
Traceability and Evaluation in Scenario Analysis
by Use Case Maps

Dorin B. Petriu1, Daniel Amyot2, Murray Woodside1, and Bo Jiang2

1 Department of Systems and Computer Engineering
Carleton University

Ottawa, Ontario, Canada, K1S 5B6
{dorin | cmw}@sce.carleton.ca

2 SITE, University of Ottawa
800 King Edward

Ottawa, Ontario, Canada, K1N 6N5
{damyot | bojiang}@site.uottawa.ca

Abstract. The Use Case Map (UCM) scenario notation has some strong
features related to rapid capture and evaluation of requirements mod-
els. In this paper, we explain how a UCM model was developed from a
requirements oracle case study: the Autonomous Shuttle Transport Sys-
tem. We further consider establishing links between scenario elements
and other types of requirements. These links, which can be supported by
requirements management tools, are useful to maintain both the scenar-
ios and requirements during their evolution. We also demonstrate how
simple performance models generated from UCMs may impact high-level
requirements and architectures.

1 Introduction

Requirements, which are expressions of ideas to be embodied in the system or
application under development and the conditions under which it will operate,
are often collected in unconstrained forms including text, diagrams, tables, and
equations or logical formulae. Requirements analysis then uses various tech-
niques to investigate the consistency, completeness, feasibility, and consequences
of the requirements. Nuseibeh and Easterbrook discuss integrated requirements
engineering, combining a variety of techniques with automated tool support for
effective requirements management [17]. They identify the need to move from
contextual enquiry to elicit requirements, to more formal representations for
analysis.

One form of requirements may be scenarios, which describe sequences of op-
erations to be carried out in response to given events, requests, or interactions.
Scenarios may be used to drive the elicitation and development of requirements,
to refine requirements stated in other ways, and to connect other requirements
whose relations would be otherwise unapparent. Lamsweerde gives a thorough
discussion on the relationships between goals and scenarios, between informal
and formal methods, and between scenarios and other requirements models [14].



2 D.B. Petriu et al.

Like many others, he noted that scenario specifications are incomplete and can-
not be used as a substitute for all types of requirements. Various non-functional
requirements, goals, quality attributes, and informal annotations are found in
most requirements documents.

In order for scenarios to be used in cooperation with general requirements,
they must be connected to external requirements in a way that supports trace-
ability, navigation, and analysis. This paper presents an approach where Use
Case Map (UCM) scenarios are constructed from an informal collection of re-
quirements. UCM scenario elements are then imported into a popular require-
ments management system (RMS), namely Telelogic DOORS [21], and linked to
other types of requirements. UCMs are abstract scenarios that are close to the
requirements abstraction level, and they contain many types of elements that
are potentially traceable to other types of requirements.

Scenario management and scenario evolution, which are discussed in their
largest context by Jarke et al. [13], face the issue of maintaining traceability of
scenarios that relate to each other and that evolve over time. To avoid an explo-
sion in the number of individual scenarios describing a complex system, several
approaches have been developed to capture common parts (often called episodes)
and describe interdependencies through relationships such as precedence, alter-
natives, inclusion, extension, usage, etc., while at the same time improving con-
sistency and maintainability. Breitman and Leite provided an extensive case
study on scenario evolution based on such relationships, and they identified the
need to develop suitable management systems that would take into considera-
tion scenario relationships [8]. Interestingly, Use Case Maps contain many such
relationships as first-class language constructs. Unfortunately, few substantial re-
sults are available for either the management of graphical scenarios like UCMs,
or their integration to general requirements, with the noticeable exception of the
work of Alexander [1] and a recent DOORS add-on called Analyst [22], which
will both be discussed in section 6.

This paper introduces a scenario-oriented requirements engineering frame-
work and focuses on three complementary contributions. First, sections 2 and 3
illustrate several steps used in the construction of a UCM model from informal
requirements. The case study selected here is the Autonomous Shuttle Trans-
port System (ASTS), presented as a requirements oracle at the Scenarios: Mod-
els, Algorithms and Tools Dagstuhl seminar [7]. ASTS is a rail-based transport
system under development intended to enable individual traffic of people and
goods, which today is mainly conducted by cars and trucks, by autonomously
acting shuttles on rail [20]. The second contribution is a novel approach to the
integration of UCM scenarios in a RMS. Section 4 presents how UCMs can be
imported into DOORS, how they can be connected to external requirements, and
how these links can be exploited for evolving scenarios, requirements, and de-
signs. We demonstrate the feasibility of such an approach with a new UCMNav
export filter, which generates documents that can be imported into a commer-
cial requirements management system. A particular attention was paid to the
unavoidable evolution of scenario models and other requirements. The third con-



Traceability and Evaluation with UCMs 3

tribution (section 5) builds on previous work to show that simple analysis and
evaluation of performance models generated from UCMs can influence several re-
quirements and architectural decisions early in the development process. Finally,
our conclusions are discussed in section 6.

2 Requirements Capture using UCM

2.1 Basics of Use Case Maps

The Use Case Map notation was developed to capture scenario descriptions as
causal flows of responsibilities for object-oriented design of real-time systems [9,
12]. In a requirements engineering context, UCMs also proved to have several
benefits over many other scenario notations: they abstract from message ex-
changes, they support scenario integration and interaction detection, and they
visually connect behaviour and architecture in a map view [3].

 

RailSystem

Shuttle

init

ready

GetTopo

GiveTopo

SaveTopo

ready
done

newOrder

rcvOffers

calculateO&P offerTimer

failOrder

assignOrder

calcOffers

[offer_timed_out]

move

reqMove

checkMove

End 
point 

Start 
point 

Component 

Loop 

AND-join AND-fork Timeout Path 

Timer 

OR-fork OR-join Responsibility Triggering path 

Fig. 1. Initial ASTS Use Case Map (version 1)

As shown in Fig. 1, the UCM notation uses filled circles for start points
(triggering events and preconditions), bars for end points (resulting event and
postconditions), crosses for responsibilities (abstract actions and activities), and
rectangles for components (e.g., software module, hardware, actors). Components
can contain responsibilities and sub-components. With paths, responsibilities can
be causally linked in sequence, as alternatives, or in parallel. Maps can also be



4 D.B. Petriu et al.

decomposed hierarchically with stubs (shown as diamonds on a path, see Fig. 2)
and plug-ins (sub-maps bound to stubs). UCMs are currently being standardized
by the International Telecommunications Union as part of the User Requirements
Notation (URN) [2, 11].

The UCM Navigator (UCMNav) is a multi-platform tool that supports the
editing and analysis of UCM models [24], which can also be exported to various
formats such as EPS (used for the figures in this paper), MIF, CGM, and SVG.

UCMs have been used as a basis for various kinds of model transformations.
UCMNav can extract individual scenarios from complex UCM models and ex-
port them as XML files, which can further be transformed and refined (e.g., with
the UCMExporter companion tool [4]) into Message Sequence Charts (MSC),
UML 1.4 sequence diagrams, and TTCN-3 test case skeletons. We will take ad-
vantage of such transformations in section 4.3. UCM models have also proved to
be a good basis for describing and synthesizing system component behaviour in
LOTOS [5], SDL [10], and communicating state machines [6].

UCMs can be annotated with performance-oriented information, which en-
able UCMNav to export performance models in the form of Layered Queueing
Networks (LQN) [18]. Enabling scenario-based performance analysis early in the
design process and as close to the requirements specification phase as possible
may influence several major decisions regarding the system architecture. This
topic will be explored further in section 5, again using ASTS as an example.

2.2 Capturing ASTS Scenarios using UCM

The requirements for the ASTS were given to the workshop participants as
handouts along with instructions to focus on the shuttle control [20]. One of
the handouts provided a high-level overview of the system and described the
railway network, the way in which customers place orders, the rail shuttles, and
the way in which shuttle income and expenses are assessed. Another handout
provided a more detailed description of the simulation environment in which the
shuttle control software is evaluated as well as descriptions of typical Use Cases
involving the shuttles.

UCMs capture the emerging behaviour of a system. This is done by tracing
the behaviour and overlaying it on the system structure. The behaviour traces
are called paths and the system structure is represented with components. Along
the paths, responsibilities are identified and allocated to suitable components.

In this case, the first step towards creating a UCM for the ASTS involved
identifying the system components. Initially the only components identified were
the RailSystem and multiple Shuttles, as shown by the rectangles in the UCM in
Fig. 1.

The second step was to identify the two main Use Cases from a shuttle’s
viewpoint which are initialization and serving customer orders. The initializa-
tion Use Case deals with the Shuttle acquiring the rail network topology from
the RailSystem upon activation. The serving customer orders Use Case has the
Shuttle waiting for a new order to arrive from the RailSystem and calculating and



Traceability and Evaluation with UCMs 5

submitting an offer. If the offer is accepted, then the Shuttle proceeds to move
and serve the customer.

The initialization Use Case is shown in Fig. 1 as the UCM path that begins
at the init start point inside the Shuttle component. The path is based on the
Receiving Topology sequence diagram from [20], which simply describes a request
from the Shuttle and the answer provided by the RailSystem (referred to as
Kernel in the original document). The Shuttle requests the network topology
by executing the GetTopo responsibility. The RailSystem records the topology
as represented by the GiveTopo responsibility. Finally the Shuttle receives the
topology and saves it as part of the SaveTopo responsibility. The Shuttle is now
ready to serve customers.

The serving customers Use Case is synthesized from various sequence dia-
grams from the initial requirements [20]. The path begins with the Shuttle being
ready and awaiting the arrival of a newOrder from the RailSystem. The RailSys-
tem sets a timer for waiting on offers from different Shuttles, shown in Fig. 1 as
the rcvOffers timer. In the UCM notation, timers are shown with a clock symbol
and they are set when reached on a path. When the connected end point from
a different scenario path (i.e., the triggering path) is reached in time, the timer
is reset and the scenario can progress on the original path, otherwise the time-
out path (shown with a zigzag symbol) is taken. When a new order arrives, the
Shuttle calculates an offer and a path through the rail network (the calculateO&P
responsibility) and sends it to the RailSystem while also setting an offerTimer to
wait for a notification that it has been awarded the order. The RailSystem eval-
uates all the offers and chooses the best one (the calcOffers responsibility). It
then notifies the winning Shuttle (the assignOrder responsibility).

The successful Shuttle receives the order assignment and proceeds to serve
it. The move loop shows how the Shuttle traverses a track segment by first
requesting permission to move onto a new segment (reqMove). The RailSystem
checks whether the Shuttle can move safely to the new segment and then notifies
it. Any Shuttle that does not get the order times out on the offerTimer timer and
resumes waiting for another newOrder.

If the RailSystem does not receive any offers for a given order during the bid-
ding period (rcvOffers times out) or none of the offers are acceptable (calcOffers
does not have a winning bid) then it aborts the processing of that order. An
order failure handling mechanism was not specified in the ASTS handouts, but
such a mechanism can be added later.

This first UCM model shown in Fig. 1 was created in a little over an hour
by a single person interpreting the ASTS documents and entering the UCM in
the UCMNav tool. The advantage of UCMNav is that it provides a platform
for quick editing of UCMs with facilities for exporting and importing models.

3 Scenario Evolution using UCM

The ASTS scenario was rapidly created and improved during the Dagstuhl sem-
inar, which illustrates one of the strengths of the approach. During a group dis-



6 D.B. Petriu et al.

cussion of about an hour, the initial UCM shown in Fig. 1 was evolved through
six steps. After specific feedback following a presentation to the other partici-
pants, version 7 (shown in Fig. 4) was created.

Scenarios evolve by the addition of functionality, steps to correct the logic
of the path, encapsulation of detail, and restructuring of a set of scenarios (as
described in [8]). For example, the first change was by addition, to extend the
successful order completion path to incorporate payment to shuttles and to name
the successOrder and failOrder end points in the RailSystem. The second change
added a second optional shuttle movement in the scenario to get the shuttle to the
pickup station. To simplify the map, it also encapsulated the shuttle movement
behaviour into a plug-in map within the stub move. This gave version 3 as shown
in Fig. 2 and 3. The move stub is used twice (shown as the diamond shapes
labelled move), and in both cases, the plug-in map is bound to the stub according
to this relationship: {<IN1 → leave>, <arrive → OUT1>}, which ensures the
continuation of the path accross connected maps.

RailSystem

Shuttle

init

ready

GetTopo

GiveTopo

SaveTopo

ready

done

newOrder

rcvOffers

calculateO&P offerTimer

failOrder

assignOrder

calcOffers

[offer_timed_out]

IN1 loadOUT1 IN1
unload

OUT1

reqPay

processPay

successOrder

move move

Fig. 2. ASTS UCM with move stubs (version 3)

The next steps are not shown by diagrams, but version 4 introduced an ad-
ditional optional move of a shuttle for repositioning (as part of a global strategy
to provide shuttles in all regions of the system), before a new order is received.
Version 5 moved two responsibilities into two new components, a TopoAgent to
create and maintain the system view of network topology, and a BankAgent to
process payments. Initially these components were nested inside the RailSystem
component, where the responsibilities were initially defined, but in version 6 they
were made separate (as indicated in Fig. 4). Version 6 also introduced a Com-
municationEnv component containing all the other components and representing



Traceability and Evaluation with UCMs 7

RailSystem

Shuttle

arrive
move

reqMove

checkMove

leave

addMCost

-

denied

approved

Fig. 3. Plug-in for the move stub in the ASTS UCM (versions 3 to 7)

CommunicationEnv

RailSystem BankAgentTopoAgent

Shuttle

init

ready

GetTopo

GiveTopo

SaveTopo

ready

done

newOrder

rcvOffers

calculateO&P offerTimer

failOrder
assignOrder

calcOffers

IN1 loadOUT1 IN1

unload

OUT1

reqPay

processPaysuccessOrder

IN1 OUT1

[offer_timed_out]

move movemove

Fig. 4. ASTS UCM with additional move stub and three new components (version 7)



8 D.B. Petriu et al.

the simulation communication environment. This was done in order to align the
UCM with the deployment diagram provided in the informal requirements [20].
Version 6 was presented to the other participants in the requirements oracle
session.

Fig. 4 shows the final version (version 7) created in response to feedback
received from other participants after the presentation. The only major change
was made to the move plug-in where we added approved and denied alternatives to
the RailSystem response when a Shuttle requests to move to a new track segment,
as well as an addMCost responsibility to account for each track segment that a
Shuttle travels on. These were not in the original loop of Fig. 1, nor in the original
plug-in map.

4 Managing UCM Evolution in DOORS

The creation and evolution of scenarios and other requirements can be inter-
twined in many ways. Typically, scenarios will be used to discover requirements
or to provide an operational view of existing requirements for understanding
and validation. In turn, requirements can also trigger the discovery or evolution
of scenarios. Such iterative process can be supported by requirements manage-
ment systems (RMS), for example Telelogic DOORS [21]. Most RMS focus on
structured textual requirements, with support for traceability, access control,
and version control. Adding scenarios brings in a complementary view that can
be beneficial to many stakeholders.

Many RMS can import requirements from various sources, including word
processors. For instance, we can import the original ASTS informal requirements
into DOORS, leading to an initial database of requirements objects, as shown by
the document in Fig. 5. The nature of these requirements objects can vary from
operational requirements to non-functional requirements and quality attributes.
They can also be more or less structured, depending on the quality of the source
document.

4.1 Combining UCMs with External Requirements

To combine scenario descriptions with other requirements, they should be linked
using the facilities of the RMS. Links of this kind between scenarios and informal
requirements were discussed also by Leite et al. [16], using an experimental RMS.

To use an RMS, the scenario elements must be imported into its data space.
When this is done, the intrinsic links within the scenario can also be created
as RMS links. These include predecessor/successor sequence links, linking re-
sponsibilities to the entity for the scenario, and linking components to scenarios
and responsibilities. We have implemented this importation in DOORS using
scripts native to the tool, and including facilities for incremental update from a
modified scenario.

The process begins by representing the external requirements in the RMS.
Fig. 5 shows the textual ASTS requirements in the DOORS tool. Then the



Traceability and Evaluation with UCMs 9

scenario is imported, and its elements are linked to other requirements. For
example, a timing requirement for the scenario as a whole can be linked to the
scenario entity, or a deployment requirement can be linked to the components
it references. Fig. 5 shows an indication of a link from an ASTS requirements
object to a UCM.

Fig. 5. Original ASTS description imported into DOORS, with links to/from UCMs

4.2 Exploiting Traceability Links: UCM Elements and Other
Requirements

The links are used in reasoning about requirements and about changes to require-
ments. Objects have categories and links are typed. Links are also directional
(“A depends on B”), and may be navigated in either direction (that is from a
requirement object to those that depend on it, or to those it depends on). Fig. 6
shows a DOORS display of ASTS UCM components and a link from Shuttle
to its responsibilities (above) and a display of UCM responsibilities linked with
their components (below). Link direction is indicated by an arrowhead.

A “big picture” of relationships through links can help to identify clusters
of dependencies, and missing information. Fig. 7 shows a traceability matrix
indicating links between entities in the text document (represented by the bars
at the top) and the UCM components (indicated by the bars below). The black



10 D.B. Petriu et al.

Fig. 6. UCM components and responsibilities in DOORS, with attributes and links

Fig. 7. Traceability matrix between UCM components and external requirements



Traceability and Evaluation with UCMs 11

spots in the matrix indicate the existence of links. If a UCM requirement object
is not directly or indirectly linked to external requirements, then this might
indicate that a link is missing or that this UCM element is not required. If
a requirements change is resolved by a scenario change, the scenario can be
updated in the UCM end and re-imported. As mentioned above, links to entities
which have not changed are maintained when the map is re-imported.

4.3 Exploiting Traceability Links: UCM Scenarios and Other
Requirements

A UCM scenario specification may imply many different paths, depending on
the conditions that govern choices made during the execution. These choices can
be specified as path preconditions, which are Boolean variables defining guard-
ing conditions on OR-fork branches, timers, and dynamic stubs. The resulting
scenario definition implies a corresponding sequential path or partial order. A
UCM traversal mechanism [12], implemented in UCMNav, is used to extract the
specific scenario (partial order) corresponding to a given definition, and stores
the result in a XML file. Our DOORS import capability includes these specific
scenario definitions. The XML file can also be converted to various forms [4],
such as a Message Sequence Chart (MSC) or a UML sequence diagram.

RailSystemEnvironment Shuttle

calcOffers

1

1

1par

1

1

1par

offerNotAcceptable

MSC FailedOrder

calculateO&P

rcvOffers

newOrder

orderAvailable

failOrder

rcvOffers

makeOrder

offerTimer

ready

offerTimer

Fig. 8. Result of the FailedOrder scenario definition, converted to an MSC



12 D.B. Petriu et al.

The ASTS UCM in Fig. 4 was supplemented with such variables and con-
ditions. One scenario was defined to describe what happens when a new order
fails because the shuttle’s offer is not acceptable. UCMNav can highlight the
UCM paths traversed by this specific scenario. The resulting scenario was also
converted to an MSC by UCMExporter, hence enabling a better visualiza-
tion of the complete, end-to-end scenario (Fig. 8). Note that the move loop
was not traversed in this scenario in order to keep the trace short. In general,
UCM start/end points are converted to MSC messages and responsibilities to
actions. MSCs were preferred to UML 1.x sequence diagrams here because they
support explicit parallel inline statements as well as timers (as in UML 2.0).
Additional messages are synthesized during the transformation to insure that
inter-component causality is preserved. These synthetic messages have been re-
named with more meaningful names here (e.g., orderAvailable and makeOrder).

Fig. 9. FailedOrder scenario imported into DOORS & linked to other requirements

The same FailedOrder scenario was imported into DOORS, as shown in
Fig. 9. This scenario view provides the means to connect UCM elements and
external requirements in a way that would be difficult otherwise. Instead of man-
ually linking each pair of relevant external requirements directly (there would
be too many pairs, and many might be missed by requirements engineers), the
traceability can be done more efficiently via UCM scenarios. For instance, the in-



Traceability and Evaluation with UCMs 13

formal descriptions of shuttle and agents (respectively section 2 paragraph 1 and
section 2.1.0 paragraph 4 of the informal document), discussed in the previous
examples, can be linked in the following way:

– UCM element Shuttle to section 2 paragraph 1 (manual, but obvious)
– UCM element BankAgent to section 2.1.0 paragraph 4 (manual, but obvious)
– UCM scenario SuccessfulOrder (not shown here) to UCM element Shuttle

and to UCM element BankAgent (not obvious, but automatic with scenario
import)

Such links created automatically provide very helpful support when perform-
ing traceability and impact analysis on requirements. A RMS tool could hence
answer questions such as “What is connected to this requirement, directly or
indirectly?” or “What scenarios and external requirements would be directly or
indirectly affected if we removed this responsibility or this component?”. Addi-
tionally, this automated process would prevent missing non-obvious links, would
be easier to use in a scenario/requirement evolution context, and would lead to
clearer explanations to questions such as the ones above because of the avail-
ability of link types (providing rationales).

5 Performance Evaluation of UCM Scenario Models

Performance requirements represent an interesting application area for the types
of links discussed in this paper. UCM scenarios can easily capture functional and
operational requirements, but they can also be supplemented with annotations
to describe various aspects of performance requirements. This combined view is
sufficient to enable the generation of performance models [18]. Analysis of such
models can be used to detect hot spots and trace them back to the scenarios and,
indirectly, to the components requirements and environment requirements to
which these scenarios are linked. This can help prioritize important issues which
may lead to the evaluation of alternative requirements for (COTS) components,
execution environments, and performance requirements altogether. A strategy
where requirements are linked to scenarios analysed outside the RMS is likely
to be more profitable and agile than a total integration strategy (scenario tool
within the RMS) because the analysis complexity remains outside of the RMS
environment. We are currently exploring this strategy.

UCMNav incorporates a built-in export filter that generates Layered Queue-
ing Network (LQN) performance models [15]. The path traversal and transfor-
mation algorithm for the generation of LQNs is explained in detail in [19]. Several
path detail changes were made to version 7 of the ASTS UCM (Fig. 4) in order
to comply with the usage rules for creating UCMs that are well-formed for the
purpose of performance model generation, as described in [18].

Fig. 10 shows the LQN model generated from the ASTS UCM. The trapezoids
in the diagram represent tasks and the arrows represent calling relationships be-
tween them – full arrow heads denote synchronous calls while half arrow heads



14 D.B. Petriu et al.

denote asynchronous calls. LQN tasks are subdivided into entries which repre-
sent services that the task provides, as well as optional activities that represent
the detailed breakdown of the workload for a given entry. For visual clarity, entry
and activity details for the ASTS are left out of the LQN figures presented here.
Instead, dashed lines are used to provide a graphical shorthand for the entry
and activity sequencing inside tasks.

The documents provided at the requirements oracle session did not provide
the workload parameters required to do a complete performance analysis of the
ASTS. The LQN model was therefore generated with default parameter values
as explained in [19]. Even with the use of these default parameters, running
the ASTS LQN model through the LQNS analytical solver does provide some
interesting non-quantitative insights into the system architecture.

 

CommE nv 

Rail 
System 

Shuttle 
 

BankAgentTopoA gent

Shuttle 
MoveLoop

Init Move NewOrder

Fig. 10. ASTS LQN showing the calling relationships between tasks

The LQNS solver tool can be configured to automatically detect call cycles in
a model [15]. In the case of the ASTS LQN, it detected a cyclical calling pattern
between the Shuttle and RailSystem tasks. These cycles can be seen in Fig. 10 and
are representative of a breakdown in the layering of a system. Further inspection
of the LQN reveals that these cycles are due to the bundling of the track segment
management and the order management functions in the RailSystem task. This
bundling is due to a lack of detail in the ASTS requirements. Since the documents
were focused on explaining the shuttle behaviour requirements, there was no
detailed description of the RailSystem itself. Thus the two functions are not
actually required to be bundled together and can be separated.

Fig. 11 shows a repartitioned LQN for the ASTS. The RailSystem has been
divided into an OrderMgr task to handle new orders and assign them to shut-



Traceability and Evaluation with UCMs 15

tles, and a TrackMgr task to deal with permissions for shuttles to use individual
track segments. This repartitioning gives the system a well-layered architecture.
In addition it also separates two functions that may have different performance
requirements. The track permission functionality is safety-critical and should
definitely have hard real-time constraints in term of response times and dead-
lines. The order management functionality is related to the overall usability of
the system and only needs to perform within soft real-time constraints.

This evaluation could hence lead to modifications to the ASTS UCM (not
shown here), such as the definition of two sub-components for RailSystem, with
partitioning of the paths and responsibilities. This new version of the UCM,
together with new versions of the resulting scenario files, could then be imported
again into DOORS, where the requirements objects and links would be updated.
Specific and appropriate performance requirements could then be created for the
new sub-components.

 

CommE nv 

OrderM gr 
(RailSystem) 

Shuttle BankAgent

TopoA gent

ShuttleMoveLoop 

Init Move NewOrder 

TrackMgr (RailSystem) 

CommE nv 

Fig. 11. Repartitioned ASTS LQN without cyclical calls

6 Conclusions

This paper has presented a framework for rapidly creating UCM scenario mod-
els from requirements documents, for rapidly refining those UCMs using the



16 D.B. Petriu et al.

UCMNav editor while maintaining traceability links between versions and to
the original requirements through the use of a requirements management system,
and for analysing the software architecture of the system based on an evaluation
of the LQN performance model generated from the UCMs. The framework was
illustrated using the ASTS as an example. Section 2 explained how the require-
ments documents were interpreted in order to create the initial ASTS UCM.
Section 3 described the steps used in rapidly prototyping the resulting UCM so
as to capture as much of the system behaviour as possible (at a high level of
abstraction) and to incorporate additional details and thinking about the system
resulting from discussions among requirements oracle participants.

Section 4 introduced a new, tool-supported iterative process for combining
UCM scenarios with other types of requirements in the DOORS RMS. The UCM
notation provides an appropriate means of capturing the important scenarios for
a given system, of integrating them in a single model, and of linking them to
external requirements and documentation. Such traceability to a scenario view
can help assess the validity and the completeness of requirements. Since both
scenarios and external requirements evolve over time, our tool also maintains
the existing links whenever this is possible.

The novelty of the approach is also partly due to the open and flexible import
interface with the RMS. Others have shown similar interests in combining graph-
ical scenario models with an RMS. With ScenarioPlus, Alexander has extended
DOORS to support various notations including UML 1.x Use Case diagrams
and class diagrams [1]. However, the diagrams must be drawn directly within
the RMS, causing substantial usability and performance problems. Earlier this
year, a DOORS plug-in called Analyst became available [22], which supports
most UML 2.0 diagrams. Analyst also uses a separate model editor and then
synchronizes the updated models with the DOORS database, where links to
other requirements objects are created. The number of supported modelling lan-
guages and the integration with the RMS are impressive, but this tool uses a
rigid synchronization model and proprietary interfaces. The approach presented
here is more open in the sense that one can freely adapt the RMS library or the
UCMNav export mechanism to import exactly the information that is needed.
However, we see a lot of potential in combining our tools with the Analyst as
this would provide a way to connect requirements and UCM scenarios with more
detailed design aspects, in UML 2.0.

Finally, Section 5 builds on previous work to show that simple analysis and
evaluation of performance models generated from UCMs can influence several
requirements and architectural decisions early in the development process. The
detection of cyclical calling dependencies between ASTS tasks and the resulting
repartitioning of the system in order to remove those cycles illustrates the value
of early performance analysis even on incomplete models, as well as the value of
being able to automatically generate the performance models from tools such as
UCMNav.

This work has demonstrated the feasibility of the approach and has led to
several additions to existing tools, especially to handle interoperability. Future



Traceability and Evaluation with UCMs 17

work will involve the strengthening of the current prototypes in terms of coverage
of UCMs, robustness, usability, and interoperability with performance tools and
with UML 2.0 tools. We also plan further validation of the approach through
industrial case studies.

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research
Council of Canada, through its programs of Strategic Grants and Collaborative
Research and Development Grants. We are grateful to Telelogic for making their
tools available via the ASERT lab.

References

1. Alexander, I.: ScenarioPlus - Tools for Requirements Engineering.
http://www.scenarioplus.org.uk

2. Amyot, D.: Introduction to the User Requirements Notation: Learning by Example.
Computer Networks, 42(3), 285–301, 21 June 2003.

3. Amyot, D. and Eberlein, A.: An Evaluation of Scenario Notations and Construc-
tion Approaches for Telecommunication Systems Development. Telecommunica-
tions Systems Journal, 24(1), 61–94, September 2003.

4. Amyot, D., Echihabi, A., He, Y.: UCMExporter: Supporting Scenario Trans-
formations from Use Case Maps. NOuvelles TEchnnologies de la RÉpartition
(NOTERE’04), Säıdia, Morocco, June 2004.
http://ucmexporter.sourceforge.net

5. Amyot, D. and Logrippo, L.: Use Case Maps and LOTOS for the Prototyping and
Validation of a Mobile Group Call System. Computer Communication, 23(12),
1135–1157, 2001.

6. Bordeleau, F. and Buhr, R.J.A.: UCM-ROOM Modeling: From Use Case Maps to
Communicating State Machines. Proc. of IEEE Engineering of Computer-Based
Systems (ECBS’97), 169–179, Monterey, California, March 1997.

7. Bordeleau, F., Leue, S., and Systä, T.: Dagstuhl Seminar 03371 – Scenar-
ios: Models, Transformations and Tools. Wadern, Germany, September 2003.
http://www.dagstuhl.de/03371/

8. Breitman, K. and Leite, J.C.S.P.: Scenario Evolution: A Closer View on Relation-
ships. Proc. of the Fourth Intl Conf. on Requirements Engineering (ICRE 2000),
95–105, Schaumburg, USA, 2000.

9. Buhr, R.J.A. and Casselman, R.S.: Use Case Maps for Object-Oriented Systems,
Prentice Hall, 1996.

10. He, Y., Amyot, D., and Williams, A.W.: Synthesizing SDL from Use Case Maps:
An Experiment. Reed, R., Reed, J. (Eds) 11th SDL Forum (SDL’01), Stuttgart,
Germany, July 2003. Volume 2708 of Lecture Notes in Computer Science, 117–136.

11. ITU-T: Recommendation Z.150 (02/03), User Requirements Notation (URN) –
Language Requirements and Framework. International Telecommunication Union,
Geneva.

12. ITU-T, URN Focus Group: Draft Rec. Z.152 – UCM: Use Case Map Notation
(UCM). Geneva, Switzerland, Sept. 2003. http://www.UseCaseMaps.org/urn/



18 D.B. Petriu et al.

13. Jarke M., Bui X.T., and Carroll J.M.: Scenario Management: An Interdisciplinary
Approach. Requirements Engineering, 3(3/4), 155–173, 1998.

14. Lamsweerde A.v.: Requirements Engineering in the Year 00: A Research Perspec-
tive. Proc. of 22nd Intl Conf. on Software Engineering (ICSE), Limerick, Ireland,
ACM Press, 5–19, 2000.

15. Layered Queueing Resource Page. http://www.layeredqueues.org/
16. Leite, J.C.S.P., Rossi, G., Maiorana V., Balaguer, F., Kaplan, G., Hadad, G., and

Oliveros, A.: Enhancing a Requirements Baseline with Scenarios. Requirements
Engineering, 2(4), 184–198, 1997.

17. Nuseibeh B. and Easterbrook S.: Requirements Engineering: A Roadmap. A.
Finkelstein (Ed) The Future of Software Engineering, ICSE 2000, ACM Press,
35–46, 2000.

18. Petriu, D.B., Amyot, D., and Woodside, M.: Scenario-Based Performance Engineer-
ing with UCMNav. Reed, R., Reed, J. (Eds) 11th SDL Forum (SDL’01), Stuttgart,
Germany, July 2003. Volume 2708 of Lecture Notes in Computer Science, 18–35.

19. Petriu, D.B. and Woodside, M.: Software Performance Models from System Sce-
narios in Use Case Maps. Proc. 12 Intl Conf. on Modelling Tools and Techniques
for Computer and Communication System Performance Evaluation (Performance
TOOLS 2002), 141–158, London, April 2002.

20. Software Engineering Group: Autonomous Shuttle Transport Sys-
tem Case Study. University of Paderborn, Germany, January 2003.
http://tele.informatik.uni-freiburg.de/dagstuhl03371/CaseStudy.html,
http://www.cs.tut.fi/~tsysta/Dagstuhl03371/SWTPRA-case-study-v04b.pdf

21. Telelogic AB: DOORS/ERS. http://www.telelogic.com/products/doorsers/
22. Telelogic AB: DOORS/Analyst.

http://www.telelogic.com/products/doorsers/analyst/index.cfm

23. Telelogic AB: DXL Reference Manual, 2001.
24. UCM User Group: Use Case Maps Navigator 2 (UCMNav).

http://www.usecasemaps.org/tools/ucmnav/index.shtml


