
OPTIMAL POLICIES FOR MULTI-LEVEL ADAPTIVE

DISTRIBUTED COMPUTER SYSTEMS

Mohammad Abdeen, Murray Woodside

Carleton University, Ottawa, Canada

{mabdeen|cmw}@sce.carleton.ca

Abstract

Modern distributed applications, such as distributed multi-media and mobile applications, face unpredictable

operating conditions and load variations. Performance cannot be designed into such applications in advance; they

have to be able to tune themselves into unexpected environments and to adapt to changes over time. We see many

examples of single adaptations in applications and middleware, but the opportunities are even greater if many

features of the system, at all levels, are adaptive. This paper proposes an architecture to support coordinated adaptive

changes in all levels (application, middleware and operating system), with an optimal controller at its core. The

controller uses optimal policies based on Markov Decision Processes (MDP) which seek to satisfy a set of system

quality-of-service and resource-usage goals.

Key words: Adaptive systems, Distributed Systems, Adaptive architectures, Mobile applications, Multi-media

Applications, Markov Decision Process.

1 Introduct ion

Modern distributed applications, such as e-commerce and enterprise computing, and many multimedia and

mobile applications, face unpredictable environments due to user mobility, load variations, evolution of user access

patterns, and varying resource availability. Figure 1 describes a typical example with a mobile user who moves from

a radio LAN to an Infra-red sub-network with much lower bandwidth and a much higher error rate. To adapt to this

move, the system must identify the need for a change, decide on the change and implement it in a timely way. Rapid

2

changes or disturbances are the most challenging, but slower disturbances, taking place over days or months, are

also important. For slower disturbances the adaptation is a kind of self-tuning to track changes in the environment.

M
ob

ile
 H

os
t

B
S

B
S

MU

M
ob

ile
 u

se
r

WaveLAN

Subnet

M
ob

ile
 H

os
t

B
S

B
S

MU

IR LAN

BS : Base Station
MU : Mobile User
IR : Infra-Red

Figure 1 A mobile user roaming among multiple networks.

 Adaptive features have been described, under names such as “reflection” [12] [14] [15] [16],

“metaprogramming” [20], and “reliability architectures” [21]. We regard these systems as special kinds of feedback

control system, with the elements of sensor, decision-element or controller, and actuator, as indicated in Figure 2a.

Figure 2a show a single control loop, with one sensor controlling one actuator, which is the most common form in

reported work. The loop controls one feature of the system, such as

� a degree of imprecise computation [23], driven by computing resource availability

� the number of threads of a server, driven by its queue size (in web servers)

� moving components between nodes of a distributed system, driven by their relative load (by a reflective

ORB such as TAO [2])

3

Application

Decision Rule

Application

Actuator Sensor

Application level

Node 2 etc. Node 1

(a) Single application with
an adaptive feature

(b) Distributed adaptive system with
multiple sensors and actuators

Middleware level

Operating system level

Decision Rule

Figure 2 Adaptive systems, showing an isolated adaptive feature and a complex distributed system with
multiple sensors and actuators

This paper considers techniques for controlling several system features simultaneously, in a coordinated

manner, to react to changes detected by multiple sensors. Figure 2b shows many sensors and actuators in a

distributed system.

For example, in the system of Figure 1, to adapt to lower bandwidth while transmitting a stream of images, one

might increase the image compression, decrease the resolution, change from color to black-and-white, and reduce

the frame rate. These are all application level changes. At the middleware level, the source of the images might be

changed (for instance, to a server which stores pre-compressed frames), they might be routed through a proxy server

attached to the new network. The protocol could implement frame filtering, packet header compression, data

bundling of smaller data packets into a single larger packet for transmission, and packet filtering. At the operating

system level, frames could be pre-fetched during periods of better connectivity to cover periods of reduced network

capacity, and (in some terminals) power level may be controlled [22].

A system with many sensors and actuators needs a structure that could be called an adaptation architecture,

with locations for the sensors, actuators and decision modules; in this work we adopt a centralized adaptation

4

architecture with:

� sensors and actuators embedded in the application components, middleware and operating system, with a

standardized interface for communicating by messages with the decision module, and

� a single decision module, which periodically obtains data from the sensors and makes decisions

This work does not consider important aspects of the architecture such as the sensor and actuator messaging

interfaces, the choice of the period or periods for decisions, the use of sporadic data sent by the sensors (event-

driven adaptation), and the possible advantages of partitioning and distributing the decision module.

The adaptation architecture used here is described first. Then a discrete-state (Markovian) view of the controlled

system and the control is defined, leading to a Markov Decision Process (MDP) problem, with a well-known

optimal solution. This gives decision rules with discrete alternatives and threshold levels in the sensor measures,

similar to previous work with single control loops. The optimization technique is applied to an example based on

Figure 1, to investigate the complexity of the calculations, and to show the form of the solutions obtained.

2 An architecture for coordinated adaptation

A centralized architecture with a single decision module is based on the feedback control abstraction sketched

out in Figure 2. All kinds of measures of program performance, and all kinds of adjustment mechanisms, are treated

uniformly. This section considers the operations carried out by the components indicated in Figure 2, in greater

depth.

2.1 The adaptation process

The adaptation process repeats a cycle of estimating (monitoring and tracking), deciding and acting.

Estimation of the operational state of the system requires functions (which we call sensors) to capture measures,

which may take a wide variety of forms. This kind of self-awareness of a system goes under the general name of

reflection [14], and the same name is also applied to programming techniques and language elements which can be

used to implement some sensors at the application level [12] [24]. A more comprehensive view of system self-

awareness calls it metaprogramming. These techniques can capture measures that are application specific, such

5

as message sizes, class or structure of data requests, relative importance of a request, and request contexts.

Sensor in this work also includes other awareness mechanisms such as monitoring by dedicated components in

the middleware[4] [6][13], in the operating system [19] and in the application managers. These techniques are

necessary to capture system-level performance measures such as throughput, CPU utilization, and average delay,

and environment parameters such as subsystems used by a response, levels of competitive workloads. Failure

detectors fall into the same group of sensors.

The decision mechanism derives new settings for the actuators from an analysis of the measures (feedback

control). Knowledge of all the measures is important at this point, as they may identify under-used resources, or

opportunities to change the application’s behavior. In previous work on adaptation, the decision mechanism is

sometimes a threshold-based decision to determine one of a set of pre-determined values of a parameter. For

instance, in threshold queue mechanisms, when a queue of messages exceeds a threshold QUPR, additional software

servers or server threads may be created. Later, if the queue length is less than another smaller threshold QLR, the

additional servers may be removed. This is a rule with hysteresis, as illustrated in Figure 3.

Number of server threads

Jobs waiting in the queue

QUPRQLR

Figure 3 A threshold rule for adapting the number of servers threads for a queue

In this work there may be similar rules to determine a discrete level for a system parameter, but the rule in

general depends on many variables instead of just one.

Software actuators are software components that implement the decision to change or tune the system, to help

bring it back to the desirable range of operation. They may be built into the operating system, middleware, or

6

application, as described in the Introduction. Application level mechanisms described here can be combined with

middleware such as CORBA, which already provides mechanisms for redirecting service requests, in order to

balance load or to replace a failed server. The present work can tie these capabilities into a wider adaptive scheme.

2.2 Adaptation over Multiple levels

Figure 4 below depicts the centralized architecture considered in this paper, and its components.

Trace repository

Data analysis and
decision making

Global software
Actuator

Central unit (or process)

Sensor

Local
Software
actuator

Sensor

Local
Software
actuator

Middleware
level

tracing points C
o nfigur ation points

tracing points

Application
level

C
on figura tion p oints

Client
Server

Sensor

Local
Software
actuator

Middleware
level

tracing points Con figura tion p oints

tracing points

Application
level

C
o nfigu ration point s

Sensor

Local
Software
actuator

Figure 4 The Centralized multi-level adaptive architecture

The figure shows a distributed application with a client on the left and a server on the right, each with a

middleware level and an application level equipped with sensor and actuator components. Sensor data are sent to a

central Adaptation unit where a Decision Making Module (DMM) makes adaptation decisions. The DMM then

instructs each level to take the required action(s). Software actuators in each level receive adaptation decisions made

by the DMM and implement them.

The Decision Making Module

To construct a coordinated adaptive system with the architecture in Figure 4 one has to consider:

7

� how to choose the points to apply sensors and actuators

� The design of sensors and actuators

� The choice of the decision rules for the Decision Making Module.

In this work we address the third point, assuming that sensors and actuators are available.

In single loop systems it is not very difficult to construct a sensible feedback path with an ad hoc decision

function. There is however almost no theory to guide the choice of the best feedback function (for example, to

define the best values of the thresholds in Figure 3).

For more complex systems, with many control variables derived from many sensor values, intuition does not

provide guidance and the lack of theory is even more serious. There is a potential for greatly improved performance,

but some way must be found to construct reasonably good decision functions. The possibility of finding optimal

rules is even more attractive, and here we will attempt to get them from Markov Decision Processes.

3 A Markov Decision Process (MDP) approach to optimal pol ic ies

Searching for a way to derive good policies to guide decisions, we consider a discrete-state model for the

system, capturing the state information known to the DMM. Over time, state changes

� may be changes forced by the DMM, or

� may be observed but uncontrolled changes in the system, or

� may be the effects of hidden changes that are not otherwise known to the DMM

The last two categories of changes will be called disturbances and are modeled by random state transitions in a

Markov Chain model of the system. The state space contains states Si, for i = 1 to I. In steady state, state Si has

probability pi. At each step, a transition from a state Si to another state Sj has a probability pij.

The system evolves randomly, but also can be controlled to some extent by the actuators, which can force (or, in

general can influence) state changes to improve operation. Control is exerted by choosing values for control

variables a, which influence the transition probabilities pij (i.e. the transition probabilities are actually given

8

functions pij(a).

In Markov Decision Processes [1] the best choice of the control variables a, among the set D(i) of control values

which are feasible in state Si, is determined. “Best” is intended in the sense of minimizing a given cost function

which is the expected value of a function Cost(a, i) of the control and the state. It is possible to compute a rule or

policy R which assigns an optimal choice of a to each state i. This is a versatile and powerful tool to analyze

probabilistic sequential decision processes with infinite planning horizon. This model is an outgrowth of the Markov

model and dynamic programming. It has many potential applications in inventory control, maintenance, resource

allocation and others.

Optimal policy

 A policy determines the actions to be taken at each decision epoch (moments which we will assume are equally

spaced in time). A stationary policy R is a rule that always prescribes a single action Ri whenever the system is

found in a state Si at a decision epoch.

In order to define an optimal policy, let’s assume that the long-run average cost per unit time when using policy

R is g(R). A stationary policy R* is said to be average-cost optimal if g(R*) � g(R) for each stationary policy R.

It is computationally infeasible to find the average-cost optimal policy by computing the associated average cost

for all possible polices. However, some algorithms can be used to construct a sequence of improved policies until an

optimal policy is found. Examples of such algorithms are: the policy iteration algorithm, and the value iteration

algorithm.

3.1.1 Relative values

For a given policy R, the total expected cost over the first n decision epochs when starting with state Si, is

denoted by Vn(i,R). Starting with a different state other than Si, e.g. Sj, has the effect of changing the total expected

cost function. This change in the total cost function is called the relative value vj(R). It can be shown, as in [1], that

the average cost per unit time, g(R), and the relative values, vi(R), can be calculated simultaneously by solving a

9

system of linear equations as follows:

vi = ci(Ri) – g(Ri) + �j�I pij(Ri)vj for each i� I (1)

where ci(Ri) is the cost of the decision a = Ri made at state i, pij is the transition probability matrix, and is the

transition probability from state Si to state Sj if the decision Ri is made.

3.1.2 Policy-iteration algorithm

The relative values associated with a given policy R provide a tool for constructing a new policy R’ whose

average cost is no more than that of the current policy R. It can be shown that if

ci(R’i) – g(R) + �j�I pij(Ri)vj(R) � vi(R) for each (2)

then

g(R’) � g(R) (3)

Equations (2) and (3) suggests that an optimal policy Ropt can be obtained be recursively iterating with new

values of R’ until a minimum cost g(R*) is reached. The value of R* is called the optimal policy.

The policy iteration algorithm always converges in a finite number of iterations [1], and empirically it is found

to converge very fast on many problems. The number of iterations needed is insensitive to the number of states and

of the starting policy, and varies typically between 3 and 15.

4 An Adaptive System

The construction of an optimal set of policies will be described in the context of a concrete example of a mobile

multi-media application which could play a video clip, a movie, or support a video conferencing application from a

mobile device (e.g. a PDA). Mobile users move among networks of various speeds, and hence of various delays, as

illustrated in Figure 1. Competing traffic on each network may affect the quality of service obtained by the user.

If a user is faced with longer delays, more limited bandwidth, and diminished quality of service, two effective

adaptation techniques can be employed to provide better service:

� The video frame rate can be reduced. This will cause a flickering effect but will send the essential information.

10

� The size of each video frame can be reduced by compression. Compressed frames have smaller sizes but the

image quality within each frame is less.

The users move among four wireless networks, Net-1, Net-2, Net-3, and Net-4 with speeds of 10 Mbits/sec, 4

Mbits/sec, 1 Mbits/sec, and 200 Kbits/sec respectively. These movements are a random disturbance to the operation

of the system, which affect the service quality. As controls, we have

� four different compression levels, level 1 (no compression), 2 (15 times compression), 3 (30 times) and level 4

(50 times).

� four frame rates, level 1 (normal), 2 (3/4 of normal), 3 (half normal) and 4 (1/4 normal).

In the following sections we show how we can build a Markov decision model to obtain an optimal decision

policy.

4.1 The system model

A discrete state model is a simplification of a complex system, based on judgement of the key factors in the

operation of the system. In this example the factors (already mostly described) are defined by:

� the network being accessed by the user (N, with four values 1 to 4),

� the current level of compression (C, with four values 1 to 4)

� the current frame rate level (Fr, with four values 1 to 4),

� an index of the available quality of service (Q, with three levels 1 to 3)

The value of the last factor is a function of the overall operation of the system, and a variety of measures could be

used. Here, we consider an “available QoS” measure derived from the network bandwidth available to the user after

accounting for contention from others. This could be found from network collision data or utilization data. The

range of values that define level 2 of Q is to be chosen to represent “typical” expectations from the given network.

The QoS measure is affected by the other variables. We define Q*(C,Fr,N) as the most likely value of Q to

result from a given the values (C,Fr,N). The central typical range of the QoS measure is modified by the

11

other variables (C,Fr,N). Therefore we can identify sets of values in the (C,Fr,N) space which map to the low range

(Q* = 1, representing overloaded conditions), the middle range (Q* = 2, typical conditions) and the high range (Q*

= 3, lots of capacity).

The second and third factors listed above are control variables. The decision levels are part of the state if the

decisions to be taken naturally depend on the previous level of the same control variables, or if the next state

depends on them.

The state S is thus a tuple of four values:

S = (C, Fr, N, QoS).

and the state space has 192 states (4 x 4 x 4 x 3).

The set of possible decision values is referred to as D, which can be expressed as:

D = (CD, FrD) .

where CD and FrD are the new values for C and Fr.

The transition probability matrix

Some transitions among states express the reaction of the system to control, and some express its reaction to

disturbances, as described eariler. The probabilities of the transitions that are affected by disturbances are found by

analyzing the behavior of the system, either by models or measurements.

In this example, the disturbances are the changes of network, and some changes of QoS. Suppose Pij(a) is the

transsition probablity from Si = (Ci, Fri, Ni, QoSi) to Si = (Cj, Frj, Nj, QoSj). Then we define:

Pij(a) = Pnet(i,j)Pqos(i,j) if Sj has Cj and Frj which correspond to

the decision a.

 � 0 otherwise

Pnet is the transition probability of the user from Ni to Nj. Pnet can be given by:

12

Pnet = pn if Ni = Nj,

� (1 � pn)�3 otherwise.

 Similarly, Pqos(i,j) relates to changes in quality of service. Suppose that Q*j is the value predicted by (Cj, Frj,

Nj) then Pqos(i,j) is given by the following table:

Predicted QoS level Q*(Cj, Frj, Nj)

1 2 3

1 pq (1 � pq)/2 (1 � pq)/2 - �

2 (1 � pq)/2 + � pq (1 � pq)/2 + �

Target QoS level, Qj

3 (1 � pq)/2 - � (1 � pq)/2 pq

where � adjusts the terms to give smaller probability to larger changes.

The cost function and its formulation

A cost function associates a positive real value with every (state, decision) pair. It is the relative cost values in

different states that are important, rather than the absolute cost values. Cost values can be in any units such as

money, CPU cycles, delay, or memory utilization. In most real-time systems, various different kinds of costs (e.g.

CPU, delay, memory, etc…) are incurred and a final combined cost function is desired. Finding the right formula for

this function for a particular system can sometimes be challenging.

To evaluate a cost function we go through three steps.

1. Identify a set of cost factors, such as CPU cycles or delay.

2. For the mth factor, create a partial cost function Costm(i,a) which evaluates the impact of that factor
under decision a in state i.

3. Normalize Costm to fall between 0 and 1, with the value of 1 being the highest cost.

4. Assign a weight value wm for each cost function, to adjust for its importance in the overall cost to
be minimized.

13

The overall cost function is the sum of the individual cost functions weighted by the weighting factors w:

Cost(a, i) = �mwmCostm(a, i)

where m indexes the partial cost functions.

In this example, there are three partial cost functions, one represents the CPU utilization, a second represents the

delay cost, and a third representing the quality of service. Costs are assigned to levels in increments of 1. For

example, the first compression level is assigned a CPU cost of 1, the second level is assigned a cost of 2, etc….

Higher frame rate created proportionately higher CPU cost. The un-normalized cost functions are given as follows:

Costcpu = compression cost + frame rate cost.

Costdelay = (uncompressed frame size � compression level)/(network speed)

CostQoS = QoStypical /QoSactual

The QoStypical is the value in a network under normal load conditions, as understood by the system designer. It

depends on the network speed as well as the compression and the frame rate levels.

The weights, wm, given to the cost functions were; 1 for the CPU cost, 2 for the QoS cost, and 3 for the delay

cost. These values were chosen by judgement, and they do not have to be integers.

5 Results

The MDP calculations for this model were done using Matlab, with the values pn = 0.7, pq = 0.5, � = 0.1, U = 4.

The results shown in this section demonstrate how the DMM of the system reacts optimally, and in a

collaborative fashion, to external environment changes (network choice and traffic contention) by making

appropriate changes to the control variables (compression and frame rate).

There are two sets of results. The first set shows the changes in the control variables, as the network speed

varies, for a constant available quality of service (i.e. invariant user traffic, traffic contention, and/or number of

users). The second set shows the results as the available quality of service value changes. The decision values are

14

referred to as vectors (C, Fr), with integer values for C and Fr (C = 1 for low compression, Fr = 1 for low frame

rate).

The minimum long-term average cost is 0.7585, compared to a worst case cost of 6. An ad hoc decision rule

produced a cost that is roughly twice as large.

5.1 Effect of network speed on control variables

The optimal choice of the compression C and frame rate Fr will be displayed as one disturbance variable

changes and the other is held constant.

5.5 6 6.5 7 7.5 8 8.5 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Network Speed, log scale

D
ec

is
io

n
pa

ra
m

et
er

s
(c

om
pr

es
si

on
/fr

am
e

ra
te

)

Quality of service level is fixed to low

Compression
Frame Rate

Figure 5 The variation of compression level and frame rate as a response to changing network speed
with constant available quality of service (minimum value).

Figure 5 above shows how an optimal policy produces appropriate decisions at different network speeds in a

collaborative way. It is also to be noted that the quality of service for the result shown in Figure 5 is fixed to its

minimum value. At low network speeds, the optimal policy is to use a lower frame rate and a higher compression.

Since the user contention is high (low available quality of service), the optimal policy minimizes the user traffic by

using lower frame rates and higher compression values, especially for slower networks. When the network speed

increases, the optimal policy responds by relaxing the compression level while keeping the frame rate at its

minimum value. Relaxing compression is preferred over increasing the frame rate for a lower quality of service

since the next step of the frame rate is double the current, while the next level of compression is more

15

than half of the previous compression thus producing less traffic.

5.5 6 6.5 7 7.5 8 8.5 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Network Speed, log scale

D
ec

is
io

n
pa

ra
m

et
er

s
(c

om
pr

es
si

on
/fr

am
e

ra
te

)

Quality of service level is fixed to high

Compression
Frame Rate

Figure 6 The variation of compression level and frame rate as a response to changing network speed
with constant available quality of service (maximum value).

Figure 6 below, shows similar results but for the highest value of available quality of service (i.e. lower user

traffic and user contention). For slow a network, the frame rate is set to a minimum and the compression to almost

maximum compression (decision is (3,1)). Maximum compression consumes an extensive amount of CPU cycles

and is therefore avoided. At high network speed, however, the increase in the available bandwidth is exploited by

increasing the frame rate and by reducing the compression to a minimum (decision is (1, 3)).

5.2 Effect of different available quality of service values.

16

120 140 160 180 200 220 240 260 280 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Quality of Service

D
ec

is
io

n
pa

ra
m

et
er

s
(c

om
pr

es
si

on
/fr

am
e

ra
te

)

Network speed is fixed to the highest available value

Compression
Frame Rate

Figure 7 The variation of compression level and frame rate as a response to changing the available
quality of service with constant network speed (maximum).

120 140 160 180 200 220 240 260 280 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Quality of Service

D
ec

is
io

n
pa

ra
m

et
er

s
(c

om
pr

es
si

on
/fr

am
e

ra
te

)

Network speed is fixed to the medium value

Compression
Frame Rate

Figure 8 The variation of compression level and frame rate as a response to changing the available
quality of service with constant network speed (medium speed).

Figure 7 and Figure 8 show the changes of the control variables with quality of service, for fixed network

17

speeds. For the high network speed (Figure 7), any additional available quality of service can always be exploited.

This is shown by the increase in the frame rate while keeping the compression at its minimum. Decision (1, 3) is an

example. For medium speed networks (Figure 8), however, the increase in the available quality of service (resulting

from less user traffic/contention) is not always useful. The middle point in that figure (decision (2, 3)) shows that

although the frame rate is increased due to the increase in the available quality of service, the compression is

increased to try to ease the traffic on a relatively slow network.

5.3 Comparison with an ad hoc adaptation technique

The effectiveness of the MDP lies in that it takes into account the behavior of the system over a period of time.

The optimization does not only consider the current situation of the system, but also the future overseen behavior.

Ad hoc adaptation techniques lack that kind of ability. To give an example, we will assume a scenario in which an

ad hoc adaptation rule is used. We consider the situation depicted by Figure 5. As an ad hoc rule suppose we just use

the following:

IF (network speed is high) THEN (increase frame rate)

As an example, according this rule, the point in Figure 5 with high network speed should have a high frame rate

which will be taken as level 2 (the level suggested by the MDP is level 1). When the rule above is applied, the

steady state cost function is 1.4131. This is almost double the optimal cost.

6 Conclusions

This work has shown how system adaptation can be guided by decision rules found by the methods of Markov

Decision Processes. This is still true when there are multiple controlled features, and multiple system measures used

to drive the decisions. A model of a mobile multimedia system had 192 states, and optimal rules for it were found

quickly by conventional calculation tools. The rules give reasonable-appearing coordinated changes in the frame rate

and compression ratio, when a user changes network or when the local contention effects change. Using a cost

function based on simple value relationships, the optimal operation was about twice as good as a reasonable ad hoc

rule, in one case examined.

18

The core of the adaptation is a simplified discrete state model of the entire system, reflecting the designer’s

view of the granularity of decisions and measures. If the designer imposes a large granularity with just a few levels

of each separate variable, the state space will be smaller and the calculations will be less complex. A problem can be

attacked first this way, and then experiments can be made with finer granularity. The model must also capture the

most essential causal relationships in the system.

Even when the Markov model is a drastic simplification of a complex system, this approach can be applied in

practice, by using good judgement in the choice of model. It does not have to be a perfect predictive model, to select

useful changes in a feedback mode. When the adaptation is used, the decisions are driven by actual system

measurements and the model only evaluates the future effects of the decision, in a general way. Experience with

feedback control in other industries shows clearly that an approximate model can contribute to good control.

This work has been restricted to centralized architectures, and to small models. If a larger model is needed, for

instance to represent many decision variables, then some partitioning of the decision space would seem to be

essential. This work has also not considered the practical issues of sensor and actuator implementation, sensor errors

and statistical smoothing of measures, the choice of a time step, or the use of sporadic measures (rather than

periodically collected data). These are topics for future works.

7 References

[1] Hennik C. Tijms, “Stochastic Modeling and Analysis: A computational approach”, John Wiley & Sons 1986.

[2] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. C. Magalhes, R. H. Campbell, "Monitoring, Security, and

Dynamic Configuration with the dynamicTAO Reflective ORB", Proceedings of the IFIP International

Conference on Distributed Systems Platform and Open Distributed Processing (Middleware2000).

[3] Bo Norregaard, Eddy Truyen, Frank Matthijs, and Wouter Joosen, "Customization of Object Request Broker

by Application Specific Policies", Proceedings of the IFIP International Conference on Distributed Systems

Platform and Open Distributed Processing (Middleware 2000).

[4] Hector Duran and Gordon S. Blair, "Configuring and Reconfiguring Resources in Middleware" IEEE Proc.

19

ISORC 2000.

[5] Richards, A. " DARTS - A Dynamically Adaptable Transport Service Suitable for High Speed Networks”,

2nd International Symposium on High Performance Distributed Computing (Washington) 1993.

[6] Adrian Friday, Nigel Davies, Gordon Blair and Keith Cheverst "Developing Adaptive Applications: The

MOST Experience " Journal of Integrated Computer-Aided Engineering, Volume 6, Number 2, 1999, pp143-

157.

[7] Nigel Davies, Adrian Friday, Stephen Wade and Gordon Blair "L2imbo: A Distributed Systems Platform for

Mobile Computing" ACM Mobile Networks and Applications (MONET), Special Issue on Protocols and

Software Paradigms of Mobile Networks, Volume 3, Number 2, August 1998, pp143-156.

[8] Keith Cheverst, Nigel Davies, Keith Mitchell, Adrian Friday and Christos Efstratiou "Developing a Context-

aware Electronic Tourist Guide: Some Issues and Experiences" Proceedings of CHI 2000, Netherlands, April

2000, pp 17-24.

[9] D.C. Feldmeier, A. J. Macauley and J. M. Smith, “Protocol Boosters,” Technical report, U. Penn CIS Dept.,

1996.

[10] A. Mallet, J.D. Chung and J.M. Smith, “Operating System Support for Protocol Boosters”, Proceedings of

the 3rd international Workshop on High Performance Protocol Architectures (HOPPARCH’97), June 1997.

[11] Bo Norregaard Jorgensen, Eddy Truyen, F. Matthijs, and Wouter Joosen, “Customization of Object Request

Broker by Application Specific Policies”, Middleware 2000.

[12] Jim Dowling, Tilman Schafer, Vinny Cahill, Peter Haraszti, Barry Redmond, “Using Reflection to Support

Dynamic Adaptation of System Software: A case Study Driven Evaluation”, OOPSLA Workshop on Object-

Oriented Reflection and Software Engineering, Denver, Colorado, Nov. '99.

[13] Baochun Li, Won Jeon, William Kalter, Klara Nahrstedt, Jun-Hyuk Seo, “Adaptive Middlware Architecture

for a Distributed Omni-Directional Visual Tracking System”, Proceedings of SPIE Multimedia Computing

and Networking 2000 (MMCN 2000), pp. 101- 112, January 25-27, 2000.

20

[14] Pattie Maes, "Concepts and experiments in computational reflection" OOPSLA'87, Sigplan Notices, Vol. 22

No 12. December 1987.

[15] Ian Welch and Robert Stroud, "Dalang: A reflective Extention for Java" Tech report, university of

Newcastle-upon-Tyne, UK, Sept 1999.

[16] Ramana Rao, “Implementational reflection in Silica” In Proceedings of ECOOP'91, number 512 in Lecture

Notes in Computer Science, pages 251--267. Springer-Verlag, July 1991.

[17] Pierre-Guillaume Raverdy, Robert Le Van Gong, Rodger Lea, “DART: A Reflective Middleware for

Adaptive Applications”, Proceedings of the ACM Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA), 1998.

[18] Raj Jain, “The Art of Computer Systems Performance Analysis”, John Wiley & Sons, Inc. 1991.

[19] Jun-ichiro Itoh, Yasuhiko Yokoto, Mario Tokoro, "SCONE: Using Concurrent Objects for Low-level

Operating System Programming". ACM OOPSLA'95

[20] K-Czarnecki and U.W. Eisenecker, “Generative Programming”, Addison-Wesley, 2001.

[21] Paul Stelling. Ian Foster, Carl Kesselman, Criag Lee, Gregor von Laszewski, “A Fault Detection Service for

Wide Area Distributed Computatiopns”. In Proceedings of the 7th IEEE symposium on High Level

Distributed Computaion. P 268-278, 1998.

[22] A Acquaviva, L. Benini, and B. Ricc. “An adaptive algorithm for low-power streaming multimedia

processing”. In Proceeding of the Conference on Design Automation and Test in Europe DATE’2001, 2001.

[23] J. W. S. Liu, W. –K Shik, K. –J. Lin, R. Bettati, J. –Y. Chung, “Imprecise Computations”, Proceedings of the

IEEE, Vol. 82, No. 1, Jan 1994, pp. 83-94.

[24] Hidehiko Masuhara, Satoshi Matsuoka, Akinori Yonezawa, “Implementing Parallel Language Constructs

Using a Reflective Object-Oriented Language”, In Reflection’96 conference, San Francisco, California, Apr.,

1996.

