

Seeking Optimal Policies for Adaptive Distributed Computer Systems with

Multiple Controls

Mohammad Abdeen and Murray Woodside
Department of Systems and Computer Engineering,

Carleton University,
1125 Colonel By Drive,

Ottawa, ON, Canada, K1S 5B6
{mabdeen|cmw}@sce.carleton.ca

Abstract −−−−Modern distributed applications, such as
distributed multi-media and mobile applications, face
unpredictable operating conditions and load variations.
Performance cannot be designed into such applications in
advance; they have to be able to tune themselves into
unexpected environments and to adapt to changes over
time. Single adaptations in applications and middleware
are common, but the opportunities are greater if many
features of the system, at all layers, are adaptive. This
paper describes an architecture to support coordinated
adaptive changes in all layers (application, middleware
and operating system), with an optimal controller at its
core. The controller uses optimal policies based on
Markov Decision Processes (MDP), which seek to satisfy
a set of system quality-of-service and resource-usage
goals.

Keywords: Configurable computing, Mobile
applications, Multi-media applications, Modeling and
simulation, Markov Decision Process.

1. Introduction

Modern distributed applications, such as e-commerce
and enterprise computing, and many multimedia and
mobile applications, face unpredictable environments due
to user mobility, load variations, evolution of user access
patterns, and varying resource availability. Figure 1
describes a typical example with a mobile user who
moves from a high bandwidth radio LAN to another
wireless sub-network with much lower bandwidth and a
much higher error rate. To adapt to this move, the system
must identify the need for a change, decide on the change
and implement it in a timely way. Rapid changes or
disturbances are the most challenging, but slower
disturbances, taking place over days or months, are also
important. Adaptation to slower disturbances is a kind of
self-tuning to track changes in the environment.

Wireless Access point Wireless Access point

Mobile user

Mobile user

Mobile user

Mobile user

High B.W. wireless LAN

Gateway

Multi-media Server

Mobile users moving
between nets

Low B.W. wireless LAN

Figure 1 Mobile users roaming among multiple networks.

Adaptive features have been described, under names
such as “reflection” [7][9], “metaprogramming”[11], and
“reliability architectures” [12]. Reflection is a term
applied to code or to a sub-system which is self-aware, in
the sense that it has access to meta-information about its
operational state. Metaprogramming deals with this
information. Reliability architectures use operational
information to adapt to failures.

We regard these systems as special kinds of feedback
control system, with the elements of sensor, decision-
element or controller, and actuator, as indicated in Figure
2a. Figure 2a shows a single control loop, with one sensor
controlling one actuator, which is the most common form
in reported work. The loop controls one feature of the
system, such as

• a degree of imprecise computation[14], driven by
computing resource availability

Application

Decision Rule

Application

Actuator Sensor

Application level

Node 2 etc. Node 1

(a) Single application with an
adaptive feature

(b) Distributed adaptive system with multiple
sensors and actuators

Middleware level

Operating system level

Decision Rule

Figure 2 Adaptive systems, showing an
isolated adaptive feature and a complex
distributed system with multiple sensors
and actuators

• the number of threads of a server, driven by its queue
size (in web servers)

• moving components between nodes of a distributed
system, driven by their relative load (by a reflective
ORB such as TAO [2])

This paper considers techniques for controlling several
system features simultaneously, in a coordinated manner,
to react to changes detected by multiple sensors. Figure
2b shows many sensors and actuators in a distributed
system.

Adaptive features may be deployed at different system
layers. The following list shows some of the features to
adapt to lower bandwidth while transmitting a stream of
images:

• at the application layer, increase the image
compression, decrease image size, and change from
color to black-and-white.

• at the middleware layer, change the source of the
images (for instance, to a server which stores pre-

compressed frames), they might be routed through a
proxy server attached to the new network. The
protocol could implement frame filtering, packet
header compression, data bundling of smaller data
packets into a single larger packet for transmission,
and packet filtering.

• at the operating system layer, frames could be pre-
fetched during periods of better connectivity to cover
periods of reduced network capacity, and (in some
terminals) power level may be controlled [13]. The
performance of the protocol stack can be enhanced by
the introduction of protocol boosters [5][6]. This is
especially effective for wireless links with high bit
error rates (BER of 10–5 or worse). In this case a
forward error correction booster can produce a
throughput increase of as high as 60 times [20].

A system with many sensors and actuators has a
structure that will be called its adaptation architecture,
with locations for the sensors, actuators and decision
modules; in this work we adopt a centralized adaptation
architecture with:

• sensors and actuators embedded in the application
components, middleware and operating system, with
a standardized interface for communicating by
messages with the decision module, and

• a central decision module, which periodically obtains
data from the sensors and makes decisions

This work does not consider important aspects of the
architecture such as the sensor and actuator messaging
interfaces, the choice of the period or periods for
decisions, the use of sporadic data sent by the sensors
(event-driven adaptation), and the possible advantages of
partitioning and distributing the decision module.

The decision module can take a variety of forms. In
[16] and [17], a feedback regulator approach is used,
which forces a system to maintain or track a desired value
of some system variables over time. In computer systems
however, quality of service is usually specified as a bound
on some measures, rather than a target value, and the
acceptable range of delay often extends down to zero. It is
then more natural to adapt by seeking either a feasible
range or an optimal value (such as minimum delay). This
viewpoint (adopted here) gives an adaptive optimization
problem rather than a control problem.

An optimization approach used in some studies of
decision making for adaptive and reconfigurable
computer systems is Markov Decision Processes (MDP)
[18][19]. Markov Decision Processes are well suited for
discrete state space and for stochastic behavior. The
optimization is simple and provides self-tuning. The
studies in [18][19] considered only relatively small and
one-dimensional state spaces.

The present paper adopts an MDP model, building it
into a general and flexible architecture that considers
multiple system layers, aspects and measures. State

explosion remains a limitation, but useful systems can be
built (for instance an example based on Figure 1 with two
observation variables and three control variables
described below gives 384 states). It is interesting that the
optimal policy has a structure similar to various ad-hoc
policies.

2. An architecture for coordinated
adaptation

The architecture considered here has a central decision
module connected to sensors and actuators distributed
across components and layers, as shown in Figure 2. This
section considers the operations carried out by the
components indicated by the architecture in greater depth.

The adaptation process repeats a cycle of estimating
(monitoring and tracking), deciding and acting.
Observation variables capture the relevant aspects of the
status of the system, and are provided by sensors.

Sensor in this work also includes other awareness
mechanisms such as monitoring by dedicated components
in the middleware [3][4][8], in the operating system [10]
and in the application managers. These techniques are
necessary to capture system-level measures such as
throughput, CPU utilization, and average delay, and
environment parameters such as subsystems used by a
response, levels of competitive workloads. Failure
detectors fall into the same group of sensors.

 Number of server threads

Jobs waiting in the queue

QUPR QLR

Figure 3 A threshold rule for adapting the
number of server threads for a queue

The decision mechanism derives new settings for the
actuators from an analysis of the measures (feedback
control). Knowledge of all measures is important at this
point, as they may identify under-used resources, or
opportunities to change the application’s behavior. In
previous work on adaptation, the decision mechanism is
sometimes a threshold-based decision to determine one of
a set of pre-determined values of a parameter. For
instance, in threshold queue mechanisms, when a queue
of messages exceeds a threshold QUPR, additional
software servers or server threads may be created. Later,
if the queue length is less than another smaller threshold
QLR, the additional servers may be removed. This is an

example of a decision rule with hysteresis, as shown in
Figure 3.

In this work there may be similar decision rules to
determine a discrete level for a system parameter, but in
general the decision rule depends on many variables and
not just one.

Software actuators are software components that
implement the decision to change or tune the system, to
help bring it back to the desirable range of operation.
They may be built into the operating system, middleware,
or application, as described in the Introduction.
Application layer mechanisms described here can be
combined with middleware such as CORBA, which
already provides mechanisms for redirecting service
requests, in order to balance load or to replace a failed
server. The present work can tie these capabilities into a
wider adaptive scheme.

The location of these components and its interaction in
a three-layer centralized architecture is depicted in Figure
4.

The figure shows a distributed application with clients
on the left and a server on the right, each with an
operating system layer, a middleware layer, and an
application layer equipped with sensor and actuator
components. Sensor data are sent to a central adaptation
unit where a Decision Making Module (DMM) makes
adaptation decisions. The DMM then instructs each layer
to take the required action(s). Software actuators in each
layer receive adaptation decisions made by the DMM and
implement them.

In constructing the coordinated adaptive architecture in
Figure 4 one has to consider:

• how to choose the points to apply sensors and
actuators

• The design of sensors and actuators
• The choice of the decision rules for the Decision

Making Module.
In this work we address the third point, assuming that
sensors and actuators are available.

In single loop systems it is not very difficult to
construct a sensible feedback path with an ad hoc decision
function. There is however almost no theory to guide the
choice of the best feedback function (for example, to
define the best values of the thresholds shown in Figure
3).

For more complex systems, with many control
variables derived from many sensor values, intuition does
not provide guidance and the lack of theory is even more
serious. There is a potential for greatly improved
performance, but some way must be found to construct
reasonably good decision functions. The possibility of
finding optimal rules is even more attractive, and here we
will attempt to obtain them from Markov Decision
Processes.

Actuator

Sensor

measures

actions

Trace Repository

Decision Making
Module (DMM)

Central unit (or
process)

Application layer

Middleware layer

Operating system layer

Client C

Application layer

Middleware layer

Operating system layer

Client B

Application layer

Middleware layer

Operating system layer

Server

Application layer

Middleware layer

Operating system layer

Client A

Figure 4 The centralized multi-layer adaptive architecture

3. A Markov Decision Process (MDP)
approach to optimal policies

Searching for a way to derive good policies to guide
decisions, we consider a discrete-state model for the
system, capturing the state information known to the
DMM. Over time, state changes

• may be changes forced by the DMM, or
• may be observed but uncontrolled changes in the

system, or
• may be the effects of hidden changes that are not

otherwise known to the DMM
The last two categories of changes will be called
disturbances and are modeled by random state transitions
in a Markov Chain model of the system. The state space
contains states Si, for i = 1 to I. At steady state, state Si has
probability pi. At each step, a transition from a state Si to
another state Sj has a transition probability pij.

The system evolves randomly, but can also be
controlled to some extent by the actuators, which can
force (or, in general can influence) state changes to
improve operation. Control is exerted by choosing values
for control variables a, which influence the transition
probabilities pij (i.e. the transition probabilities are
actually given functions pij(a)).

In Markov Decision Processes [1] the best choice of the
control variables a, among the set D(i) of control values
which are feasible in state Si, is determined. “Best” is
intended in the sense of minimizing a given cost function
which is the expected value of a function Cost(a, i) of the
control and the state. It is possible to compute a rule or
policy R which assigns an optimal choice of a to each
state i. This is a versatile and powerful tool to analyze

probabilistic sequential decision processes with infinite
planning horizon. This model is an outgrowth of the
Markov model and dynamic programming. It has many
potential applications in inventory control, maintenance,
resource allocation and others.

3.1. Optimal policy

A policy determines the actions to be taken at each
decision epoch (moments which we will assume are
equally spaced in time). A stationary policy R is a rule
that always prescribes a single action Ri whenever the
system is found in a state Si at a decision epoch.

In order to define an optimal policy, let’s assume that
the long-run average cost per unit time when using policy
R is g(R). A stationary policy R* is said to be average-
cost optimal if g(R*) ≤ g(R) for each stationary policy R.

It is computationally infeasible to find the average-cost
optimal policy by computing the associated average cost
for all possible polices. However, some algorithms can be
used to construct a sequence of improved policies until an
optimal policy is found. Examples of such algorithms are:
the policy iteration algorithm, and the value iteration
algorithm.

3.2. Relative values

For a given policy R, the total expected cost over the
first n decision epochs when starting with state Si, is
denoted by Vn(i,R). Starting with a different state other
than Si, e.g. Sj, has the effect of changing the total
expected cost function. This change in the total cost
function is called the relative value vij(R). An arbitrary
state, r, can be chosen to normalize relative values
vij(R)’s. A relative value can then be denoted as vir(R), or
simply vi(R). It can be shown, as in [1], that the average

cost per unit time, g(R), and the relative values, vi(R), can
be calculated simultaneously by solving a system of linear
equations as follows:

vi(R) = ci(Ri) – g(Ri) +�
�

)()(
Ij

jiij RvRP for each i∈ I (1)

where ci(Ri) is the cost of the decision a = Ri made at state
i, Pij is the transition probability matrix, and is the
transition probability from state Si to state Sj if the
decision Ri is made.

3.3. Policy-iteration algorithm

The relative values associated with a given policy R
provide a tool for constructing a new policy R’ whose
average cost is no more than that of the current policy R.
It can be shown that if

ci(R’i) – g(R) +)()(�
�

RvRP j
Ij

iij ≤ vi(R) for each i∈ I (2)

then
 g(R’) ≤ g(R) (3)

Equations (2) and (3) suggest that an optimal policy
R* can be obtained be recursively iterating the calculation
in Eq (1) with new values of R’ until a minimum cost
g(R*) is reached. The value of R* is called the optimal
policy, and gives a value R*i for each state Si.

The policy iteration algorithm always converges in a
finite number of iterations [1], and empirically it is found
to converge very fast on many problems. The number of
iterations needed is insensitive to the number of states and
of the starting policy, and varies typically between 3 and
15 [1].

4. Demonstration and Evaluation: An
Adaptive System

The construction of an optimal set of policies will be
described in the context of a concrete example of a mobile
multi-media application which could play a video clip, a
movie, or support a video conferencing application from a
mobile device (e.g. a PDA). Mobile users move among
networks of various speeds, and hence of various delays,
as illustrated in Figure 1. Competing traffic on each
network may affect the quality of service obtained by the
user.

If a user is faced with longer delays, more limited
bandwidth, high bit error rates, and diminished quality of
service, it could adapt in three ways to provide better
service:

• The video frame rate can be reduced. This will cause
a flickering effect but will send the essential
information.

• The size of each video frame can be reduced by
compression. Compressed frames have smaller sizes
but the image quality within each frame is less.

• An error correction protocol booster can be installed
and activated. This will increase the protocol
overhead per packet and packet processing time but
will produce an up to 60 times throughput
improvement at bit error rates 10-5 or worse.

Mobile users move among four wireless networks,
Alpha, Beta, Gamma, and Theta with speeds of 0.5
Mbits/sec, 2 Mbits/sec, 5 Mbits/sec, and 10 Mbits/sec and
bit error rates of 10-3, 10-4, 10-5, and 10-6 respectively.
These movements are a random disturbance to the
operation of the system, which affect the service quality.
As controls, we have

• four different compression levels, level 1 (no
compression), 2 (16 times compression), 3 (33 times)
and level 4 (40 times).

• four frame rates, level 1 (2 frames/sec), 2 (10
frames/sec), 3 (20 frames/sec) and 4 (unfiltered rate
of 30 frames/sec).

• two protocol booster levels, level 1 (protocol booster
activated) and level 2 (protocol booster deactivated).

The adaptation policy will choose a set of control levels
for each possible state of the system as described in the
following section.

4.1. The system model

A discrete state model is a simplification based on
judgment of the key factors in the operation of the system.
In this example the factors (already mostly described) are
defined by:

• the current level of compression (C, with four values
1 to 4)

• the current frame rate level (Fr, with four values 1 to
4),

• the current protocol booster level (B, with two values
1 and 2),

• the network being accessed by the user (N, with four
values 1 to 4),

• an available network quality of service level (Q, with
three levels 1 to 3, and high Q represent better
service).

The value of the last factor is a function of the overall
operation of the system, and a variety of measures could
be used. Here, we consider an “available QoS” measure
derived from the network bandwidth available to the user
after accounting for wireless channel fading and jitter
effects as well as contention from others. This could be
found from network collision data or utilization data.

The network QoS factor Q is defined relative to the
range of capabilities of each network, with Q = 2 for a
middle range of values of available QoS. A change in the
decision variables can affect Q. For example, higher
frame rates or lower compression levels may increase
collision rates due to the higher traffic injected into the
network, reducing Q. We define Q = 1 for overloaded

conditions, Q = 2 for average conditions, and Q = 3 for
lightly loaded and error-free conditions.

The first, second, and third factors listed above are
control variables. The decision levels are part of the state
if the decisions to be taken naturally depend on the
previous level of the same control variables, or if the next
state depends on them.

The state S is thus a tuple of five values:
S = (C, Fr, B, N, Q).

and the state space has 384 states (4 x 4 x 2 x 4 x 3).
The set of possible decision values is referred to as D,

which can be expressed as:
D = (CD ,FrD, BD) .

where CD, FrD and BD are the new values for C , Fr and B.

4.2. The transition probability matrix

Some transitions among states express the reaction of
the system to control, and some express its reaction to
disturbances, as described earlier. The probabilities of the
transitions that are affected by disturbances are found by
analyzing the behavior of the system, either by models or
measurements. In this example, the disturbances are the
changes of network, and some changes of QoS.

Suppose pij(a) is the transition probability from Si = (Ci,
Fri, Bi, Ni, Qi) to Sj = (Cj, Frj, Bj, Nj, Qj). The transition
probabilities express the influence of the current state on
the evolution of the system. It is assumed that the choice
of a new network, Nj, is made by the user. It is driven by
factors outside this model, and so it is governed by its
own probabilities and is independent of the policy
choices. For this model we assumed that the probability of
staying in a given network has a value of pnet (the same
for all networks) and (1 - pnet)/3 for each of the other
networks.

Define:
Pnet(i, j) = pnet if Ni = Nj,
 = (1 − pnet)/3 otherwise.
For each policy a there is a transition probability

matrix Pij(a),
• which determines the change in the control variables

to their new values,
• includes Pnet(i, j)
• and also describes the evolution of Q, which is partly

governed by changes in network traffic (which are
largely determined outside this model) and partly
influenced by a.

Here, the transition probability from a given QoS state
Qi to a new value Qj has a baseline value q(Qi,, Qj), plus
an interaction term for the influence of the control
variables C, Fr, B, due to the way they increase or
decrease the total traffic. The interaction term is a
function δ(Qi, Qj; a)(Ci, Fri, Bi),

The function, δ, depends on the current control
variables (Ci, Fri, Bi) because they may influence the
future changes in traffic levels due to other users, and on

the decision a because it directly affects the traffic, as
discussed above.

The baseline transition probabilities used for Q in this
example are illustrated in Figure 5 below. When the
network changes, the model assumes that Q for the new
network is initially 2.

Q = highQ = low Q = medium

0.8

0.1

0.6 0.5

0.1

0.3 0.4

0.15 0.05

Figure 5 The Baseline QoS State
Transition probabilities q(Qi,Qj)

Overall, the transition probability from state Si to
state Sj, where Sj has Cj, Frj, Bj corresponding to decision
a, is given by:
Pij(a) =
 Pnet(i, j) q(Qi,, Qj) δ(Qi, Qj; a) (Ci, Fri, Bi) if Nj = Ni (4)
Pij(a) = Pnet(i, j) if Nj ≠ Ni and Qj = 2
Pij(a) = 0 otherwise

4.3. The cost function and its formulation

The cost function associates a positive value with every
(state, decision) pair. It is the relative cost values in
different states that are important, rather than the absolute
cost values. Cost values can be in any units such as
money, CPU cycles, delay, or memory utilization. In most
real-time systems, various different kinds of costs (e.g.
CPU, delay, memory, etc…) are incurred and a final
combined cost function is desired. Finding the right
formula for this function for a particular system can
sometimes be challenging. The optimal policy minimizes
the cost function.

To construct a cost function we go through the
following steps.

1. Identify a set of cost factors, such as CPU cycles or
delay.

2. For the mth factor, create a partial cost function
Costm(i,a) which evaluates the impact of that factor
under decision a in state i.

3. Assign a weight value wm for each partial cost
function, to adjust for its importance in the overall
cost to be minimized.

The overall cost function is the sum of the partial cost
functions weighted by the weighting factors wm and is
given as:

Cost(a, i) = �),(
m mm iaCostw (5)

where m indexes the partial cost functions.
Let us consider three partial cost functions, one

represents the CPU utilization, a second represents the
delay, and a third represents the quality of service. Costs
are assigned to levels depending on the control variable
under consideration as well as the value of the level
relative to others, and are defined so the maximum value
is 1.0. For example, compression levels are assigned a
CPU cost that is proportional to the degree of
compression performed. Higher frame rate creates
proportionately higher CPU cost. The partial cost
functions are given as follows:
Costcpu = Costcpu(compression) + Costcpu(frame rate

reduction) + Costcpu(protocol booster)
Costdelay = Costdelay(video stream transmission) +

Costdelay(protocol booster)
CostQoS = CostQoS(video stream quality) +
 CostQoS(wireless network jitter and other

effects)
where,
Costdelay(video stream transmission) is the transmission
delay of the video stream in progress.

The approach adopted here is based on a 30 frames per
second video stream (2 I-frames, 8 P-frames and 20 B-
frames [21]). The Costdelay(video stream transmission) can
be given as:
Costdelay(video stream transmission) =

speednetwork x leveln compressio

filtering stream videoeduncompress of size after

The Costdelay(protocol booster) represents the delay
introduced by the protocol overhead after activating the
protocol booster. This overhead can be as high as 3 times
the size of the original video stream [20].

The CostQoS(video stream quality) function assigns a
maximum cost for the worst video stream quality, i.e. the
one with maximum compression and minimum frame rate
(a normalized cost of 1 in our example). On the other
hand, the best video quality is assigned a minimal cost (a
cost of 1/16 in our example). The effects of the wireless
environment as well as user contention are accounted for
by assigning cost values to the CostQoS(network) that are
inversely proportional to the available quality of service
level. For example, a cost of 3 is assigned to the lowest
QoS level.

All CPU costs are in CPU cycles based on a 300 MHz
processor.

The weights, wm, given to the partial cost functions
were; 1 for the CPU, 2 for the QoS, and 3 for the delay.

These values were chosen by judgment, and they do not
have to be integers.

5. Results

The results shown in this section demonstrate how the
decision-making module of the system reacts optimally,
and in a collaborative fashion, to external environment
changes (network choice and quality of service) by
making appropriate changes to the control variables
(compression, frame rate, and protocol booster).

The optimal policy calculations for this model were
done using Matlab, with pnet = 0.7 to represent a relatively
high user mobility (30% chance of changing networks).
The results show that the minimum long-term average
cost is 0.7585 (optimal policy cost), compared to a worst-
case cost of 6 (maximum cost of 1 for all partial cost
functions weighted by wm = 1, 2, and 3). An ad hoc
decision rule produced a cost that is roughly twice as
large. This is shown in a later section.

The optimal choice of the compression level, C, frame
rate level, Fr, and protocol booster level, B, are displayed
as a function of the disturbances; the network speed, N,
and the quality of service, Q.

Each set of results shows the optimal policy for one
control variable as a function of N and Q, and is displayed
as a set of 3x4 squares. The rows represent the quality of
service and the columns represent the network speed.

The value of the compression decision, C, is
represented by the shading level of the corresponding
square. A darker square represents a higher image
resolution and hence a lower compression. The decision
numeric value (i.e. C = 1 - 4) is also written in the top-
right corner of the same square. In a similar way, the
value of the frame rate decision, Fr, is represented as the
number of parallelograms inside the square. For example,
Fr = 1 is the lowest frame rate (2 parallelograms). The
frame rate numeric decision value (i.e. Fr = 1 - 4) is also
written on the top-right corner of the square. The protocol
booster decision is explicitly written as ON/OFF for
activating and deactivating the protocol booster
respectively.

Figure 6 shows the optimal decision policy for
compression, C, at different network speeds and quality of
service values. At low network speeds and low quality of
service the optimal policy produces a maximum
compression (C = 4). At high network speeds and high
quality of service the optimal policy produces a minimal
compression (C = 1). In the interim the optimal policy for
compression is C = 2.

It is to be noted that a higher compression could be
used for values of N and Q at the middle range. However,
this will further degrade the video quality and consume
more CPU cycles. The optimal policy optimizes both the
CPU usage, especially for the CPU limited mobile
devices, and the user quality of service.

Q = 1

Alpha
0.5 Mbps

Beta
2 Mbps

Theta
10 Mbps

Network speed, N

Quality of Service, Q
Compression control variable, C

2 2 1

1

4

Gamma
5 Mbps

222

Q = 2

Q = 3

22 1 1

Figure 6 The optimal policy showing the
variation of frame compression with N and
Q

Figure 7 below shows the optimal decision policy for
frame rate, Fr, at different network speeds and quality of
service values. At low network speeds and low quality of
service the optimal policy produces a low frame rate (Fr =
1). At high network speeds and high quality of service the
optimal policy produces a high frame rate (Fr = 4). In the
interim the optimal policy is Fr = 3 or 4.

Q = 1

Alpha
0.5 Mbps

Beta
2 Mbps

Theta
10 Mbps

Network speed, N

Quality of Service, Q
Frame rate control variable, Fr

Gamma
5 Mbps

3

Q = 2

Q = 3

1

4

Frame rate = 30Frame rate = 20

1

Frame rate = 2

2

Frame rate = 10

1

Frame rate = 2

1

Frame rate = 2

1

Frame rate = 2

1

Frame rate = 2

1

Frame rate = 2 Frame rate = 2

1

Frame rate = 2

4

Frame rate = 30

Figure 7 The optimal policy showing the
variation of frame compression with N and
Q

Two sets of values on Figure 7 are worthy of noting.
The first is when (N, Q) = (Theta, 2) and the second is (N,
Q) = (Beta, 3). The first value shows that although
network speed is high, the frame rate is not that high (10
frames per second). This is due to the fact that the quality
of service is intermediate and having enough bandwidth
to send more frames might be hampered by the
insufficient quality of service. On the other hand, the
second set of values suggest that having a good quality of
service is more “encouraging” to send more frames.

Figure 8 below shows the optimal decision policy for
protocol booster, B, at different network speeds and
quality of service values. The results suggest that
activating protocol booster is largely dependent on the
quality of the service. It is activated for low Q and
deactivated for high Q.

Q = 1

Alpha
0.5 Mbps

Beta
2 Mbps

Theta
10 Mbps

Network speed, N

Quality of Service, Q
Protocol Booster control variable, B

1 1 2

2

1

Gamma
5 Mbps

111

Q = 2

Q = 3

11 1 2

OFF

ON

ON ON

ON

OFF OFF

ON

ON ON

OFF

OFF

Figure 8 The optimal policy showing the
variation of the protocol booster value
with N and Q

5.1. Comparison with an ad hoc adaptation
technique

The power of the MDP comes from incorporating a
model for the behavior of the system over time. The
optimization does not only consider the current situation
of the system, but also the future foreseen behavior.
Because of the feedback, the model does not even have to
be particularly accurate. The MDP policy also
incorporates all the observation variables.

Ad hoc adaptation techniques are much more limited.
The rules they use are arbitrary and typically connect one
observation variable to one decision variable. To give an
example, we will assume a scenario in which an ad hoc
adaptation rule is used. As an ad hoc rule for frame rate
suppose we just use the following:

IF (network speed is higher) THEN (increase frame rate)

together with the optimal policies for C and B.

As an example, consider a situation with Q = 2, Fr = 1
and a change of networks from Beta to Gamma. This ad
hoc rule would give a frame rate after the change of 2.
The optimal policy would give a value which is still 1.
When the ad hoc rule is applied, the steady state cost
function is 1.4131. This is almost double the optimal cost
(0.7585).

5.2. Discussion

The results presented here are obtained for a special case
where the state transition probability matrix Pij(a) is

partitioned into two non-interacting sub-matrices, one for
the observation variables (N, Q) and one for the control
variables (C, Fr, B) (if the interaction terms in Equation
(4) were not zero, this would not be the case). As a result
of this, the optimal policy is only a function of (N, Q), and
it could be derived from a simpler model in which the
state space only includes (N, Q). This explains why the
optimal policies in Figure 6, 7, and 8 are function only of
(N, Q).

In the more general case the transition probability
matrix is not partitioned, and the full state definition is
needed for the analysis. This would arise in our example
if:

• the interaction terms in Equation (4) were non-zero,
• a cost is imposed for making changes in control

variables, penalizing the effort of reconfiguring the
actuator to a new value.

Then the optimal policy is a function of the state of the
control. In that case it is multi-valued in the observation
variables alone, and this for instance could generate an
optimal policy with hysteresis, as illustrated in Figure 3.
A large cost for control changes is likely to lead to
hysteresis policies.

6. Conclusions

This work has shown how system adaptation can be
guided by decision rules found by the methods of Markov
Decision Processes, when there are multiple controlled
features, and multiple system measures used to drive the
decisions. An example model of a mobile multimedia
system had 384 states, and optimal rules for it were found
by conventional calculation tools. The rules give
reasonable-appearing coordinated changes in the
compression ratio, frame rate, and the protocol booster
activation, when a user changes network or when the local
contention effects change. Using a cost function based on
simple value relationships, the optimal operation was
about twice as good as a reasonable ad hoc rule, in one
case examined.

The core of the adaptation is a simplified discrete state
model of the entire system, reflecting the designer’s view
of the granularity of decisions and measures. If the
designer imposes a large granularity with just a few levels
of each separate variable, the state space will be smaller
and the calculations will be less complex. A problem can
be attacked first this way, and then experiments can be
made with finer granularity. The model must also capture
the most essential causal relationships in the system. If the
model is not very accurate, feedback from the
observations counteracts any errors this might cause.

Even when the Markov model is a drastic
simplification of a complex system, this approach can be
applied in practice, by using good judgment in the choice
of model. It does not have to be a perfect predictive
model, to select useful changes in a feedback mode. When

the adaptation is used, the decisions are driven by actual
system measurements and the model only evaluates the
future effects of the decision, in a general way.
Experience with feedback control in other industries
shows clearly that an approximate model can contribute to
good control.

This work has been restricted to centralized
architectures, and to small models. If a larger model is
needed, for instance to represent many decision variables,
then some partitioning of the decision space would seem
to be essential. This work has also not considered the
practical issues of sensor and actuator implementation,
sensor errors and statistical smoothing of measures, the
choice of a time step, or the use of sporadic observations
(rather than periodically collected data). These are topics
for future work. The evaluation of this approach on
simulations, as well as on a real system, is currently
underway.

7. References

[1] Hennik C. Tijms, “Stochastic Modeling and Analysis: A
computational approach”, John Wiley & Sons 1986.

[2] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. C.
Magalhes, R. H. Campbell, "Monitoring, Security, and
Dynamic Configuration with the dynamicTAO
Reflective ORB", Proceedings of the IFIP International
Conference on Distributed Systems Platform and Open
Distributed Processing (Middleware2000).

[3] Hector Duran and Gordon S. Blair, "Configuring and
Reconfiguring Resources in Middleware" IEEE Proc.
ISORC 2000.

[4] Adrian Friday, Nigel Davies, Gordon Blair and Keith
Cheverst "Developing Adaptive Applications: The
MOST Experience " Journal of Integrated Computer-
Aided Engineering, Volume 6, Number 2, 1999, pp143-
157.

[5] D.C. Feldmeier, A. J. Macauley and J. M. Smith,
“Protocol Boosters,” Technical report, U. Penn CIS
Dept., 1996.

[6] A. Mallet, J.D. Chung and J.M. Smith, “Operating
System Support for Protocol Boosters”, Proceedings of
the 3rd international Workshop on High Performance
Protocol Architectures (HOPPARCH’97), June 1997.

[7] Jim Dowling, Tilman Schafer, Vinny Cahill, Peter
Haraszti, Barry Redmond, “Using Reflection to Support
Dynamic Adaptation of System Software: A case Study
Driven Evaluation”, OOPSLA Workshop on Object-
Oriented Reflection and Software Engineering, Denver,
Colorado, Nov. '99.

[8] Baochun Li, Won Jeon, William Kalter, Klara
Nahrstedt, Jun-Hyuk Seo, “Adaptive Middlware
Architecture for a Distributed Omni-Directional Visual
Tracking System”, Proceedings of SPIE Multimedia
Computing and Networking 2000 (MMCN 2000), pp.
101-112, January 25-27, 2000.

[9] Pattie Maes, "Concepts and experiments in
computational reflection" OOPSLA'87, Sigplan Notices,
Vol. 22 No 12. December 1987.

[10] Jun-ichiro Itoh, Yasuhiko Yokoto, Mario Tokoro,
"SCONE: Using Concurrent Objects for Low-level
Operating System Programming". ACM OOPSLA'95

[11] K-Czarnecki and U.W. Eisenecker, “Generative
Programming”, Addison-Wesley, 2001.

[12] Paul Stelling, Ian Foster, Carl Kesselman, Criag Lee,
Gregor von Laszewski, “A Fault Detection Service for
Wide Area Distributed Computatiopns”. In Proceedings
of the 7th IEEE symposium on High Level Distributed
Computaion. P 268-278, 1998.

[13] A Acquaviva, L. Benini, and B. Ricc. “An adaptive
algorithm for low-power streaming multimedia
processing”. In Proceeding of the Conference on Design
Automation and Test in Europe DATE’2001, 2001.

[14] J. W. S. Liu, W. –K Shik, K. –J. Lin, R. Bettati, J. –Y.
Chung, “Imprecise Computations”, Proceedings of the
IEEE, Vol. 82, No. 1, Jan 1994, pp. 83-94.

[15] Hidehiko Masuhara, Satoshi Matsuoka, Akinori
Yonezawa, “Implementing Parallel Language Constructs
Using a Reflective Object-Oriented Language”, In
Reflection’96 conference, San Francisco, California,
Apr., 1996.

[16] Baochun Li and Klara Nahrstedt, “A control-Based
Middleware Framework for Quality-of-Service
Adaptations” IEEE Journal on Selected Areas in
Communications, Vol. 17, No. 9, Sept. 1999.

[17] Tarek Abdelzaher, Kang G. Shin, Nina Bhatti,
“Performance Guarantees for Web Server End-Systems:
A Control-Theoretical Approach” Transactions on
Parallel and Distributed Systems , Vol. 13, No. 1, Jan
2002.

[18] Kang G. Shin, C. M. Krishna, and Yann-Hang Lee,
“Optimal Dynamic Control of Resources in a
Distributed System” IEEE Transactions on Software
Engineering, Vol. 15, No. 10, October 1989.

[19] Leonard. J.N. Franken and B.R. Haverkort,
“Reconfiguring Distributed Systems using Markov-
Decision Models” Trends in Distributed Systems
(TreDS’96), Oct. 1996, Aachen, Germany, PP. 219-
228.

[20] D. Bakin, M. Joa-Ng, and A. McAuley, “Quantifying
TCP performance improvements in noisy environments
using protocol boosters,” Proceedings: Fifth IEEE
Symposium on Computer and Communications (ISCC
2000), July 2000.

[21] Armando Fox, Steven D. Gribble, Eric A. Brewer, and
Elan Amir, “Adapting to Network and Client Variability
via On-Demand Dynamic Distillation,” In Proceedings
of the Seventh International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS-VII), Cambridge, MA, October
1999.

