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Abstract −−−−Modern distributed applications, such as 
distributed multi-media and mobile applications, face 
unpredictable operating conditions and load variations. 
Performance cannot be designed into such applications in 
advance; they have to be able to tune themselves into 
unexpected environments and to adapt to changes over 
time. Single adaptations in applications and middleware 
are common, but the opportunities are greater if many 
features of the system, at all layers, are adaptive. This 
paper describes an architecture to support coordinated 
adaptive changes in all layers (application, middleware 
and operating system), with an optimal controller at its 
core. The controller uses optimal policies based on 
Markov Decision Processes (MDP), which seek to satisfy 
a set of system quality-of-service and resource-usage 
goals.  

Keywords: Configurable computing, Mobile 
applications, Multi-media applications, Modeling and 
simulation, Markov Decision Process. 

1. Introduction 

Modern distributed applications, such as e-commerce 
and enterprise computing, and many multimedia and 
mobile applications, face unpredictable environments due 
to user mobility, load variations, evolution of user access 
patterns, and varying resource availability. Figure 1 
describes a typical example with a mobile user who 
moves from a high bandwidth radio LAN to another 
wireless sub-network with much lower bandwidth and a 
much higher error rate.  To adapt to this move, the system 
must identify the need for a change, decide on the change 
and implement it in a timely way. Rapid changes or 
disturbances are the most challenging, but slower 
disturbances, taking place over days or months, are also 
important. Adaptation to slower disturbances is a kind of 
self-tuning to track changes in the environment. 

 

Wireless Access point Wireless Access point

Mobile user

Mobile user

Mobile user

Mobile user

High B.W. wireless LAN

Gateway

Multi-media Server

Mobile users   moving 
between nets

Low B.W. wireless LAN

 
Figure 1 Mobile users roaming among multiple networks. 



 

Adaptive features have been described, under names 
such as “reflection” [7][9], “metaprogramming”[11], and 
“reliability architectures” [12]. Reflection is a term 
applied to code or to a sub-system which is self-aware, in 
the sense that it has access to meta-information about its 
operational state. Metaprogramming deals with this 
information. Reliability architectures use operational 
information to adapt to failures. 

We regard these systems as special kinds of feedback 
control system, with the elements of sensor, decision-
element or controller, and actuator, as indicated in Figure 
2a. Figure 2a shows a single control loop, with one sensor 
controlling one actuator, which is the most common form 
in reported work. The loop controls one feature of the 
system, such as  

• a degree of imprecise computation[14], driven by 
computing resource availability 
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Figure 2 Adaptive systems, showing an 
isolated adaptive feature and a complex 
distributed system with multiple sensors 
and actuators 

• the number of threads of a server, driven by its queue 
size (in web servers) 

• moving components between nodes of a distributed 
system, driven by their relative load (by a reflective 
ORB such as TAO [2] ) 

This paper considers techniques for controlling several 
system features simultaneously, in a coordinated manner, 
to react to changes detected by multiple sensors. Figure 
2b shows many sensors and actuators in a distributed 
system.  

Adaptive features may be deployed at different system 
layers. The following list shows some of the features to 
adapt to lower bandwidth while transmitting a stream of 
images: 

• at the application layer, increase the image 
compression, decrease image size, and change from 
color to black-and-white. 

• at the middleware layer, change the source of the 
images (for instance, to a server which stores pre-

compressed frames), they might be routed through a 
proxy server attached to the new network. The 
protocol could implement frame filtering, packet 
header compression, data bundling of smaller data 
packets into a single larger packet for transmission, 
and packet filtering.  

• at the operating system layer, frames could be pre-
fetched during periods of better connectivity to cover 
periods of reduced network capacity, and (in some 
terminals) power level may be controlled [13]. The 
performance of the protocol stack can be enhanced by 
the introduction of protocol boosters [5][6]. This is 
especially effective for wireless links with high bit 
error rates (BER of 10–5 or worse). In this case a 
forward error correction booster can produce a 
throughput increase of as high as 60 times [20].  

A system with many sensors and actuators has a 
structure that will be called its adaptation architecture, 
with locations for the sensors, actuators and decision 
modules; in this work we adopt a centralized adaptation 
architecture with: 

• sensors and actuators embedded in the application 
components, middleware and operating system, with 
a standardized interface for communicating  by 
messages with the decision module, and 

• a central decision module, which periodically obtains 
data from the sensors and makes decisions 

This work does not consider important aspects of the 
architecture such as the sensor and actuator messaging 
interfaces, the choice of the period or periods for 
decisions, the use of sporadic data sent by the sensors 
(event-driven adaptation), and the possible advantages of 
partitioning and distributing the decision module. 

The decision module can take a variety of forms. In 
[16] and [17], a feedback regulator approach is used, 
which forces a system to maintain or track a desired value 
of some system variables over time. In computer systems 
however, quality of service is usually specified as a bound 
on some measures, rather than a target value, and the 
acceptable range of delay often extends down to zero. It is 
then more natural to adapt by seeking either a feasible 
range or an optimal value (such as minimum delay). This 
viewpoint (adopted here) gives an adaptive optimization 
problem rather than a control problem. 

An optimization approach used in some studies of 
decision making for adaptive and reconfigurable 
computer systems is Markov Decision Processes (MDP) 
[18][19]. Markov Decision Processes are well suited for 
discrete state space and for stochastic behavior. The 
optimization is simple and provides self-tuning. The 
studies in [18][19] considered only relatively small and 
one-dimensional state spaces. 

The present paper adopts an MDP model, building it 
into a general and flexible architecture that considers 
multiple system layers, aspects and measures. State 



 

explosion remains a limitation, but useful systems can be 
built (for instance an example based on Figure 1 with two 
observation variables and three control variables 
described below gives 384 states). It is interesting that the 
optimal policy has a structure similar to various ad-hoc 
policies. 

2. An architecture for coordinated 
adaptation 

The architecture considered here has a central decision 
module connected to sensors and actuators distributed 
across components and layers, as shown in Figure 2. This 
section considers the operations carried out by the 
components indicated by the architecture in greater depth. 

The adaptation process repeats a cycle of estimating 
(monitoring and tracking), deciding and acting. 
Observation variables capture the relevant aspects of the 
status of the system, and are provided by sensors.  

Sensor in this work also includes other awareness 
mechanisms such as monitoring by dedicated components 
in the middleware [3][4][8], in the operating system [10] 
and in the application managers. These techniques are 
necessary to capture system-level measures such as 
throughput, CPU utilization, and average delay, and 
environment parameters such as subsystems used by a 
response, levels of competitive workloads. Failure 
detectors fall into the same group of sensors. 
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Figure 3 A threshold rule for adapting the 
number of server threads for a queue 

The decision mechanism derives new settings for the 
actuators from an analysis of the measures (feedback 
control). Knowledge of all measures is important at this 
point, as they may identify under-used resources, or 
opportunities to change the application’s behavior. In 
previous work on adaptation, the decision mechanism is 
sometimes a threshold-based decision to determine one of 
a set of pre-determined values of a parameter. For 
instance, in threshold queue mechanisms, when a queue 
of messages exceeds a threshold QUPR, additional 
software servers or server threads may be created. Later, 
if the queue length is less than another smaller threshold 
QLR, the additional servers may be removed. This is an 

example of a decision rule with hysteresis, as shown  in 
Figure 3. 

In this work there may be similar decision rules to 
determine a discrete level for a system parameter, but in 
general the decision rule depends on many variables and 
not  just one.  

Software actuators are software components that 
implement the decision to change or tune the system, to 
help bring it back to the desirable range of operation. 
They may be built into the operating system, middleware, 
or application, as described in the Introduction. 
Application layer mechanisms described here can be 
combined with middleware such as CORBA, which 
already provides mechanisms for redirecting service 
requests, in order to balance load or to replace a failed 
server. The present work can tie these capabilities into a 
wider adaptive scheme. 

The location of these components and its interaction in 
a three-layer centralized architecture is depicted in Figure 
4. 

The figure shows a distributed application with clients 
on the left and a server on the right, each with an 
operating system layer, a middleware layer, and an 
application layer equipped with sensor and actuator 
components. Sensor data are sent to a central adaptation 
unit where a Decision Making Module (DMM) makes 
adaptation decisions. The DMM then instructs each layer 
to take the required action(s). Software actuators in each 
layer receive adaptation decisions made by the DMM and 
implement them. 

In constructing the coordinated adaptive architecture in 
Figure 4 one has to consider: 

• how to choose the points to apply sensors and 
actuators 

• The design of sensors and actuators 
• The choice of the decision rules for the Decision 

Making Module. 
In this work we address the third point, assuming that 
sensors and actuators are available. 

In single loop systems it is not very difficult to 
construct a sensible feedback path with an ad hoc decision 
function. There is however almost no theory to guide the 
choice of the best feedback function (for example, to 
define the best values of the thresholds shown in Figure 
3).  

For more complex systems, with many control 
variables derived from many sensor values, intuition does 
not provide guidance and the lack of theory is even more 
serious. There is a potential for greatly improved 
performance, but some way must be found to construct 
reasonably good decision functions. The possibility of 
finding optimal rules is even more attractive, and here we 
will attempt to obtain them from Markov Decision 
Processes. 
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Figure 4 The centralized multi-layer adaptive architecture 

3. A Markov Decision Process (MDP) 
approach to optimal policies 

Searching for a way to derive good policies to guide 
decisions, we consider a discrete-state model for the 
system, capturing the state information known to the 
DMM. Over time, state changes  

• may be changes forced by the DMM, or  
• may be observed but uncontrolled changes in the 

system, or 
• may be the effects of hidden changes that are not 

otherwise known to the DMM 
The last two categories of changes will be called 
disturbances and are modeled by random state transitions 
in a Markov Chain model of the system. The state space 
contains states Si, for i = 1 to I. At steady state, state Si has 
probability pi. At each step, a transition from a state Si to 
another state Sj has a transition probability pij. 

The system evolves randomly, but can also be 
controlled to some extent by the actuators, which can 
force (or, in general can influence) state changes to 
improve operation. Control is exerted by choosing values 
for control variables a, which influence the transition 
probabilities pij (i.e. the transition probabilities are 
actually given functions pij(a)). 

In Markov Decision Processes [1] the best choice of the 
control variables a, among the set D(i) of control values 
which are feasible in state Si, is determined. “Best” is 
intended in the sense of minimizing a given cost function 
which is the expected value of a function Cost(a, i) of the 
control and the state. It is possible to compute a rule or 
policy R which assigns an optimal choice of a to each 
state i. This is a versatile and powerful tool to analyze 

probabilistic sequential decision processes with infinite 
planning horizon. This model is an outgrowth of the 
Markov model and dynamic programming. It has many 
potential applications in inventory control, maintenance, 
resource allocation and others.  

3.1. Optimal policy 

A policy determines the actions to be taken at each 
decision epoch (moments which we will assume are 
equally spaced in time). A stationary policy R is a rule 
that always prescribes a single action Ri whenever the 
system is found in a state Si at a decision epoch.  

In order to define an optimal policy, let’s assume that 
the long-run average cost per unit time when using policy 
R is g(R). A stationary policy R* is said to be average-
cost optimal if g(R*) ≤ g(R) for each stationary policy R. 

It is computationally infeasible to find the average-cost 
optimal policy by computing the associated average cost 
for all possible polices. However, some algorithms can be 
used to construct a sequence of improved policies until an 
optimal policy is found. Examples of such algorithms are: 
the policy iteration algorithm, and the value iteration 
algorithm.  

3.2. Relative values 

For a given policy R, the total expected cost over the 
first n decision epochs when starting with state Si, is 
denoted by Vn(i,R). Starting with a different state other 
than Si, e.g. Sj, has the effect of changing the total 
expected cost function. This change in the total cost 
function is called the relative value vij(R).  An arbitrary 
state, r, can be chosen to normalize relative values 
vij(R)’s. A relative value can then be denoted as vir(R), or 
simply vi(R). It can be shown, as in [1], that the average 



 

cost per unit time, g(R), and the relative values, vi(R), can 
be calculated simultaneously by solving a system of linear 
equations as follows: 

vi(R) = ci(Ri) – g(Ri) +�
�

)()(
Ij

jiij RvRP   for each  i∈ I (1) 

where ci(Ri) is the cost of the decision a = Ri made at state 
i, Pij is the transition probability matrix, and is the 
transition probability from state Si to state Sj if the 
decision Ri is made. 

3.3. Policy-iteration algorithm 

The relative values associated with a given policy R 
provide a tool for constructing a new policy R’ whose 
average cost is no more than that of the current policy R. 
It can be shown that if 

ci(R’i) – g(R) + )()(�
�

RvRP j
Ij

iij  ≤ vi(R) for each i∈ I (2) 

then 
 g(R’) ≤ g(R)         (3) 

Equations (2) and (3) suggest that an optimal policy 
R* can be obtained be recursively iterating the calculation 
in Eq (1) with new values of R’ until a minimum cost 
g(R*) is reached. The value of R* is called the optimal 
policy, and gives a value R*i for each state Si. 

The policy iteration algorithm always converges in a 
finite number of iterations [1], and empirically it is found 
to converge very fast on many problems. The number of 
iterations needed is insensitive to the number of states and 
of the starting policy, and varies typically between 3 and 
15 [1]. 

4. Demonstration and Evaluation: An 
Adaptive System 

The construction of an optimal set of policies will be 
described in the context of a concrete example of a mobile 
multi-media application which could play a video clip, a 
movie, or support a video conferencing application from a 
mobile device (e.g. a PDA). Mobile users move among 
networks of various speeds, and hence of various delays, 
as illustrated in Figure 1. Competing traffic on each 
network may affect the quality of service obtained by the 
user.  

If a user is faced with longer delays, more limited 
bandwidth, high bit error rates, and diminished quality of 
service, it could adapt in three ways to provide better 
service:  

• The video frame rate can be reduced. This will cause 
a flickering effect but will send the essential 
information.  

• The size of each video frame can be reduced by 
compression. Compressed frames have smaller sizes 
but the image quality within each frame is less.  

• An error correction protocol booster can be installed 
and activated. This will increase the protocol 
overhead per packet and packet processing time but 
will produce an up to 60 times throughput 
improvement at bit error rates 10-5 or worse. 

Mobile users move among four wireless networks, 
Alpha, Beta, Gamma, and Theta with speeds of 0.5 
Mbits/sec, 2 Mbits/sec, 5 Mbits/sec, and 10 Mbits/sec and 
bit error rates of 10-3, 10-4, 10-5, and 10-6 respectively. 
These movements are a random disturbance to the 
operation of the system, which affect the service quality. 
As controls, we have  

• four different compression levels, level 1 (no 
compression), 2 (16 times compression), 3 (33 times)  
and level 4 (40 times).  

• four frame rates, level 1 (2 frames/sec), 2 ( 10 
frames/sec), 3 (20 frames/sec) and 4 (unfiltered rate 
of 30 frames/sec).  

• two protocol booster levels, level 1 (protocol booster 
activated) and level 2 (protocol booster deactivated). 

The adaptation policy will choose a set of control levels 
for each possible state of the system as described in the 
following section.  

4.1. The system model 

A discrete state model is a simplification based on 
judgment of the key factors in the operation of the system. 
In this example the factors (already mostly described) are 
defined by: 

• the current level of compression (C, with four values 
1 to 4) 

• the current frame rate level (Fr, with four values 1 to 
4), 

• the current protocol booster level (B, with two values 
1 and 2), 

• the network being accessed by the user (N, with four 
values 1 to 4), 

• an available network quality of service level (Q, with 
three levels 1 to 3, and high Q represent better 
service). 

The value of the last factor is a function of the overall 
operation of the system, and a variety of measures could 
be used. Here, we consider an “available QoS” measure 
derived from the network bandwidth available to the user 
after accounting for wireless channel fading and jitter 
effects as well as contention from others. This could be 
found from network collision data or utilization data. 

The network QoS factor Q is defined relative to the 
range of capabilities of each network, with Q = 2 for a 
middle range of values of available QoS. A change in the 
decision variables can affect Q. For example, higher 
frame rates or lower compression levels may increase 
collision rates due to the higher traffic injected into the 
network, reducing Q. We define Q = 1 for overloaded 



 

conditions, Q = 2 for average conditions, and Q = 3 for 
lightly loaded and error-free conditions. 

The first, second, and third factors listed above are 
control variables. The decision levels are part of the state 
if the decisions to be taken naturally depend on the 
previous level of the same control variables, or if the next 
state depends on them. 

The state S is thus a tuple of five values:  
S = (C, Fr, B, N, Q). 

and the state space has 384 states (4 x 4 x 2 x 4 x 3).  
The set of possible decision values is referred to as D, 

which can be expressed as: 
D = (CD ,FrD, BD) . 

where CD, FrD and BD are the new values for C , Fr and B. 

4.2. The transition probability matrix 

Some transitions among states express the reaction of 
the system to control, and some express its reaction to 
disturbances, as described earlier. The probabilities of the 
transitions that are affected by disturbances are found by 
analyzing the behavior of the system, either by models or 
measurements. In this example, the disturbances are the 
changes of network, and some changes of QoS. 

Suppose pij(a) is the transition probability from Si = (Ci, 
Fri, Bi, Ni, Qi) to Sj = (Cj, Frj, Bj, Nj, Qj). The transition 
probabilities express the influence of the current state on 
the evolution of the system. It is assumed that the choice 
of a new network, Nj, is made by the user. It is driven by 
factors outside this model, and so it is governed by its 
own probabilities and is independent of the policy 
choices. For this model we assumed that the probability of 
staying in a given network has a value of pnet (the same 
for all networks) and (1 - pnet)/3 for each of the other 
networks.  

Define: 
Pnet(i, j) =  pnet                if Ni = Nj,  
              = (1 − pnet)/3     otherwise. 
For each policy a there is a transition probability 

matrix Pij(a),  
• which determines the change in the control variables 

to their new values,  
• includes Pnet(i, j) 
• and also describes the evolution of Q, which is partly 

governed by changes in network traffic (which are 
largely determined outside this model) and partly 
influenced by a. 

Here, the transition probability from a given QoS state 
Qi to a new value Qj has a baseline value q(Qi,, Qj), plus 
an interaction term for the influence of the control 
variables C, Fr, B, due to the way they increase or 
decrease the total traffic. The interaction term is a 
function δ(Qi, Qj; a)(Ci, Fri, Bi),  

The function, δ, depends on the current control 
variables (Ci, Fri, Bi) because they may influence the 
future changes in traffic levels due to other users, and on 

the decision a because it directly affects the traffic, as 
discussed above.  

The baseline transition probabilities used for Q in this 
example are illustrated in Figure 5 below. When the 
network changes, the model assumes that Q for the new 
network is initially 2. 
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Figure 5 The Baseline QoS State 
Transition probabilities q(Qi,Qj) 

Overall, the transition probability from state Si to 
state Sj, where Sj has Cj, Frj, Bj corresponding to decision 
a, is given by: 
Pij(a) =  
     Pnet(i, j)  q(Qi,, Qj) δ(Qi, Qj; a) (Ci, Fri, Bi) if Nj = Ni   (4) 
Pij(a) = Pnet(i, j)       if Nj ≠ Ni and Qj = 2 
Pij(a) =  0               otherwise  

4.3. The cost function and its formulation 

The cost function associates a positive value with every 
(state, decision) pair. It is the relative cost values in 
different states that are important, rather than the absolute 
cost values. Cost values can be in any units such as 
money, CPU cycles, delay, or memory utilization. In most 
real-time systems, various different kinds of costs (e.g. 
CPU, delay, memory, etc…) are incurred and a final 
combined cost function is desired. Finding the right 
formula for this function for a particular system can 
sometimes be challenging. The optimal policy minimizes 
the cost function. 

To construct a cost function we go through the 
following steps.  

1. Identify a set of cost factors, such as CPU cycles or 
delay. 

2. For the mth factor, create a partial cost function 
Costm(i,a) which evaluates the impact of that factor 
under decision a in state i.  

3. Assign a weight value wm for each partial cost 
function, to adjust for its importance in the overall 
cost to be minimized. 



 

The overall cost function is the sum of the partial cost 
functions weighted by the weighting factors wm and is 
given as: 

Cost(a, i) = � ),(
m mm iaCostw  (5) 

where m indexes the partial cost functions.  
Let us consider three partial cost functions, one 

represents the CPU utilization, a second represents the 
delay, and a third represents the quality of service. Costs 
are assigned to levels depending on the control variable 
under consideration as well as the value of the level 
relative to others, and are defined so the maximum value 
is 1.0. For example, compression levels are assigned a 
CPU cost that is proportional to the degree of 
compression performed. Higher frame rate creates 
proportionately higher CPU cost. The partial cost 
functions are given as follows: 
Costcpu = Costcpu(compression) + Costcpu(frame rate 

reduction) + Costcpu(protocol booster)  
Costdelay = Costdelay(video stream transmission) + 

Costdelay(protocol booster) 
CostQoS   = CostQoS(video stream quality) +  
           CostQoS(wireless network jitter and other 

effects) 
where, 
Costdelay(video stream transmission) is the transmission 
delay of the video stream in progress.  

The approach adopted here is based on a 30 frames per 
second video stream (2 I-frames, 8 P-frames and 20 B-
frames [21]). The Costdelay(video stream transmission) can 
be given as: 
Costdelay(video stream transmission) = 

speednetwork  x leveln compressio

filtering  stream  videoeduncompress of size after
 

The Costdelay(protocol booster) represents the delay 
introduced by the protocol overhead after activating the 
protocol booster. This overhead can be as high as 3 times 
the size of the original video stream [20].  

The CostQoS(video stream quality) function assigns a 
maximum cost for the worst video stream quality, i.e. the 
one with maximum compression and minimum frame rate 
(a normalized cost of 1 in our example). On the other 
hand, the best video quality is assigned a minimal cost (a 
cost of 1/16 in our example). The effects of the wireless 
environment as well as user contention are accounted for 
by assigning cost values to the CostQoS(network) that are 
inversely proportional to the available quality of service 
level. For example, a cost of 3 is assigned to the lowest 
QoS level.  

All CPU costs are in CPU cycles based on a 300 MHz 
processor. 

The weights, wm, given to the partial cost functions 
were; 1 for the CPU, 2 for the QoS, and 3 for the delay. 

These values were chosen by judgment, and they do not 
have to be integers. 

5. Results 

The results shown in this section demonstrate how the 
decision-making module of the system reacts optimally, 
and in a collaborative fashion, to external environment 
changes (network choice and quality of service) by 
making appropriate changes to the control variables 
(compression, frame rate, and protocol booster).  

The optimal policy calculations for this model were 
done using Matlab, with pnet = 0.7 to represent a relatively 
high user mobility (30% chance of changing networks). 
The results show that the minimum long-term average 
cost is 0.7585 (optimal policy cost), compared to a worst-
case cost of 6 (maximum cost of 1 for all partial cost 
functions weighted by wm = 1, 2, and 3). An ad hoc 
decision rule produced a cost that is roughly twice as 
large. This is shown in a later section. 

The optimal choice of the compression level, C, frame 
rate level, Fr, and protocol booster level, B, are displayed 
as a function of the disturbances; the network speed, N, 
and the quality of service, Q. 

Each set of results shows the optimal policy for one 
control variable as a function of N and Q, and is displayed 
as a set of 3x4 squares. The rows represent the quality of 
service and the columns represent the network speed. 

The value of the compression decision, C, is 
represented by the shading level of the corresponding 
square. A darker square represents a higher image 
resolution and hence a lower compression. The decision 
numeric value (i.e. C = 1 - 4) is also written in the top-
right corner of the same square. In a similar way, the 
value of the frame rate decision, Fr, is represented as the 
number of parallelograms inside the square. For example, 
Fr = 1 is the lowest frame rate (2 parallelograms). The 
frame rate numeric decision value (i.e. Fr = 1 - 4) is also 
written on the top-right corner of the square. The protocol 
booster decision is explicitly written as ON/OFF for 
activating and deactivating the protocol booster 
respectively.   

Figure 6 shows the optimal decision policy for 
compression, C, at different network speeds and quality of 
service values. At low network speeds and low quality of 
service the optimal policy produces a maximum 
compression (C = 4). At high network speeds and high 
quality of service the optimal policy produces a minimal 
compression (C = 1). In the interim the optimal policy for 
compression is C = 2.  

It is to be noted that a higher compression could be 
used for values of N and Q at the middle range. However, 
this will further degrade the video quality and consume 
more CPU cycles. The optimal policy optimizes both the 
CPU usage, especially for the CPU limited mobile 
devices, and the user quality of service. 
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Figure 6 The optimal policy showing the 
variation of frame compression with N and 
Q  

Figure 7 below shows the optimal decision policy for 
frame rate, Fr, at different network speeds and quality of 
service values. At low network speeds and low quality of 
service the optimal policy produces a low frame rate (Fr = 
1). At high network speeds and high quality of service the 
optimal policy produces a high frame rate (Fr = 4). In the 
interim the optimal policy is Fr = 3 or 4. 
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Figure 7 The optimal policy showing the 
variation of frame compression with N and 
Q 

Two sets of values on Figure 7 are worthy of noting. 
The first is when (N, Q) = (Theta, 2) and the second is (N, 
Q) = (Beta, 3). The first value shows that although 
network speed is high, the frame rate is not that high (10 
frames per second). This is due to the fact that the quality 
of service is intermediate and having enough bandwidth 
to send more frames might be hampered by the 
insufficient quality of service. On the other hand, the 
second set of values suggest that having a good quality of 
service is more “encouraging” to send more frames. 

Figure 8 below shows the optimal decision policy for 
protocol booster, B, at different network speeds and 
quality of service values. The results suggest that 
activating protocol booster is largely dependent on the 
quality of the service. It is activated for low Q and 
deactivated for high Q. 
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Figure 8 The optimal policy showing the 
variation of the protocol booster value 
with N and Q 

5.1. Comparison with an ad hoc adaptation 
technique 

The power of the MDP comes from incorporating a 
model for the behavior of the system over time. The 
optimization does not only consider the current situation 
of the system, but also the future foreseen behavior. 
Because of the feedback, the model does not even have to 
be particularly accurate. The MDP policy also 
incorporates all the observation variables. 

Ad hoc adaptation techniques are much more limited. 
The rules they use are arbitrary and typically connect one 
observation variable to one decision variable. To give an 
example, we will assume a scenario in which an ad hoc 
adaptation rule is used. As an ad hoc rule for frame rate 
suppose we just use the following:  

 
IF (network speed is higher) THEN (increase frame rate) 

 
together with the optimal policies for C and B. 

As an example, consider a situation with Q = 2, Fr = 1 
and a change of networks from Beta to Gamma. This ad 
hoc rule would give a frame rate after the change of 2. 
The optimal policy would give a value which is still 1. 
When the ad hoc rule is applied, the steady state cost 
function is 1.4131. This is almost double the optimal cost 
(0.7585). 

5.2. Discussion 

The results presented here are obtained for a special case 
where the state transition probability matrix Pij(a) is 



 

partitioned into two non-interacting sub-matrices, one for 
the observation variables (N, Q) and one for the control 
variables (C, Fr, B) (if the interaction terms in Equation 
(4) were not zero, this would not be the case). As a result 
of this, the optimal policy is only a function of (N, Q), and 
it could be derived from a simpler model in which the 
state space only includes (N, Q). This explains why the 
optimal policies in Figure 6, 7, and 8 are function only of 
(N, Q). 

In the more general case the transition probability 
matrix is not partitioned, and the full state definition is 
needed for the analysis. This would arise in our example 
if: 

• the interaction terms in Equation (4) were non-zero,  
• a cost is imposed for making changes in control 

variables, penalizing the effort of reconfiguring the 
actuator to a new value. 

Then the optimal policy is a function of the state of the 
control. In that case it is multi-valued in the observation 
variables alone, and this for instance could generate an 
optimal policy with hysteresis, as illustrated in Figure 3. 
A large cost for control changes is likely to lead to 
hysteresis policies.  

6. Conclusions 

This work has shown how system adaptation can be 
guided by decision rules found by the methods of Markov 
Decision Processes, when there are multiple controlled 
features, and multiple system measures used to drive the 
decisions. An example model of a mobile multimedia 
system had 384 states, and optimal rules for it were found 
by conventional calculation tools. The rules give 
reasonable-appearing coordinated changes in the 
compression ratio, frame rate, and the protocol booster 
activation, when a user changes network or when the local 
contention effects change. Using a cost function based on 
simple value relationships, the optimal operation was 
about twice as good as a reasonable ad hoc rule, in one 
case examined. 

The core of the adaptation is a simplified discrete state 
model of the entire system, reflecting the designer’s view 
of the granularity of decisions and measures. If the 
designer imposes a large granularity with just a few levels 
of each separate variable, the state space will be smaller 
and the calculations will be less complex. A problem can 
be attacked first this way, and then experiments can be 
made with finer granularity. The model must also capture 
the most essential causal relationships in the system. If the 
model is not very accurate, feedback from the 
observations counteracts any errors this might cause. 

Even when the Markov model is a drastic 
simplification of a complex system, this approach can be 
applied in practice, by using good judgment in the choice 
of model. It does not have to be a perfect predictive 
model, to select useful changes in a feedback mode. When 

the adaptation is used, the decisions are driven by actual 
system measurements and the model only evaluates the 
future effects of the decision, in a general way. 
Experience with feedback control in other industries 
shows clearly that an approximate model can contribute to 
good control. 

This work has been restricted to centralized 
architectures, and to small models. If a larger model is 
needed, for instance to represent many decision variables, 
then some partitioning of the decision space would seem 
to be essential. This work has also not considered the 
practical issues of sensor and actuator implementation, 
sensor errors and statistical smoothing of measures, the 
choice of a time step, or the use of sporadic observations 
(rather than periodically collected data). These are topics 
for future work. The evaluation of this approach on 
simulations, as well as on a real system, is currently 
underway. 
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