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ABSTRACT

Scalability is a many-sided property which can be cap-
tured in a scalability metric that balances cost, volume,
timeliness and other attirbutes of value in the system, as a
function of its size. Studies of typical metrics can reveal
which parts of the agent infrastructure are most critical for
scalability. Simple metrics are investigated for systems
dominated by agent behaviour. As a system is scaled up, the
length of the average tour increases and this has a major
effect on performance and scalability limits. Senstivity
experiments show that infrastructure improvements can
improve scalability but they will not alter the general con-
clusion.
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1.  INTRODUCTION

A scalability metric was recently defined for continu-
ously and sporadically operating distributed systems
[hicss][new], which generalized previous metrics which
had been defined for highly parallel systems running a sin-
gle computation. In the new metric a scaling plan is
introcuced which defines the system configuration at differ-
ent scale factors. For each scale factor the cost, throughput
and performance or quality of service (QoS) are calculated,
and the scalability metric depends on a kind of productivity
measure:

Productivity P = (Throughput-per-time * Value-per-
response-at-QoS) / Cost-per-time

  

The scalability from k1 to k2 is then the ratio 

Scalability (k1, k2) =  P(k2)/P(k1) 

The performance calculation to predict QoS is the diffi-
cult part of this metric; the throughput and cost put it into
perspective, as one can often improve QoS by enhancing
the system. The metric emphasizes that scalability is an
economic concept as well as a echnical challenge. The
analysis may include optimization of the configuration at
eachscale factor, by adjusting the investment in different
factors, the distribution of the load, or any other parameters
of the configuration. It is a very general framework, but so
far it has been applied only to statically configured layered
systems of servers for telecom applications. 

The same approach is considered here to analyze scala-
bility issues of systems of mobile agents. Each mobile
agent executes a tour to carry out a task on behalf of a
“user”; a task may require visits to several nodes, in an itin-
erary determined by the agent itself. Examples include

• agents for searching for data and assembling it,

• commerce agents for negotiating a price and terms for
delivery,

• system management agents.

The performance analysis can take advantage of previ-
ous work by a number of authors. Strasser and Schwehm
[7] developed a model for the delay for a single agent oper-
ation which visits several nodes. They considered the
sources of delay and of processing steps in some detail,
however they did not explicitly model contention. Puliafito
et al [5] compared the performance of different kinds of
access to remote data, by remote procedures, remote evalu-
ation, and mobile agents. Rana [6], considered the costs of
an agent meeting. Here we add the notion of the scaling
plan and the scalability metric, and we consider a simple
example as an illustration of the method.

2.  MODEL

The scaling plan to be considered here is a particularly
simple one; at scale factor k the system has k nodes with
facilities for mobile agents, and a flow of Rk agents per sec.
entering it. Nodes and agent flows increase together. Each



agent follows a sequential tour itinerary of its own, and as k
increases the length I(k) of a  tour increases also; for the
purposes of discussion we assume an average tour length of

I(k) =  nodes and (1 + ) hops. Parallel operation is
also possible, either by cloning an agent on entry, or during
a tour.

The system cost will be taken as ck, where c is the con-
stant cost per node. With value function V(k) per response,
the productivity measure is

Productivity = P(k) = Rk V(k) / ck = R V(k) / c . 

Two value functions will be considered here, both
based on the average delay T for a tour:

• Vstep(k),  defined as 1 if  T(k) < Tmax, or 0 else. For a
given k, if Rmax is the largest R giving Vstep = 1,  then
the productivity is

 Pstep(k) = Rmax k /ck = Rmax /c.

• Vsmooth(k) = T(k)/(T(k) + Tmax), where Tmax is a tar-
get value rather than a hard maximum value.  The pro-
ductivity is 

Psmooth(k) = R k Vsmooth(k) /ck = R Vsmooth(k) /c.

A very wide range of evaluation functions could be
used, for instance the average value of some function of
each individual response time, dropping off as the delay
becomes too long. 

Each agent visit to a node requires execution resources
which average S sec., including communications-related
execution, installing the agent, and its operation at the
node. There may also be storage operations, which we will
not consider here. The amount of data to be communicated
may increase over the itinerary, as the agent picks up data at
each node. Communications also involves a latency in the
network, for each hop in the itinerary, of L sec.

3.  SCALABILITY EFFECTS OF R, S, AND L

Scalability is limited by delay that accumulates over a
tour, which is due to work and contention. These three
parameters dominate the scalability:

• R = input rate of agent tours at each node,

• S = work demand for a visit to a node,

• L = latency for a single hop.

No-Contention Evaluation 

Without contention, the average delay is just  [I(k) S +

(I(k) + 1)L]  for a purely sequential tour. If I(k) =  this

delay reaches Tmax at the value k = [(Tmax - L)/(L + S)]2 .
For the value function Vstep(k), this is the scalability limit,
without contention effects. The productivity however is
unbounded, because without considering contention at the
nodes there is no limit on the throughput capability of the
system. And for the value function Vsmooth(k) there is no
exact scalability limit, just gradually declining productivity
(for a given R) as k increases. 

Effect of Contention

Node saturation may limit scalability first. This
requires a model of contention, as a function of the traffic. 

• Suppose that the computing nodes are all symmetrical,
with the utilization level U0 for the background traffic
(apart from the agent traffic). At scale factor k, the rate

of agent arrivals at a node averages R  per sec, and

the node utilization rises to U = U0 + R S.

• A simple queueing network model (see, for instance
Jain [3]) of the nodes will give a sufficient illustration
of the performance effect of contention. It has exponen-
tial service at every node, and an average delay at each
node of S/(1 - U). The average itinerary delay is then

T = (1+ ) L + S/(1 - U) 

   = (1+ ) L + S/( 1 - U0 - R  S)

provided the nodes do not saturate, that is provided that

R S < 1 - U0. 

We will consider a system with parameter values

• L = 40 msec for network latency,

• S = 30 msec for the execution at a node,

• U0 = 0.5 for 50% utilization of each node by other pro-
grams

• Tmax = 5 sec

R is the arrival rate at each node, and will first be con-
sidered to be fixed. Thus Rk is the system throughput in
agent tours/sec. For a fixed value of R below saturation, the
delay T depends on k as shown in Figure 1. The no-conten-
tion limit for Vstep is calculated as about 5020. . The values
of R in the Figure are 2, 3, 4, and 5 agent dispatches per sec.
from each node. As is typical for contention systems, T(k)
increases first gradually and then explosively. This makes
the smooth value function Vsmooth(k) drop gradually to
zero. For each R the limit will occur where T crosses the
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value of Tmax (for the Vstep value function), or where V
becomes too small (for Vsmooth). 

We can see that for moderate values of R the limit is
much smaller than 5020, so contention is important. How-
ever, productivity is also proportional to R. Is it more pro-
ductive to have R= 4 and a scale about 15 (where the delay
crosses the horizontal lime represtning the target), or R = 5
and k = about 10? In the former case the overall throughput
is about 60 (4 x 15) and in the latter case it is about 50, so R
= 4 is better.

We can do better by choosing R for each k so as to
maximize the productivity P(k). Taking the cost per node as
1, and value function Vstep, we have Pstep(k) = R, so it is
just a matter of choosing R as large as possible to still sat-
isfy T < Tmax. This value Rmax is given by

Rmax = (1 - U0)/(S )  - 1/(Tmax - (1+ ) L)

With value function Vsmooth, R must be found by a
function maximization. The values of R which maximize P
are shown for both cases in Figure 2, along with the optimal
value of Psmooth(k). We can see that the productivity drops
off as k increases, essentially because of the inescapable
extra delay for visiting additional nodes on a longer tour, in
a larger system. The optimization of R means that larger
rates can be served, per node, in the smaller systems.

The baseline case for estimating scalability should be a
small system with more than a single node, so k = 5 was
chosen as a baseline system. Then the scalability metric
P(k)/P(5) was found for both value functions, and is plotted

as the lower pair of curves in Figure 3. The decline has the
same shape, and is dominated by the average tour length.

However there is more to scalability than just reponse
time. A larger system adds value to each tour, by gathering
more data from more sites. This could be considered in the
productivity function. Either Tmax could increase with k,
showing willingness to wait for the more valuable results,
or a value multiplier could be attached to V. For instance,
the upper pair of curves in Figure 3 show the same system
but with a value multiplier proportional to the tour length.
In this case:

Vstep(k) =  for T < Tmax, or 0;

Vsmooth(k) =  Tmax / ( Tmax + T(k) )

With value determined this way, the investment in
more nodes provides more valuable responses. The upper
pair of curves in Figure 3 show that the system seen this
way is highly scalable. .

4.  SCALABILITY IMPACT OF AGENT 
BEHAVIOUR

In  [7] Strasser and Schwehm derived a model to
explain the execution demand S and the latency L for
mobile agents, which will be used here to consider how
some details of agent behaviour affect scalability. S and L
were derived in terms of several attributes of the agent
behaviour:
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FIGURE 1. Delay versus scale factor k for various fixed 
values of R from 2 to 5. The dashed line is the Vsmooth 
value function for these delays.
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• the size of the potential “reply” data that would have to
be sent if a mobile agent were not used, and the selectiv-
ity σ of the agent (which reduces this size by a factor (1-
σ));

• the size of the code, state and initial data space of the
agent, 

• the probability p that the agent code must be transferred
(i.e. that it is not cached in the destination node)

They considered that the agent state and basic data
must be marshalled, transmitted and unmarshalled at each
hop. The code need not be transmiited at all if it is cached at
the destination, and if it is not, then it is assumed to already
be available in a marshalled form at the origin of the hop,
so only transmission and unmarshalling are needed. Apply-
ing their approach to our model, we can express the average
demand and latency in the form

S = s1 + s2(1-σ)  + s3 p

L = d1 + d2 (1-σ)  + d3 p

where s1 includes CPU time for communications, marshal-
ling and unmarshalling the state and data, and the agent
procedures executed at the node, s2 is for handling the
“reply” data, which accumulates over the tour, s3 is for
unmarshalling the code if it has to be sent, d1 is a fixed net-
work latency, d2 is the “reply” transmission time, and d3 is
the code transmission time. The analysis in [7] did not con-
sider the procedure execution time at the node as part of the
agent workload (because it is a constant across the alterna-

tives they were comparing), but it has been included in the
analysis here.

The service-demand parameters used here are a 20-ms exe-
cution demand, plus  marshal and unmarshal times of 1 ms
for state (making s1 = 21 ms), 5 ms for reply data (s2), and
4 ms for code (s3). The latency parameters are a 30-ms pure
latency d1; 0.5 ms for d2, to transmit 50 K bytes/node in
the reply, before selectivity reduces it; and d3 = 0.4 ms for
40 Kbytes of code.  This gives:

S = 21 + 5(1-σ)  + 4 p

L = 30 + 0.5 (1-σ)  + 0.4 p 

Putting these expressions into T, we see (in Figure 4)
that the scalability curves are slightly worse than before.
This is because the parameters like S which were constant
before, are  now increasing with k and further limiting scal-
ability.  

5.  SENSITIVITY TO CHANGES

Improved agent infrastructure and agent movement
strategies play themselves out as modifications to I(k), L
and S. Thus we can study the potential value of improve-
ments by considering how sensitive the results are to
changes in these parameters. There is not space enough
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here to report extensive sensitivity experiments, but it has
been found that

• latency and the cache miss probability p for agent code
made very little difference over the range studied,

• selectivity made an increasing impact at larger scales,
so that at scale 50, the difference between σ = 80% and
100% gave a 50% increase in the scalability metric (see
Figure 5). More selective agents improve scalability in
this analysis mostly by avoiding the marshalling over-
head to communicate the accumulated data collected
over the itinerary.

• the reply size is similarly extremely important. Going
from 50K to 500K bytes reduced the scalability at k =
50 by a factor of about 3 (Figure 6). Reply size is also
more important at larger scales, because the reply is
assumed to accumulate more data.

This last point emphasizes the importance of the design
of the application, and the workload imposed by the users,
as well as the agent strategies and infrastructure, in influ-
encing scalability. An application that does not flood the
agent with data will be better.  .

If the value function rewards longer tours proportional
to their length, we have already seen that the metric shows
much better scalability, in Figure 3. The sensitivities in this
case may be different, so they are recalculated in . These
two figures correspond to Figure 5 and Figure 6, but with

V(k) including a factor . They show that while the scala-
bility is much better it is still quite sensitive to the selectiv-
ity (in Figure 7) and to the size of the reply data, in Figure
8.   
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FIGURE 5. Sensitivity of the scalability metric to the 
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6.  GENERALIZATIONS

It is straightforward to use the scalability metric with
other models for delay, and with richer descriptions of the
system. Agent communications and synchronization, clon-
ing of agents for parallel operations, systems with hot spots,
additional node resources besides processors, and network
bottlenecks can all be accomodated. Queueing networks are
not the only suitable performance model either. Timed Petri
net models, as used in [5] and [6], can equally well provide
the delay calculations; detailed simulation models or meas-
urements on real systems can also be used. Finally, the
value function can express different important attributes of
the system responses as well, not just value based on the
mean response time.

7.  CONCLUSIONS

The scalability metric described here gives a flexible
framework for capturing the essence of a scalability prob-
lem. It encourages the analyst to capture all the relevant
factors, and to balance them together. It has been applied to
a class of mobile agent systems, using basic and rather
robust models for the workload and delay.

Some very simple models have been analyzed to dis-
cover the main features of agent system scalability, at least
for independent agents that roam in a system of a given
size. If the value of a tour is independent of its length, the

results point to a steadily declining scalability measure over
a moderate range of scales. However it is possible that a
larger system with longer tours gives more valuable
responses. For instance, in an e-commerce system with
agents that collect data on products, a larger system would
offer more selection, and a better chance to find a good
match with one’s exact requirements, or a good price. If the
value of a response is proportional to the length of the tour,
the scalability was found to be good up to many tens of
nodes. 

The analysis can be adapted to different needs. The
examples described here have emphasized simplicity in the
analysis. However the three aspects of the productivity
function (throughput, cost and value per response) can be
described in any degree of detail. The throughput can be
divided into classes of operations with different values. The
value of each completed operation can depend in the scale
of the system, the delay in completing the operation, and
any other quality factor that might be affected by scale or
by a scaling strategy. The cost can include all parts of the
system (cost of communications, which was ignored here,
and also software, manpower, physical space, etc.). To
illustrate this flexibility the value of an operation was
changed to reflect the increased value of longer itineraries,
which resulted in very different appraisal of scalability.

The examples considered here were also based on a
homogeneous system and a queueing network performance
model, however any kind of performance estimation could
be used, and the system may contain many types of nodes
of different capability.

The role of a scaling strategy in analysing scalability
has been emphasized. In the present examples, the strategy
was to adjust the traffic level R to give maximum overall
productivity. The strategy could also include modifications
to the agents’ operational strategy as the system grows, or
to the agent size. Any necessary adaptation to accommo-
date the increased size can be included in the analysis.
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