE

Set validity flag to true;

Set iteration count to limit; %Layer has no replicated tasks.

Set convergence to false; %Execute loop only once.

ENDIF;

ELSE

ModifyClientServiceTime for each client;

ENDIF;

IF convergence

Set validity flag to true;

Exit iteration loop

ENDIF;

Generate MVA model; %Open and closed

Solve Model;.

Store results from MVA model to SRVN model;

WHILE (iteration limit not reached);

Cleanup;

RETURN validity flag;

END

Figure 42: Pseudo-Code for “Inner” Iteration
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all its servers. If the client task is replicated, one chain is constructed for each server

The pseudo-code is shown in Figure 43.

The method Task::modifyClientServiceTime is applied to each replicated client ta

modify the service time to account for the “missing” replicated tasks. A service tim

associated with each chain that visits each entry of the client task. As a consequence

are two loops; a loop through all entries, and an inner loop through all chains to an e

Layerize::makeChains(clients, servers, customers vector, thinktime vector, priority vector,

 clientChains vector, serverChains vector)

BEGIN

Initialize values;

FOR all clients %Create chains and associate them with clients and servers

Get all servers for this client;

IF client is NOT replicated

Increment chain number k;

Add chain number k to clientChain vector;

Set thinktime to client idle time;

Set number of customers and priority;

Add chain number k to all servers of this client;

ELSE

%Replicated case

FOR all servers of this client

Increment chain number k;

Add chain number k to serverChains;

Add chain number k to clientChains;

Set thinktime, number of customers, priority;

ENFOR;

ENDIF;

RETURN number of chains;

END

Figure 43: Pseudo-Code for Chain Construction
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The method Entry::waitExceptChain is where the service time is actually modified.

method is called for each entry with an input parameter of the chain. To modify the se

time of the entry for a particular chain, the resident times of all entries that the entry

is obtained. The service time is modified according to equation (5.4) and accordin

equation (5.22) if the Newton-Raphson method is used.

The input file format for the LQNS solver, shown in Figure 46, is used to specify

SRVN model with replicated tasks. The last lines specifies the fan-in and fan-out with

notation ‘i’ for fan-in and ‘o’ for fan-out. The first grouping, the paragraph beginning w

‘P’, specifies the processors which may also be replicated. The replication is specified

Task::ModifyClientServiceTime

BEGIN

Initialize values;

FOR all entries of this client task

IF first iteration

initialize;

ENDIF;

FOR all chains of this entry

FOR all phases of this entry

Set the service time to Entry->waitExceptChain;

ENDFOR;

ENDFOR;

ENDFOR;

RETURN delta value;

END

Figure 44: Pseudo-Code for ModifyClientServiceTime
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an ‘r’ followed by the replication factor. The same notation is used for tasks which

shown in the paragraph beginning with ‘T’. (Refer to [Petriu 95] for a detailed descrip

of the input file.)

Entry::waitExceptChain

BEGIN

Initialize values;

FOR all calls from this entry

IF chain k does not visit the task called

sum = sum + (delay to this task) (fanout of this entry to called task);

ELSE

sum = sum + (delay to this task) (fanout-1 of this entry to called task);

IF first iteration

Initialize

ELSE

Calculate the Newton-Raphson factor F; %Equation (5.20)

ENDIF;

Calculate delta values;

Store service time values;

ENDIF;

ENDFOR;

Repeat above code for processor task.

sum = sum + F(oldsum)

sum = sum/(1+F) %Equation (5.22)

RETURN sum;

END

Figure 45: Pseudo-Code for waitExceptChain
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5.8  Tests

To test the solution method for replicated systems, several models in their simp

replicated forms and their corresponding full model forms were solved using LQNS.

results from the replication algorithm were compared with the results of solving the

model using exact MVA and the Bard-Schweitzer approximation. Five cases are pres

below. Case 1 is the example system discussed consisting of two layers of tasks with

fan-in and fan-out. Case 2 is a mixed model with both replicated and non-replicated t

# SRVN Model Description File

G ““ 0.000010 50 10 0.900000 -1

P 4 # 4 processors
 p A1 f r 2 # r2 for 2 replicas
 p B1 f r 2
 p C1 f r 3
 p D1 f r 2
-1

T 4 # 4 tasks
 t A1 r A1 -1 A1 0 r 2 # r2 for 2 replicas
 t B1 r B1 -1 B1 0 r 2 # Each task has an entry of the same name
 t C1 n C1 -1 C1 0 r 3
 t D1 n D1 -1 D1 0 r 2
-1

E 4
 s A1 0.000000 2.000000 -1
 y A1 C1 0.000000 2.000000 -1
 s B1 0.000000 4.000000 -1
 y B1 C1 0.000000 3.000000 -1
 y B1 D1 0.000000 4.000000 -1
 s C1 3.000000 0.000000 -1
 s D1 5.000000 0.000000 -1
 i A1 C1 2 -1 # i specifies fan-in for entry A1 to entry C1
 o A1 C1 3 -1 # o specifies fan-out
 i B1 C1 2 -1
 o B1 C1 3 -1
 i B1 D1 1 -1
 o B1 D1 1 -1
-1

Figure 46: Input File for Replication Example
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Case 3 verifies that the replication method can solve for tasks with multiple entries. C

is a multi-layered system with replicated tasks. Finally, in Case 5, the example of F

36, which failed to converge with the Gauss-Seidel iteration, is solved using the New

Raphson method in the solution method.

The example system discussed, Case 1, in its full model form (Figure 30) as well

replicated model form (Figure 31), was solved using the LQNS tool with the replica

modifications. The figures do not show processor allocation. However, the proce

allocation is specified in the corresponding input files (Figure 46) which describe

models. In the models solved, one task is assigned one unique processor. The foll

input parameters were used:

Full Model Replicated Model

SA1 = SA2 = SA3= 2   SA = 2

SB1 = SB2 = 4  SB = 4

SC1 = SC2 = SC3 = 3  SC = 3

SD1 = SD2 = 5  SD = 5

V1,A1 = 1 V1,A = 1

V1,C1 = V1,C2 = V1,C3 = 2  V1,C = 2

V2,A2 = 1  V2,B = 1

V2,C1 = V2,C2 = V2,C3 =2  V2,C = 3

V3,B1 = 1  V3,B = 1

V3,C1 = V3,C2 = V3,C3 = 3  V3,D = 4

V3,D1 = 4

V4,B2 = 1

V4,C1 = V4,C2 = V4,C3 = 3

V4,D2 = 4
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Three different queueing network solvers were used: the Schweitzer approxima

Linearizer, and the exact MVA. The results for solving the full system and for solving

simplified replicated system are shown in Tables 1 to 4. The cycle time result include

service time of a task plus the rendezvous delay time it encounters with its servers

results of solving the full model using the exact MVA are used to compare the replica

results. It is seen that the replication algorithm works best with the Schwe

approximation with an error of less than 5%. The replication algorithm using the e

MVA and the Linearizer provide fairly high errors, up to 12%.

The higher errors for the exact MVA and Linearizer may be explained by inspecting

MVA algorithm. (Refer to Section 2.3.2.) Modifying the service time of the client de

server with the delay at the ‘missing’ stations is essentially estimating theRvalues (resident

times of chains at the stations) in the MVA algorithm. However, in the case of the e

MVA and Linearizer, theR value for different populations are required in the MVA

iteration. For the exact MVA, theR value for populations from0 to N is required. For the

Linearizer, theR values for populationN andN-1c are required. By modifying the service

time of the client, an estimation ofRfor a population ofN is used, which is fixed throughou

the iteration. That is, it is used even though for the exact MVA anRvalue for the range of

populations0 to N is needed. The estimation forR is incorrect and therefore produces bi

errors in the exact MVA and Linearizer.

The error for the Schweitzer approximation is low since, in this algorithm, only

delays for populationN are needed. In this case, the estimatedR is correct, or nearly so.

The error in the results is due to the Schweitzer approximation itself. The Schwe

approximation results for the full models are very close to their corresponding replic

model results also using Schweitzer. In addition, the error for the cycle time resu

increased since the cycle time is obtained by multiplying the calculated delay at the c



Chapter 5.0: Solving Models With Replication Page 84

ithm

ycle
by the number of visits to a server. In other words, the error from the replication algor

appears in the delay result of the client (delay server) which is magnified in the client c

time result by the number of visits.

Table 1: Cycle Time Results for Replication Example (Case 1)

Table 2: Throughput Results for Replication Example (Case 1)

Task
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Schweitzer)

%Error

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

Exact
MVA

Schweitz

A 0 33.092 0 33.753 0 33.748 2 -0.01

B 0 73.564 0 74.014 0 74.007 0.6 -0.01

C 3 0 3 0 3 0 0 0

D 5 0 5 0 5 0 0 0

Task
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Linearizer)

Replicated
 (Exact MVA)

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

A 0 33.092 0 33.753 0 31.443 0 31.466

B 0 73.564 0 74.014 0 71.370 0 71.419

C 3 0 3 0 3 0 3 0

D 5 0 5 0 5 0 5 0

Task
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Schweitzer)

%Error

Exact MVA Schweitzer

A 0.0302184 0.0296272 0.0296307 -1.6 0.01

B 0.0135935 0.0135109 0.0135120 -0.6 0.01

C 0.2024350 0.1995740 0.1995950 -1.4 0.01

D 0.0543741 0.0540435 0.0540480 -0.6 0.01

Task
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Linearizer)

Replicated
 (Exact MVA)

A 0.0302184 0.0296272 0.0318026 0.0317800

B 0.0135935 0.0135109 0.0140113 0.0140016

C 0.2024350 0.1995740 0.2112780 0.2111300

D 0.0543741 0.0540435 0.0560451 0.0560064
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Table 3: Task Utilization Results for Replication Example (Case 1)

Table 4: Processor Utilization Results for Replication Example (Case 1)

The replication algorithm may be used to solve several different configuration

SRVN models. It can handle a model with a mix of replicated and non-replicated ta

Task
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Schweitzer)
%Error

Phase 1 Phase 2 Phase 1 Phase 2 Phase
1

Phase
2

Exact
MVA

Schw

A 0 1 0 1 0 0.9999 0 0

B 0 1 0 1 0 0.9999 0 0

C 0.60730 0 0.59872 0 0.5987 0 -1.4 0

D 0.27187 0 0.27021 0 0.2702 0 -0.6 0

Task
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Linearizer)
Replicated

 (Exact MVA)

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase
2

Phase 1 Phase
2

A 0 1 0 1 0 0.999 0 0.999

B 0 1 0 1 0 0.999 0 0.999

C 0.60730 0 0.59872 0 0.63383 0 0.63338 0

D 0.27187 0 0.27021 0 0.28022 0 0.28003 0

Processor
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Schweitzer)
%Error

Exact MVA Schweitzer

A 0.0604367 0.0592544 0.0592613 -2 0.01

B 0.0543741 0.0540435 0.0540481 -0.6 0.01

C 0.6073040 0.5987220 0.5987850 -1.4 0.01

D 0.2718700 0.2702180 0.2702400 -0.6 0.01

Processor
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Linearizer)
Replicated

 (Exact MVA)

A 0.0604367 0.0592544 0.0636053 0.0635599

B 0.0543741 0.0540435 0.0560452 0.0560066

C 0.6073040 0.5987220 0.6338350 0.6333890

D 0.2718700 0.2702180 0.2802260 0.2800320
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models with multiple entries, and multi-layered models. An example of a mixed mo

Case 2, is shown in Figure 47 and Figure 48 with the results of solving the system s

in Tables 5-8. A model with multiple entries, Case 3, (Figure 49) and a model with mul

layers, Case 4, (Figure 50) were also solved with the results shown in Tables 9-16. Fi

the example of Figure 36, Case 5, which has twenty B tasks and does not converge

the Gauss-Seidel iteration, is solved using the simplified Newton-Raphson metho

converges using the Newton-Raphson option but diverges otherwise.

As with Case 1, the Schweitzer approximation gives the closest results to the

system. The multi-layered example, Case 4, produces higher errors than the single-la

examples since the errors encountered at each submodel layer tend to propagate to th

submodel layers. Despite the errors, the advantages of the replication are obvious

comparing the calculation time, the ease of reading the results, and the simplification

input (input file format) between the full model and the replicated model. The summa

results for the replicated system is much more compact than for the streams of data f

full system. But mainly it can be seen that the SRVN model with its input file are sim

for the replication model as compared to the full model. If more replicas are added

change to the replicated model is trivial but is quite cumbersome for the full model.

Since the Schweitzer MVA approximation gives the best results, the space and

complexity relative to this algorithm is discussed. The space requirements for Schw

is proportional to the product of the number of chains,C, and the number of stations,N, i.e.

O(CN). The time requirement per iteration of the algorithm is also proportional to

product. The replication algorithm reduces the number of chains and the number of st

needed, thereby reducing the space and time requirement for each Schweitzer itera

O( ) , whereKm is the number of replicas at serverm andM is the total numberKm 1–( )
m 1=

M

∑
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of replicated task sets (N = ). The replication iteration introduced for solving eac

submodel increases the time by an unknown factor. Finally, the time complexity for

iteration of the LQNS inter-layer submodel solution (i.e. the “outer iteration” mentione

Section 5.7) isO(LN2) or O(L( )2), where L is the number of layers [Rolia 92]. (Thi

is derived from the time complexity of one iteration of Schweitzer which isO(CN). ) Since

the replication algorithm reduces the number of stations by representing a set of replic

one station, the time complexity of one LQNS iteration is reduced toO(LM2), or by a factor

of  .

In executing the test cases, the times for solving the replicated models were found

shorter than for the full models. All test cases were run on an HP 9000/735 worksta

For Case 5, with around 20 tasks, the time difference was especially visible with

replication model taking less than a second to solve in contrast to the full model which

around 9 minutes.

Km
m 1=

M

∑

Km
m 1=

M

∑

N
M
----- 

  2

A1 B1 B2

C1 C2 C3 D1

B5. . .

Figure 47: Full Model for Mixed System (Case 2)
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Table 5: Cycle Time Results for Mixed System (Case 2)

Task
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Schweitzer)

% Error

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

Exact
MVA

Schw

A 0 63.108 0 65.221 0 65.205 3 -0.02

B 0 188.59 0 188.98 0 188.92 0.2 -0.03

C 3 0 3 0 3 0 0 0

D 5 0 5 0 5 0 0 0

Task
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Linearizer)

Replicated
 (Exact MVA)

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

A 0 63.108 0 65.221 0 59.387 0 59.704

B 0 188.59 0 188.98 0 176.26 0 176.93

C 3 0 3 0 3 0 3 0

D 5 0 5 0 5 0 5 0

A* B*

C* D*
KD = 1KC = 3

FBD = 5

FBD = 1

KB = 5

FAC = 1

KA = 1

FAC = 3
FBC = 3

FBC = 5

Figure 48: Replicated Model for Mixed System (Case 2)
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Table 6: Throughput Results for Mixed System (Case 2)

Table 7: Task Utilization Results for Mixed System (Case 2)

Task
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Schweitzer)

%Error

Exact
MVA

Schw

A 0.01584580 0.0153323 0.01533630 -3 0.02

B 0.00530251 0.0052914 0.00529328 -0.1 0.03

C 0.23312500 0.2311960 0.23127400 -0.8 0.03

D 0.10605000 0.1058280 0.10586600 -0.2 0.03

Task
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Linearizer)

Replicated
 (Exact MVA)

A 0.01584580 0.0153323 0.01683880 0.01674930

B 0.00530251 0.0052914 0.00567356 0.00565196

C 0.23312500 0.2311960 0.24909100 0.24806700

D 0.10605000 0.1058280 0.11347100 0.11303900

Task
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Schweitzer)
% Error

Phase 1 Phase 2 Phase 1 Phase 2 Phase
1

Phase
2

Exact
MVA

Schw

A 0 0.99999 0 0.999999 0 1 0 0

B 0 0.99999 0 0.999999 0 1 0 0

C 0.69938 0 0.69359 0 0.6938 0 -0.7 0.04

D 0.53025 0 0.52914 0 0.5293 0 -0.2 0.03

Task
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Linearizer)
Replicated

 (Exact MVA)

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase
2

Phase 1 Phase
2

A 0 0.99999 0 0.999999 0 1 0 1

B 0 0.99999 0 0.999999 0 1 0 1

C 0.69938 0 0.69359 0 0.74727 0 0.74420 0

D 0.53025 0 0.52914 0 0.56736 0 0.56520 0
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Table 8: Processor Utilization Results for Mixed System (Case 2)

Processor
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Schweitzer)
% Error

Exact MVA Schweitzer
A 0.0410406 0.0397106 0.0397210 -3 0.02

B 0.0243915 0.0243404 0.0243491 -0.2 0.03

C 0.6993750 0.6935880 0.6938210 -0.8 0.04

D 0.5302510 0.5291400 0.5293280 -0.2 0.03

Processor
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Linearizer)
Replicated

 (Exact MVA)

A 0.0410406 0.0397106 0.0436125 0.0433807

B 0.0243915 0.0243404 0.0260984 0.0259990

C 0.6993750 0.6935880 0.7472730 0.7442000

D 0.5302510 0.5291400 0.5673560 0.5651960

A* B*

KD = 10KC = 3

FBD = 1

FBD = 1

KB = 10

FAC = 2

KA = 2

FAC = 3
FBC = 3

FBC = 10

c1 c2 d1 d2

Figure 49: Replicated Model of Multi-Entried System (Case 3)
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Table 9: Cycle Time Results for Multi-Entried System (Case 3)

Table 10: Throughput Results for Multi-Entried System (Case 3)

Entry
Name

Full
(Exact MVA)

Full
(Schweitzer)

Replicated
(Schweitzer)

% Error

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

Exact
MVA

Schw

A 0 148.45 0 150.16 0 150.14 1 -0.01

B 0 267.03 0 268.96 0 268.92 0.7 -0.01

c1 3 0 3 0 3 0 0 0

c2 3 0 3 0 3 0 0 0

d1 5 0 5 0 5 0 0 0

d2 5 0 5 0 5 0 0 0

Entry
Name

Full
(Exact MVA)

Full
(Schweitzer)

Replicated
(Linearizer)

Replicated
 (Exact MVA)

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

A 0 148.45 0 150.16 0 133.63 0 135.50

B 0 267.03 0 268.96 0 248.05 0 250.42

c1 3 0 3 0 3 0 3 0

c2 3 0 3 0 3 0 3 0

d1 5 0 5 0 5 0 5 0

d2 5 0 5 0 5 0 5 0

Entry
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Schweitzer)

% Error

Exact MVA Schweitzer
A 0.00673588 0.00665915 0.00666024 -1 0.02

B 0.00374483 0.00371797 0.00371856 -0.7 0.03

c1 0.13928900 0.13817600 0.13819800 -0.7 0.01

c2 0.13928900 0.13817600 0.13819800 -0.7 0.01

d1 0.01497930 0.01487190 0.01487420 -0.7 0.02

d2 0.01497930 0.01487190 0.01487420 -0.7 0.02
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Table 11: Task Utilization Results for Multi-Entried System (Case 3)

Entry
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Linearizer)

Replicated
 (Exact MVA)

A 0.00673588 0.00665915 0.00748333 0.00737994

B 0.00374483 0.00371797 0.00403132 0.00399326

c1 0.13928900 0.13817600 0.15087300 0.1493180

c2 0.13928900 0.13817600 0.15087300 0.1493180

d1 0.01497930 0.01487190 0.01612530 0.0159730

d2 0.01497930 0.01487190 0.01612530 0.0159730

Entry
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Schweitzer)

% Error

Phase 1 Phase 2 Phase 1 Phase 2 Phase
1

Phase
2

Exact
MVA

Schw

A 0 0.99999 0 0.999999 0 1 0 0

B 0 0.99999 0 0.999999 0 1 0 0

c1 0.41786 0 0.41453 0 0.4146 0 -0.7 0.02

c2 0.41787 0 0.41453 0 0.4146 0 -0.7 0.02

d1 0.07490 0 0.07436 0 0.0744 0 -0.7 0.05

d2 0.07490 0 0.07436 0 0.0744 0 -0.7 0.05

Entry
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Linearizer)

Replicated
 (Exact MVA)

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase
2

Phase 1 Phase
2

A 0 0.99999 0 0.999999 0 1 0 1

B 0 0.99999 0 0.999999 0 1 0 1

c1 0.41786 0 0.41453 0 0.45262 0 0.44795 0

c2 0.41787 0 0.41453 0 0.45262 0 0.44795 0

d1 0.07490 0 0.07436 0 0.08063 0.07987

d2 0.07490 0 0.07436 0 0.08063 0.07987



Chapter 5.0: Solving Models With Replication Page 93
Table 12: Processor Utilization Results for Multi-Entried System (Case 3)

Processor
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Schweitzer)
% Error

Exact MVA Schweitzer
A 0.0134718 0.0133183 0.0133205 -1 0.07

B 0.0149793 0.0148719 0.0148742 -0.6 0.02

C 0.8357310 0.8290540 0.8291860 -0.7 0.01

D 0.1497930 0.1487190 0.1487420 -0.6 0.02

Processor
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Linearizer)
Replicated

 (Exact MVA)

A 0.0134718 0.0133183 0.0149667 0.0147599

B 0.0149793 0.0148719 0.0161253 0.0159730

C 0.8357310 0.8290540 0.9052380 0.8959050

D 0.1497930 0.1487190 0.1612530 0.1597300

A*

B*

KA = 4

KB = 2

FAB = 2

FAB = 4

C* KC = 2

FBC = 2

FBC = 2

Figure 50: Replicated Model of Multi-Layered System (Case 4)
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Table 13: Cycle Time Results for Multi-Layered System (Case 4)

Table 14: Throughput Results for Multi-Layered System (Case 4)

Entry
Name

Full
(Exact MVA)

Full
(Schweitzer)

Replicated
(Schweitzer)

% Error

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

Exact
MVA

Schw

A 0 17.805 0 18.225 0 18.224 2 -0.01

B 3.5071 0 3.5625 0 3.5627 0 1.6 -0.01

C 1 0 1 0 1 0 0 0

Entry
Name

Full
(Exact MVA)

Full
(Schweitzer)

Replicated
(Linearizer)

Replicated
 (Exact MVA)

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

A 0 17.805 0 18.225 0 16.525 0 16.529

B 3.5071 0 3.5625 0 3.5210 0 3.5162 0

C 1 0 1 0 1 0 1 0

Task
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Schweitzer)

% Error

Exact MVA Schweitzer
A 0.0561653 0.0548689 0.0548741 -2 0.02

B 0.2246610 0.2194760 0.2194960 -2 0.02

C 0.4493220 0.4389510 0.4389930 -2 0.01

Task
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Linearizer)

Replicated
 (Exact MVA)

A 0.0561653 0.0548689 0.0605136 0.0604992

B 0.2246610 0.2194760 0.2420540 0.2419970

C 0.4493220 0.4389510 0.4841090 0.4839930
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Table 15: Task Utilization Results for Multi-Layered System (Case 4)

Table 16: Processor Utilization Results for Multi-Layered System (Case 4)

Task
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Schweitzer)
% Error

Phase 1 Phase 2 Phase 1 Phase 2 Phase
1

Phase
2

Exact
MVA

Schw

A 0 1 0 1 1 0 0

B 0.78791 0 0.7819 0 0.7820 0 -0.7 0.01

C 0.44932 0 0.4389 0 0.4390 0 -2 0.02

Task
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Linearizer)
Replicated

 (Exact MVA)

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase
2

Phase 1 Phase
2

A 0 1 0 1 0 1 0 1

B 0.78791 0 0.7819 0 0.85228 0 0.85092 0

C 0.44932 0 0.4389 0 0.48411 0 0.48399 0

Processor
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Schweitzer)
% Error

Exact MVA Schweitzer
A 0.0561653 0.0548689 0.0548741 -2 0.02

B 0.2246610 0.2194760 0.2194960 -2 0.01

C 0.4493220 0.4389510 0.4389930 -2 0.01

Processor
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Linearizer)
Replicated

 (Exact MVA)

A 0.0561653 0.0548689 0.0605136 0.0604992

B 0.2246610 0.2194760 0.2420540 0.2419970

C 0.4493220 0.4389510 0.4841090 0.4839930
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Table 17: Cycle Time Results Using Newton-Raphson (Case 5)

Table 18: Throughput Results for Using Newton-Raphson (Case 5)

Entry
Name

Full
(Exact MVA)

Full
(Schweitzer)

Replicated
(Schweitzer)

% Error

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

Exact
MVA

Schw

A 0 132.23 0 132.89 0 132.82 0.4 -0.05

B 0 220.32 0 221.17 0 221.06 0.3 -0.04

C 3 0 3 0 3 0 0 0

D 5 0 5 0 5 0 0 0

Entry
Name

Full
(Exact MVA)

Full
(Schweitzer)

Replicated
(Linearizer)

Replicated
 (Exact MVA)

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

Phase
1

Phase
2

A 0 132.23 0 132.89 0 121.90 0 122.38

B 0 220.32 0 221.17 0 206.36 0 207.01

C 3 0 3 0 3 0 3 0

D 5 0 5 0 5 0 5 0

Task
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Schweitzer)

% Error

Exact MVA Schweitzer
A 0.00756260 0.00752531 0.00752928 -0.4 0.05

B 0.00453883 0.00452144 0.00452359 -0.3 0.05

C 0.30258000 0.30138700 0.30153200 -0.3 0.05

D 0.01815530 0.01808570 0.01809430 -0.3 0.05

Task
Name

Full Model
(Exact MVA)

Full Model
(Schweitzer)

Replicated
(Linearizer)

Replicated
 (Exact MVA)

A 0.00756260 0.00752531 0.00820354 0.00817116

B 0.00453883 0.00452144 0.00484581 0.00483068

C 0.30258000 0.30138700 0.32356300 0.32252500

D 0.01815530 0.01808570 0.01938320 0.01932270
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Table 19: Task Utilization Results for Using Newton-Raphson (Case 5)

Table 20: Processor Utilization Results for Using Newton-Raphson (Case 5)

Task
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Schweitzer)
% Error

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase
2

Exact
MVA

Schw

A 0 0.999999 0 0.999999 0 1 0 0

B 0 0.999999 0 0.999999 0 1 0 0

C 0.90774 0 0.90416 0 0.90460 0 -0.3 0.05

D 0.09078 0 0.09043 0 0.09047 0 -0.3 0.04

Task
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Linearizer)
Replicated

 (Exact MVA)

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase
2

Phase 1 Phase
2

A 0 0.999999 0 0.999999 0 1 0 1

B 0 0.999999 0 0.999999 0 1 0 1

C 0.90774 0 0.90416 0 0.97069 0 0.96758 0

D 0.09078 0 0.09043 0 0.09692 0 0.09661 0

Processor
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Schweitzer)
% Error

Exact MVA Schweitzer
A 0.0151252 0.0150506 0.0150586 -0.5 0.05

B 0.0181553 0.0180857 0.0180943 -0.3 0.05

C 0.9077410 0.9041620 0.9045970 -0.3 0.04

D 0.0907766 0.0904287 0.0904717 -0.3 0.05

Processor
Full Model

(Exact MVA)
Full Model

(Schweitzer)
Replicated

(Linearizer)
Replicated

 (Exact MVA)

A 0.0151252 0.0150506 0.0164071 0.0163423

B 0.0181553 0.0180857 0.0193832 0.0193227

C 0.9077410 0.9041620 0.9706880 0.9675760

D 0.0907766 0.0904287 0.0969161 0.0966135
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5.9  Limitations

From the analysis of the results in Section 5.8, it can be seen that the replic

algorithm should use the Schweitzer approximation for the best results. Other limita

exist which may be removed in future work.

The current implementation of the replication algorithm can handle multiple entries

each task. However, the entries of a task must have the same fan-out and fan-in val

may be noted that the usefulness of having entries with different fan-out and fan-in v

is questionable. In other words, what kind of system would need this modeling capa

keeping in mind that the symmetry of the system must be maintained.

Another limitation of the current implementation also deals with the symmetry is

The processors associated with the tasks in the SRVN model are treated as server

processors are not shown explicitly but are specified in the model in the input f

Therefore, they have exactly the same restrictions as tasks. That is, a replicated gr

tasks must be allocated either to one processor or to a replicated group of processo

Finally, convergence of the algorithm is not guaranteed. The simplified New

Raphson method may be applied when the Gauss-Seidel iteration fails to conv

However, it too may not converge in some cases.
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Chapter 6.0  Case Study

6.1  Introduction

As the trend towards distributed computing continues, many systems in industry

been converted to a client-server architecture with some being multi-tiered. Multi-ti

systems are systems with server entities that act as servers to some entities and as c

others. Some systems may contain a large number of components especially if the s

spans geographic boundaries. The importance of performance analysis of these s

becomes apparent and, in some cases, critical as the configurations of these systems

Before any changes are made to the system, the performance of the system m

predicted to avoid any degradation or total inoperability of the system. Capacity plan

studies are conducted which include performance evaluation techniques. Perform

evaluation consists of defining the goals of a performance study, creating a perform

model for the system, deciding on the performance metrics, measuring or estimatin

performance model parameters, selecting and modeling the workload, solving

performance model with the appropriate evaluation techniques, and reporting the re

The Layered Queueing Network Solver (LQNS) with replication modifications,

discussed in Chapters 4 and 5, may be used to predict system performance of large

tiered client-server systems. In this chapter, a simple study of a real industrial syst

conducted to demonstrate a practical application of the LQNS tool with replication.

6.2 Capacity Planning for a Large Client-Server System

To demonstrate the solving of replicated systems, a study of a large industrial c

server system is presented. The study is based on data from the capacity planning
Page 99
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conducted by Shen [Shen 96]. The structure of the system is shown in Figure 51 on

101. The main function of the network is to provide database access to the users

system. The large database system consists of thousands of workstations (or

submitting transactions to two databases, called RF and BC, stored on two sep

mainframes. The workstations are connected to a local area network (LAN) and acce

databases via a LAN server (PC or workstation). The LAN server also provides some

service to the workstations. Some of the LAN’s are connected to the backbone ne

(FDDI (Fiber Distributed Data Interface)) and others are connected to a wide area ne

(WAN). There may be other traffic on the network besides the database transaction

To simplify the modeling of the database system, some assumptions are made. A

LAN’s are assumed to be token ring with the same traffic factor and workload. That is

number of workstations attached to each LAN is the same, 10. The number of LAN’

attached to the WAN is the same as the number of LAN’s attached to the backbone

workstations are modeled as equivalent entities producing similar workloads. With th

simplifications, the database system has symmetric properties and can be easily mo

into an SRVN model using the simplified notation as shown in Figure 52 on page 10

The workstations, or more appropriately the tasks running on the workstations, are m

eled as client tasks. The LAN server is modeled as a FCFS (first-come first-served) s

task. In fact, it is also a client to the database servers. The two databases are mode

FCFS server tasks in the bottom layer. The LAN is a token ring and its delay has be

modeled as a delay server. Similarly, the WAN and backbone delays have been mo

as delay servers. For purposes of this study, which is concerned with the performan

the whole system rather than individual components of the system, the front-end proc
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WS1 WSn1 WS1 WSnj

LAN1 LANj

LAN Server LAN Server

WS1 WS n1 WS1 WSnk

LAN1 LANk

Backbone Network Wide Area Network

RF-DB Server BC-DB Server

Front End ProcessorFEP FEP

... ... ... ...

... ...... ...

(Mainframe) (Mainframe)

Figure 51: Database System
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LSB

RF BC

WSW

BACKBONE
DELAY DELAY

WAN

WSB

LSW

LAN B
DELAY

LAN W
DELAY

KLSB = J KLSW = I

KWSB= NxJ

KLANB  = NxJ

KWSW = NxI

KLANB  = NxI

KWAN = IKBB = J

FWSB = 1

FWSB = N

FWSW = 1

FWSW = N

FWSWL = 1

FWSWL = 1FWSBL = 1

FWSBL = 1

FLSBB = 1

FLSBB = 1 FLSWW = 1

FLSWW = 1

FLSWB = 1

FLSWB = I

FLSWR = 1

FLSWR = I

FLSBB = 1
FLSBR = 1

FLSBB = J

FLSBR = J

KBDB = 1KRDB = 1

WS - Workstation
LS - LAN Server
I - Number of LANs on WAN

Figure 52: SRVN Model of Database System

J - Number of LANs on Backbone
N - Number of Workstations per LAN
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and disks are not of great importance and have not been modeled. Their effects have

incorporated into the parameters of the database server tasks.

A characterization of the workload and the parameters of the model, such as th

vice times of each task and the number of visits between tasks, must be obtained to u

model for performance prediction. Both may be obtained from measurements and o

vations of the actual system in operation. From measurements collected on the res

time of different transactions at the workstations, the workload is characterized into

types: heavy transactions to the RF database, light transactions to the RF database

transactions to the BC database, and light transactions to the BC database [She

These workload types have been represented in the SRVN model by different entr

the database tasks. The workload that only requires the LAN server is represented

entry in the LAN server task. From the measurements, the think time at the worksta

was determined to be 15 seconds. However, since other measurement data was sca

rest of the parameters for the model are very rough educated estimates. The follo

parameters are used:

Service Time of LAN Server for Local Service = 0.03 seconds

Service Time of LAN Server for Database Service = 0.01 seconds

Service Time of RF Database Light Transactions = 0.04 seconds

Service Time of RF Database Heavy Transactions = 0.08 seconds

Service Time of BC Database Light Transactions = 0.08 seconds

Service Time of BC Database Heavy Transactions = 0.16 seconds

Service Time of LAN delay = 0.00039 seconds

Service Time of WAN delay = 0.04 seconds

Service Time of Backbone delay = 0.02 seconds
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The mainframe for the BC database also receives work from other non-database

cations and takes up 50% of its CPU time. The service time given above is the effe

service time which is the actual service time divided by 0.5 (effective service time =

vice time/(1 - utilization of non-database applications) ). The LAN, WAN, and backb

delays have been calculated with the equations in Shen’s thesis (Equation 12 of [She

with the same parameter assumptions and traffic factors. The WAN rate is assumed

50,000 bits/second and the backbone FDDI rate is assumed to be 1x108 bits/second.

The visits between tasks are estimated from observations of the system. There a

visits to the LAN, WAN, and backbone servers. One delay is encountered when req

ing a service and one delay is encountered for the response. It is assumed that the w

tion on the average makes two requests to the LAN server for database service for

one request that only involves the LAN server. Therefore, the visit ratio is 2/3 to e

LSDB and 1/3 for entry LSL. Similarly, it is estimated that there are 5 requests to the

database for every request to the BC database. The request for a light or heavy trans

is equal. Therefore, the visit ratio to the BC light entry or heavy entry is (1/6)(1/2)=1

The visit ratio to the RF database is in total 5/6.

The completed SRVN model, as shown in Figure 53, may be used to study the pe

mance of the system under varying configurations and parameters. In the first analys

change in the response time at the workstations is studied when the number of wo

tions in the system is increased. There are ten workstations attached to each LAN

number of workstations is increased by attaching new LAN’s to the network. The SR

model is solved several times by varying the number of LAN servers. Figure 55 sho

graph of the change in response time as seen at the client workstation. As expecte

response time increases with the number of workstations. The response time increas

matically at more than 300 clients since the RF database saturates between 300 a
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clients. The RF database is the first component to saturate and is the bottleneck of th

tem. After saturation, the response time continues to increase linearly.

The second analysis seeks to determine the effect of regional servers to off-loa

work at the RF database. The regional servers are given the same parameters and

as the RF database. The visit ratios to the regional servers and RF database are dete

by the fraction of RF database requests that are routed to the regional servers. The

model with three regional servers is shown in Figure 54. Figure 55 shows the increa

the response time seen at the client with 20% of the RF database traffic routed t

regional servers. Clearly, the response time at the client is improved and the RF dat

saturates between 400 and 500 clients. Finally, the effect of changing the fraction of t

going to the regional servers is studied. Figure 56 shows the response time at the clie

a system with 600 workstations when the fraction of off-loaded traffic is varied. T

response time decreases with the increase in the fraction of RF database traffic go

the regional servers.
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Figure 53: SRVN Model with Entries
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LSBDB - LAN Server Entry for Database Access
RDBL - Light Transactions for Remote Forms Database

LSBL LSBDB LSWL LSWDB

RDBL RDBH BDBL BDBH

RDBH - Heavy Transactions for Remote Forms Database
BDBL - Light Transactions for Billing and Collections Database
BDBH - Heavy Transactions for Billing and Collection Database
I - Number of LANs on WAN
J - Number of LANs on Backbone
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Figure 54: SRVN Model of Database System with Three Regional Servers
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Figure 55: Performance of Database System
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Figure 56: Effect on Performance of Off-Loading to Regional Servers

Fraction of Transactions to Regional Servers with 600 RF Users
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Chapter 7.0  Conclusion

7.1  Research Summary

As distributed computer systems, such as client-server systems, increase in siz

complexity, the need to evaluate the performance of these systems becomes critical.

often exist components in these systems which are similar from a performance mod

point of view. These components, referred to as being replicated, have the

performance parameters. Consequently, their performance measures predicted fro

performance models are also equal.

This thesis has presented a method that takes advantage of the replicati

components to simplify the modeling of large systems and to solve the performance m

for these systems. The method modifies the Stochastic Rendezvous Network (SRVN

Layered Queueing Network Solver (LQNS) performance analysis toolset to enabl

toolset to analyze large systems in an efficient manner.

One of the big advantages, presented in the thesis, is a simplified notation repres

large systems with replicated component. A set of replicated components is represen

one entity with a notation representing the number of replicas. The connection bet

replicated components is also represented once with a fan-in and fan-out notation

proposed representation thereby reduces the number of entities and connections ne

define a large system. The graphical model is simplified as well as the text descriptio

of the model. The results of solving the SRVN model are also compacted since

performance measures for one entity is presented instead of a repetition of the same

for replicated components.
Page 110
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The LQNS, which solves the SRVN model, has been modified to enable the solvin

large models with any combination of replicated and non-replicated components.

underlying MVA solver for queueing submodels, which is in LQNS, has not been touc

Instead, the queueing network presented to the MVA solver is modified to take

advantage of the replication. The chains for replicated components are assigned

respect to the server rather than with respect to the client as in non-replicated compo

Each chain visits one client and one server for replicated components. A set of repli

components is represented by one station in the queueing network. The method of sur

delays is employed to account for the delays of the non-represented replicated compo

The method is implemented in the form of modifying the service time of the client en

given in equation (5.4) in Section 5.4.

The question of convergence of the method which is basically a Gauss-Seidel iter

has been addressed. There were some difficulties getting the iterative solution to con

for some cases. A simplified Newton-Raphson method was applied instead of the G

Seidel iteration in cases where the latter fails to converge. The new update equation f

service time is equation (5.22) in Sect 5.6. This was effective in all cases that were te

Unfortunately, convergence is not theoretically guaranteed even with the Newton-Rap

method.

Several models with replicated components were solved using the full represen

and the simplified representation. The results were compared. It is evident that usin

Schweitzer MVA approximation to solve the queueing submodels, with the replica

method, provides the best results. The reason is found in the nature of the meth

surrogate delays where the service time of the delay centre representing the ‘mis

station is obtained for a full populationN. The Schweitzer method uses the estimated tim

for population N whereas the exact MVA and Linearizer require values for oth
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populations besideN. Thus, an error is introduced. This source of error has not b

identified in other research based on surrogate delays. The results were excellent for s

layered models but are less accurate for multi-layered models. The reason is the

produced in the solving of one layer submodel propagates to the solution of other

submodels.

It is hoped that the work carried out in this thesis may be beneficial to performa

engineers studying large systems with replicated components, in particular distrib

client-server systems. The replicated method was applied to a real industrial syst

illustrate its use. The strategy presented enables large systems to be analyzed using a

model definition and a solver (LQNS) that provides relatively quick and accurate res

7.2  Future Work

Further work may be done to eliminate the limitations of the replication method

described in Section 5.9. The most important research is studying the convergence

replication method. The simplified Newton-Raphson method implemented does

guarantee convergence. The full Newton-Raphson method may be implemente

requires a great deal of work per iteration. The calculation would require ma

manipluation for solving a set of equations. Even the full Newton-Raphson method

not guarantee convergence. Other methods of convergence could be considered s

those suggested in [Zahor 88], where the mean queue length is used as the metric by

errors are measured, [Bard 81], and the standard numerical methods described in [Da

and [Pearson 86].
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