
Copyright 2005 Dorina C. Petriu and Murray Woodside

Some Requirements for Quantitative Annotations
of Software Designs

Dorina C. Petriu and Murray Woodside
Dept. of Systems and Computer Engineering,

Carleton University, Ottawa Canada
{cmw | petriu} @ sce.carleton.ca

Abstract
Various initiatives, including the RFP for MARTE [6], call for annotations that define
quantitative measures and values to be added to software designs. In MARTE these
annotations will indicate timing and memory-use properties of the software and of its
behaviour, as well as timing, capacity and utilization properties of resources. Other kinds
of non-functional requirement analysis need different types of properties; for instance
reliability analysis calls for properties such as failure rates and probabilities. This paper
defines general requirements for quantitative annotations, related to their function in
evaluating non-functional requirements of software specifications and to their usability. It
considers how two previous profiles, SPT [4] and QOS [5], address these requirements,
and raises issues and questions related to defining a profile for MARTE [6].

1. Introduction
The background of this work is the two UML Profiles for Schedulability, Performance
and Time (SPT) [4] and for Quality of Service (QOS) [5], which are concerned with
adding quantitative attributes to elements of a software specification in UML. There are
also other descriptions of profiles; for instance, a reliability profile is proposed in [1].
Annotating a specification is different from other problems, such as transforming an
annotated UML model into an analysis model, or evaluating the analysis model [7].

This paper considers general requirements for quantitative annotations, with
particular reference to the authors’ area of performance evaluation. The purpose of
annotations is to support the specification of non-functional requirements, and also their
evaluation by analysis tools. Since the annotations must be usable by software designers
and must also support the concepts of the analysis models, they must bridge the gap
between the domains of software specification and evaluation.

We consider that the requirements can be grouped as follows:
• What quantitative characteristics/properties should be considered, and more

generally how they are to be defined. This is rooted in the evaluation (analysis)
domain, but must be understood by the software designer.

• How particular instances of the quantitative characteristics are to be attached to
model entities in the UML specification. This is rooted in the software

Copyright 2005 Dorina C. Petriu and Murray Woodside

specification domain, but must attach attributes correctly and with sufficient
expressive power, for the analysis.

• How relationships between different quantitative properties are to be defined.
This is relevant to the evaluation domain.

• Expression of constraints on or between the quantitative properties, which may
express requirements on the system. This is relevant to the evaluation domain.

• Across the preceding four groups of requirements, usability of the annotations
implies that the effort by the software designer should not be excessive, and the
definitions and usage should be consistent among themselves.

The scope of this paper is to collect together a set of requirements, not necessarily
exhaustive, based on our experience in software performance and in applying the SPT
profile; to discuss how the SPT and QOS profiles succeed or fail to meet them; and to
formulate the resulting issues for further discussion, in the further development of this
field in MARTE [6].

According to measurement theory, physical Systems are characterized along different
dimensions that correspond to a set of measurement Quantities, which can be Basic or
Derived. The most used Basic Quantities are length, mass, time, current, temperature and
luminous intensity. The units of measure for the basic quantities are organized in systems
of measures, such as the universally accepted Système International (SI) or International
System of Units. Values expressed in the same unit can be compared. Derived Quantities
(e.g., area, volume, force, frequency, etc.) are obtained from the Basic Quantities by
known formulas.

1..*

BasicQuantity

Quantity

DerivedQuantity

System

Analysis
Domain

Quantitative
Characteristic

Quantitative
PropertyEntity

Realization Measure

1..*

1..n

1

1 1

0..*

1

1..*
1..*1..*

instanceOfqProperty

0..*
function

values

domain

1..*

1

domain
owner

elements qCharacteristic

valueOwner

ownedAttribute

owner

dimension
relevantDimension

Extended
Model

0..*

1

extension
11..*

entity

annotatedModel evalDomain

type

1..*0..*1

0..*

0..1

1..*

Model

0..* abstraction

1

quantity

1..*

BasicQuantity

Quantity

DerivedQuantity

System

Analysis
Domain

Quantitative
Characteristic

Quantitative
PropertyEntity

Realization Measure

1..*

1..n

1

1 1

0..*

1

1..*
1..*1..*

instanceOfqProperty

0..*
function

values

domain

1..*

1

domain
owner

elements qCharacteristic

valueOwner

ownedAttribute

owner

dimension
relevantDimension

Extended
Model

0..*

1

extension
11..*

entity

annotatedModel evalDomain

type

1..*0..*1

0..*

0..1

1..*

Model

0..* abstraction

1

quantity

Figure 1. Metamodel for quantitative characteristics and properties

Copyright 2005 Dorina C. Petriu and Murray Woodside

Software Systems can be analysed in many different ways. Each Analysis Domain
uses a Model of the System, which is an abstract representation that focuses on certain
system characteristics and ignore others. Due to the abstraction, only some Quantities are
relevant to a certain Analysis Domain. For instance, in the domain of performance
analysis of software systems, the relevant Basic Quantities are time and sometime length
(expressed in units of memory occupancy), whereas mass, current, temperature and
luminous intensity are irrelevant. However, some of these may become relevant if the
performance analysis is extended to include, for example, power demands.

An Analysis Domain uses a set of Quantitative Characteristics (or q-characteristics in
short), which establish the ontology of the domain. For instance, in the case of software
perfomance analysis the q-characteristics are throughput, response time, utilization, CPU
execution demand, etc. These are at the same abstraction level as the QoSCharacteristics
from the QOS Profile [5]. A q-characteristic refers to a Quantity and can be expressed by
using a data type that describes its unit and other properties, as discussed later in the
paper.

A Model (which is considered here to be expressed in UML) can be extended by
standard UML mechanism with additional semantic expressing concepts from a certain
evaluation domain. An Extended Model contains Entities, which are extended model
elements that represent concepts from the analysis domain. For example, some typical
performance-related Entity types are: Step (an execution block as defined in SPT),
Scenario (a sequence of Steps), Resource (as defined in the General Resource Model [4]),
Service (an operation offered by a Resource or by a component of some kind; it may be
further defined by a Scenario). For our purposes, an Entity is an extended model element
that may be characterized by certain Quantitative Properties (or q-properties in short),
which in turn are instances of different Quantitative Characteristics. For each Entity type,
a set of Quantitative Characteristics can be defined in a given Analysis Domain. The q-
properties are specified by the designer within the UML model, and attached to design
entities. Examples are: the total delay of a Step when executed (including queueing
delays), the utilization of a resource, the response time and throughput of a Service, etc.

When the system is simulated or executed, a set of values may occur for each q-
property; these are named Realizations. Different Measures may be used to characterize a
given q-property. A Measure is a (statistical) function (e.g, mean, max, min, median,
variance, standard deviation, etc.) applied to the set of Realizations of the respective q-
property. Depending on the evaluation method used, some of these q-properties are
required as input for the evaluation (e.g., CPU execution demand, arrival rate), whereas
others are obtained as output (results) of the evaluation (e.g., response time, utilization).

2. Quantitative Characteristics
Each evaluation domain (performance, schedulability, dependability, etc) employs

a set of domain Quantitative Characteristics (q-characteristics in short), which represent
types of properties describing computer systems in general and the respective analysis
domain in particular. Q-characteristics include both input q-characteristics of the
software, its configuration and its workload needed for the evaluation, as well as output

Copyright 2005 Dorina C. Petriu and Murray Woodside

q-characteristics to be evaluated during the analysis. For performance analysis, the
evaluation requires input q-characteristics such as the CPU demand of an operation or the
number of processors in a node, and gives output q-characteristics such as response time
and utilization. A q-characteristic is associated with a Quantity (be it Basic or Derived,
from Fig. 1), such as time or frequency, which determines its unit.

The definition of these q-characteristics establishes the ontology of the evaluation,
selected from the ontology of the evaluation domain. In many domains there are q-
characteristics whose names and definitions are universally agreed (e.g. throughput),
others whose definition is generally accepted but has multiple semantic variants
according to different authors (e.g. execution time of a function), and still others which
require a definition whenever they are used (e.g. success rate of an operation). To expand
on these examples from the performance domain, throughput is always a rate of
occurrence of some event, such as the completion of some operation, in operations per
unit time. The operation must be identified, but the concept of throughput is universal.
Execution time, however, may have different meanings: a) the CPU time used by the
function, or b) the total time it takes to complete the function, including waiting for the
CPU, blocked for I/O, etc. Finally, a success rate always requires a definition of what
constitutes success, which is model-dependent. Sometimes, success is identified by
taking a particular path in the execution, in other cases it may be a particular post-
condition or a property of the entire execution path within the operation.

Usability suggests the merit of defining a set of standard q-characteristics for a
domain, so they can be referred to easily and, consequently, every user of the annotations
means the same thing. For q-characteristics with well-known variants, a set of definitions
can be standardized, which cover the important cases with differently-named measures,
and these can be translated if necessary by domain specialists for the use of an analysis
tool with different names. However the third class of q-characteristics whose meaning is
model-dependent, requires a capability for users to define their own q-characteristics;
This also makes the annotations more flexible for adding new “standard” q-
characteristics definitions over time.

Thus flexibility and expressive power requires that the users have the capability to
define their own quantitative measures, but usability requires a set of standard measures
that can be used in straightforward way.

The q-characteristics discussed here correspond to the QoSCharacteristics from the
QoS Profile [5]. However, we prefer the prefix “quantitative” instead of “QoS” for the
following reason. In general, the concept “Quality of Service” is used in relation with the
user’s satisfaction with the performance of the system, and therefore seems to suggest
that QoS Characteristics describe those end-to-end performance measures that are
perceived by the user (such as response time). However, the q-characteristics we consider
here include all kind of quantitative measure describing the internals and externals of the
system, many of which are not directly related to the user and his/her perception of the
system performance. Therefore, we propose to use the prefix “Q” from “quantitative”
instead of “QoS” for the UML stereotypes that will represent these concepts in MARTE
(e.g., <<QCharacteristic>>, <<QProperty>>, <<QValue>>, etc.)

Copyright 2005 Dorina C. Petriu and Murray Woodside

3. Quantitative Properties
As shown in Figure 1, Quantitative Properties (q-property in short) are Quantitative

Characteristic instances that are associated with Entities (model elements) in order to
represent their domain-specific properties. The way a q-property is declared and attached
to entities in a UML diagram defines its semantics for the analysis. Even though this
paper does not propose a concrete solution for attaching q-properties to UML model
elements (entities), the following discussion considers the attaching mechanisms
previously used in the SPT and QOS Profiles: a) notes containing stereotypes and tagged
values attached to concrete model elements; b) constraints attached to model elements. In
general, is it possible to directly attach annotations only to those model elements that
meet one of the following two conditions: a) are represented in the visual notation for
UML 2.0 diagrams, or b) have a name.

We can distinguish primary q-properties, which can be identified directly with
diagram entities, and secondary q-properties, which must be derived from the primary
ones by computational expressions.

3.1 Examples for Performance: Quantitative Properties of Behaviour
An example of a primary q-property that can be easily attached to a UML diagram is

the total delay of an operation represented by a UML model element such as an Activity
or ExecutionOccurrence [3]. An example for the latter is shown in Fig.2.a: the delay
annotation can be directly attached to the visual representation of the corresponding
ExecutionOccurence, with the implicit meaning that it lasts from its beginning event to its
end event.

Another example of a primary q-property is the duration of an interval from one event
in one lifeline, to a second event in another lifeline (which we shall call a “point-to-point
delay interval”), as in Figure 2.b. However, attaching such a delay annotation is
hampered by the fact that the visual notation for sequence diagrams does not allow the
users to draw or to attach names to the events shown by small circles in Figure 2 (even
though such events are represented in the UML 2 metamodel [3]). So, it is not possible to

a) Delay for an operation execution
- can be attached to the

ExecutionOccurrence

b) Delays for complex combinations of events
- a progress point may be defined by reaching an event
- each progress point has its own delay from the start

m1()

m2()
m3()

m4()

a) Delay for an operation execution
- can be attached to the

ExecutionOccurrence

b) Delays for complex combinations of events
- a progress point may be defined by reaching an event
- each progress point has its own delay from the start

m1()

m2()
m3()

m4()

Figure 2. Point-to-point delay interval

Copyright 2005 Dorina C. Petriu and Murray Woodside

attach annotations to events directly on the diagram, but it is possible to specify an
interval between two events by referring to other visualized model elements (such as
messages) that are related to those events. We could specify an interval as follows:

m1.sendEvent - m4.sendEvent

It is interesting to note that specifying an interval as the difference between an ending
and a starting event does not necessarily implies that its measures (such as mean, max,
etc) will be computed by subtracting the time stamps of the two events. (See section 3.3
for a more detailed discussion on measures and realizations).

An example of a secondary q-property type is the fraction of processor utilization
imposed by a particular operation (as opposed to the whole processor utilization), defined
as the quotient:

CPU_utilization_by_an_operation = operation_throughput / operation_CPU_demand
Such a q-property is useful when analyzing the performance of a system, as it helps to
identify the most expensive operations that may have to be optimized. However, it is not
easy to illustrate its meaning through UML diagrams.
For performance evaluation, some “standard” q-property types are easily identified, and
these could be supported by a shorthand notation (for usability). They include:

• delay properties of execution of an operation or service: total delay from request
arrival to completion, queueing time before execution, total time to execute
including queueing, total operation blocking time on nested operations, CPU
waiting time, CPU execution time. These are all intervals, and any measures of
these intervals may be necessary for performance analysis.

• any measure of delay of a message from sending to receiving;
• throughput (i.e., mean frequency of execution) of any operation, message, or

behavioural entity;
• repetition interval of any operation, message or other behavioural entity, which

gives more detail on the repetition (the mean interval is 1/throughput, but the
interval has statistical properties as well);

• service time of an operation provided by a resource which requires in turn other
resources.

The above q-property types all may be the “outputs” (results) of an evaluation. Other
types may be the “inputs”, for instance:

• CPU demand of an operation (should equal CPU execution time, but the former is
a preliminary estimate and the latter is an observation);

• service times of operations by some resources (known in advance, such as a disk
device);

• arrival rate of requests from the environment (a throughput);

Copyright 2005 Dorina C. Petriu and Murray Woodside

• multiplicity of a resource, such as processors at a node, threads of a process,
buffers in a pool, initial value of a counting semaphore, multiprogramming limit
of a node (a count);

• number of users of a system with a closed workload, or (equivalently) the
concurrency limit of the load source (a count);

• external delay of users with a closed workload;
• queue length threshold, e.g. for diverting overflow traffic (a count).

Some of these q-properties may be either inputs or outputs depending on the context,
for example:

• a message latency may be known as an input, or it may be determined by
evaluation;

• an arrival rate may be given (open system) or derived given the number and
external delay of users (closed system);

• the service time of an operation by a resource (defining its QoS) appears in both
lists.

3.2. Examples for Performance: Quantitative Properties of Objects
 Objects (e.g. resources) may also have q-properties, such as utilization of a
resource or size of an object. In particular, in both SPT and QOS it is stated that resources
have QoS attributes. However it is more strictly true that services offered by resources
have QoS attributes, and we propose that all QoS attributes should be formally attached
to services rather than to the resource that offers them. (Only if a resource offers a single
service, then we could associate the QoS with the resource without ambiguity). If a
resource is an object, then a service is an operation carried out by the object, which is
usually indicated by a method or an interface. For components, the operations are
detailed within the interface definition, and details of the service may be defined by
behaviour within the component.
 Q-properties of objects include:

• utilization of a resource, or partial utilization of a resource by operations of a
particular service;

• delay of a service, which gives the various QoS characteristics as measures of the
delay. This can include delay to create or destroy the object;

• throughput of all services of the object;
• size of the object (memory units);
• mean time to failure, time to repair, etc.

3.3. Realizations and Measures of Q-Properties
Realizations (see Figure 1) signify values that occur during the execution of the

system (for instance, measurements on a simulation or test). A q-property may be
realized once, or its realization may be a series of values over an extended run. In a cyclic
deterministic system in which each cycle has the same values, a single realization is

Copyright 2005 Dorina C. Petriu and Murray Woodside

sufficient. In performance analysis with random traffic, a long run may be necessary with
long sequences of values in order to obtain accurate evaluation results.

Measures (see Figure 1) are basically functions of Realizations that express the
properties of interest for the evaluation, for example the mean value, the maximum value,
the variance, etc. They may also be functions of a probability distribution for the
realizations, based on an analysis model. For example, a measure might be the
expectation or a theoretical bound of a q-property. Since Measures are owned by a q-
property, they can be thought of as q-property attributes.

The associations between QuantitativeProperty, Realization and Measure (see Fig.1)
are navigated in different ways depending on the type of evaluation (e.g., measurement of
a system implementation, simulation, analytical solution of a performance model).
Another factor is whether the respective q-property is an input or an output.

The difference stems from the fact that realizations for q-properties exist only in cases
where the analysis is done by executing the system/model, either by testing/measurement
or by simulation. A set of realizations is obtained in such cases for each output q-
property; the measures can be obtained by applying the respective (statistics) functions to
the set of realizations. The quantitative results obtained for the measures are reported as
attributes of the respective q-property. In the case of analytical models, however,
realizations are never computed; the output measures are calculated instead by analytical
methods from the model parameters. The situation is different for input q-properties,
which are given quantitative values or are described by a distribution with different
parameters through the annotations, as discussed below.

In any case, even though Realizations may exist, they are not annotated directly on
the UML model (too much information!) They are represented instead in an abstracted
way through the corresponding Measures, which must be annotated on the UML model.

3.4. Source of Quantitative Annotations
It is a peculiarity of these quantitative properties that the same property may be

defined separately from different sources. An obvious example is required values, versus
achieved values, but additional subdivisions may arise. For example the achieved value
may be measured in a certain test (there may be more than one of these for the same q-
attribute), or be estimated by an analytic model. Values may be stated for different
execution environments. Input attributes may take assumed values based on the expertise
of the designer/analyst, and there may be more than one of these (e.g., for worst-case and
best-case, or representing the expertise of different parties). The ability to designate
different sources and to compare the values given by different sources is fundamental to
the full exploitation of evaluation methodology.

Again there appear to be “standard” sources, at least for performance and
schedulability analysis, including:

• required value
• measured value, with a string to indicate details (measurement experiment,

platform...)

Copyright 2005 Dorina C. Petriu and Murray Woodside

• assumed value, with a string for details (platform, workload case...)
• estimated value, with a string for details (platform, workload case...)
SPT uses a “source-qualifier” string to differentiate these, with cases for required,

assumed, measured and estimated. It would be desirable to support user-definable
sources, apart from the strings described to convey details; perhaps just a string would be
enough for this. However for tool support it seems desirable to support standard codes for
required and achieved values. Clearly it should be possible to define as many versions of
a single q-property, from different sources, as necessary. The capability for defining
details could be used to list the results of a series of tests or model analyses representing
different platforms, or different imposed load levels.

The purpose of expressing different sources is to gather the maximum information
from the designer side. Automated analysis tools will have to filter the values according
to the cases of data needed for the current analysis.

4. Requirements for Attachment of Q-properties to UML Models
“Annotation” is a process of attaching information to selected UML model entities.

These model entities have UML types, but for annotation purposes they also have
“domain analysis types” which we shall assume are assigned by stereotyping the model
entities. An example is an ExecutionOccurrence which is stereotyped as <<Step>>; from
the analysis point of view we will call it an analysis Entity of type Step. We must be able
to annotate structural entities such as objects and nodes, as well as behavioral entities
such as lifelines, execution-occurrences, messages, activities and transitions.
We identified the following requirements for attaching QuantitativeProperties to Entities:
1. Each Entity type has a certain set of possible types of q-properties (i.e., Quantitative

Characteristics). For example a Resource should be characterized by its utilization and
throughput; a Step by its CPU demand and total delay. This set should be user-
extensible, to accommodate user-defined q-properties.
Notice that these sets are not a partition of the Quantitative Characteristics; the same
characteristic may be applicable to different Entity types. Thus throughput may be a
property of a Resource but also of a Scenario or a Step. On the other hand some may
depend on sub-typing, so processing rate or clock speed is a property of a
processingResource but not of a logical resource such as a semaphore or process.

2. In the majority of the cases, a q-property is attached to a single Entity, but in some
special case it may be attached to two (e.g., a delay between two events). For usability
reasons, it would be better to consider that each q-property belongs to a single Entity
(in other words, it is an attribute of the Entity). However, the chosen approach should
compromise the ability to attach a q-property to more than one Entity when necessary.

3. Each Entity instance has its own values for q-properties. If q-properties can be applied
to a class, they could be interpreted as default values for its instances. Thus the
attachment mechanism must allow for attaching q-property values to any Entity
instances, which means attachment to any UML model entities.

Copyright 2005 Dorina C. Petriu and Murray Woodside

4. An Entity instance may have more than one value specified for a given q-property,
with different sources, which are defined as part of the value. Thus a given Resource
may have a required utilization, an utilization estimated by analysis, and two different
measured values taken under different conditions.

5. In order to deal with complex systems with replicated structures and collections of
identical Entity instances, it should be possible to define the properties once for the
members of a collection (but not only once for all instances of an Entity class).

6. There are common global quantitative parameters that may affect many other q-
properties through dependencies, which in turn can be expressed through functional
relationships as described in section 5. These global parameters need to be attached to
the analysis as a whole, either at the level of a UML diagram or at the level of a
collection of diagrams. Examples of global parameters include the following types:
- global attributes of the software application itself, such as the size of a database,

length of a list, etc., which affects the processing time of many operations inside
the application (e.g., database search, list sort, etc.);

- attributes of the platform, such as file operation costs, message overheads,
middleware costs, or operating system operation costs. While it may be possible to
attach these properties to a platform model, in many cases the platform will not be
described in enough detail, so it would be desirable to use instead some global
variables that characterize the platform at a high-level of abstraction.

- different cases of the evaluation, which are in effect points of variation for the
evaluation. This could include different platforms, different kinds of users, or (for
systems with replicated components) different system scales.

5. Expressing Quantitative Values
Concrete Quantitative Values need to be assigned sometimes to q-properties, other

times to their attributes (such as measures). We shall consider here only the definition of
these quantitative values, and not the way they are used in evaluating a system. The
traditional output q-properties that describe performance use the following quantitative
values:

• time instant of an event, which is the interval from a defined reference event to
this event

• time interval, the time from one event to another, (which can be applied to all
kinds of delays)

• throughput, or frequency of an event or a class of events (a derived quantity =
1/time)

• probability or fraction (a dimensionless ratio of throughputs or other quantities)
• indicator signifying true/false, yes/no or success/failure.

In general, the quantitative inputs giving the parameters required for performance
analysis include:

Copyright 2005 Dorina C. Petriu and Murray Woodside

• CPU demand in terms of time (the CPU time required to execute some operation)
• CPU demand in terms of CPU operations or cycles (a count) - the same idea as

above, but different units; this is more fundamental but is used less often
• probability of a particular branch or alternative in the behaviour specification,
• loop count in the behaviour specification
• frequency of arrivals (a throughput)
• count of the numbers of resources such as CPUs, threads, buffers, or number of

users of a system
• size (in memory units) of a storage resource or an object.

These quantitative values are very general. In a suitable context, they can be used to
define all kinds of delays (waiting times, latencies, periods of event streams, laxity,
deadlines), all kinds of frequencies, probabilities of conditional behaviours and of success
in meeting delay targets, thresholds for scheduling strategies in terms of delay or queue
size, or indicators for properties such as schedulability. They also apply to other
quantitative evaluation domains, such as reliability.

The elements required to specify a quantitative value are:
• a value type,
• a quantitative value specification (a constant value, variable or expression)
• a direction plus/minus (which way is “better”, if that is relevant)
• units
• constraints on values.

The value type is more complex than it might seem. Some quantities are intrinsically
real, some are integers. Even for integer quantities, a measure such as a mean value (e.g.
the mean number of busy processors) is real. This suggests using the value type real for
all quantitative annotations, with integer values as a special case of real. This has been
found to be practical in several programming languages, and would simplify the
definitions of data types (and enhance their usability). The requirements for a value type
appear to lead towards a kind of union data type, similar to the one defined for the
RTtimeValue type in SPT.

Further, the value type must be able to express different measures of the same q-
property, which express different forms of knowledge about its value. For example, the
results of evaluation could be presented alternatively as a mean, a mean and variance, or
a histogram. There is again a set of “standard” ways of recording measures, which can be
listed and included with a common syntax understood by all users of the annotations, and
also the possibility of exceptional definitions by the user. Some of the “standard”
measures are:

• a point value
• a minimum value, a maximum value, or a range (minimum, maximum)

Copyright 2005 Dorina C. Petriu and Murray Woodside

• a mean value, or variance, or ith moment, or ith central moment
• a list of the first n moments or central moments
• a distribution with its parameters (taken from a list of standard distributions found

in textbooks, such as exponential(mean), Erlang(mean, kernel),
uniform(min, max)).

• a histogram with equal cells: minimum boundary, cell size, number of cells, array
of counts including underflow and overflow.

• the probability of exceeding a stated threshold or target value: a pair (value,
probability)

• a histogram with unequal cells: array of cell boundaries, array of counts.
It would be desirable if the syntax for values included some self-describing indicator for
the measure used, if it is a standard measure.

 Quantitative Value Specification. A quantitative value can be specified either as a
“constant” value (QValue), as a variable (QVariable) or as an expression (QExpression),
as shown in Fig.3.

QValue represents a quantity of a given value type. It corresponds to the QoSValue
from the QOS Profile [5]. The expression of a quantity should express the tuple:

quantity = [direction, value_specification, units].

QVariable is required for situations where the concrete value is not yet known when
specifying the software. QVariable names can also be used as placeholders for results in
the UML annotations, while using the same name within the analysis domain. QVariable
names thus help to bridge the gap between the UML specification and the analysis
domain. QVariable names are also needed to support quantitative relationship between
different q-properties, as discussed later. SPT used the syntax “$string” for names of
quantitative variables, to distinguish them from names used in the UML model itself.

Names raise the question of scope. It should be possible to combine diagrams created
separately, into a single analysis, where the same name may have been used more than
once. Some way to disambiguate these names is necessary, and it should also handle the
problem of UML models that are simultaneously annotated for multiple kinds of analysis.
Let us consider for instance, that an annotated diagram has a stereotype

Figure 3. Metamodel for Quantitative Value Specification

QValue

Quantitative
Value

Specification

QVariable
expression

operand

QExpressionQValue

Quantitative
Value

Specification

QVariable
expression

operand

QExpression

Copyright 2005 Dorina C. Petriu and Murray Woodside

<<ThisAnalysis>> with tagged value {diagram = “ThisBehaviour”}. A
quantitative variable $ResponseTime could be referenced unambiguously as
ThisAnalysis.ThisBehaviour.$ResponseTime.

The reference would not be based on names of UML objects, but names of the
annotations.

QExpression. In all quantitative evaluations there are occasions where some
quantities are derived from other quantities. This is so basic to quantitative studies that it
must be provided in the annotations discussed here. As a motivating example, suppose
there is a characteristic size (call it $dataSize, in bytes) of a data structure that is stored,
retrieved, processed and passed in messages. The CPU cost of operations, the delay for
transmitting messages, the memory space required for storage, are all functions of
$dataSize. It is much easier as well as more informative, to define these quantitative
properties by expressions; also, the evaluation is more robust to changes in the design or
the usage of the system, that could change the value of $dataSize. We can call $dataSize
an independent parameter of the evaluation.

Examples of QEpressions related to performance analysis are:
• CPU demand to process a message = constant + variable_cost * message_size
• CPU demand to sort a list = constant * log (list_length)
• number of disk operations = file size / block size

In [Woodside2001] these kind of functions were described as “resource functions”,
and technology to estimate different resource functions from run-time measurements was
described.

Similarly, for schedulability analysis, the execution times of various signal-
processing operations are given by well-known functions of the length of a block of data.

From an evaluation point of view, establishing these relationships makes the analysis
more flexible and also more robust. Evaluations are often carried out over ranges of
values of the independent parameter, covering cases of interest; it is easier to express the
ranges only for the independent parameters and to let the dependencies calculate the rest.

It is reasonable to permit q-properties to be defined as follows:
(1) a quantitative values of the appropriate type
(2) a quantitative variable (no value given)
(3) a quantitative expression in terms of independent parameters
(4) a combination of (2) and (3), where the variable name can be used in analysis

reports or in defining a further dependency.

Thus the mean or max CPU demand property of an operation might be expressed
(using the $string notation for variables in suitable units) as:

(1) 17.3
(2) $opDemand

Copyright 2005 Dorina C. Petriu and Murray Woodside

(3) $a + $b * $dataSize
(4) $opDemand = $a + $b * $dataSize

What is said above for input parameters for the evaluation also applies to outputs; a
derived output q-property may be defined as a function of other q-properties. For instance
a throughput in messages/sec is related to throughput in bytes/sec by the message size, or
a total throughput is the sum of throughputs for all different kinds of simultaneous users.
The requirement to annotate with variable names and expressions is a significant
intrusion of the evaluation domain into the specification. Some support for these concepts
seems however to be absolutely essential. A minimum would be to specify only variable
names for quantitative annotations (as in the form (2) of value listed above), and to
restrict all functional relationships in the analysis domain. The option of allowing only
numeric values for q-properties, however, is insufficient for any quantitative evaluation.

Units are an attribute of most quantities, and it is important that standard forms be
used. If seconds can be specified by “seconds”, “sec” and “s” then automated translators
may err in setting up the parameters of the analysis model. International standards are
available for units, but may not meet usability criteria. In tools, pull-down menu selection
can solve this problem. Notice that even if a measure is a ratio (i.e., dimensionless) it may
be necessary to state whether it is a fraction or a percentage. For integer counts of
resources, users, queues, the units of “count” imply positive integers.

It might be preferred by some users to have a single set of units for all variables (all
times in seconds, all ratios in fractions, for instance), with units set for the whole analysis
and each quantity only identifying “timeUnit” or “ratioUnit”. In other cases it might be
more convenient to state some delays in micro-seconds and others in seconds. Uniform
units could be an option, amounting to user-defined units declared for the analysis as a
whole.

Summary. To summarize the definition of a q-property must express the tuple:
q-property = [attribute-name, source, quantitative_value]

Some of the discussion above is specific for performance, but much of it generalizes
easily to other evaluation domains.

6. Expressing Constraints
Constraints can be defined both for Quantitative Characteristics (at class-level) and

for Quantitative Properties (at instance-level). Quantitative Characteristics constraints
stem from the intrinsic nature of the respective measure (such as delay >= 0, percentage
within [0, 100], utilization within [0, 1.0]).

Quantitative Properties constraints may be used either to specify the input values for
performance analysis, or to express requirements on the analysis results. Equality
constraints (invariant) may be used for giving the input values, as for example:

stepname.cpuDemand = 5 ms
stepName.cpuDemand = (3.2 + 4.1 * $Size) ms

Copyright 2005 Dorina C. Petriu and Murray Woodside

Inequality constraints can be used to specify requirements on output values, such as:
scenarioName.totalDelay < scenarioName.requiredDelay).
A user-defined constraint is a condition in a specified language, whose syntax and

interpretation is the responsibility of the tool [3]. Although OCL is preferred for writing
constraints, other languages are also allowed (programming or natural). Constraints will
have to be able to accept not only values and names from the UML domain, but also
quantitative values (with source and units), quantitative variables and expressions
specified in annotations, as discussed in the previous section.

7. SPT and QOS Profiles
The following table summarizes how the SPT and QOS Profiles meet the

requirements for quantitative annotations listed in the paper.

Requirement SPT Profile QoS Profile
Annotation process Light-weight Heavy-weight

Allows for user-defined measures No (measures are predefined) Yes (targeted for user-defined
measures)

Type for time values RTtimeValue No

User-defined delay measure
between an arbitrary pair of events

No No

Quantitative variables and
independent global parameters

Yes
Part of the TVL language

No

Expressions for defining
quantitative properties

Yes
Part of the TVL language

No

Quantitative variables and
independent global parameters

Yes
Part of the TVL language

No

Expressions for defining
constraints

Limited Yes
Full power of OCL

8. Conclusions
This paper defines a metamodel for Quantitative Characteristics and Properties

necessary for different kinds of quantitative analyses, with focus on the performance
analysis domain. It explains the nature of Realizations and Measures and identifies their
relationships with Quantitative Properties. The relationships between quantitative
annotations and UML model Entities are discussed; such relationships span the gap
between the software modeling domain and the analysis domain. Based on the proposed
metamodel, a list of requirements for attaching quantitative annotations to UML model
elements is established. A reach set of examples regarding the nature and the meaning of
different performance quantities is given. A summary of how the existing SPT and QOS

Copyright 2005 Dorina C. Petriu and Murray Woodside

Profiles meet these requirements is also presented. The goal is to understand and clarify
the premises for some of the requirements for quantitative annotations listed in the
MARTE RFP, in order to refine them and to make sure that they are consistent, complete
and capture all the expressive power needed for a future MARTE solution.

A requirement that is identified in the paper but is not specifically stated in the
MARTE RFP is the need for global (i.e., model-wide) independent parameters for the
evaluation, that capture application and platform quantities defining the parameter space
for the evaluation. Such global parameters make the annotation more flexible and the
analysis more robust. For instance, the quantitative annotations of an application can be
given as functions (i.e., expressions) whose parameters are the platform characteristics.
This allows for a better separation of modeling concerns and it’s close to the whole
MDA approach.

References
[1] 4. V. Cortellessa, A. Pompei, “Towards a UML profile for QoS: a contribution in

the reliability domain”, In Proc. 4th Int. Workshop on Software and Performance
WOSP'2004, pp.197 - 206, Redwood Shores, California, 2004.

[2] Object Management Group, "UML 2.0 Infrastructures Specification", OMG Final
Adopted Specification ptc/03-09-15, 2003.

[3] Object Management Group, "UML 2.0 Superstructure Specification", OMG revised
Final Adopted Specification ptc/04-10-02, 2004.

[4] Object Management Group, "UML Profile for Schedulability, Performance, and Time
Specification," version 1.0, formal/03-09-01, September 2003.

[5] Object Management Group, "UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms (QOS)", Adopted Specification, ptc/2004-
06-01, June 2004.

[6] Object Management Group, “UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE), Request For Proposals, OMG document: ab/05-
02-03, February 2005.

[7] D. C. Petriu and C. M. Woodside, "Performance Analysis with UML," in UML for
Real, B. Selic, L. Lavagno, and G. Martin, Eds. Kluwer, 2003, pp. 221-240.

[8] M. Woodside, V. Vetland, M. Courtois, S. Bayarov, "Resource Functions for
Performance Aspects of Software Components and Sub-Systems", pp 339-256 in
"Performance Engineering", eds R. Dumke, C. Rautenstrauch, A. Schmeitendorf, A.
Scholz, Lecture Notes in Computer Science no. 2047, Springer-Verlag, Mar. 2001.

