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ABSTRACT

      This thesis studies optimization of a class of distributed real-time systems which

include concurrent scenarios, operations with deterministic or stochastic execution

demands, arbitrary precedence between operations and soft or hard deadline

requirements. This thesis adopts an optimization approach to configure that class of

distributed real-time systems to meet their deadline requirements. The optimization

approach uses Layered Queueing Network (LQN) model to describe the systems.

According to the LQN simulation results, priority assignment and task reallocation are

used to optimize the system to produce a feasible solution. A pre-existing optimization

strategy was improved in various ways, re-implemented in a more useful and

maintainable form, and evaluated. It was applied to soft real-time systems with stochastic

execution demands, which had not been attempted previously. A number of experiments

and comparisons indicate the effectiveness and improvement of the new optimization

approach.

      As SPE (Software Performance Engineering) is used more and more in designing

software systems, the optimization could become part of the SPE to evaluate the

performance after the performance model is generated.
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GLOSSARY

a: An activity in a task or a phase of an entry

as: The start activity in an entry

activities(e): The set of activities (or phases) in entry e

CommOV(a):  The total communication overhead incurred by a

CommOV(e, T): The communication overhead between entry e and task T2

CommOV(T1, T2): The communication overhead between task T1 and task T2

CommOV(m): Communication overhead when message m is transmitted between

                        different processors

CommOV(m, role): The communication overhead of physical message m either

                         on the client side (role = client) or on the server side(role =server)

CommOVGainMetric (T, C): The metric for reallocation of task T to processor C

                         due to communication overhead

CommOVreply,client(a): The client side communication overhead incurred   by a

                        from the reply messages

CommOVreply,server(a): The server side communication overhead incurred by a

                        from the reply messages

CommOVreq,client(a): The client side communication overhead incurred by a

                        from the request messages

CommOVreq,server(a): The server side communication overhead incurred by a

                        from the request messages

CPUMetric(T, C):  The metric for reallocation of task T to processor C

CriticalityS: The criticality metric for scenario S

criticalInvokeRate(a):  The normalized critical invocation rate of a (per second)

criticalInvokeRate(e, S): The normalized invocation rate for entry e in scenario S,

                      (per second). The asynchronous call is not counted.

criticalInvokeRate(m): The normalized critical invocation rate of sending physical

                          message m ( per second)
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entries(T): The set of entries in task T

executionDemand(e): The execution demand of entry e

forCall(e, * ): The set of forwarding calls sent from entry e
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invokeRate(m):  The normalized sending rate of physical message m
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messLen(m): The length of the messages in a physical message m (in suitable units)

messNum(m): The number of times the physical message m is sent due to one invocation

                   of a particular activity or phase of an entry.

messUnitOV: A constant overhead transmitting a message with unit message
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mc: The mean request frequency for a synchronous call or an asynchronous call
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prob: The forwarding probability of a forwarding call
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replyCall(a, *):  The set of reply messages sent by a

replyCall(*, a): The set of reply messages sent to a

reqCall(M): The set of all the request messages in a model

reqCall(a, *):  The set of request messages sent by a

reqCall(*, a):  The set of request messages sent to a

S: A scenario

synCall(a, e): A synchronous call from a to e

synCall(*, e): The set of synchronous calls sent to entry e

T: A task

TaskMetricT: The metric, which is used for priority adjustment, for task T

TaskSize(T):  The task size of task T
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TaskSize| S
T : The task size of task T related to scenario S

TaskWaitMetricT |
S
T : The metric that measures waiting time of task T in

                        scenario S

UtilGainMetric(T, C):  The metric estimating the processor utilization

                       decrease if task T is reallocated to processor C

UtilC: The utilization of a target processor C

UT: The utilization of task T

visitRate|S
T : The visit rate of task T related to scenario S (visits per scenario execution)
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CHAPTER 1: INTRODUCTION

A system is a real-time system when it can support the execution of applications with

time constraints on that execution. Traditionally real-time systems are classified as hard

real-time systems and soft real-time systems. In hard real-time systems, the time

constraints must be met under all circumstances. The failure to meet the deadlines may

cause catastrophe. Aircraft control systems and nuclear reactor control systems are

typical hard real-time systems. In soft real-time systems, the results of missing deadlines

are not catastrophic. It is acceptable to miss a small percentage of deadlines in soft real-

time systems. Typical examples are e-commerce and telecommunication systems.

Generally, real-time systems are deployed on more than one processor to make full use of

the resources on different sites that are connected by a network. The real-time systems

that are deployed on multiple processors are called distributed real-time systems in this

thesis.

1.1 Motivation

In order to meet deadlines using allowable resources, the real-time systems must be

configured properly. A proper configuration will make full use of the available resources

so as to reduce the cost of the systems. Finding a feasible solution under the resource

requirements is the objective of the system design.

Much research has been done on hard real-time systems. Priority assignment and task

allocation were found as two important issues to ensure that deadline requirements are

met in hard real-time systems. Unfortunately, it has been shown that both the problem of

assigning priority to end-to-end tasks and the problem of allocating tasks to processors

are NP-hard problems [3][23].

Up till now, only a little research is reported on soft real-time systems with stochastic

execution demands. Soft deadline and stochastic execution demands are two important

characteristics in many real-life applications. For example, in widely used e-commerce

systems, the time to search records from a database and the network latency may be
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stochastic to some degree. The deadlines are usually soft deadlines because the results of

late responses are not catastrophic and it is not necessary to meet the deadlines 100%.

Applying hard real-time system algorithms to those systems may cause low efficiency.

The optimization approach proposed in this thesis provides a heuristic solution for a

general class of real-time systems including soft real-time systems with stochastic

execution demands mentioned above.

This thesis considers a class of systems that will be called “distributed real-time

systems” with the following characteristics:

• The system has one or more scenarios which run concurrently with specific arrival

rates

• The scenarios consist of actions which are distributed on a number of processors

connected by a network

• Each scenario has a hard or soft end-to-end deadline requirement

• The execution time of each action is deterministic or stochastic to some degree

To the best of my knowledge, little of the existing work has combined all these aspects

together.

Based on heuristic algorithms and simulation results, this thesis provides an

optimization approach to configure general distributed real-time systems to meet their

deadline requirements. It is especially helpful for the soft real-time systems with

stochastic execution demands because the guarantee to meet all the deadlines in such

systems is not proven yet.

Recently, software designers get benefits from applying the Software Performance

Engineering (SPE) [30] technique which implies predicting the performance at early

stages of software lifecycle. The optimization could become part of SPE to provide a

feasible solution after the performance model is generated.

1.2 A General Optimization Approach

This thesis provides a general approach to optimizing the distributed real-time systems

with the help of LQN simulation. The optimization approach is suitable for both hard

real-time systems and soft real-time systems. A hard real-time system is considered as a
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special case of a general real-time system where 100% of the requests must meet their

deadlines instead of a specific percentage of successful requests (e.g. 95%), and the

execution demands are deterministic instead of stochastic. The percentages of successful

requests are collected from the simulation results, and the stochastic execution demands

could be simulated by specific distribution generators.

Two factors are considered in this optimization approach:

Priority assignment: which is concerned with how to assign priorities to the tasks

(also called processes in many papers). In real-time systems, the tasks must be scheduled

properly to meet their deadlines. Task priorities could be fixed or dynamic. The fixed

priority approach is simple to implement and more predictable under overload conditions.

Due to these reasons, this thesis focuses on the fixed priority approach. It means that

when a priority is assigned to a task, the priority will always be the same, and each task

has a different priority level. In this thesis, a larger number means a higher priority, e.g. a

task with priority 2 has higher priority than a task with priority 1. This priority notation is

different from many other papers.

Task allocation: which is concerned with how to assign tasks to processors. The task

allocation could be static or dynamic. Because most real-time systems built today are

static to be simpler and more predictable, we focus on the static task allocation in this

thesis.

Layered Queueing Network (LQN) model is used as the performance model in this

thesis. Most of the system behaviors in distributed systems  (e.g. hardware devices,

software tasks, nested services, precedence constraints and multithreads) could be easily

expressed in the LQN model. Deadline requirements are also included in the LQN model.

A distributed real-time system can be easily described by a proper LQN model.

An LQN simulation tool called “parasrvn” is used to analyze the performance of the

LQN model. The performance results of the simulation provide the fundamentals for

system optimization.

The optimization approach provided in this thesis was first proposed by H.M. El-

Sayed, D. Cameron, and C.M. Woodside in [10][11]. The optimization strategies are

improved and modified based on experiment results, heuristic reasons and evaluation for

soft real-time systems with stochastic execution demands.
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Figure 1.1 is a high level flow chart of the new optimization approach proposed in this

thesis. The blocks with bold lines are the new steps introduced in this thesis. The tasks

are first allocated to processors by a heuristic allocation algorithm, and the priorities are

assigned to tasks according to a heuristic priority assignment algorithm as initialization.

The communication cost will be added to model before model evaluation if applicable. If

the solution is not feasible, then the priorities are adjusted according to metrics based on

the simulation results. If priority adjustment is not able to meet the deadline

requirements, one task will be reallocated to a different processor. The communication

cost will be removed/added before/after the task reallocation if applicable.  The priority

adjustment and task reallocation will be repeated until a feasible solution is found or the

termination conditions are met. The final optimized result will be produced after

removing the communication cost if applicable.
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Figure 1.1   High Level Flow Chart of Optimization Approach
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1.3 Research Contributions

The following research contributions are made in this thesis:

1. Evaluate the optimization approach on distributed soft real-time systems with

stochastic execution demands, which were not done in the previous work

Based on the optimization approach proposed by H. El-Sayed et al., this thesis

extends the optimization approach to soft real-time systems with stochastic execution

demands. Algorithms are provided to handle communication cost (communication

overhead and network delay) in the distributed systems. To the best of author’s

knowledge, it is the first time to use optimization approach for distributed soft real-

time systems with stochastic execution demands and scenario deadlines. It shows that

the optimization approach really improves performance on soft real-time systems as

well as on hard real-time systems.

2. Improve and modify the optimization strategies in several aspects

The “fixed” priority approach, which is defined to assign different priority levels

for different tasks in this thesis, is used instead of the “static” priority approach, which

is defined to allow equal priority levels for different tasks in this thesis. H. El-Sayed’s

original priority adjustment algorithm uses a “static” priority approach that allows

different tasks to have the same priority level. However, hard real-time system

theories require a “fixed” priority approach that forces different priority levels for

different tasks. The static priority approach allowing equal priority level with First In

First Out (FIFO) scheduling discipline is considered as mixed priority approach

because FIFO is classified as dynamic priority approach in [25].

The priority adjustment algorithm is improved in this thesis. The new priority

adjustment algorithm indicates a higher success ratio according to the experimental

results.

New metrics for optimization are proposed by heuristic reasons after examining and

discussing the original metrics.

3. Implement and provide the optimization algorithms that begin from LQN models
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H. El-Sayed’s original optimization approach started with scenarios that could be

used to generate an LQN model. It required a specific tool to make the optimizer

work. The optimization approach in this thesis starts with ordinary LQN models with

scenario deadlines. It is more applicable than the previous one. The original and new

algorithms for optimization are implemented using Java language. All the optimization

algorithms are provided in this thesis.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 gives the background on task allocation

algorithms, priority assignment algorithms and issues related to LQN models.  Chapter 3

proposes algorithms to handle communication overhead and network delay in the general

LQN models. Chapter 4 describes and examines the optimization part in [11] in detail.

The improvements and modifications are also provided in this chapter. Chapter 5

evaluates the new optimization approach. Experiment results achieved from the new

optimization approach are compared with those from the original one on some hard real-

time examples. The new optimization approach is extended to soft real-time systems with

stochastic execution demands. Experimental results for an application are provided in

chapter 5. A case study on an e-commerce prototype is provided in chapter 6. It shows

the effectiveness of the optimization approach on practical systems. Chapter 7 gives the

conclusions finally.
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CHAPTER 2: BACKGROUND

Real-time system with deadlines has been studied using the following concepts and

notations. An independent task Ti may be characterized by its release time instant ri,

execution time ei and deadline Di. The time between its release time instant ri, and time

instant completing the amount of ei execution time is the response time Ri of that task.  If

Ri � Di, the task Ti meets its deadline requirement. Otherwise, it misses its deadline

requirement. If 100% of the response times in the real-time system must meet the

deadline requirements, the system is considered as a “hard” real-time system. If some

deadlines can be missed without causing system failure, the system is called a “soft” real-

time system. Sometimes the task Ti may consist of a chain of dependent subtasks.  The

response time Ri of Ti is then calculated from the release of the first subtask to the

completion of the last subtask in the chain.  The deadline Di  for Ti is called the end-to-

end deadline respectively.  As mentioned in chapter 1, real-time systems that are

deployed on multiple processors are called distributed real-time systems in this thesis.

Priority assignment and task allocation are the two most important issues configuring

distributed real-time systems. The related works on these two issues and the introduction

of the Layered Queueing Network (LQN) are presented in this chapter.

2.1  Priority Assignment Algorithms

J. W. S. Liu overviewed the real-time systems and classified three commonly used

approaches to scheduling real-time systems in [25]: clock driven, weighted round robin

and priority-driven approach. The priority-driven approach is the one that is used the

most.  The priority-driven algorithms are classified into two types for scheduling periodic

tasks: fixed-priority algorithms and dynamic-priority algorithms. Due to the poor

performance of dynamic-priority scheduling under overload conditions and the

complexity of its implementation, this thesis focuses on the fixed-priority algorithms.

2.1.1 Uniprocessor Scheduling Algorithms
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C.L. Liu and J.W. Layland proposed a uniprocessor real-time scheduling algorithm

which is well known as rate monotonic algorithm (RMA)[24]. According to the rate

monotonic algorithm, “tasks with higher request rate will have higher priorities”. The

tasks with the same request rate will break the tie arbitrary. They proved that the rate

monotonic priority assignment is optimal for the preemptive, independent and periodic

tasks with fixed priorities if the deadlines of the tasks are the same as their periods. It is

assumed that the tasks can’t be blocked and self suspended. The term “optimal” means

that the rate monotonic algorithm always produces a feasible scheduling if a feasible

scheduling exists. Liu and Layland provided a sufficient condition to guarantee all

periodic tasks to meet their deadlines if the total utilization of all the tasks is no more

than the utilization bound 0.693. The exact characterization for rate monotonic algorithm

to meet the deadlines is given by J. Lehoczky; L. Sha and Y. Ding in [22]. For randomly

generated and uniformly distributed tasks, 0.88 is suggested as reasonable utilization

bound to meet all the deadlines.

There are many constraints in the rate monotonic algorithm. These constraints have

been weakened by later works.

The constraint that the tasks can’t be blocked and self suspended is weakened by L.

Sha, R. Rajkumar and J. Lehoczky. They pointed out that the priority inversion problem

might occur if synchronization is permitted for the tasks [29]. An algorithm called

priority ceiling protocol is provided to deal with task synchronization. When a task enters

a critical section, its priority will be raised to the ceiling priority of the critical section,

and restores its original priority when it leaves the critical section. The priority ceiling

protocol can avoid mutual deadlock and bound the block time of a higher priority task at

most once by lower priority tasks. The utilization bound is adjusted respectively.

The deadline constraint is weakened by J.Y.T. Leung and J. Whitehead. They

proposed deadline monotonic algorithm for tasks with deadlines no more than their

periods [23]. The higher priorities are assigned to tasks with shorter deadlines instead of

shorter request rates. They proved that deadline monotonic algorithm is optimal for the

fixed-priority algorithms. I.e. if any other fixed-priority algorithm is feasible for

scheduling a set of tasks, the deadline monotonic algorithm is also feasible for those

tasks. If the deadline of every task is proportional to its period, deadline monotonic
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algorithm is equivalent to rate monotonic algorithm. The deadline monotonic algorithm

generalizes the rate monotonic algorithm and weakens the deadline constraint. J. P.

Lehoczky weakened the deadline constraint further [21]. By introducing the “level i busy

period”, the maximum time when only tasks with priorities greater than and equal to i are

executed, he gave a formula to calculate the worst-case response time of task with

priority i. Whether a task is schedulable could be determined by comparing the deadline

and the worst-case response time. He also pointed out that the rate monotonic algorithm

and deadline monotonic algorithm are no longer optimal if deadlines of the tasks are

greater than their periods.

The proofs of the algorithms mentioned above assume a worst-case scenario in which

all tasks are released at the same time. If the tasks are permitted to have arbitrary start

times, the common release time among all tasks may not occur.  N. C. Audsley pointed

out that both rate-monotonic and deadline-monotonic priority assignments cease to be

optimal if the tasks have arbitrary release times, and provided the optimal priority

ordering algorithm to find a feasible priority assignment [2].  The optimal priority

ordering algorithm divides all the tasks into a sorted lower priority tasks part and an

unsorted higher priority tasks part. It chooses an arbitrary task from the unsorted higher

priority tasks part and assigns the lowest priority level among these unsorted tasks. If the

chosen task is schedulable, the task is put into the sorted part and its priority will be kept.

Otherwise it will be put back to the unsorted part and another unsorted task will be

chosen. This continues until unsorted tasks part is empty (a feasible solution is found) or

all the unsorted tasks have been checked and found unschedulable (the system is not

feasible).  By extending J. P. Lehoczky’s formula [21] and N. C. Audsley’s algorithm [2],

K. W. Tindell provided a more general solution which could cope with release jitter and

sporadic periodic tasks [35].

2.1.2 Multiprocessor Scheduling Algorithms

When considering multiprocessors and “end-to-end” tasks, which have a chain of

subtasks in distributed system, the priority assignment becomes much more complicated.

R. Bettati proved that the problem of assigning priority to end-to-end tasks (transactions)
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is NP-hard [3]. Efficient optimal solutions are not likely available, and heuristic

algorithms must be created to find out feasible solutions.

B. Kao and H. Garcia-Molina proposed several heuristic algorithms to assign relative

deadlines to subtasks over sequential [19] and parallel [20] transactions for soft real-time

systems using Earliest Deadline First (EDF) scheduling. J. Sun adopted these algorithms

and proposed two new algorithms called Proportional-Deadline-Monotonic (PDM)

assignment and Normalized- Proportional-Deadline-Monotonic (NPDM) assignment

[33]. In PDM, The relative deadline of a task is obtained by dividing the end-to-end

deadline among the tasks proportionally according to their execution times. In NPDM,

which is similar to PDM, takes into account the processor utilization when determining

the relative deadlines of the tasks. These two new algorithms are reported to have better

performance than those of Kao’s [33].

There are more complicated algorithms using different kinds of optimization methods

which take more time but usually produce feasible schedules in more difficult ones. K.W.

Tindel, A. Burns, and A.J. Wellings used a technique called simulated annealing to find a

solution for priority assignment and task allocation at the same time [36]. It is suitable for

general hard real-time problems.

J.J.G. Garcia and M. Gonzalez Harbour proposed the Heuristic Optimized Priority

Assignment (HOPA) algorithm which schedules hard real-time transactions consisting of

a chain of actions (subtasks) in a distributed system to meet end-to-end deadlines [16].

The HOPA is based on the distribution of the end-to-end deadlines among the actions.

Once each action is assigned a local deadline, deadline monotonic algorithm is used to

assign a priority to each action. By calculating the worst-case response time using

formula provided in [35], the new intermediate local deadlines will be reached by taking

into account the “excess” of each action which measures the distance that separates each

action from schedulability, and the priority of each action is reassigned respectively. This

continues until a feasible solution is found or some stopping conditions are satisfied.

H.M. El-Sayed et al. proposed an optimization approach for priority assignment and

task allocation for distributed hard real-time systems in [10][11]. The tasks are assigned

priorities according to certain algorithm. Based on the simulations result of the LQN

model, a metric which measures the contributions to deadline miss rate for every task is
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calculated. The priority of the task with the worst metric will be raised to a higher level.

The priorities are adjusted until a feasible solution is found or the termination conditions

are satisfied. Its procedure of priority adjustment is similar to the HOPA to some degree.

This optimization approach is adopted in this thesis, and more details of this approach are

provided in chapter 4.

2.1.3 Soft Real-Time Approaches

Up till now, only a little research on soft real-time scheduling is reported.

T.-S. Tia, T. S., Z. Deng, M. Shankar, M. Storch, J. Sun, L. C. Wu, and J. W. S. Liu

described the Probabilistic Time Demand Analysis (PTDA) to provide probabilistic

schedulability guarantees to semi-periodic tasks which are released periodically and have

widely varied computation times [34]. The algorithm extends the Time Demand Analysis

(TDA) methods to semi-periodic tasks. It assumes that the deadlines of all the tasks are

no more than the periods.

M. K. Gardner used Stochastic Time Demand Analysis (STDA) to calculate the lower

bound frequencies of missed deadlines for the uniprocessor systems with independent

tasks and shared resources. The STDA extends the Time Demand Analysis (TDA) in

another way. Along with the Release Guard Protocol (RGP), the STDA is applied to

distributed systems of independent tasks with end-to-end deadlines [17].

Alia K. Atlas and Azer Bestavros presented Stochastic Rate Monotonic Scheduling

(SRMS) to deal with periodic tasks with highly variable execution times and statistical

QoS requirements [1]. A job admission controller, which is responsible for maintaining

the QoS requirements of the tasks, guarantees the admitted job to meet their deadlines,

and discards the jobs that are not admitted or let them run in lower priority than the

admitted jobs. The SRMS is restricted to rate monotonic scheduling policy. And

discarding a job may not be a good choice in real life applications. E.g. in an e-commerce

system, a late response should be better than discarding a request.

All these approaches extend hard real-time analysis to soft real-time systems to some

degree. However they are not suitable for general soft real-time systems due to their

constraints.
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N. J. Dingle, P. G. Harrison and W. J. Knottenbelt presented a technique for the

numerical determination of response time densities in Generalized Stochastic Petri Nets

(GSPNs) models which are popularly used for investigating complex concurrent systems

[9]. GSPN is able to model general systems with deterministic or exponential transitions.

Its numerical technique should be able to deal with general real-time systems including

the soft real-time systems. However the state explosion of the Petri Net may limit its use

on large systems and certain tool must be implemented to describe the systems by GSPN

efficiently.

2.2  Allocation Algorithms

It is understandable that the task allocation affects the performance of distributed

systems. An improper task allocation may cause the systems to miss deadlines where it is

possible to meet them in another allocation scheme.

Task allocation with minimum processors is an NP-hard problem even without

precedence constraints [23]. Heuristic algorithms are usually used for allocating task in

multiprocessor systems. Variants of bin packing algorithms [6] are used for task

allocation where the processors are considered as bins and tasks are considered as items

with different size. S.K. Dhall and C.L. Liu proposed two heuristic algorithms, Rate-

Monotonic First-Fit (RMFF) and Rate-Monotonic Next-Fit (RMNF) algorithms, to

allocate independent periodic tasks to a minimal number of processors [8]. The tasks are

sorted in non-increasing order of their periods, and then assigned to processors using bin

packing algorithms without violating rate monotonic schedulability conditions. The

worst-case performance was improved by another algorithm called First-Fit Decreasing-

Utilization Factor (FFDUF) algorithm where the tasks are sorted by the non-increasing

order of the utilization factor [7].  A. Buchard, J. Liebeherr, Y. Oh, and S. H. Son

proposed heuristic algorithms based on the tighter schedulability conditions [5]. The

performance improvement is significant for tasks with small load factors. M. F. Storch

and J.W.S. Liu proposed heuristic algorithms which cluster tasks to minimize the total

communication cost when the communication among the tasks is considered [32]. The
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tasks are assigned to a processor whose total utilization factor is less than the maximum

utilization factor.

All the algorithms mentioned above assume independent periodic tasks with hard

deadlines. These algorithms are too pessimistic for soft real-time systems, and the

assumption is too restrictive for general systems.

There are many other allocation algorithms concentrating other issues instead of

schedulability. H. S. Stone suggested an optimal algorithm for allocating tasks to two

processors to minimize the total communication cost by transforming the allocation

problem into a solvable network flow problem [31]. Optimal solutions with certain

constraints are extended to three or more processors where the general N-processor

problem is NP-complete [4].

A number of researchers use branch-and-bound (B & B) technique to allocate tasks.

D.T. Peng and K.G. Shin et al proposed two branch-and-bound algorithms to allocate

periodic tasks with precedence constraints to minimize the maximum response time [26].

C.J. Hou and K.G. Shin proposed an algorithm to find an assignment which maximizes

the probability of meeting deadlines by making use of a branch-and-bound technique

called Module Allocation Algorithm (MAA) [18]. Usually the branch-and-bound

technique also schedules the tasks while allocating the task. It takes more time than

general allocation algorithms.

C.M. Woodside and G.M. Monforton proposed Multifit-Com algorithm which aims at

the maximum throughput considering the communication cost [38].  The Multifit-Com

algorithm generalizes the Multifit algorithm on a bus-based multiprocessor system taking

account of the interprocessor communication requirements. The Multifit-Com algorithm

develops four heuristic policy choices to decide an allocation and each policy choice has

several options (Figure 2.1). In total, 36 combinations with different options in each

policy are studied on 680 small randomly generated examples, and a reduced set of 4

polices with less than 2% degradation is recommended. The Multifit-Com is chosen for

initial task allocation in this thesis. A more detailed description is provided in chapter 4.
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 Policies Options

Initial Task Sizing (ITS):

which estimates the task size

1 Upper Bound (Su)
     execution time plus all potential communications
2 Lower Bound (Sl)
   execution time only
3 Communication Based (Sc)
   only the potential interprocessor communication costs.

Task Ordering Technique (TOT):

which sorts the tasks in decreasing

ordering

1 Absolute (A)
   decreasing order according to task size
2 Communication-Directed (C)
   special heuristic algorithm in [38]

Intermediate Bin Weights (IBW):

which represents the workload

allocated to the bin

1 Upper Bound (Wu)
   special heuristic algorithm in [38]
2 Lower Bound (Wl)
   special heuristic algorithm in [38]
3 Processing Based (Wp)
   special heuristic algorithm in [38]

Placement Criteria (PC):

which determines the bin to which

the tasks are placed

1 Greedy (G), or Largest Fit
   calculate the intermediate bin weights for all possible
   placements of the task in question. Choose the
   placement which, to date, satisfies the goal of
   minimizing the bottleneck workload.
2 First Fit (F)
   starting at the first bin, calculate the intermediate bin
   weights. If they are all below the capacity, choose
   this processor (bin); otherwise move on to the next
   processor and repeat.

Figure 2.1      Policies and Options of Multifit-Com in [38]

2.3  Layered Queueing Network (LQN) Model

The layered queueing network (LQN) model, presented by C. M. Woodside et al, is a

performance model for systems with distributed software servers [13][14][28][37][39]. It

extends the queueing network model and can be used to model distributed systems with a

variety of different system behavior (e.g. hardware devices, software processes, nested
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services, precedence constraints and multithreads). It represents the software resources in

a natural way, and the LQN model is easy to understand and create.

In LQN model, a task (or process) represents a software or hardware object which may

execute concurrently. The tasks in real-time system could be easily described by the tasks

in LQN model. In the later part of this thesis, the word “task” represents the task in the

LQN model.

In LQN model, there are three types of task: pure client task, pure server task and

active server task.

• Pure client tasks: only send requests. Typical examples:  actual users and input

drivers. In Figure 2.2, Env1 and Env2 are pure client tasks.

• Pure server tasks: only receive requests. Typical examples: the final stage servers or

hardware devices. TaskE is a pure server task in Figure 2.2.

• Active server tasks:  can both send and receive requests. Typical examples: the

middle stage servers, such as TaskD in Figure 2.2.

Three types of communications are supported in LQN model: synchronous call,

asynchronous call, and forwarding call:

• Synchronous call: sender blocks when waiting for a reply from receiver. This is the

pattern of standard Remote Procedure Call (RPC). There are two kinds of messages in

synchronous call: request messages and reply messages. A synchronous call is

indicated by a solid line with a filled arrowhead, such as the call from a2 to en_e1 in

Figure 2.2.

• Asynchronous call: sender doesn’t block after sending a request. No replies are

required. Only request messages exist in asynchronous call. An asynchronous call is

indicated by a solid line with an open arrowhead, such as the call from a1 to en_b1 in

Figure 2.2.

• Forwarding call: The receiver might forward a synchronous call to the third task

instead of replying it directly. The third task might reply it or forward it further. The

receiver doesn’t block after forwarding. The final receiver will send a reply to the

blocked sender directly. Forwarding call contains request messages. Whether it

contains reply messages depends on the details of the receiver and the third task. A
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forwarding call is indicated by a dash line with a filled arrowhead, such as the call

from d2 to en_e2 in Figure 2.2

A task may have some “entries” which provide different services. An entry consists of

some “activities” or “phases” which are the smallest execution units. The activities may

have complex precedence relationships (e.g. AND fork, join, OR fork, join) each other

[15]. Most of the precedence constraints can be expressed by using activities. Figure 2.2

is an example of the LQN model.

Both analytic and simulation tools are supported for LQN models. The input format of

LQN model can be found in [15]. The important performance results such as response

times, throughputs, waiting times (the time when task is ready but not able to run) and

missed probabilities are listed in the output report.

In this thesis, all the results are produced by an LQN simulation tool called

“parasrvn”. The “max confidence interval” of every model is no more than 10%, meaning

that all the results should be accurate within ±10% with 95% confidence.
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Env2Env1

EnvP1
EnvP2

CPU2

CPU1

Task Task (or Process): program in execution

   entry

a

Entry: service port

Activity: unit of execution

CPU CPU: resource

Synchronous Call

Asynchronous Call

Forwarding Call

TaskB

en_b1

TaskA

en_a1

a1 a2

TaskC

en_c1

c1 c2

TaskD

en_d1

d1 d2

3

TaskE

en_e1 en_e2

1 (10)

CPU1 or
CPU2

Figure 2.2      An Example of LQN Model
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CHAPTER 3: A COMMUNICATION COST APPROACH IN

LQN MODEL

In order to make full use of the available resources, real-time systems are probably

deployed on multiprocessors. The tasks on different processors are synchronized by the

messages between them. The communication cost should be considered to describe the

systems more precisely. This chapter provides an approach to handle the communication

cost in LQN model. Two types of the communication cost are considered in this chapter:

the communication overhead sending and receiving messages, and the network delay.

3.1  Identify Physical Messages and Message Counts in LQN Model

The LQN model supports three types of communication calls: synchronous call,

asynchronous call, and forwarding call. It is not straightforward to calculate the

communication cost from those types of calls directly. According to the properties of

those calls, the physical messages and message counts must be identified before

calculating the communication cost. An extended LQN notation and physical message

notation is used in Figure 3.1. On the left-hand side in Figure 3.1, the extended LQN

notation adds the information of the message length of the LQN call. A number in

parentheses beside the request frequency is the message length of the request in some

suitable units (such as bytes), e.g. the “(5)” in Figure 3.1 (a). If there are two numbers in

parentheses beside the request frequency, the first number indicates the message length of

the request and the second number indicates the message length of the reply, such as the

“(3, 2)” in Figure 3.1 (b). If there is no number in parentheses beside the request

frequency, the default message length of the request and reply is 1. On the right-hand side

in Figure 3.1, the LQN calls are interpreted as one-way request messages and reply

messages.   In Figure 3.1, the request messages go down from entry e1 or e2 (in Figure

3.1 (c)), the reply messages go up to entry e1. The right-hand side of Figure 3.1 uses a

physical message notation for a single complete interaction, which is used for calculation

of communication overhead. In this notation, messages are indicated by an open headed
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(a)  Asynchronous Call

(b) Pure  Synchronous Call

(c)  Combined Synchronous and Forwarding Call

Note:
1. Left-hand side: Extended LQN Notation. Right-hand side: Physical Message Notation
2. The request frequency in the LQN notation (left-hand side) is the number of messages
sent when the sender is invoked once. The message number of the physical message
notation (right-hand side) is the number of messages sent when the client or forwarder
is invoked once.

Figure 3.1:  Basic Rules Identifying Physical Messages and
Message Counts with Request and Reply Messages

 Task1e1

Task2e2

 mc (5)

 Task1e1

Task2e2

 mc (5)

 Task1e1

Task2e2

 mc(3, 2)

 Task1e1

Task2e2

mc(3)     mc(2)

 Task1e1

Task2e2

 mc

Task3e3

 1

 Task1e1

Task2e2

Task3e3

 mc

1

mc
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arrow.The number beside the arrow is the mean number of messages messNum(m) for a

physical message m which is transmitted between the sender and receiver when the client

(e1 in Figure 3.1) or forwarder (e2 in Figure 3.1 (c)) in the interaction is invoked once.

For the request message, the client or forwarder sends the message. For the reply

message, the client receives the message. This notation is different from the notation of

LQN asynchronous call whose frequency value is always related to the sender. The

reason to use this notation is that the notation of asynchronous call doesn’t carry enough

information which is necessary to calculate the communication cost. This notation is only

used for calculating communication cost in this thesis. Another number in parentheses

beside the arc (e.g. “(5)” in Figure 3.1 (a) and “(3)”, “(2)” in Figure 3.1 (b)) indicates the

length of the messages messLen(m) in physical message m. The default length of a

message is assumed 1 if it is not specified. In this thesis it is also assumed that the

overhead of transmitting one message with unit message length is a known constant:

messUnitOV when the sender and receiver are on different processors. Thus the total

overhead for sending and receiving a physical message m is CommOV(m) defined by:

CommOV(m)=









××  processorsdifferent on  if   ,messUnitOVmessLen(m)messNum(m)

  

processor  same on the arereceiver  andsender  if                        0   

         (3.1)

 The message length messLen(m) is not defined in the current version of LQN

modeling language.  In this research, it is described in an additional file along with the

other information such as the overhead of transmitting a unit length message

messUnitOV. The additional file is explained in section 4.7 and examples of additional

file could be found in Appendix A.2 and Appendix B.2.

It is straightforward to identify the request messages and message counts. For each

call in the LQN model, a respective request message is produced. The sender and receiver

of the request message are the same as those of the LQN call. For each synchronous call

or asynchronous call, the message number of the respective request message is the

request frequency of that LQN call. For each forwarding call, the message number of the

respective request message is the forwarding probability of that forwarding call. The
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message length of the request message is defined in an additional file. The set of

produced request messages is identified as reqCall(M) in this thesis.

However, identifying the reply message and message counts from synchronous calls

and forwarding calls is not so simple. Different types of calls should be treated

differently:

1. It is straightforward to identify the reply message for a pure synchronous call. For

each pure synchronous call (e.g. the call in Figure 3.1 (b)), the message number of the

respective reply message is the request frequency of that pure synchronous call while

the sender and receiver of the reply message are opposite to those of the pure

synchronous call. The number of reply messages is the number when the client (e.g.

e1 in Figure 3.1 (b)) is visited once, instead of the server (e.g. e2 in Figure 3.1(b)).

2. When forwarding calls are combined with synchronous calls (e.g. in Figure 3.1), the

identification is more complicated. A set of synchronous calls that send messages

from the client to the final servers directly will be constructed according to the

forwarding calls and relative synchronous calls. After transformation, these

constructed synchronous calls could be considered as pure synchronous calls, and the

reply messages can be identified using the method mentioned in 1.

In order to identify the reply messages and their message counts, an algorithm is

provided to construct a series of transformed messages, ending up with reply messages.

The algorithm is provided as following:

1. Clone an LQN model and remove all the asynchronous calls in the cloned model.

2.  If there is no forwarding calls in the model, then go to step 5. Otherwise, locate an

entry e which is a secondary server forwarding synchronous calls to later stage

servers.

3. (a) Consider all forwarding calls from entry e, naming them as forCall(e, *) and

synchronous calls sent to e, naming them as synCall(*,  e).  Note that:

• M is the number of synchronous calls in synCall(*, e)

• mci (i = 1 to M) is the request frequency of the ith synchronous call in synCall(*,e)

• ai (i = 1 to M) is the sender of the ith synchronous call in synCall(*, e)

• N is the number of forwarding calls in forCall(e, *)
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• probj (j = 1 to N) is the forwarding probabilities of the jth forwarding call in

forCall(e, *)

• ej (j = 1 to N) is the receiver of the jth forwarding call in forCall(e, *)

(b) For each synchronous call from ai in synCall(*, e)

 For each forwarding call to ej in forCall(e, *)

 Delete forwarding call to ej in forCall(e, *)

Add a synchronous call from ai to e j with request frequency mci *  probj

Next

Change the request frequency of synchronous call from ai in synCall(*,e) to

 mci * (1 -  � probj). If the result is 0, delete that synchronous call

Next

4. If the set of forwarding calls is not empty, go to step 3.

5. For each remaining synchronous call, a reply message is produced. The set of the

produced reply messages is identified as replyCall(M) in this thesis. The number of

messages of the respective reply message is the request frequency of that transformed

synchronous call while the sender and receiver of the reply message are opposite to

those of the synchronous call. The message numbers of the reply message are the

number when the client (receiver of the reply message) is visited once, instead of the

server (the sender of the reply message).

The request messages and reply messages can be used to calculate communication

overhead and network delay. Figure 3.2 gives an example showing the identified physical

messages and message counts from an LQN model. Figure 3.3 shows how the request

messages and message counts are identified for the example model in detail, and Figure

3.4 shows how the reply messages and message counts are identified for the example

model in detail.
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.

Figure 3.2     Identification of Physical Messages and Message
Counts (An Example)

Note:
 1. Left-hand side: Extended LQN Notation. Right-hand side: Physical Message Notation
 2. The request frequency in the LQN notation (left-hand side) is the number of messages
sent when the sender is invoked once. The message number of the physical message
notation (right-hand side) is the number of messages sent when the client or forwarder is
invoked once.
 3.  prob1, prob2: forwarding probabilities (prob1 + prob2 < 1)
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  prob1                      prob2
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Note:
 1. Left-hand side: Extended LQN Notation. Right-hand side: Physical Message Notation
 2.  prob1, prob2: forwarding probabilities (prob1 + prob2 < 1)

Figure 3.3     Identification of Request Messages and Message
Counts (An Example)
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mc * prob1                          mc * prob2

  1

  prob1                      prob2

Note:
 1. Left-hand side: Extended LQN Notation. Right-hand side: Physical Message Notation
 2. prob1, prob2: forwarding probabilities (prob1 + prob2 < 1)
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Figure 3.4 Identification of Reply Messages and Message
Counts (An Example)
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3.2  Calculate Communication Overhead in LQN Model

In this thesis, the communication overhead is the overhead when client sends request

messages to server and server returns reply messages back to client, if applicable. The

client is defined as the one that makes requests and receives replies. The server is the one

that receives requests and sends replies, if applicable. If a client makes a request to the 1st

server (forwarder) and the 1st server forwards the request to the 2nd server, then for the

forwarding calls, the 1st server is considered as a client of the 2nd server.

The calculation of communication overhead is under the following assumptions:

1. The communication overhead occurs when client and server are allocated on different

processors. If they are allocated on the same processor, the communication overhead

is assumed to be zero.

2. For each physical message m, if there is a communication overhead, it is divided

evenly to both the client side and the server side. I.e. the communication overhead on

the client side CommOV(m, client) and the communication overhead on the server

side CommOV(m, server) are:

CommOV (m, client) = CommOV(m, server) =  CommOV (m) / 2 (3.2)

3. As mentioned in equation (3.1), the communication overhead is assumed not only

proportional to the number of messages, but also proportional to the message length

and a constant cost for a unit length message.

In the “High Level Flow Chart of Optimization Approach” (Figure 1.1), the

communication cost is modified when allocations are changed during optimization. The

communication overhead transmitting the messages must be added or removed

respectively. The following section discusses how to add or remove the communication

overhead in LQN model.

In LQN model, the sender of an LQN call might be an entry or an activity,  while the

receiver of an LQN call is always an entry. However this is not always true for the

physical messages identified in the previous sections. For a request message, the sender

could be an entry or activity, and the receiver must be an entry. For a reply message, the



28

sender must be an entry and the receiver could be an entry or activity. There are some

rules on where to add (remove) the communication overhead in LQN model:

1. For each request message identified from a synchronous call or asynchronous call, the

communication overhead on the client side (sender) is added (or removed) to an

activity or the phase of an entry that makes the request. The communication overhead

on the server side (receiver) is added (or removed) to the first phase of an entry that

receives the call.

2. For each request message identified from a forwarding call, the communication

overhead on the client side (sender) is added (or removed) to the first phase of an

entry that forwards the request or the last activity in an entry if the entry consists of a

chain of activities. The communication overhead on the server side (receiver) is

added (or removed) to the first phase of an entry that receives the call.

3. For each identified reply message, the communication overhead on the client side

(receiver) is added (or removed) to the phase of an entry that causes the request or the

reply activity in an entry if the entry consists of a chain of activities. The

communication overhead on the server side (sender) is added (or removed) to the first

phase of an entry that replies the call.

For every entry or activity in LQN model that related to the LQN calls, it might be on

the client side or on the server side. The identified physical messages could be request

messages or reply messages. Thus the communication overhead incurred by the phase of

an entry or an activity a consist of four parts:

CommOV(a) = CommOVreq,client(a) + CommOVreq,server(a) +

CommOVreply,client(a) + CommOVreply,server(a) (3.3)

Where

CommOV(a) is the total communication overhead incurred by a

CommOVreq,client(a) is the communication overhead incurred by a from the request

messages on the client side

CommOVreq,server(a) is the communication overhead incurred by a from the request

messages on the server side
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CommOVreply,client(a) is the communication overhead incurred by a from the reply

messages on the client side

CommOVreply,server(a) is the communication overhead incurred by a from the reply

messages on the server side

Those four parts of communication overhead can be calculated from the following

equation (3.4-3.7) weighted by the invocation rate of the physical messages and the

invocation rate of a:

                                          ∑ (invokeRate(m) *CommOV (m, client))
                                   m ∈ reqCall(a, *)
CommOVreq,client(a) = -----------------------------------------------------------  (3.4)

                 invokeRate(a)

                                          ∑ (invokeRate(m) *CommOV (m, server))
                                    m ∈ reqCall(*, a)
CommOVreq,server(a) = ----------------------------------------------------------- (3.5)

                  invokeRate(a)

                                          ∑ (criticalInvokeRate(m) * CommOV (m, client))
                                             m ∈ replyCall(a,*)
CommOVreply,client(a) = ----------------------------------------------------------------- (3.6)

criticalInvokeRate(a)

                                             ∑ (criticalInvokeRate(m) * CommOV (m, server))
                                              m ∈ replyCall(*, a)
CommOVreply,server(a) = ------------------------------------------------------------------ (3.7)

                   criticalInvokeRate(a)

where reqCall(a, *) is the set of request messages sent by a

reqCall(*, a) is the set of request messages sent to a

replyCall(a, *) is the set of reply messages sent by a

replyCall(*, a) is the set of reply messages sent to a

invokeRate(m) is the normalized sending rate of physical message m
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invokeRate(a) is the normalized invocation rate of a

criticalInvokeRate(m) is the normalized critical invocation rate of physical
message m

criticalInvokeRate(a) is the normalized critical invocation rate of a

CommOV(m, server) and CommOV(m, client) are provided in

equation (3.2)

invokeRate(m) = invokeRate (a’) if a’ sends m (3.8)

    criticalInvokeRate(m) = criticalInvokeRate(a’) if a’ sends m (3.9)

i.e.

invokeRate(m) = invokeRate(a)     in equation (3.4) 

& criticalInvokeRate(m) = criticalInvokeRate(a) in equation (3.6)

The equation (3.4) and (3.6) could then be simplified as (3.4.1) and (3.6.1)

CommOVreq,client(a) =      ∑ CommOV (m, client) (3.4.1)
                                      m ∈ reqCall(a, *)

CommOVreply,client(a) =         ∑ CommOV (m, client)    (3.6.1)
                                      m ∈ replyCall(a, *)

invokeRate(a) is the total normalized invocation rate (per second) among all scenarios.

invokeRate(a) =   ∑ invokeRate(a, S) (3.10)
                              ∀S ∈ Scenarios

invokeRate(a, S) could be calculated recursively:

invokeRate(a,S)=









××∑ S),(ainvokeRate  a) ,repeats(a  )a ,messNum(a

                 periodic is  S if                period(S) 1     

   arrivalopen an  has  S if                  e(S)arrivalRat   

0ss0

(3.11)

∀ a0 ∈ predecessor(as)
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where

as is the start activity of the entry where a stays if a is an activity.

repeats(as, a):  The mean repetitions of activity a related to its start activity as

If a is the phase of an entry, as and a are considered the same and the number
repeats(as, a) is always 1

     messNum(a0, as) is the number of messages sent from a predecessor a0,

        a0    might be an activity or a phase of an entry

predecessor(as) is the set of senders that makes calls to the entry begin with start

    activity  as

The similar equations could be reached for the criticalInvokeRate(a):

criticalInvokeRate(a) = ∑ criticalInvokeRate(a, S) (3.12)
                                          ∀S ∈ Scenarios

criticalInvokeRate(a, S)    =









××∑ S),vokeRate(acriticalIn  a) ,repeats(a  )a ,messNum(a

                 periodic is  S if                period(S) 1     

   arrivalopen an  has  S if                  e(S)arrivalRat   

0ss0

             (3.13)

  ∀ a0 ∈ predecessor(as)   

The only difference between the invokeRate(a) and criticalInvokeRate(a) is  that the

calculation of criticalInvokeRate(a) comes from the identified reply messages where

asynchronous calls are not counted.

Figure 3.5 indicates how to calculate the communication overhead in an example.

The final communication overhead incurred by the activities or the phase of entries is:

Activity a2: 2

Entry  en_e1 (phase 1): 2

Others: 0
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Env2Env1

EnvP1 EnvP2

CPU2

CPU1

TaskB

en_b1

TaskA

en_a1

a1 a2

TaskC

en_c1

c1 c2

TaskD

en_d1

d1 d2

3

TaskE

en_e1 en_e2

1 (10)

Communication Overhead For One Message With Message
Length Unit: 1

Network Delay: 0

The Call in LQN Model Identified Request message Identified Reply message

Type Client Server Client Side Server Side Client Side Server Side

Asynchronous a1 en_b1 0 0 NA NA

Synchronous a2 en_e1 3*1*1/2 = 1.5 3*1*1/2/3=0.5 3*1*1/2 = 1.5 3*1*1/2/3=0.5

Synchronous c2 en_d1 0 0 0 NA

Forwarding en_d1 en_e2 0 0 NA 0

Figure 3.5     Communication Overhead Calculation (Example)
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3.3  Insert Network Delay in LQN Model

When messages are transmitted between different processors connected by certain

network, a delay may occur during the transmission in network. The network delay must

be considered to get a more precise description. In this thesis, a pseudo NetworkTask

with several activities in each entry is inserted for each request or reply message between

different processors. Figure 3.6, Figure 3.7 indicates the insertion of NetworkTask in

LQN model. In Figure 3.6, the execution demand of activity a2 is 0, and the execution

demand of activity a1 and a3 are the network delay. In Figure 3.7, the execution demands

of activity a2 and a5 are always 0. The execution demand of a4 is the network delay.

There are some discussions to decide the execution demand of activity a1 and a3. Task2

and Task3 are assumed on different processors. If Task1, Task2 and Task3 are on

different processors, then the execution demands of a1 and a3 are the network delay. If

Task1 and Task2 are on the same processor, then the execution demand of a1 is 0, and

the execution demand of a3 is the network delay. If Task1 and Task3 are on the same

processor, then the execution demand of a1 is the network delay, and the execution

demand of a3 is 0.
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NetworkTask

Task1

Task2

Task1

Task2

a1 a2

(a) Asynchronous Call

Figure 3.6 Network Delay Insertion in LQN Model (1)

(b) Pure Synchronous Call

NetworkTask

Task1

Task2

Task2

Task1

a1 a2 a3
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This thesis used deterministic network delay in the examples. The value of the

network delay is defined in an additional file whose format can be found in Appendix A.2

and Appendix B.2. However this doesn’t limit the use of stochastic network delays in the

optimization approach. The simulation used in this thesis supports stochastic execution

demands. The network delay could even be extended to any other distributions by

creating specific generators.

NetworkTask

Figure 3.7 Network Delay Insertion in LQN Model (2)

(c) Combined Synchronous and Forwarding Call

NetworkTask

Task3

a4 a5
Task3

Task1

Task2
Task2

Task1

a1 a2 a3



36

CHAPTER 4: OPTIMIZATION STRATEGY: ORIGIN AND

IMPROVEMENT

This chapter proposes the strategies to optimize distributed real-time systems. H. El-

Sayed’s original optimization strategies described in [11] are introduced, and the

improvements and modifications are suggested after examining and discussing these

strategies in detail.

4.1 Procedure Of Optimization

This section introduces the optimization procedure proposed in [11] and the new

optimization procedure which could deal with the communication cost in the LQN

model.

H. El-Sayed described a methodology of optimizing LQN model to meet scenario

deadlines in [11]. The methodology consists of two phases: an initialization phase and an

optimization phase. The initialization phase suggests a good initial design as a starting

point, and makes the optimization more efficient. The optimization phase, the core of the

methodology, modifies the initial design gradually in order to meet all the scenario

deadlines.

 The initialization phase provides the initial task allocation and priority assignment.

The Multifit-Com algorithm [38] is used for the initial task allocation, and the

Proportional- Deadline-Monotonic algorithm is used for the initial priority assignment.

The optimization phase first adjusts the priorities, by raising the priority of the task

which is recommended by calculating the task metric. If the priority adjustment is not

able to find a feasible solution, the system is “reshaped” by changing the allocation of

tasks to other processors and modifying the task structure, and then repeats the priority

adjustment. The procedure stops if a feasible solution is found or the termination

conditions are satisfied.
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The original procedure of optimization is kept and yet is modified in the present thesis.

In order to describe the model more precisely, the communication costs (communication

overhead and network delay) are added before solving the model. When the model is

modified during the optimization, the communication costs will be removed and added

automatically to identify the effect of communication cost correctly. The high level flow

chart of the new optimization procedure is shown in Figure 1.1.

This work adds the communication cost handling during the procedure of

optimization.

4.2 Initial Allocation Using Multifit-Com Algorithm

This section introduces the initial allocation used in [11]. It is kept the same in this

thesis.

The Multifit-Com algorithm was originally designed for allocating independent

communicating tasks to processors sharing certain communication links. It uses the total

execution time and the communication cost during one scenario or response to estimate

the tasks. In [11], the starting point of the analysis was a scenario model which was used

to determine the execution and communication cost communication cost parameters.

However in this thesis, the starting point is already in LQN form, and the sequence of

operations implied by LQN model must be used. In LQN model, the calls are sent to

entries, which are the service ports of the tasks. The tasks may have more than one entry

to receive calls. One entry might be invoked by more than one scenario with different

arrival rates, and the visit ratios of the entries might be different from each other. In order

to allocate tasks in the LQN model using Multifit-Com algorithm, the task sizes and

communication overheads must be calculated specifically considering the issues

mentioned. The task sizes are calculated by the following equations in [11]:

          TaskSize(T) =     ∑  executionDemand( e) × invokeRate( e)   (4.1.1)
  ∀e ∈ entries( T)

          executionDemand( e) =    ∑   executionTime(activity)          (4.1.2)
                                                   ∀activity ∈  activities( e)
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             where  entries(T) is the set of entries in task T
                         activities(e) is the set of activities (or phases) in entry e

            

The calculation of invokeRate(e) is already provided  in equation (3.10) and (3.11),

using entry e in place of a.

The TaskSize(T) is the task size estimated for task T. The execution demand of an

entry executionDemand(e) is the total execution times among all the activities. Its

calculation is straightforward.

The interprocessor communication costs are calculated as the following equations if

they exist in [11]:

    CommOV(  T1, T2 ) = ∑ CommOV( e, T2  ) +  ∑ CommOV( e, T1 ) (4.2.1)
                                              ∀e ∈ entries( T1 )                        ∀ e∈entries (�T2 )

    CommOV( e, T) = (∑ CommOV(m)  ) × invokeRate(e)     (4.2.2)
                                 ∀m ∈ physical messages from e to T

CommOV(T1, T2) is the communication overhead between task T1 and T2, and

CommOV(e, T) is  the communication overhead between entry e and task T. In this thesis

it assumes that the communication overhead sending and receiving messages depends on

the number of physical messages, the length of the message and whether the sender and

receiver are on the same processor. The communication overhead is charged on both the

sender side and the receiver side evenly (See chapter 3 for details).

The calculation of CommOV(m) is provided in equation (3.1)

TaskSize(T) and CommOV(T1 , T2 ) are normalized by invocation rate, and they are

actually the CPU utilization consumed by the task and communication. Thus they are

suitable for the Multifit-Com algorithm.

Multifit-Com uses a large set of different heuristics called “policies” in [38], to create

candidate allocation, and then chooses the best one according to its criteria (which is to

maximize a throughput bound). The policies are identified as a 4-Turple (PC, TOT, ITS,

IBW) which is defined in [38] and mentioned in Figure 2.1. This work follows in El-

Sayed’s steps using the following eight policies keeping all eight solutions as separate

starting points for the optimization phase.
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Policy No. Policy Options  = (PC, TOT, ITS, IBW)
2 (G, A, Su, Wl)
13 (F, A, Su, Wu)
6 (G, A, Sc, Wl)
12 (G, C, Sc, Wl )
8 (G, C, Su, Wl)
10 (G, C, Sl, Wl)
19 (F, C, Su, Wu)
4 (G, A, Sl, Wl )

Figure 4.1 The Policy Set Used in [11]

4.3 Initial Priority Assignment Using Modified Proportional-Deadline-

Monotonic Algorithm

This section describes the modified Proportional-Deadline-Monotonic algorithm. The

calculation of the proportional deadline which is not shown in [11] is also provided.

After task allocation, the Proportional-Deadline-Monotonic algorithm is used for

initial priority assignment. The longer the proportional deadlines, the lower the priority

assigned. The equation of calculating the proportional deadlines are provides as follows:

ProportionalDeadline(T)  =    Min(ProportionalDeadline | S
T ) (4.3.1)

                                                                       ∀S ∈ Scenarios

              TaskSize | S
T  × DeadlineS

    ProportionalDeadline | S
T  = ---------------------------------------- (4.3.2)

      (  ∑ TaskSize | i
S
T  ) × visitRate| S

T

                                                            ∀Ti  relates to  S

visitRate| S
T  = 









×∑                |visitRate ) T ,TmeanCalls( 

                  

   Sby directly  called is  if                 1  

S
T0 0

T

(4.3.3)

                            ∀ T0 ∈ predecessor(T)
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If one task is included in more than one scenario, the proportional deadlines of Task T

ProportionalDeadline(T)  in different scenarios are calculated separately and the minimal

one will be chosen as its proportional deadline. TaskSize| S
T  is the part of the TaskSize(T)

where only the arrival rate of scenario S is counted. The visit rate of task T in scenario S

visitRate|S
T  must be considered if the task T is called more than one time in scenarios.

Proportional-Deadline-Monotonic algorithm is originally created for hard real-time

systems where tasks are modeled as infinite server tasks in LQN model. When a general

distributed real-time system is modeled by LQN, the task may have a finite number of

threads. The Proportional-Deadline-Monotonic algorithm should also consider the

number of threads according to the experience of the author. Heuristically, a single

threaded task is easier to be a bottleneck that delays the response time than a

multithreaded task. In this thesis, the modified proportional deadline is described as

follows:

1. Sort all the tasks according to their number of threads. The lower the number of

threads, the higher the priority.

2. If more than one task have the same number of threads, those tasks will be assigned

priorities according to their proportional deadlines. The shorter the proportional

deadline, the higher the priority.

This work extends the Proportional-Deadline-Monotonic algorithm to general

systems, by taking into account the number of threads in the tasks.

4.4 Estimation for Solution Quality

This section describes the original and the new formulas to estimate the solution

quality. The difference between these two estimations is discussed and compared.

 In order to measure the quality of a solution, a criticality metric is established

according to the probability of missed deadlines in [11]:

SolutionPenalty   =    ∑   CriticalityS (4.4.1)
                                               ∀( S ∈ Scenarios )

CriticalityS  =
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



>
≤

× α
α

β DeadlineprobExceed     

 DeadlineprobExceed                                 0
DeadlineProbExceede

(4.4.2)

where α is the probability of missed deadlines.

e.g.  α = 0 for hard real-time systems and α = 0.05 for soft

real-time systems

β is a design decision parameter. e.g  β = 15

The exponential power indicates the huge penalty on the scenarios with big missed

probabilities. The zero solution penalty means a feasible solution.

The calculation of solution penalty is straightforward. However in this work the

calculation of criticality is modified as equation (4.4.3) in this thesis:

CriticalityS  =





>

≤
× α

α
αβ DeadlineprobExceed     

 DeadlineprobExceed                                       0
) - DeadlineProbExceed(e

(4.4.3)

The two different functions to calculate the criticality metric are visualized in Figure

4.2.

The reason behind the modification is explained by the following example. A system

with two scenarios has the following deadline requirements:

Deadline requirements for the system:

scenario 1: 100% requests must meet deadlines

scenario 2: 95% requests must meet deadlines

There are two candidate solutions:

Solution 1 results:

scenario 1:  96% requests meet deadline

scenario 2: 100% requests meet deadline

CriticalityS  using equation(4.4.2): 1.822

CriticalityS  using equation (4.4.3): 1.822
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Figure 4.2 Original and New Criticality Metric

 CriticalityS

                e�

               e��

              0       α                  1   ProbExceedDeadline

CriticallityS

         e (1-

�)�

              0       α                  1   ProbExceedDeadline

(a) Original Function for Criticality Metric, Equation (4.4.2)

(b) New Function for Criticality Metric, Equation (4.4.3)
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Solution 2 results:

scenario 1:  100% requests meet deadline

scenario 2: 94% requests meet deadline

CriticalityS  using equation(4.4.2): 2.46

CriticalityS  using equation(4.4.3): 1.162

If we use the original equation to calculate the solution penalty, the solution 1 is better

than solution 2. However solution 2 is better than solution 1 if the new equation is

applied. Although the absolute missed probability in solution 2 (6%) is larger that of

solution 1 (4%), the missed probability in solution 2 is closer to the requirements (1%

difference) than that of solution 1 (4% difference). This is what is important to the

optimization. Moreover, as we can see in Figure 4.2, the new criticality metric uses a

continuous function instead of a discontinuous function. The continuous function is

supposed to optimize the model more smoothly.

Whenever a model is solved, the solution quality will be calculated, and the best

configuration, which has the least solution penalty value, will be kept until the

optimization is finished. This will improve the optimization behavior and avoid

thrashing.

This work uses a more “reasonable” continuous function to estimate the criticality of

an LQN model. The justification is heuristic.

4.5 Task Metric and Priority Adjustment Strategy

This section introduces an improved priority adjustment strategy and modified task

metric after discussing the original ones.

When a solution is not feasible, optimization is required to improve the solution. The

optimization is the core part of the methodology.

The priority adjustment is the first consideration for optimization due to its low

overhead. A task metric, which measures the task’s contributions to problems failures,

suggests which task should have a higher priority. Task metric and priority adjustment
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strategies are important parts of the optimization. The original metrics and strategies will

be examined carefully to bring about a better solution.

4.5.1 Task Metric

The calculation of the task metric is given in [11] by the following equations:

TaskMetricT  = 1/ UT  ×   ∑  TaskScenarioMetricT |
S
T  × CriticalityS (4.5.1)

 ∀S ∈ Scenarios  

TaskScenarioMetricT |
S
T  =  TaskWaitMetric| S

T  + askCommOVExcessMetric| S
T  (4.5.2)

TaskWaitMetric| S
T  =   ∑  WaitingTimea (4.5.3)

                               ∀ ( a ∈Activities |
S
T ) 

        ∑ CommOVm

   ∀ ( m∈ nonLocalMsgs |
S
T  ) 

TaskCommOVExcessMetric| S
T  = -------------------------------  -  ∑CommOVm (4.5.4)

noTargetCPUs | S
T     ∀( m∈LocalMsgs|

S
T ) 

Where 

* Activities| S
T   ≡ set of activities of task T that are on the critical path of scenario S

* nonLocalMsgs ≡  set of non-local messages of task T that are on the critical path
of scenario S

* LocalMsgs | S
T  ≡ set of local messages of task T that are on the critical

 path of scenario S

noTargetCPUs | S
T   ≡ no of CPUs that task T communicates with during the

execution of the critical path of S
* UT  is the CPU utilization of task T which is provided in the output file of the
simulation

The original task metric combines the task waiting time during execution and the

potential average communication overhead excess if reallocation occurs.  The

optimization does need to consider these two issues to adjust the priority and reshape the

design, but just for priority adjustment, it is not necessary to consider the communication

overhead excess. In this thesis, only the task waiting times will be considered for

calculating the task metric. It’s heuristic that the waiting times (when a task is ready to
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run but not able to run) for the tasks along the scenario critical paths cause the scenario to

have a longer service time and hence to miss the deadline. Obviously the task which

contributes the largest waiting time should have its priority raised. The following new

equations (4.5.5 – 4.5.6) are used to calculate the task metric:

TaskMetricT  = 1/ UT  ×   ∑ TaskWaitMetricT |
S
T  × CriticalityS (4.5.5)

                             ∀S ∈ Scenarios

TaskWaitMetric| S
T  = ∑WaitingTimee  × criticalInvokeRate(e, S) (4.5.6)

                                   ∀e ∈ Entries|
S
T  

The new equations remove the communication overhead excess from the task metric

and consider the visit rates along the scenario critical paths criticalInvokeRate(e, S). Note

that criticalInvokeRate(e, S) is the part of the invokeRate( e)  where only the synchronous

calls and forwarding calls from scenario S are counted. The calculation equation of

criticalInvokeRate(e, S) is provided in (3.13).

4.5.2 Priority Adjustment Strategy

When a task is chosen as the candidate task according to the task metric, its priority

should be raised in order to get a better solution. A static priority discipline which allows

equal priority level for different tasks is used in [11]. However, the “static” priority

algorithm is a little bit different from the fixed priority algorithm which requires different

priority levels for different tasks. FIFO (First In First Out) scheduling discipline for the

tasks with same priority levels is considered as a dynamic priority algorithm in [25]. The

hard real-time systems always use fixed priority algorithms which could predict the task

behaviors at any time. This optimization approach is targeted at the general real-time

systems (including the hard real-time systems), the fixed priority algorithm is adopted in

this thesis.

The new priority adjustment strategy assumes different priority levels for different

tasks. If the equal priority levels are assigned to different tasks, the priority levels will be

sorted by initialization. The procedure of priority adjustment is described as follows:

1. Raise the priority level of the candidate task one level higher.

If the priority combination is visited at the first time, a new priority state is found.



47

Raise The Priority Level
Of Candidate Task One

Level Higher

Get The Priority
Combination

The Priority
Combiantion Is

New?

Raise The Priority Level
Of Candidate Task To

The Highest Priority Level

The Prioirty
Combiantion Is

New?

Yes

No

New Priority State
Is Found

Record The Priority
Combination

Get The Priority
Combination

Record The Priority
Combination

New Priority State
Is Not Found

No

Yes

Figure 4.3 Detailed Flow Chart of Priority Adjustment

2. Otherwise, raise the priority level of the candidate task to the highest priority level.

3. If the priority combination is visited at the first time, a new priority state is found.

Otherwise, new priority state is not found.
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The “Adjust Priority For Candidate Task” block in Figure 1.1 is described in the flow

chart (Figure 4.3) in detail.

This work uses the distinct fixed priority approach in place of the priority approach

which allows equal priority levels. The task metric for priority adjustment is modified

heuristically.

4.6 Task Reallocation and “Task Reshaping”

This section introduces a modified task reallocation strategies and task allocation

metric after discussing the original ones.

The design will be reshaped if the priority adjustment could not provide a feasible

solution. Two strategies are used for reshaping in [11]: task reallocation and task

restructuring. Task reallocation is to reallocate the candidate task to another processor.

Task restructuring is to split an entry from the candidate task.

Although task splitting gives benefits to reduce priority inversion, it is not used in the

optimization phase in this thesis. The entries are the service ports provided by the task. In

some situations, they can’t be split and must be kept together. If task splitting is

necessary, a simple way is to split tasks in the initialization phase instead of the

optimization phase. In the initialization phase, more than one task could be split at the

same time and more than one entry could be split from a task. (In this research, task

splitting is not automated). The case study in chapter 6 tried this attempt.  The task

reshaping is hence simplified as task reallocation during optimization phase.

Before task reallocation, the best configuration so far will be restored. By heuristics,

the model with better solution quality may have a better chance to be feasible using

optimization. The tasks will then be sorted by the scenario metric CriticalityS   defined in

equation (4.4.3) and the task metric. I.e. the tasks that are along the path of the scenario

with the worst scenario metric will be considered first. The task with be worst task metric

among the selected tasks is the candidate task for reallocation. The criteria of choosing

the destination CPU are different from the criteria in [11]. The metric is described by the

equation (4.6.1) – (4.6.3):

CPUMetric(T, C)  =   CommOVGainMetric (T, C) +  UtilGainMetric(T, C) (4.6.1)



49

CommOVGainMetric(T, C) =( ∑ CommOV(m)   - ∑ CommOV(m) )
                                     ∀m∈ nonLocalMsgs(C, C0)        ∀m ∈LocalMsgs

* invokeRate(m) (4.6.2)

UtilGainMetric(T, C)  =  UtilC0 – TaskSize(T) - UtilC          (4.6.3)

* nonLocalMsgs(C, C0) ≡  set of non-local physical messages of task T between CPU C
and CPU C0 (the local CPU)
* LocalMsgs  ≡ set of local physical messages of task T that are on the critical path of
scenario S

CPUMetric(T, C)  is the metric estimating the benefits of reallocating task T

(originally located on processor C0) to a new processor C. It consists of two parts: the

utilization decreased due to communication overhead CommOVGainMetric(T,C) and the

decreased utilization of the processor on which task T locates  UtilGainMetric(T, C)  after

reallocation. The CommOVGainMeric(T, C)  is the processor utilization saved in the

system if task T is reallocated to processor C. CommOV(m) could be calculated using

equation (3.1) and invokeRate(m) could be calculated using equation (3.8) and (3.10). By

heuristics, if the total processor utilization in the system is decreased, the performance of

the system will be better. UtilGainMetric(T, C) estimates whether the utilization of the

processor on which Task T locates decreases. By heuristics, if a task is reallocated to a

processor whose processor utilization is less than that of the original one, the system has

more chances to be feasible. UtilC0 and UtilC are the processor utilization of C0 and C

before reallocation. They are included in the simulation output file.

The candidate task will be reallocated to the target processor and the candidate task

will be recorded so that it will not be reallocated next time.

The “Reallocate Candidate Task” block in Figure 1.1 is described in the flow chart

(Figure 4.4) in detail.

This work simplifies the task reshaping and modifies the metric for task reallocation

by heuristics.
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Restore Best
Configuration

Sort Non-Reallocated
Tasks By Scenario
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No More Tasks
Available

Calculate CPUMetrics Yes

No

New Allocation Is
Not Available

Reallocate Task To
Target Processor

Record The Task As
Reallocated Task

New Allocation Is
Available

Figure 4.4 Detailed Flow Chart of Task Reallocation

4.7 Optimizer Implementation

The optimization approach was implemented using Java programming language.

Figure 4.5 shows the information flow of the implementation. The core part of the

optimization is the “Optimizer” module. It collects information from LQN model file and

an additional file and controls the running of other programs according to the

optimization parameters. The “Optimization Output” will be printed on screen or
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Figure 4.5 Information Flow Diagram for Optimizer Implementation

be redirected to an output file. The blocks with bold border are the work done in this

research. When using the optimizer, there are some command line options to decide:

• Whether to initialize priorities

• Whether to initialize task allocation. If initial task allocation is necessary, which

policy should be used or all the eight policies should be used.

• Whether the communication cost should be handled during optimization.

Program                                                  Call

File   Information Flow

Optimizer

Output Parser

LQN Java
Package

LQN Simulator

Multifit-Com
Allocator

LQN Input File

Additional File

LQN Output File

Optimization
Output

Multifit-Com
Output
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• Whether to reallocate the tasks

• The miss rate requirement

The “LQN Input File” is a standard LQN model file. It requires scenario deadlines in

pseudo scenario entries to set the deadline requirements for LQN model.

The “Additional File” defines information that is necessary for the optimization, but

can’t be expressed in the standard LQN model file. This file contains information for

communication cost calculation, task allocation and some concerns for optimization. It

can be extended for other purposes (e.g. automatic task splitting) for future uses.

The optimizer uses classes in the “LQN Java Package” developed by former students

in the lab. However that LQN Java package only provides basic functions. The “Output

Parser” class is created upon the LQN Java package to provide high level functions for

the optimizer, hiding the details of LQN model. The metrics and algorithms are also

implemented in this class. There are about 6000 lines of Java source code in the

Optimizer and “Output Parser” class.

The “LQN Simulator” is a program called “parasrvn”, and “Multifit-Com Allocator”

is the program provided by [38] to perform Multifit-Com algorithm.

4.8 Summary

This chapter introduces every part of the optimization approach proposed in [11] in

detail. After examining and discussing the original strategies, the optimization approach

framework, and algorithms related to the initial task allocation are kept. Priorities are

forced to be different for all tasks in present thesis. An improved priority adjustment

algorithm with new task metric is proposed. And the original priority initialization

algorithm is modified for tasks with finite threads. Due to heuristic reasons, the

estimation function for the scenario criticality metric, the metrics for task reallocation and

task reallocation strategies are changed as well.
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CHAPTER 5: EVALUATION OF THE OPTIMIZATION

APPROACH

This chapter evaluates the optimization approach provided in this thesis. The purposes

of evaluation are:

• To verify that the re-implementation is reasonably close or better in capability to the

original one.

• To verify that the new changes are satisfactory on the test cases

• To evaluate the approach on the stochastic systems with soft deadlines which was not

included in [11]

5.1  Evaluation of New Algorithms on Hard Real-Time Systems

The effectiveness of the new optimization technique was compared to the “original”

optimization described in [11]. Since [11] only considered deterministic hard real-time

systems, this section was based on this kind of system, with two sets of examples:

• Independent periodic tasks on a single processor.

• An example described by Etemadi in [12]

5.1.1 Independent Periodic Tasks Models

In order to check the strength of the priority adjustment strategies, a number of test

sets were generated randomly. All the test cases have 2-8 independent periodic tasks with

certain utilizations, on one processor. The tasks are assumed to have a fixed priority using

the new algorithm and a static priority using the original algorithm.  These test cases

satisfy the requirements of rate monotonic algorithm, and hence the optimization results

could be compared with the results using the rate monotonic algorithm to check the

effectiveness. The following table lists the test sets generated and the respective

utilization bounds:



54

Number Of
Tasks

Group1
Utilization

Group2
Utilization

Rate Monotonic Utilization Bound

2 0.82 0.90 0.828
3 0.77 0.90 0.779
4 0.75 0.90 0.756
5 0.74 0.90 0.743
6 0.73 0.90 0.734
7 0.72 0.90 0.728
8 0.72 0.90 0.724

         Figure 5.1 Test Sets Parameters and Respective Utilization Bounds

For each number of tasks, two groups of test cases are generated. The group1 test

cases whose utilization is less than the rate monotonic utilization bound could be

definitely scheduled to meet all the deadlines according to the rate monotonic algorithm

[24]. The group2 test cases whose utilization is more than rate monotonic utilization

bound but less than 1.0 can’t be determined simply if they are schedulable. However the

rate monotonic algorithm is proved to be optimal among all the fixed-priority algorithms.

It could be used as a standard to check the effectiveness of other algorithms. The

successful number of cases using the optimization strategy over the successful number of

cases using the rate monotonic algorithm is called the “success ratio” of the optimization

strategy. In order to increase some difficulties on the test cases, the initial priorities of the

tasks are set in a reverse order according to the rate monotonic algorithm. I.e. the task

with the shorter period has the lower priority. These task sets are supposed to be difficult

ones due to the bad initial priority assignment. 50 models are generated for each task

number and utilization combination; hence 700 models are generated totally.

Figure 5.2 lists the experiments results using the original priority adjustment strategy

in [11], and Figure 5.3 lists the experiments results using the new priority adjustment

strategy in this thesis.
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Task
Number Utilization

Total
Number of

Cases

Number of
Successful Cases

(RM)
Number of Successful
Cases (Optimization) Success Ratio

2 0.82 50 50 50 100.00%

2 0.9 50 41 41 100.00%

3 0.77 50 50 50 100.00%

3 0.9 50 37 37 100.00%

4 0.75 50 50 49 98.00%

4 0.9 50 24 22 91.67%

5 0.74 50 50 47 94.00%

5 0.9 50 20 16 80.00%

6 0.73 50 50 49 98.00%

6 0.9 50 5 2 40.00%

7 0.72 50 50 48 96.00%

7 0.9 50 7 3 42.86%

8 0.72 50 50 47 94.00%

8 0.9 50 3 1 33.33%

Figure 5.2  Experimental Results Using Original Priority Adjustment Strategy

Task
Number Utilization

Total
Number of

Cases

Number of
Successful Cases

(RM)
Number of Successful
Cases  (Optimization) Success Ratio

2 0.82 50 50 50 100.00%

2 0.9 50 41 41 100.00%

3 0.77 50 50 50 100.00%

3 0.9 50 37 37 100.00%

4 0.75 50 50 50 100.00%

4 0.9 50 24 24 100.00%

5 0.74 50 50 50 100.00%

5 0.9 50 20 20 100.00%

6 0.73 50 50 50 100.00%

6 0.9 50 5 5 100.00%

7 0.72 50 50 50 100.00%

7 0.9 50 7 7 100.00%

8 0.72 50 50 50 100.00%

8 0.9 50 3 3 100.00%

Figure 5.3  Experimental Results Using New Priority Adjustment Strategy
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The results are quite encouraging. The new strategy finds out a feasible solution every

time when the rate monotonic algorithm succeeds. The success ratio of the original

algorithm is less than 100% especially when the task number and the utilization increase.

The new algorithm indicates a better performance than the original one in addition to its

predictability.

5.1.2 Etemadi’s Transaction Model

A sonar signal processing example originally described by Etemadi [12] is discussed

in [11].  It consists of 13 transactions running on 8 processors. Figure 5.4 shows the

model of Etemadi’s example.

A conventional task graph notation is used in Figure 5.4. The arrows show the

precedence dependency, and blocks are tasks in the task graph. The LQN model file was

provided by H. El-Sayed, although it is not listed in [11]. For each task in the task graph,

it is represented by a task in LQN model. Each transaction is represented as a scenario.

Each driver is described by a reference task to generate arrival rate and a pseudo task to

collect response time and set deadline. For the scenarios with a single task (e.g. scenario

2 – scenario 11), the arrows are synchronous calls in the LQN model file. For the

scenarios with multi branches (e.g scenario 0 and scenario 1), one branch is expressed by

a forwarding call, and the other branches are expressed by asynchronous calls. All these

branches join together and send a reply to the pseudo task to get a total execution time of

a transaction.

Three experiments with different resource requirements are studied in [11]. These

three experiments were repeated using the new algorithm introduced in this thesis.

• Experiment #1: all the transactions are run on 8 processors. Every task is required

to be allocated to a specific processor. This is same as the one described in [12].

• Experiment #2: the number of processors is reduced to 7. The tasks could be

allocated to any processors.

• Experiment #3: only 6 processors are available. The tasks could be allocated to

any processors.
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R D C c  [ 1 3 0 ]

B 1 c [ 9 0 ] B 2 c [ 9 0 ] B 3 c [ 9 0 ]

A 1 c [ 5 0 ] A 2 c [ 5 0 ] A 3 c [ 5 0 ]

N B 2 c [ 1 2 0 ]
N B 3 c [ 2 1 0 ]

N B 1 c [ 2 1 0 ]

B B D E c [ 1 2 0 ] T C c [ 1 3 0 ]

R D C  [ 1 3 0 ]

B 1 [ 9 0 ] B 2 [ 9 0 ] B 3 [ 9 0 ]

A 1 [ 5 0 ] A 2 [ 5 0 ] A 3 [ 5 0 ]

N B 2 [ 1 2 0 ]
N B 3 [ 2 1 0 ]

N B 1 [ 2 1 0 ]

B B D E [ 1 2 0 ] T C [ 1 3 0 ]

D r i v e r 0

P e r i o d  =  1 1 2 5

D r i v e r 1

P e r i o d  =  7 5 0

D r v i e r 2

P e r i o d  =  7 5 0

D S 1 [ 4 0 ]

D r i v e r 3

P e r i o d  =  7 5 0

D S 2 [ 4 0 ]

D r i v e r 4

P e r i o d  =  7 5 0

D S 3 [ 4 0 ]

D r i v e r 5

P e r i o d  =  7 5 0

D S 4 [ 4 0 ]

D r i v e r 6

P e r i o d  =  1 0 0 0

T P [ 1 0 ]

D r i v e r 7

P e r i o d  =  1 0 0 0

P C 1 [ 1 0 ]

D r i v e r 8

P e r i o d  =  1 0 0 0

P C 2 [ 1 0 ]

D r i v e r 9

P e r i o d  =  1 0 0 0

P C 3 [ 1 0 ]

D r i v e r 1 0

P e r i o d  =  1 0 0 0

P C 4 [ 1 0 ]

D r i v e r 1 1

P e r i o d  =  1 0 0 0

P C 5 [ 1 0 ]

D r i v e r 1 2

P e r i o d  =  1 0 0 0

P C 6 [ 1 0 ]

Figure 5.4     The Model for Etemadi’s Example
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These three experiments can check not only the priority adjustment strategy, but also

the task reallocation strategy. Figure 5.5 summarizes the experimental results using the

original algorithms and the new algorithms.

Original Algorithms New Algorithms
Experiment # # of CPUs Success Ratio Avg. Steps Success Ratio Avg. Steps

1 8 8/8 0 8/8 0
2 7 8/8 2 8/8 9
3 6 7/8 60 8/8 38

Figure 5.5 Experiment Results for Etemadi’s Transaction Model

Both the original and the new optimization algorithms find the feasible solution in

experiment #1 just after initialization. It shows the algorithms used for initialization are

quite good. The new algorithms found a feasible solution every time from 8 different

starting points in experiment #3 while the original algorithms succeeded from 7 of the 8

starting points.  Along with the experimental results of the independent periodic tasks in

the previous section, it indicates that the new algorithms may provide a higher success

ratio than the original ones.

5.2  Effectiveness of Communication Cost Approach

In order to check the effectiveness of the communication cost approach, a tutorial

model with communication cost is created (Figure 5.6). The overhead of sending and

receiving one message with unit message length and the network delay are modified in

two scenarios to indicate different communication costs in the model.

In the tutorial model, the call from a2 to en_e1 has the value of 3 for request

frequency (i.e. 3 requests per invocation), and every message has one message length unit

(by default). The call from d2 to en_e2 has 1 request per invocation (by default), while

this message has a length of 10 message length units. Other calls have the default values,

i.e. 1 request per invocation and the message length is 1 message length unit.

In scenario 1, the network delay is 0. The communication cost is only the

communication overhead sending and receiving messages between different processors.
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Env2Env1

EnvP1
EnvP2

CPU2

CPU1

Scenario1:

Communication Overhead for one message per message length unit:

0 . 7

Network Delay:  0

The  dead l ines  w i l l  be  met  when  the  p r io r i t i es  o f  TaskE i s

ra ised.

Scenario2:

Communication Overhead for one message per message length unit:

0.01

Network  De lay :  1 .7

The  dead l i nes  can ' t  be  me t  j us t  unde r  p r i o r i t y  ad jus tmen t .

The deadlines wil l  be met when TaskE is reallocated to CPU1.

TaskB

en_b1

TaskA

en_a1

a1 a2

TaskC

en_c1

c1 c2

TaskD

en_d1

d1 d2

3

TaskE

en_e1 en_e2

1 (10)

Execution Demands:        Periods and Deadlines:

   a1:     35              Env1: 50

   a2:     0               Env2: 50

   en_b1:  3

   c 1 :      2 0              I n i t i a l  P r i o r i t i e s :

   c2:      0                 TaskA:  2

   d1:     20               TaskB: 1

   d2:      0                TaskC: 3

   en_e1:  1                TaskD: 2

   en_e2:  1                TaskE: 1

Figure 5.6 Tutorial Model for Communication Cost Approach

The total communication cost between CPU1 and CPU2 is the communication

overhead for the call from a2 to en_e1:

Total communication cost (TaskE on CPU2 ) = 3 * 0.7 + 3 * 0.7 = 4.2
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If TaskE is assigned to CPU1, then the total communication cost will be the

communication overhead for the call from d2 to en_e2 and the reply from en_e2 to c2:

Total communication cost (TaskE on CPU1) = 10 * 0.7 + 1 * 0.7 = 7.7

The scenario 1 (TaskE is assigned to CPU2) has lower communication cost, and has a

better chance to meet the deadlines. It has been checked that if TaskE is assigned to

CPU1, the deadline requirements can’t be met 100%.

Figure 5.7 indicates the steps to optimize the model in scenario 1:

Step Candidate

Task

Actions And States Resp. Times

of Scenarios

Prob. of Missed

Deadlines

Solution

Penalty

0 CPU1: TaskA > TaskB

CPU2: TaskC > TaskD > TaskE

50

44.8

0.0005

0

1.0075

1 TaskE Raise priority of TaskE

CPU1: TaskA > TaskB

CPU2: TaskC > TaskE > TaskD

45

49.6

0

0

0

Figure 5.7  Optimization Steps in Scenario 1

The LQN model file, the additional file and the optimization output of the tutorial

example in scenario 1 are listed in Appendix A.

In scenario 2, the network delay is 1.7 and the overhead sending and receiving one

message with one message length unit is 0.01. The network delay dominates the

communication cost.  The total communication cost between CPU1 and CPU2 is the

communication overhead for the call from a2 to en_e1 and the network delay during

message transmissions:

Total communication cost (TaskE on CPU2)  = 3*0.01 +3*0.01 +3*1.7 +3*1.7 =10.26
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If TaskE is assigned to CPU1, then the total communication cost will be the

communication overhead for the call from d2 to en_e2 and the reply from en_e2 to c2

and the respective network delay:

Total communication cost (TaskE on CPU1) = 10*0.01 +1*0.01 + 1*1.7 +1*1.7 =3.42

The TaskE should be reallocated to CPU1 to have a better chance to meet the

deadlines. The optimization result confirms this calculation.

Figure 5.8 indicates the steps to optimize the model in scenario 2.

Step Candidate

Task

Actions And States Resp. Times

of Scenarios

Prob. of Missed

Deadlines

Solution

Penalty

0 CPU1: TaskA > TaskB

CPU2: TaskC > TaskD > TaskE

75

46.8

1

0

3269017

1 TaskE Raise priority of TaskE

CPU1: TaskA > TaskB

CPU2: TaskC > TaskE > TaskD

53.847

48.451

1

0

3269017

2 TaskE Raise priority of TaskE

CPU1: TaskA > TaskB

CPU2: TaskE> TaskC > TaskD

51.724

48.69

1

0

3269017

3 TaskE TaskE has the highest priority, its

priority can’t be raised any more.

The best configuration is restored

(step0). The TaskE has the largest

task metric, and is reallocated to

CPU1 with the highest priority.

CPU1: TaskE > TaskA > TaskB

CPU2: TaskC > TaskD

41.42

49.63

0

0

0

Figure 5.8  Optimization Steps in Scenario 2

The optimization really gives the result that is expected. It shows that the optimization

algorithms have adaptabilities to configure the systems to meet the deadline requirements

according to different environment parameters.
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The LQN model file, the additional file and the optimization output of the tutorial

example in scenario 2 are listed in Appendix B.

5.3  Evaluation on Soft Real-Time Systems with Stochastic Execution

Demands

Figure 5.9 is a random software architecture introduced in [11] to show the robustness

of optimization on hard real-time applications with parameters that were generated

randomly.  The evaluation is extended here to soft deadlines and stochastic execution

demands to study the performance of the architecture. Statistical models with soft

T a s k 1 T a s k 4T a s k 3T a s k 2

T a s k 9T a s k 5 T a s k 6

T a s k 1 0 T a s k 1 1

T a s k 8T a s k 7

T a s k 1 4T a s k 1 3T a s k 1 2

T a s k 1 6T a s k 1 5

D r i v e r 1 D r i v e r 4D r i v e r 3
D r i v e r

2

P e r i o d 1

D e a d l i n e 1

P e r i o d 2

D e a d l i n e 2

P e r i o d 3

D e a d l i n e 3

P e r i o d 4

D e a d l i n e 4

Figure 5.9 Random Statistical Models
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deadlines and stochastic execution demands are generated randomly based on this

architecture. The characteristics of the statistical models are described as follows:

• Each model has 4 scenarios with 16 tasks on 4 processors

• The average execution demand for every entry is uniformly distributed between

[80, 120] time units

• The coefficient of variation of the execution demand is chosen from 0.0

(deterministic), 0.1, 0.5 or 1.0 (exponential)

• The request frequencies or forwarding probabilities of the calls are 1 (by default)

• Communication cost is omitted

• Every scenario has a fixed period and deadline, the scenario periods and deadlines
are calculated as the equations (5.1 – 5.3). The deadline requirement is that the
deadline miss rate is less than 5%

Deadlines =  CriticalDemands * L (5.1)
 ∀ Every Scenario s

Deadlines  / Periods = Constant (5.2)
 ∀ Every Scenario s

∑ (Demands / Periods) = 4 * U (5.3)
∀ Every Scenario s

where Deadlines is deadline for scenario s

Demands is the sum of the execution demands in scenario s

CriticalDemands is the summation of the execution demands along the critical

path in scenario s (the asynchronous calls are not counted)

L is the laxity factor, taking values between 1.9 and 6

U is the average utilization of the processors, taking value between 0.4 and

0.8

There are altogether 240 different combinations for the coefficient of variation, laxity

factor and utilization. 50 models were generated for each combination. All the 12000

models were optimized by the algorithms introduced in this thesis. The success ratio of

each combination is listed in Appendix C. For each coefficient of variation and utilization
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combination, we can see the minimum laxity factor value for which all cases were

feasible. This gives us a heuristic guideline for feasibility of deadlines in general, based

on a system’s utilization and coefficient variation values. Figure 5.10 and Figure 5.11 are

the table and diagram for the result.

Coefficient Of Variation
Utilization 0.0 0.1 0.5 1.0

0.4 2.1 2.1 2.5 3.0
0.5 2.1 2.3 2.7 3.0
0.6 2.1 2.3 3.0 3.5
0.7 2.3 2.7 3.5 4.5
0.8 2.5 2.7 4.5 6.0

Figure 5.10 Minimum Laxity Factor Value Providing Feasibility for Different

Coefficient of Variation and Utilization Combination  (Table)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.4 0.5 0.6 0.7 0.8

Utilization

L
ax

ity
 F

ac
to

r

CV = 0.0

CV = 0.1

CV = 0.5

CV = 1.0

Figure 5.11 Minimum Laxity Factor Value Providing Feasibility for Different

Coefficient of Variation and Utilization Combination (Diagram)
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From Figure 5.10 and Figure 5.11, we can see:

• For a given utilization, the required minimum laxity factor increases as the

coefficient of variation increases.

• For a give coefficient of variation, the required minimum laxity factor increases

as the utilization increases.

• The minimum laxity factor with large coefficient of variation (e.g. 1.0) increases

much faster than that with small coefficient of variation (e.g. 0.0) as the utilization

increases. This indicates the extreme difficulties to meet deadline requirements

with large coefficient of variation and high utilization.
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CHAPTER 6: CASE STUDY

This chapter studies an e-commerce based real-time system with soft deadlines and

stochastic execution demands. The comparison between the baseline model (which

assumes all task have the same priority level) and the optimized model shows the

effectiveness of the optimization approach on practical applications.

6.1 RADS Bookstore Model

A simplified e-commerce site example called RADS bookstore is described by D.

Petriu and M. Woodside in [27]. The RADS bookstore model is established to analyze

the software performance in that paper. The model is designed as a 3-tier client-server

system (client, application and database tiers). The customer has 7 scenarios: browsing

item list, viewing detailed item description, adding or removing items to or from

shopping cart, checking out the items in shopping cart, registering and logging into the

RADS bookstore. The administrator can update the inventory and fill the outstanding

back orders. This model is adopted and modified to some degree to study the

optimization issues on soft real-time systems with stochastic execution demands in this

thesis.

Figure 6.1 is the simplified LQN model of RADS bookstore. The diagram suppresses

the detail of entries, activities and workload parameters. The multiple interaction arrows

show the different numbers of different kinds of access made from one task to another. In

Figure 6.1, in processor BookstoreProc, task RADSbookstore is the interface for

customers and administrator to access the application server.  The task Server is the

application task with 5 threads. CustomerAccount, ShoppingCart and InventoryMgr are

applications to manage customer accounts, shopping cart objects and inventory.

BackorderMgr is a subsystem to track and fill back-orders. Database and CustomerDB in

processor DatabaseProc are the databases for the inventory and customer accounts. The

diagram originates from a diagram in [27], and the model has been modified as follows:
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Customer Administrator

Cust
Browse

Cust
Register

Cust
Checkout

Cust
Login

CustView Cust
Remove

CustAdd Adm
Update

AdmBack
order

RADSbookstore

Server

ShoppingCart

InventoryMgr

Database

CustomerAccount

BackorderMgr

CustomerDB

CustomerProc AdminProc

ScenarioProc

BookstoreProc

DatabaseProc

Figure 6.1  Simplified LQN Model of RADS Bookstore
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• Each scenario for the Customer and Administrator is separated by a pseudo task

running on a pseudo processor ScenarioProc, The pseudo tasks are used to collect

response time and set deadlines. The scenario deadlines for Customer are set to

500ms, and the scenario deadlines for Administrator are set to 6000 ms. The

deadline miss rates for scenarios are required to be no more than 5%.

• The speed rate of the processor DatabaseProc is increased to remove the

bottleneck in the processor DatabaseProc.

• The coefficients of variation of execution demands on processor BookstoreProc

and processor DatabaseProc are decreased to 0.2 from 1. However, the think times

of the Customers and the Administrator are still exponential distribution.

In this case study, the model is simulated with number of customers set to 50, 100,

150, 200, 250, 300 and 350. When the number of customers increases to 350, the

utilization of processor BookstoreProc is around 87%. It is not necessary to increase

the number of customer any more. Because there is only one processor in the

application tier, task reallocation is impossible. Priority adjustment is the only

optimization option in this model. The baseline model is assumed that all the tasks on

processor BookstoreProc and processor DatabaseProc are scheduled by the FIFO

discipline (i.e. all the tasks are assigned the same priority). The optimized model will

be compared to baseline model.

The average response times and miss rates of the baseline model and optimized

model with different number of customers are listed in Figure 6.2.
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 Baseline Model Optimized ModelScenario

Average
Response
Time (ms)

Average Miss
Rate (%)

Average
Response
Time (ms)

Average Miss
Rate (%)

CustBrowse 10.571 0 10.643 0

CustView 3.5695 0 3.6019 0

CustAdd 3.5921 0 3.7944 0

CustRemove 3.5968 0 3.791 0

CustLogin 18.766 0 31.576 0.61409

CustCheckout 7.7461 0 9.3125 0

CustRegister 35.849 0 50.834 0.67979

AdmUpdate 1796.9 3.5864 1676.9 2.9079

AdmBackorder 2053.8 5.2072 1900.7 4.4059

(a) RADS Bookstore Model Results (Number of Customers = 50)

 Baseline Model Optimized Model
Scenario

Average
Response
Time (ms)

Average Miss
Rate (%)

Average
Response
Time (ms)

Average Miss
Rate (%)

CustBrowse 11.378 0 11.519 0

CustView 4.3706 0 4.4533 0

CustAdd 4.5133 0 4.8611 0

CustRemove 4.5181 0 4.8666 0

CustLogin 21.17 0 33.021 0.60952

CustCheckout 8.7876 0 11.005 0

CustRegister 38.215 0 53.594 0.6623

AdmUpdate 1961.2 4.5876 1673.2 2.8546

AdmBackorder 2207.5 6.5274 1987.1 5.0409

(b) RADS Bookstore Model Results (Number of Customers = 100)



70

 Baseline Model Optimized Model
Scenario

Average
Response
Time (ms)

Average Miss
Rate (%)

Average
Response
Time (ms)

Average Miss
Rate (%)

CustBrowse 12.47 0 12.729 0

CustView 5.4583 0 5.6421 0

CustAdd 5.938 0 6.3035 0

CustRemove 5.9272 0 6.3034 0

CustLogin 24.309 0 35.058 0.63827

CustCheckout 10.338 0 13.194 0

CustRegister 41.354 0 55.139 0.64972

AdmUpdate 2166.5 6.1436 1668.6 2.7692

AdmBackorder 2417.3 8.3916 1994.2 5.1146

(c) RADS Bookstore Model Results (Number of Customers = 150)

 Baseline Model Optimized Model
Scenario

Average
Response
Time (ms)

Average Miss
Rate (%)

Average
Response
Time (ms)

Average Miss
Rate (%)

CustBrowse 13.955 0 14.432 0

CustView 6.9421 0 7.3235 0

CustAdd 8.1431 0 8.29 0

CustRemove 8.1292 0 8.2893 0

CustLogin 28.675 0 35.936 0.61535

CustCheckout 12.644 0 16.106 0

CustRegister 45.851 0 55.921 0.63776

AdmUpdate 2351.2 7.93293 1622.7 2.3129

AdmBackorder 2794.1 11.845 1979.6 5.0221

(d) RADS Bookstore Model Results (Number of Customers = 200)
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 Baseline Model Optimized Model
Scenario

Average
Response
Time (ms)

Average Miss
Rate (%)

Average
Response
Time (ms)

Average Miss
Rate (%)

CustBrowse 16.038 0 16.911 0

CustView 9.0201 0 9.7851 0

CustAdd 11.506 0 11.129 0

CustRemove 11.498 0 11.132 0

CustLogin 35.128 0 39.174 0.66128

CustCheckout 16.141 0 20.175 0

CustRegister 52.768 0 60.609 0.77711

AdmUpdate 2615.2 10.008 1690 2.7164

AdmBackorder 3241.3 15.593 2086.9 5.1115

(e) RADS Bookstore Model Results (Number of Customers = 250)

 Baseline Model Optimized Model
Scenario

Average
Response
Time (ms)

Average Miss
Rate (%)

Average
Response
Time (ms)

Average Miss
Rate (%)

CustBrowse 19.067 0 20.749 0

CustView 12.049 0 13.609 0

CustAdd 16.634 0 15.414 0

CustRemove 16.633 0 15.418 0

CustLogin 45.376 0.00017026 43.127 0.66045

CustCheckout 21.488 0 26.017 0

CustRegister 63.08 0.0016807 65.917 0.73239

AdmUpdate 3033 13.778 1684.4 2.8488

AdmBackorder 3968.3 22.023 2097.1 5.6549

(f) RADS Bookstore Model Results (Number of Customers = 300)
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 Baseline Model Optimized Model
Scenario

Average
Response
Time (ms)

Average Miss
Rate (%)

Average
Response
Time (ms)

Average Miss
Rate (%)

CustBrowse 21.606 0 27.312 0.000010253

CustView 14.588 0 20.156 0.000017948

CustAdd 14.715 0 22.534 0.000019237

CustRemove 14.708 0 22.534 0

CustLogin 45.817 0.006392 48.176 0.66982

CustCheckout 18.834 0 34.847 0.000076878

CustRegister 51.392 0.063707 71.993 0.75517

AdmUpdate 3069.1 14.045 1668.7 2.809

AdmBackorder 4165.9 23.798 2143.1 5.97

(g) RADS Bookstore Model Results (Number of Customers = 350)

Figure 6.2 Response Times and Miss Rates of All Scenarios in Baseline Model and

Optimized Model

Discuss of The Results (Figure 6.2)

The deadline requirements for the customer’s scenarios are easy to meet. In every

case, All the deadlines of customer’s scenario are really met in both the baseline models

and optimized models. The laxity factors of customer’s scenarios range from 10-100. The

easiness of meeting deadline requirements can be explained by the laxity factor, as

defined in section 5.3.

However the laxity factors of two administrator’s scenarios are around 3. According to

the guideline reached in section 5.3, the deadline requirement for the administrator’s

scenarios might be a problem, by considering that the distribution in the reference is

exponential instead of deterministic, as in the section 5.3. The response time and miss

rate for the administrator’s scenarios should be focused in this case study. Figure 6.3,

Figure 6.4 summarizes the average miss rates of two administrator’s scenarios in the

baseline model and optimized model.
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Miss Rate For Scenario AdmBackorder (%)Miss Rate For Scenario AdmUpdate (%)
User Number Baseline Model Optimized Model Baseline Model Optimized Model

50 5.2072 4.4059 3.5864 2.9079
100 6.5274 5.0409 4.5876 2.8546
150 8.3916 5.1146 6.1436 2.7692
200 11.845 5.0221 7.93293 2.3129
250 15.593 5.1115 10.008 2.7164
300 22.023 5.6549 13.778 2.8488
350 25.796 5.97 21.6 2.809

Figure 6.3       Miss Rates of Baseline and Optimized Model for Scenarios

AdmBackorder and AdmUpdate (Table)

Miss Rates of Baseline And Optimized Model 
For Scenario AdmBackorder And AdmUpdate 
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Figure 6.4       Miss Rates of Baseline and Optimized Model for Scenarios

AdmBackorder and AdmUpdate (Diagram)

As we can see, the miss rates for both the administrator’s scenario are improved in the

optimized model especially when the number of customers increases.  In the baseline

model, the miss rates for the two administrator’s scenarios increase rapidly when the

number of customers increases. In the optimized model, the miss rates of the two
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scenarios are kept almost the same. However the optimized model couldn’t meet the

deadline requirements when the number of customers is more than 50.

In order to meet the deadline requirements, the system must be modified to improve

the response time of the administrator’s scenarios.

6.2 Modified RADS Bookstore System: Task Splitting

In the previous section, the administrator scenarios and customer scenarios share the

tasks in both the processor BookstoreProc and DatabaseProc. Because of the limited

number of threads in the tasks, the administrator’s execution may be blocked by the

customer’s execution. The blocking increases the response times of the administrator’s

scenarios and cause the system to miss the deadline requirements. In order to decrease the

interference, for the InventoryMgr, CustomerAccount, BackorderMgr task in processor

BookstoreProc and Database, CutomerDB task in DatabaseProc, a single thread copy for

each of those tasks is created for the administrator. The simplified LQN model of the

modified system is indicated in Figure 6.5. The simulation results (response times and

miss rates for all the scenarios) are listed in Figure 6.6:
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Figure 6.5  Simplified LQN Model of RADS Bookstore (After Splitting)
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 Original Optimized Model

(Without Task Splitting)

New Optimized Model

(With Task Splitting)

Scenario

Average
Response
Time (ms)

Average Miss
Rate (%)

Average
Response
Time (ms)

Average Miss
Rate (%)

CustBrowse 10.575 0 10.642 0

CustView 3.5693 0 3.6014 0

CustAdd 3.5959 0 3.7933 0

CustRemove 3.5998 0 3.792 0

CustLogin 18.809 0 32.051 0.61437

CustCheckout 7.7496 0 9.3199 0

CustRegister 35.327 0 49.987 0.63392

AdmUpdate 1827.7 3.7402 1666 2.7156

AdmBackorder 2021.1 5.6261 1889.3 4.311

(a) RADS Bookstore Model Results (Number of Customers = 50)

 Original Optimized Model

(Without Task Splitting)

New Optimized Model

(With Task Splitting)Scenario

Average
Response
Time (ms)

Average Miss
Rate (%)

Average
Response
Time (ms)

Average Miss
Rate (%)

CustBrowse 11.376 0 11.517 0

CustView 4.3702 0 4.4528 0

CustAdd 4.5136 0 4.8616 0

CustRemove 4.5022 0 4.8674 0

CustLogin 21.198 0 33.733 0.61521

CustCheckout 8.7843 0 11.014 0

CustRegister 37.994 0 52.696 0.65362

AdmUpdate 1999.8 4.8459 1662.1 2.8096

AdmBackorder 2139.2 6.1576 1902.2 4.4374

(b) RADS Bookstore Model Results (Number of Customers = 100)
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 Original Optimized Model

(Without Task Splitting)

New Optimized Model

(With Task Splitting)Scenario

Average
Response
Time (ms)

Average Miss
Rate (%)

Average
Response
Time (ms)

Average Miss
Rate (%)

CustBrowse 12.472 0 12.731 0

CustView 5.4609 0 5.6421 0

CustAdd 5.9348 0 6.3048 0

CustRemove 5.9389 0 6.3093 0

CustLogin 24.346 0 36.2 0.65784

CustCheckout 10.35 0 13.191 0

CustRegister 41.068 0 54.611 0.60249

AdmUpdate 2211.3 6.87 1704.9 2.9029

AdmBackorder 2445.6 8.4844 1906.1 4.3949

(c) RADS Bookstore Model Results (Number of Customers = 150)

 Original Optimized Model

(Without Task Splitting)

New Optimized Model

(With Task Splitting)Scenario

Average
Response
Time (ms)

Average Miss
Rate (%)

Average
Response
Time (ms)

Average Miss
Rate (%)

CustBrowse 13.962 0 14.433 0

CustView 6.9459 0 7.3251 0

CustAdd 8.1403 0 8.291 0

CustRemove 8.155 0 8.2966 0

CustLogin 28.679 0 37.243 0.63424

CustCheckout 12.68 0 16.124 0

CustRegister 45.552 0 57.918 0.73044

AdmUpdate 2456.8 8.7315 1667.7 2.6265

AdmBackorder 2734.1 11.337 1943.6 4.3972

(d) RADS Bookstore Model Results (Number of Customers = 200)
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 Original Optimized Model

(Without Task Splitting)

New Optimized Model

(With Task Splitting)Scenario

Average
Response
Time (ms)

Average Miss
Rate (%)

Average
Response
Time (ms)

Average Miss
Rate (%)

CustBrowse 16.037 0 16.918 0

CustView 9.0215 0 9.7905 0

CustAdd 11.505 0 11.137 0

CustRemove 11.524 0 11.129 0

CustLogin 35.149 0 40.169 0.65878

CustCheckout 16.171 0 20.168 0

CustRegister 52.501 0 62.239 0.77721

AdmUpdate 2797.4 11.584 1690.5 2.7736

AdmBackorder 3027.7 14.235 1923.1 4.7231

(e) RADS Bookstore Model Results (Number of Customers = 250)

 Original Optimized Model

(Without Task Splitting)

New Optimized Model

(With Task Splitting)Scenario

Average
Response
Time (ms)

Average Miss
Rate (%)

Average
Response
Time (ms)

Average Miss
Rate (%)

CustBrowse 18.798 0 20.763 0

CustView 11.784 0 13.623 0

CustAdd 15.932 0 15.424 0

CustRemove 15.924 0 15.423 0

CustLogin 44.492 0 43.424 0.66401

CustCheckout 20.834 0 26.008 0

CustRegister 61.286 0 67.221 0.85625

AdmUpdate 3146.3 14.69 1661.5 2.6023

AdmBackorder 3580.6 18.872 1929.6 4.4412

(f) RADS Bookstore Model Results (Number of Customers = 300)
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 Original Optimized Model

(Without Task Splitting)

New Optimized Model

(With Task Splitting)Scenario

Average
Response
Time (ms)

Average Miss
Rate (%)

Average
Response
Time (ms)

Average Miss
Rate (%)

CustBrowse 23.897 0 27.362 0.000087758

CustView 16.888 0 20.198 0.00009912

CustAdd 24.594 0 22.587 0.00010252

CustRemove 24.575 0 22.592 0.000045555

CustLogin 62.471 0.006392 48.838 0.6783

CustCheckout 29.804 0 34.883 0.00013678

CustRegister 80.798 0.063707 73.932 0.96696

AdmUpdate 3906.8 21.6 1656.8 2.7533

AdmBackorder 4397.8 25.796 1975.7 4.4955

(g) RADS Bookstore Model Results (Number of Customers = 350)

Figure 6.6 Response Times and Miss Rates of All Scenarios

in Both Optimized Model (with and without Task Splitting)

The miss rates for administrator’s scenarios in the optimized model after task splitting

is shown in Figure 6.7 and Figure 6.8, comparing to those in the optimized model before

task splitting. Before task splitting, the couldn’t be feasible using optimization. After task

splitting, the model is initially feasible.

Miss Rate For Scenario AdmBackorder (%) Miss Rate For Scenario AdmUpdate (%)
User Number Before Splitting After Splitting Before Splitting After Splitting

50 4.4059 4.311 2.9079 2.7156
100 5.0409 4.4374 2.8546 2.8096
150 5.1146 4.3949 2.7692 2.9029
200 5.0221 4.3972 2.3129 2.6265
250 5.1115 4.7231 2.7164 2.7736
300 5.6549 4.4412 2.8488 2.6023
350 5.97 4.4955 2.809 2.7533

Figure 6.7   Miss Rates of Optimized Model for Administrator’s Scenarios

Before and After Task Splitting (Table)
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Miss Rates of Baseline And Optimized Model 
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Figure 6.8   Miss Rates of Optimized Model for Administrator’s Scenarios

Before and After Task Splitting (Diagram)

Discuss of The Results with Task Splitting:

From Figure 6.7 and Figure 6.8, the miss rates for scenario AdmUpdate in both

optimized models are almost the same. For scenario AdmBackorder, the miss rate in the

original optimized model increases when the number of customers is increased. The

deadline requirements can’t be met all the time. However, the miss rate in the new

optimized model is kept almost the same. This makes the RADS bookstore model meet

all the deadline requirements even when the number of customers is increased to 350.

The optimized model after splitting shows better scalability than the optimized model

without task splitting.

In the modified RADS bookstore system, the administrator always has a thread

reserved for him. Whenever the executions in the administrator’s scenarios are ready to

run, it might have a higher priority than that of the customers to preempt the customer’s

executions. The response times of the administrator’s scenarios will not be delayed by the

customers even when the number of customers is increased. Task splitting helps to

improve response time of the task with higher priority.
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Although task splitting is used in the previous work in [11], it is used in the

optimization phase to split one entry from the candidate task at a time. For a complicated

model like this case study, more than one task should be considered to be split and more

than one entry should be split from a task. The entries related to the customer’s scenarios

should not be considered to split. The task splitting in the optimization phase is difficult

to apply, whereas it is easy to do it in the initialization phase.

This case study shows that the optimization approach is also suitable for practical soft

real-time systems with stochastic execution demands. Task splitting in the initialization

phase could improve the performance of higher priority tasks easily.
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CHAPTER 7: CONCLUSIONS

7.1 Summary

This thesis is concerned with re-implementing and improving an optimizer for

distributed systems with deadlines, and studying systems with soft deadlines.

The re-implemented optimizer is capable of analyzing and improving an existing

system model described by LQN modeling language while its predecessor required input

in a now unavailable scenario language.

The five modifications to the optimization, that are described in chapter 4, are in the

details of determining the starting point, and the improvement steps. They are:

• Add the communication cost handling during the procedure of optimization.

• Extend the Proportional-Deadline-Monotonic algorithm to more general systems,

taking account of the number of threads of the task.

• Uses a modified function to estimate the scenario criticality of the LQN model.

• Use the “distinct fixed priority” approach to setting task priorities, and modify the

task metric for priority adjustment

• Simplify the task reshaping and modify the metric for task reallocation

The evaluation in section 5.1 and 5.2 shows the effectiveness and improvement of the

modifications.

New evaluations were performed on systems with soft deadlines and stochastic

execution demands in section 5.3. A guideline for laxity values, coefficient of variation

and utilization values was determined based on 12000 experiments with randomly

generated parameters, and is given in Figure 5.10 and Figure 5.11. The guideline can be

used to assess the feasibility of a system with soft deadlines.

The case study in chapter 6 shows the effectiveness of the optimization approach on a

practical application.

7.2 Contributions
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The optimization approach provided in this thesis is first proposed by other

researchers. It has been improved and modified in several aspects. The contributions of

this thesis include:

• This thesis applies the optimization approach to more general distributed real-time

systems which could include soft deadlines, stochastic execution demands and

different numbers of threads in the tasks.  An algorithm is proposed to handle

communication costs in LQN model automatically during optimization (this was

not clear in the previous algorithm).

• Some algorithms and metrics used in optimization are improved and modified. The

fixed priority approach which is required in hard real-time systems replaces the

priority approach which allows equal priorities in the optimization approach. The

priority adjustment algorithm is improved to have a higher success ratio (section

5.1.1 and 5.1.2 ) and the Proportional-Deadline-Monotonic algorithm is extended

to be suitable for systems with different number of threads. The metrics for

priority adjustment, task reallocation and model estimation are modified for certain

reasons. The modified algorithms were more successful than the pre-existing ones,

on the test cases in section 5.1.

• The studies on systems with soft deadlines and stochastic demands, provide an

guideline for feasibility according the laxity factor, utilization and coefficient of

variation. It is hypothesized that these guidelines can be used before attempting an

optimization, to judge the difficulty of the problem and likelihood of the success.

• A case study on an e-commerce application and the exploration of task splitting in

the case study show that the optimization approach is suitable for the practical soft

real-time systems.

• The research re-implements the optimization approach to accept an LQN model as

a starting point. It makes the optimization approach applicable to ordinary LQN

models.

 7.3 Future Work
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Although the optimization approach is shown effective in this thesis, it will be more

practical and valuable if it is improved in the following direction:

• The simplification of LQN model. If the LQN model is very large (e.g.

automatically generated LQN models), the simulation time will be very long to get

accurate results. It will be valuable to provide algorithms to simplify the LQN

model without losing the fundamental characteristic.

• A better metric for task reallocation. Two factors are considered for task

reallocation: the communication overheard and CPU utilization. In this thesis, both

of them have the same weight. A better metric considering different weights or

adding other factors may improve the efficiency of the optimization approach.

• A better initial task allocation. It’s helpful for efficiency.

• Automatic task splitting in initialization phase. The case study indicates that the

task splitting in the initialization phase is effective. An automation of task splitting

according to the scenarios or other criteria is beneficial to the optimizer.
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Appendix A: LQN Model File, Additional File and

Optimization Output of Tutorial Example

in Section 5.2, Scenario 1

A.1 LQN Model File:

 G "Tutorial Example In Thesis, Section 5.2, Scenario 1"
0.000001
100
1
0.9
-1

P 0
p EnvP1 f i
p EnvP2 f i
p CPU1 p
p CPU2 p
-1

T 0
t Env1 r env1 -1 EnvP1
t Env2 r env2 -1 EnvP2
t Resp1 n resp1 -1 EnvP1
t Resp2 n resp2 -1 EnvP2
t TaskA n en_a1 -1 CPU1 2 i
t TaskB n en_b1 -1 CPU1 1 i
t TaskC n en_c1 -1 CPU2 3 i
t TaskD n en_d1 -1 CPU2 2 i
t TaskE n en_e1 en_e2 -1 CPU2 1 i
-1

E 0
s env1 0 50 -1
c env1 0 0 -1
f env1 1 0 -1
M resp1 50 0 -1
z env1 resp1 1 0 -1
s resp1 0 0 -1
c resp1 0 0 -1
f resp1 1 0 -1
y resp1 en_a1 1 0 -1
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A en_a1 a1
s en_b1 3 0 -1
c en_b1 0 0 -1
f en_b1 1 0 -1

s env2 0 50 -1
c env2 0 0 -1
f env2 1 0 -1
z env2 resp2 1 0 -1
s resp2 0 0 0 -1
c resp2 0 0 -1
f resp2 1 0 -1
M resp2 50 0 -1
y resp2 en_c1 1 0 0 -1
A en_c1 c1
A en_d1 d1
F en_d1 en_e2 1 -1
s en_e1 1 0 0 -1
c en_e1 0 0 0 -1
f en_e1 1 0 0 -1
s en_e2 1 0 0 -1
c en_e2 0 0 0 -1
f en_e2 1 0 0 -1

-1
A TaskA
s a1 35
c a1 0
f a1 1
s a2 0
c a2 0
f a2 1
z a1 en_b1 1
y a2 en_e1 3
:
a1 -> a2;
a2[en_a1]
-1

A TaskC
s c1 20
c c1 0
f c1 1
c c2 0
f c2 1
s c2 0
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y c2 en_d1 1
:
c1 -> c2;
c2[en_c1]
-1

A TaskD
s d1 20
c d1 0
f d1 1
c d2 0
f d2 1
s d2 0
:
d1 -> d2;
d2[en_d1]

  -1

A.2 Additional File:

#Tutorial Example In Thesis, Section 5.2, Scenario 1
 Special Processors: (Processor1, Processor2, ...)
EnvP1, EnvP2
-1
Special Tasks: (Task1, Task2, ...)
Env1, Env2, Resp1, Resp2, TaskB
-1
Default Communication Cost:
0.7
-1
Default Network Delay:
0.0
-1
Default Message Numbers For Calls:
1
-1
Special Message Numbers For Calls: (Source Destination: Message Numbers)
en_d1 en_e2: 10
-1
Restricted allocation: (Task: Processor1 Processor2 ...)
-1
Forced coallocation: (Task Task)
-1
Forced uncoallocation: (Task Task)
-1
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A.3 Optimization Output:

Communication Cost has been added to Tutorial/step0.lqn

Solver is running. Please wait....

Model Criticality: 1.0075312

Processor CPU2:

  Task TaskC's priority: 3  Metric: 0.0

  Task TaskD's priority: 2  Metric: 0.0

  Task TaskE's priority: 1  Metric: 0.6143236

Processor CPU1:

  Task TaskA's priority: 2  Metric: 0.0

  Task TaskB's priority: 1  Metric: 6.0828013

Candidate task: TaskE

-------------------

Solver is running. Please wait....

Model Criticality: 0.0

Processor CPU2:

  Task TaskC's priority: 3  Metric: 0.0

  Task TaskD's priority: 1  Metric: 0.0

  Task TaskE's priority: 2  Metric: 0.0

Processor CPU1:

  Task TaskA's priority: 2  Metric: 0.0

  Task TaskB's priority: 1  Metric: 0.0

-------------------

Optimization succeeded!

-------------------

The optimized lqn file is: Tutorial_opt.lqn

-------------------

Communication Cost has been removed from Tutorial/step1.lqn

The optimized priorities:

Processor CPU2:
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  Task TaskC: 3

  Task TaskD: 1

  Task TaskE: 2

Processor CPU1:

  Task TaskA: 2

  Task TaskB: 1

The best model metric is: 0.0 (in step 1)

Total steps: 1

The optimization is done....
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Appendix B: LQN Model File, Additional File and

Optimization Output of Tutorial Example

in Section 5.2, Scenario 2

B.1 LQN Model File:

G "Tutorial Example In Thesis, Section 5.2, Scenario 2"
0.000001
100
1
0.9
-1

P 0
p EnvP1 f i
p EnvP2 f i
p CPU1 p
p CPU2 p
-1

T 0
t Env1 r env1 -1 EnvP1
t Env2 r env2 -1 EnvP2
t Resp1 n resp1 -1 EnvP1
t Resp2 n resp2 -1 EnvP2
t TaskA n en_a1 -1 CPU1 2 i
t TaskB n en_b1 -1 CPU1 1 i
t TaskC n en_c1 -1 CPU2 3 i
t TaskD n en_d1 -1 CPU2 2 i
t TaskE n en_e1 en_e2 -1 CPU2 1 i
-1

E 0
s env1 0 50 -1
c env1 0 0 -1
f env1 1 0 -1
M resp1 50 0 -1
z env1 resp1 1 0 -1
s resp1 0 0 -1
c resp1 0 0 -1
f resp1 1 0 -1
y resp1 en_a1 1 0 -1
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A en_a1 a1
s en_b1 3 0 -1
c en_b1 0 0 -1
f en_b1 1 0 -1

s env2 0 50 -1
c env2 0 0 -1
f env2 1 0 -1
z env2 resp2 1 0 -1
s resp2 0 0 0 -1
c resp2 0 0 -1
f resp2 1 0 -1
M resp2 50 0 -1
y resp2 en_c1 1 0 0 -1
A en_c1 c1
A en_d1 d1
F en_d1 en_e2 1 -1
s en_e1 1 0 0 -1
c en_e1 0 0 0 -1
f en_e1 1 0 0 -1
s en_e2 1 0 0 -1
c en_e2 0 0 0 -1
f en_e2 1 0 0 -1
-1

A TaskA
s a1 35
c a1 0
f a1 1
s a2 0
c a2 0
f a2 1
z a1 en_b1 1
y a2 en_e1 3
:
a1 -> a2;
a2[en_a1]
-1

A TaskC
s c1 20
c c1 0
f c1 1
c c2 0
f c2 1
s c2 0
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y c2 en_d1 1
:
c1 -> c2;
c2[en_c1]
-1

A TaskD
s d1 20
c d1 0
f d1 1
c d2 0
f d2 1
s d2 0
:
d1 -> d2;
d2[en_d1]
-1

B.2 Additional File:

#Tutorial Example In Thesis, Section 5.2, Scenario 2
Special Processors: (Processor1, Processor2, ...)
EnvP1, EnvP2
-1
Special Tasks: (Task1, Task2, ...)
Env1, Env2, Resp1, Resp2, TaskB
-1
Default Communication Cost:
0.01
-1
Default Network Delay:
1.7
-1
Default Message Numbers For Calls:
1
-1
Special Message Numbers For Calls: (Source Destination: Message Numbers)
en_d1 en_e2: 10
-1
Restricted allocation: (Task: Processor1 Processor2 ...)
-1
Forced coallocation: (Task Task)
-1
Forced uncoallocation: (Task Task)
-1
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B.3 Optimization Output:

Communication Cost has been added to Tutorial-1/step0.lqn

Solver is running. Please wait....

Model Criticality: 3269017.2

Processor CPU1:

  Task TaskA's priority: 2  Metric: 0.0

  Task TaskB's priority: 1  Metric: 2.8616056E7

Processor CPU2:

  Task TaskC's priority: 3  Metric: 0.0

  Task TaskD's priority: 2  Metric: 0.0

  Task TaskE's priority: 1  Metric: 2.5055502E7

Candidate task: TaskE

-------------------

Solver is running. Please wait....

Model Criticality: 3269017.2

Processor CPU1:

  Task TaskA's priority: 2  Metric: 0.0

  Task TaskB's priority: 1  Metric: 2.0545994E7

Processor CPU2:

  Task TaskC's priority: 3  Metric: 0.0

  Task TaskD's priority: 1  Metric: 0.0

  Task TaskE's priority: 2  Metric: 1826936.6

Candidate task: TaskE

-------------------

Solver is running. Please wait....

Model Criticality: 3269017.2

Processor CPU1:

  Task TaskA's priority: 2  Metric: 0.0

  Task TaskB's priority: 1  Metric: 1.9736186E7

Processor CPU2:
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  Task TaskC's priority: 2  Metric: 0.0

  Task TaskD's priority: 1  Metric: 0.0

  Task TaskE's priority: 3  Metric: 19959.766

Candidate task: TaskE

-------------------

Task TaskE has already the highest priority.

The model needs reallocating.

The up-to-now best model (Tutorial-1/step0) is restored.

The best model metric: 3269017.2

Candidate task: TaskE

Communication Cost has been removed from Tutorial-1/step3.lqn

Task TaskE is reallocated to CPU1 Priority: 3

-------------------

Communication Cost has been added to Tutorial-1/step3.lqn

Solver is running. Please wait....

Model Criticality: 0.0

Processor CPU1:

  Task TaskA's priority: 2  Metric: 0.0

  Task TaskB's priority: 1  Metric: 0.0

  Task TaskE's priority: 3  Metric: 0.0

Processor CPU2:

  Task TaskC's priority: 2  Metric: 0.0

  Task TaskD's priority: 1  Metric: 0.0

-------------------

Optimization succeeded!

-------------------

The optimized lqn file is: Tutorial-1_opt.lqn

-------------------

Communication Cost has been removed from Tutorial-1/step3.lqn

The optimized priorities:

Processor CPU1:
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  Task TaskA: 2

  Task TaskB: 1

  Task TaskE: 3

Processor CPU2:

  Task TaskC: 2

  Task TaskD: 1

The best model metric is: 0.0 (in step 3)

Total steps: 3

The optimization is done....
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Appendix C: Experiment Results

for Statistical Models in Section 5.3

Laxity: 1.9
Utilization Number of Total Cases Number of Successful Cases Success ratio

0.4 50 47 0.94
0.5 50 31 0.62
0.6 50 15 0.3
0.7 50 10 0.2
0.8 50 1 0.02

Laxity: 2.1
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 40 0.8
0.8 50 21 0.42

Laxity: 2.3
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 45 0.9

Laxity: 2.5
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 2.7
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 3.0
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 3.5
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1



101

0.8 50 50 1
Laxity: 4.0

0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 4.5
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 5.0
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 5.5
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 6.0
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Figure C.1 Statistical Model Results (CV = 0.0)
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Laxity: 1.9
Utilization Number of Total Cases Number of Successful Cases Success ratio

0.4 50 33 0.66
0.5 50 13 0.26
0.6 50 1 0.02
0.7 50 0 0
0.8 50 0 0

Laxity: 2.1
0.4 50 50 1
0.5 50 49 0.98
0.6 50 40 0.8
0.7 50 15 0.3
0.8 50 0 0

Laxity: 2.3
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 23 0.46

Laxity: 2.5
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 49 0.98
0.8 50 44 0.88

Laxity: 2.7
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 3.0
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 3.5
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 4.0
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0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 4.5
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 5.0
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 5.5
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 6.0
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Figure C.2 Statistical Model Results (CV = 0.1)
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Laxity: 1.9
Utilization Number of Total Cases Number of Successful Cases Success ratio

0.4 50 0 0
0.5 50 0 0
0.6 50 0 0
0.7 50 0 0
0.8 50 0 0

Laxity: 2.1
0.4 50 3 0.06
0.5 50 0 0
0.6 50 0 0
0.7 50 0 0
0.8 50 0 0

Laxity: 2.3
0.4 50 45 0.9
0.5 50 17 0.34
0.6 50 1 0.02
0.7 50 0 0
0.8 50 0 0

Laxity: 2.5
0.4 50 50 1
0.5 50 49 0.98
0.6 50 33 0.66
0.7 50 2 0.04
0.8 50 0 0

Laxity: 2.7
0.4 50 50 1
0.5 50 50 1
0.6 50 48 0.96
0.7 50 20 0.4
0.8 50 0 0

Laxity: 3.0
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 47 0.94
0.8 50 1 0.02

Laxity: 3.5
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 40 0.8

Laxity: 4.0
0.4 50 50 1
0.5 50 50 1
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0.6 50 50 1
0.7 50 50 1
0.8 50 48 0.96

Laxity: 4.5
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 5.0
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 5.5
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Laxity: 6.0
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Figure C.3 Statistical Model Results (CV = 0.5)
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Laxity: 1.9
Utilization Number of Total Cases Number of Successful Cases Success ratio

0.4 50 0 0
0.5 50 0 0
0.6 50 0 0
0.7 50 0 0
0.8 50 0 0

Laxity: 2.1
0.4 50 0 0
0.5 50 0 0
0.6 50 0 0
0.7 50 0 0
0.8 50 0 0

Laxity: 2.3
0.4 50 0 0
0.5 50 0 0
0.6 50 0 0
0.7 50 0 0
0.8 50 0 0

Laxity: 2.5
0.4 50 7 0.14
0.5 50 0 0
0.6 50 0 0
0.7 50 0 0
0.8 50 0 0

Laxity: 2.7
0.4 50 47 0.94
0.5 50 16 0.32
0.6 50 0 0
0.7 50 0 0
0.8 50 0 0

Laxity: 3.0
0.4 50 50 1
0.5 50 50 1
0.6 50 15 0.3
0.7 50 0 0
0.8 50 0 0

Laxity: 3.5
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 19 0.38
0.8 50 0 0

Laxity: 4.0
0.4 50 50 1
0.5 50 50 1
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0.6 50 50 1
0.7 50 49 0.98
0.8 50 0 0

Laxity: 4.5
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 8 0.16

Laxity: 5.0
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 39 0.78

Laxity: 5.5
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 48 0.96

Laxity: 6.0
0.4 50 50 1
0.5 50 50 1
0.6 50 50 1
0.7 50 50 1
0.8 50 50 1

Figure C.4 Statistical Model Results (CV = 1.0)


