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= Challenges met by the estimating filter
= Thefilter concept and history
= Anexample of its usein an autonomic system

later:
= Part II: Using the Filter for Performance Models
= Part I11: Tracking Effectiveness
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% Challenges Old and New
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= the old challenge: to estimate parametersin order to
; calibrate models

= our usua approach isto directly monitor the quantity that is
the parameter, e.g. CPU time of an operation:

= intrusive, expensive, time-consuming

= the new challenge: to track parameter changes
= for adaptive control of dynamically changing systems
= put amodel in the loop
= measure the running system
= only at interfaces (source code not available)
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% Tracking for Model-based Control
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= “Disturbance’
Changes:

e ]

QoStargets User sarvices
= rate of requests A
= demands and ichibn Irterface
flows (usage) (de”w':;' ' )

Model || Decigion-S2mrol A ppicationie———

= Control Changes| change” Disturbance
= replicas : T change
" processors Modd-Buildng itori
= dlocation (Tracking Filter) hoS achieved Monitoring
= threads "
= content (modify wﬁ&g
demands)
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; Accessible
= can be made without modifying the system
= can be gpplied to software components for which source
codeis unavailable
= Mmeasure:
= event rates
= responsetimes
= CPU utilizetions
= infer: model parameters such as a service times or
routing probabilities
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% Measure at the System and Component I nterfaces % Viewpoint

some of the parameter values too)

model fit the observations
= not to validate the structure, for instance

= min mean sguared error on the observations

; = We assume the model structure is correct (and perhaps

= We estimate to find parameter va ues which make the
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% Parameter Estimation
Z: meagure u: workload (A,
peﬁorm‘é%??u)l S r_ N, 2)

+ e=zy: i
__. Estimator Performance
- Y residuals Kalman-ilter d
y: estimated A
performance( R,X,U)
Parameter estimator (Kalman filter): a feedback based system, based on past
7

and current data from the system
Continuously updates the parameters:
- compares the measured and estimated performance metrics (e)

- adjusts the parameter (state) of the model such that e~0.
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% A Probabilistic View of the Filter
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» Measurement at t;:
@0a,)
*Best estimate: of x

e ]

o Fumen (€122

fua (X12) T 9(1=21
{alf Y * Measurement at t,
(z.0,)
4 iy o p— i
R *Question: Based on the

two measurements, what is
the best estimate of the x at
8 t,?




The Use of Optimal Filtersto Track Parameters of Performance Models
Conference on Quantitative Evaluation of Systems, Torino, Sept. 2005, with later additions
Copyright C.M. Woodside 2005, 2006.

Carleton

UNIVERSITY

Performance M odel Estimation and Tracking using a K alman Filter
© M. Woodsce, T. Zheng, M. Li, 2006 a

% Conditional Density
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% Predictor -Corrector
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TheKalman Filter for Linear Dynamic Systems

= Theoriginal filter (1960) was derived to give optimal estimates
of time-varying states x,:

= Process model: X,,; = Ay X, + Bu+w,

= Measurement model: z,, = Hy .y Xyiq + Visy

W, process noise, with the covariance matrix Q

V| measurement noise, with the covariance matrix R

= w, and v,- white, independent and with anormal distribution

= minimize (in min mean square sense) both the prediction error
(Zes1-HR,) and the parameter estimation error

= conditional on:

= theinitial estimates of X,

= and P,...We define P, = estimated covariance of estimates

= and the observations z, over 0 to k

Bl HE e

:

e ]

0 1=[0", (0%, 0%z, +[0%5 (0% + 072,)]z,
;l Yo'=(Wa,')+Wo,") ;l
Pt (X12,2.) .
02l The best estimate of x Process Model
: (the dynamic of
a t2 IS the parameters)
015} A
— Predict th
X(tz)—p Correct the p;ram:ernm
i parameter Measurement Model
or
(13 A A A
X(L)=X(t) K (L) [Z-X(t)]
% ] 5 2 Predictor Ct}'ector
9 10
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Filter Equationsfor Linear Systems

Predict x,,, and observation y,,, :
X a1 = Ay R + By Uy +C W,

Yirr = Hin R k+1

Predict the error covariance of X',

Pl =APAT+Q
Kaman gainK :
K =P HT(HP W H T +R)E

Observe z,,, and correct the estimate of x:

A A
X1 = X + Kl Ziear = Yird)

Update the error covariance P,=(1-K,H) P,
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% Kalman Gain

=

= Minimizes the a posteriori estimate error covariance
Elaq’] = P=(1-KH) Py
= Given
N
X = X + K Ziaq - HiXy) and
K =P H T (H P H T+ R)?
= When we have confidence in measurement (R->0)
K =H1 3Ry =HZ
= When we have confidence in estimate (P",>0)
N
Ki=0 > Ry =%,
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Convergence

m Suppose x hassizen

; = thelinear filter convergesto asteady stateif
= the state dynamics are controllable (guaranteed if every
parameter has a drift term)
= the stateis observable by y. Thisis satisfied if the
observability matrix O hasrank n
14

O =[HT ATHT (AT)2HT ..... (AT)MIHT]
= if A =1, then the condition isrank(H) =n

= thisrequires at least n linearly independent measures,
to estimate a state vector x of sizen.
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% The Extended Kalman Filter (Non-linear Systems)

System

e ]

Z1
\O 8t = Zss =P
Model Yot :
K = T(X,) &P Updating

N _4-
Rt = X er * Kig B
Pes = o

yk+1 = h()?k+1)
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% Case Study: Provisioning Trade Application

in action!

EJB Container

16
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Capacity-on-Demand

=Traditional capacity planning (static):
=Alice does capacity planning
=Clustering (dynamic, by human administrators):

=Alice is system administrator®
=Autonomic.... Alice plays golf©
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% Autonomic Capacity-on-Demand

=

EY v
-Momlonng
Resource =
pool
lorkflow [Performance
[ porki <— Kaiman Fier

Autonomic manager

=
%

Different Time Scalesfor Adapting a System

Performance, AC actions

|

'
'
H SLO
o\ T
T v H Dynamic |
provisioning
measurement  tuning ! clustering H
' I L I
t f f
s min, hours

ms

=There is a time delay between measurement and the end of change execution
=tuning (ex: change no of threads) can be done in ms
=provisioning can be done in s, min, hours...

=Without prediction, the adjustments might come too late

=breaches of SLA, loss of customers...

17 18
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% M onitoring

= JMX (Java Management Extension)
;l = |mplements J2EE javax.management.* interfaces
= Available with J2EE application servers
= Provides mean values and variances for J2EE artifacts ( servlets,
EJBs.. Pools)
= TMTP ( Tivoli Monitoring for Transaction Performance)
= Tracesend to end transactions
= Available for applications implementing ARM
= Sampling period istoo large ( hourly...)
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Performance M odel
a) Workload model
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= Noof users; Arrival rate; Workload type

Performance M odel Estimation and Tracking using a K alman Filter
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% Workload M odel

; = Closed models: number of

23

=
=

System Model: Queuing Network Model

Web
- e}

Server

Data Sover

11

T I 1]
11 I
—— % Di=senvice demand;
r’ar‘eet;lcled arrival R(N ) _ D i[1 + Qi(N _ l)] X=throughput
4 Ui=utilization of
i=1 device i
X=N/(R)
Q=queue length at
U=X*D; i

4

Predicted response time,
utilizations, throughput

(or mix) e , users, think time, classes of
* Classes of transactions L system : requests
b) System model | Model = Open models: arrival rate,
L '
= Mimics the system from performance | ! =---------- ) classes of requests
point of view = Measurement based on I
* analytic models of the system Workload standard interfaces f
* QONMsand LQMs Model Estimati - _
= Estimation/prediction based
. . 7555 nnn nuy 66
Solver: matches (&) and (b) on time series
= What is the response time, throughpuit,
etc... for a specific workload( 100 users)?
= What if | add 2 App servers?
= The Autonomic Manger queriesthe
21 Solver, not thereal system 2
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Layered Queuing Mode!:
Software and H/W

= Layered Queuing Models (LQM) are analytic performance
models that
= Extend Queuing Network Models (QNMs)
= Model queuing at software components: threading and data connection
pools, locks and critical sections
= Model multiple classes of requests
= LQM Structure
= Software resource interactions: synchronous, asynchronous, forward call
= Demands at hardware resources for each class of request, one user per
classin the system
- Queiui ng centers: CPU, DISK, network, threading and data connections
pools...

e ]

Data Server Layer 1

Layer 0
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% Model + Estimator : Accuracy
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% Control Loop Open (i.e., no Provisioning)

% Control Loop Closed (Provisioning Enabled)

120

e ]

807 Forecasted Load
Forecasted Response Time
Meastred Response Time
0N Tracked App Sener Demand
— =SlAthreshold
© Seners

V—

27 1 5 9 1317212529 33 37 41 45 49 53 57 61 65 69 73

;l o ;l ”
120 — num of users A
A A 100 1
100 r\/_,\ b - — predicted resp time
P oot 4 T
""" measured resp time 80+
60 Forecasted Load
—— predicted JDBC
w© Fesponse time — Forecasted Response Time
Y measured JDBC 0 Response Time
20 = b response time Tracked App Sener Demand
| —SLA threshold
0 YA V. SO = NN A W W A Ve Va A WY
1 11 21 31 41 51 61 71 81 91 101111
=Measured: servlet response times and CPU utilizations on both tiers, throughput 2
=Estimated: transaction demands at each tier, no of invocations
0
15 9 1317 21 25 29 33 37 41 45 49 53 57 61 65 69
25 26
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% Conclusionsfrom the Application Study

= The closed loop control successfully controlled the
response time to the desired range

% = eliminated the peaksin the graph, that violated the SLA

= Thus, the tracked model was successful in capturing
the performance relationships.

. more details about how models are
constructed
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% Part I1: Using the Kalman Filter for Performance
Models

; Murray Woodside

= Filter details for performance models

= Parameter values

= Filter details for Closed Queueing Network
(MVA) mode

= Estimation effectiveness and parameter tuning
= |ssues

later:

= Part |11 Tracking Effectiveness

29

% The Filter, Used for Performance
; = X = model parameters
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" X1 = X :constant parameters (for pure estimation)
" Xpy1 = X + W, : random drift
" Or X1 = A X + W, autoregressive process for x
= z = vector of measurements
= Y = h(x) = the same quantities, as they are predicted by
the performance model (nonlinear)
= observations are averages over a measurement step
timeof length S:

. Ssec
L

T 1
step for the kth sampl
% eplorthe P e{ measurements z,
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% Extended Kalman Filters
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? = For nonlinear dynamics of x (not needed here)
; = And for nonlinear output function
y =h(x)
In a performance model
= X isthevector of parameters
= y isthe vector of predicted measurement values
= components of y match those of the measurement vector z
= In thefilter gain:
= replace A by of (x)/ox and
= replace H by oh(x)/ox.....
3 = evaluated a the predicted estimates

Performance M odel Estimation and Tracking using a K alman Filter
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Filter Equationsfor Performance Models
(for Xy, =X + Wy )
= Prediction of x,,, isthe same as x, (X .1 = Xi)
Find H,,, = 8 h(X, )/ox
= Predict the covariance of £y.,4:
P w1 =APATHQ
= KamanganK :
Kirt TP kstH i (HieaP iaHied T + R)?
= Correct the state vector:
Rir1 = X + Kiga( Zaa - DY) )
= Correct the error covariance Py,4:
) Per=(l = KiiaH )P n

e ]
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% Iterative Extended Filter (IEKF)

; = repeat the update several times, using the new value of
K41 asthe starting point for the update, and the same
valuefor z.

= more rapid convergence in the presence of a nonlinear
output function, as here.

Performance M odel Estimation and Tracking using a K alman Filter
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% A Simple Example

- ——10

= an M/M/1 moddl, with
= parameters = (x(1), X(2))T = (utilization u, servicetime s)
= they could equally be: (arrival rate, servicetime)
. n;eawrements: (2(2), z(2))" = (arrival rate f, response time
r
= mode is
" X = Xt Wy
" Vi = M%)
and in components of y:
* Yir(D) = h(D)Kian) = XD 1 %400(2) - = U/s =f

i * Yi(?) = h@Q)(Xiwn) = Xs1(D) /1= Xpa(D] = [1 -] =1
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% Simple Example (2)

= Linearization of the prediction function:
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F * Hk+l= Us - u/s?
S(1-u)2 (1 -u)
= 1/Xk+1(2) - Xk+1(l) /Xk+1(2)2

Xia(@[1 - X (1) UL - Xa(1)]
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% Simple Example (3): Some Results
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= arrival rate 0.3/s

servicetime1s. ‘ Transient estimates of utilization and service time parameters
= - - -

e ]

= measure:

arival rate 091 A \
* reponsetime (L7, servicetime, actual values =1

o
3

= estimate
= utilization
= servicetime

Estimates
o
>

05F \

= measurementstep %4 © ‘/
X

=100000 s. 0.3 =
= Restimated from 02l ©
simulations ’
= Q=diag(0.1,0.1) % 5 10 15 20

36 Steps from the Start
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% Influence of the Filter ParametersQ, R

; = Filter gain matrix
Kis1 =P tHies (HieaP ieaHie " + R)?

= larger Q makes P larger, and the gain matrix larger
= intuitively, thefilter is “prepared” to seelarger changes after
each step
= with Q =0, P convergesto O (if thefilter converges)
= withP=0thegainis0
= larger R makes the gain matrix smaller
= intuitively, thefilter has less trust in the measurement value
if the error islarger
= s0it responds less to prediction error.
37 = even with R =0, thegainisnot 0.
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% Effect of the Estimation Time Step S(1)
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= during onetime step, the system parameters can drift
= s0, larger S means larger Q

= measurements are averages over the time step
= 50, larger S means more accurate averages and smaller R

= to quantify this, consider the drift

= supposeit isaprocess of independent increments at some
fine time-step, and S contains k fine steps of fixed length:

*w=%_K®,, where® has covariance matrix ® = diag(0)
= over one step, drifts are independent
" thenQ=k®
= Qisproportional tok, i.e. to the step length S.

Carleton
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% Effect of the Estimation Time Step S(2)

Effect on R:
= R represents the covariance matrix of measurement
erors
= the errors reasonably may be assumed independent, sOR is
diagonal, R =diag (v)
= wherev; isthe variance of errorsin z,
= |arger S means more accurate estimates
= variance ~ 1/(number of samples)
At aconstant rate of sampling:
= variance ~ 1/S

e ]
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% Effectiveness: Two Questions

? 1. Estimation: can aKF converge to good estimates from
some (incorrect) starting point?
2. Tracking: can it track the parameters when they
change?

= Weshall consider thefirst question first.
= aspectsto be evaluated:
40

= effect of starting estimate

= speed of acquisition

= accuracy of estimation

= sensitivity to Q and R, and to incorrect values for Q and
R.

= thesecond question isconsidered in Part I11.

10
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% Evaluation on a Closed Queueing Network

For nonlinear filtering, we must evaluate from experience. We will
; consider an example in detail:

= the systemis aknown queueing network with constant
parameters

= measurement data was generated by simulating the ON

Potential
Parameters: M easurements:
Think TimeZ =0, Throughput f
Population N = 4, Node delays
Demands T(1)
(sec/response) T(2)
D(1) =2 T(3)

D) =3
D(3 =4

Node utilizations
U(2), U(2), UE)

4

Carleton
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ON: Base Case

¢ N =4users, Z=think time=0
; * Xxistakento be

D =D(1), D(2), D(3)

actual values=[2, 3, 4]
e zmeasured is

z=[T(@1), T(), T3),f ]
 step length Svaries...

3 3:CGl

Measurement is over a sampling period of length S
= for S1 = 100000 time units, the variances of elements of z were
measured as, in order:

v(S1) =[ 0.0374, 0.0745, 0.0000737, 0.0109 ]
= for other (large) values of S, the statistics of averages gives
v(S) ~ (SUS) * v(S1) )
- = et filter parameter R = diag( v(S) )

Performance M odel Estimation and Tracking using a Kalman Filter
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Estimation: Filter Transient Response

= initial estimates x, were set to [4, 5, 6]
= compared to actual values|[2, 3, 4]
= filter was used to generate a sequence of estimates, e.g.:

Transient Estimates of Demands and Throughput in the Base Case

4—— D(3) estimate
<« D(2
<« D(1)

N AN D

0 2 4 6 8 10 12 14 16 18 20
Steps fiom the Start

100* Prediction error

5 HHHEEEICH A
Estimates

Carleton
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% Closed QN Modd by MVA: H matrix

? = for H we need the derivatives of performance values
w.r.to parameters

be differentiated to get equations for the derivatives
= likethe MVA equations, they are recursive in the population

g = for an exact MVA calculation, the MV A equations can
44

11
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% MVA: Linearization of the Prediction Function

= The exact recursive mean value analysis equations for
a separable queueing network are[6], at population N:
TN =(N@N1+1)D(i),i=1,.n
fN=N/Z T@))N
N@ON=fNT@N, i=1,.,n
= where:
= N = the population of jobs or customersin the model,
= N(i)N =mean jobsat nodei, at population N,
= T(i)N = residence time at node 1 per system response, at
population N
= fN = system throughput at population N,
= D(i) = demand at nodei, per system response.

;

=

Performance M odel Estimation and Tracking using a K alman Filter
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MVA: Linearization (2)

= For performance, the MV A equations are applied with

initial conditions
T()*=D(),

and are applied for each value of N up to the desired
vaue.

= For derivatives, differentiate these equations. Thusfor
differentiation with respect to D(j), we obtain:

OT(i)N /0D(j) = a/oD(j) [(N(i)N-1 + 1) D(i) ]
=[oN()N-1/0D(j)] D() ,i=1,..,n

= use performance values from the MVA, and

derivatives from the previous recursions

Performance M odel Estimation and Tracking using a Kalman Filter
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MVA: Linearization (3)

= In summary, the derivatives are:
OT(i)N/oD(j) = [6N(i))N1/ oD(j)] D() ,i =1,...,n
ofN/oD() =-[ N/ (Z; T(I)N)2] =, oT(i)N/aD(j)
=- (UN) (fN)2 =, oT(i)N/oD(j)
ON(i)N/oD(j) = T(i)N ofN/aD(j) + N oT(i)N/oD(j),
= with initial conditions dT(i)YoD(j) = §; .

= and the derivatives of U(i), are found from
u(i) =f(i) D()
oU(i)N/eD(j) = D(i) ofN /oD(j) + f(i) &;; -

[HHHH 6 S
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QN: Drift Matrix Q

= Q(i,i) definesthe “assumed” variance of drift of
D(i) during one step of length S

= thefilter is“prepared” to deal with one-step
changes of about VQ(i,i)) in parameter x(i)

= for this study we assumed Q(i,i) = (S/S1)
= supports tracking change up to about 1 unit of the
parameter x(i), per 100000 time units (=S1), for any
step size.
= initial parameter errors were of the order of 1

12



The Use of Optimal Filtersto Track Parameters of Performance Models
Conference on Quantitative Evaluation of Systems, Torino, Sept. 2005, with later additions
Copyright C.M. Woodside 2005, 2006.

Carleton

UNIVERSITY

Performance M odel Estimation and Tracking using a K alman Filter
© M. Woodsce, T. Zheng, M. Li, 2006 a

Estimation Effectiveness (1): Accuracy

= across 1000 transients, beginning at x, = [4, 5, 6]:

;l Means and Standard Dewviations of the Transient Estimates
9
sk
7k
sk
sk

% 47
sk
2k
s
ok

49

standard deviations about 0.07

Estimates plus/minus one Standard Devation

Steps from the Start

Carleton
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© C. M. Woodside, T. Zheng, M. Litoiu, 2006

% Filter Tuning
= Choiceof Q, R affect thefilter gain

; = R was determined to correspond to the measurement

variances (call thisR = R[]

= What if it is not known? How do we set R?

Performance M odel Estimation and Tracking using a K alman Filter 5

= Doesit matter?i.e. are the parameter estimates and the
prediction errors sensitive to R?

= Answer = yes

= Experiment: set R = R['] * Rfactor
= |et Rfactor range from 0.01 to 100

= find the steady state estimation error standard deviation
over 1000 steps after step 20

Performance M odel Estimation and Tracking using a Kalman Filter
© C. M. Woodside, T. Zheng, M. Litoiu, 2006 a
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Estimation Effectiveness (2): Tuning R

= smaller R gives more accurate parameter estimation, even when
the errors are unchanged

Tracking Error with Different Factors on R

0.45
0.4 o Standard Deviation
(SD) of estimate of D(3)
(most affected)
L~ X
P SD of estimate of D(2)
error
51

°
©
&

°

°
®
3

°

°
&

SD of estimate of D(1)
Base case SD \
were about 0.07

Std Deviation of Steady State Estimates
°

10*SD of prediction

°
°
&

s
s
s
5
5
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% Estimation Effectiveness (3): tuning Q

= made very little difference.

= Q governs P, which affects the Kalman Gain Matrix K
= however, the effect seemsto be minimal.
= we conclude that all the values of Q are “large enough”
= thereare zero driftsin our system in this case.

= Q must not betoo small however, this tends to shut off

the filter (gainstoo small).
= Ruleof thumb for “large enough”:

= pick avalue &(i) for each parameter x(i) which isthe largest
changein x(i) that you would like to track in one step

e ]

. « make Q(i,i) = &(i)2

13
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% Choice of Step Size S

; = Wevaried S by factors from 0.01 to 1000
= This affects both drift and error (discussed above)

= We applied factors to Q and R corresponding to the
assumptions recorded about the effect of step size:

= Qincreasesin proportionto S
= R decreasesin inverse proportionto S

= The steady state tracking error was again recorded by
its standard deviation

Performance Model ESimation and T racking Using a K alman Filter N
.M. Woodde. T 2heng M- L, 206 a Carleton

Estimation Effectiveness (4): step size S
= effect correspondsto the changein R

Tracking Error with Different Factors on Sampling Step time S
0.45
04 SD of estimate of D(3)
(most affected)
0.35
0.3
- SD of estimate of D(2)
SD of estimate of D(1)
error
54

°
3

o
o

o
o

10*SD of prediction

Std Deviation of Steady State Estimates
o
2

o
S
&

H
5,
.
5
.
s
5
.
5
1)
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% Theuseof P, asan Error Estimator

Carleton
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= P estimates the covariance matrix of the x vector
= meaning, it estimates the variances of estimation error
= P, isbased on Q, R and H, not on the observed errors
in measurements
From:
= P = AP _AT+Q
= Ky =Py HT(H P H T +R)T
* PE(-KH )Py
we can write:
* Py =APATHQ (project)
55 * P=Py- P HTHPH T+ R)TH Py (update)

e ]

Performance M odel Estimation and Tracking using a K alman Filter
© C. M. Woodside, T. Zheng, M. Litoiu, 2006 a

Carleton

UNIVERSITY

% Effectiveness of P for Estimating Parameter Errors

= |f R was correctly estimated, variances (diagonal
; tefrms) in P gave good estimates of the actual variances
of x:
= diagonal of Pin the base case: [0.0027, 0.0040, 0.0036]
= measured variances of parameters: [0.0034, 0.0037, 0.0037]
but:
= |f R was set too small,
= measured variances of x were reduced,
= variancesin P were much smaller
= if Rwas set too large,
= variance of x went up
= variancesin P were much bigger

14
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% Structural Issues

; 1. Isthe correct performance model used in the filter?
= what happens to the estimates, if not?
= but, all models are approximations

2. Which measurements to use?
= inprincipal, the more the better
= adding ameasurement cannot increase the errors

3. Arethe measurementsthat are available, sufficient?
= non-convergence with inadequate data
= thevalue of additional measurements, for enhanced

Performance M odel Estimation and Tracking using a K alman Filter
©. M. Woodsce, . Zheng, M. Li, 2006 a
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Issue (1): Correct Performance Model?

= thefilter finds the best fit it can, for the model it is given

; = the better the structure of the model is, the smaller the error
% Transient Estimates of Demands and Throughput in the Base Case
58

Example of a “
model with only
two queues:

Estimates

accuracy
57 '20 2 4 6 8 10 12 14 16 18 20
Steps from the Start
;ecvf?ﬂr.r:v?‘;::;:T;::m:t‘:g:.a;;GTrackmg using aKalman Filter a (:m‘lel()l] ;ecvf?ﬂr.r:v?‘;::;:T;::m:t‘:g:.a;;GTrackmg using aKalman Filter a (:m‘lel()l]
UNIVERSITY UNIVERSITY
% Another Incorrect Performance M odel % I ssue (2): Which M easurements?
- inoorre(_:t value of aparapeter whi ch is not estimated . a Different: z= [T(l), T(2), f] gave slightly Iarger errors
;l = Anincorrect population (N = 7 in the model, N = 4 in the system) ;l = Fewer: z=[U(2), f] gave OK estimates of D(2) and f, but
= Best fit was not very good, because of internal contradictions ; 4 . L
oorer accuracy for D(1) and D(3) (over varvina S):
Transient Estimates of Demands and Throughput in the Base Case o
= filter used measures of 4 §or
[T(1). T, TE). ] 2 Lo
= model systematically o D(3) i“
overestimates congestion D(2) 3 od)
= 50, filter under- H D(1) §os
estimates D g 100* throughput prediction 3o,
s error B
- pOOr erIC"on Of N 107 10" 10° 10" 10° 10°
performance 10 Factoran's .
» = Too few: z = [f] gave arbitrary parameters (that would give
= 0o 2 4 5 B 2w s € good throughput predictions, many solutions)
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% I ssue (3): Enough M easur ements?

= From the convergence condition, we know that we

must have:
rank(H) =n
= |f we have m measurements, H is m by n and we must
have:
=mzn

= linearly independent measures. E.g., sincein our example
ResponseTime = T(1) + T(2) + T(3)
then ResponseTime is not linearly independent of the others

= another example: sincef = N/Rand N is assumed known, is f
linearly independent of R or of T(1)... T(3)?

61
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% Potential Problem: Bottlenecked System

A bottlenecked model:

;l = we expect low sensitivity (small elements of H) for
parameters of non-bottleneck elements. However....

Performance M odel Estimation and Tracking using a K alman Filter
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Transient Estimates of Demands and Throughput in the Base Case

Experiment:

* same system

« initial model was
heavily bottlenecked

(x,=[10,0.1,0.1])

@

(1 PR
, 65066 00000000c0
H/\O@\N_k

X e X X X

Estimates

« filter converged, but
more slowly

* model has sufficient
sengitivity to non-

R S R S S

IS

Steps from the Start

52 pottleneck parameters
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% Estimating the Population: N
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= N entersthe MV A equations as an integer, so the
; linearization to find the H matrix is awkward.
= Our solution: utilize one of the MV A approximations
inwhich N enters as afactor only
= here, we experimented with the Schweitzer approximation
= we get aset of simultaneous equations for the derivatives
= use them as auxiliary equations, only to get the derivatives

= thus, solve them using the exact solution values for the
performance values that also appear as coefficients

Carleton
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% Sensitivity of Measuresw.r.to N

= Schweitzer approximation:
TN = [N@ON (1 ~LN)) + 1] D(),

= evaluation of the derivative uses T(i), N(i) etc from the exact
MVA. We aso use (found by differentiating the exact MVA
equations):
OofNJON =1/, T(i)N— (UN) (fN)2 %, (8T(i)NON)
ON(i)NoN = ofN [ON D(i) , i=1,..,n
= Three simultaneous nonlinear equations, solved by a fixed-point
iteration starting from:

; = This can be differentiated with respect to N to give:
g OT(i)N /ON = [ON(i)NMON (1-(U/N)) + N(i)N(L/N2)]D(i)
64

ON(i)MON = UK (which corresponds to N(i) = N/K for K nodes)
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% Effectivenessto Estimate N

; = Worked well... converged and
= accuracy comparable to other parameters
= SD of the estimate of N about 0.2 for small S, drops down

to near O Tracking Error with Different Factors on Sampling Step time S
. 045

°
S

~ SD of estimate of D(1)

o SD of estimate of D(2)

+ SD of estimate of D(3)

0 estimate of N

* 10%(SD of prediction error) of
throughput

Std Deviation of Steady State Estimates
o 2 o S o 2
2 B 5 B 2 @

2

Factoron S
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Part |11 Estimation Effectivenessfor Tracking
Time-varying Parameters

; Tao Zheng

= effectiveness on deterministic parameter changes
= effectiveness on random parameter changes

= effectiveness for controlling resource
provisioning

Performance M odel Estimation and Tracking using a Kalman Filter
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% Effectiveness of the Filter for Tracking

= Previous discussion looked at convergence to an unchanging set
of parameters
Now consider asystem like the Trade6 application, with

= alayered queueing model m

= time-varying parameters

Carleton

UNIVERSITY

e ]
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% Model with Time-varying Parameters

?Think timez —| st [ |

; (affectsthe o (host)

arrival rate)
T
(M threads)

(base case Z = 1000ms),

retrievePage

App demand S, DB demand S
(affectsdelay and (affectsdelay and
63 Saturation) saturation)
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Plan for Evaluation

= Experiments were carried out with different values of:
= o = the mean rate of change events, whether periodic or
random,
= C = the coefficient of variation of the random values taken
by all the parameters xi. parameter values were chosen
independently, or according to some pattern.
= S=thestep duration
= Tonormalizetime, a“characteristic step time” S* was
defined, long enough to give accurate average
response time
= S* = the value of Swhich gives confidence intervals of +5%
in response time
=15.7 sec in the base case.

;

=

70
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Tracking Sudden Deter ministic Changesin
Database Demand S; (S=S*)

50 -

(IR

30

o Al e

10

0 -rm T T m W
1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 17

Time Sequence _o  Real Value of Sd
—m— Tracking Value of Sd

:

e ]
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Tracking Sudden Deterministic Changesin
Database Demand S; ( S= 10S*)

45
40 r,ﬂ r:!mj r*d
35
30 4
25
20
sl N N\
10 +a— — *—a
54
0 T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Time Sequence _y_ Real Value of Sd
—m— Tracking Value of Sd

:

e ]
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Tracking Random Changesin Workload (dueto
think time)

3000
2500 hﬁ
2000

1500 J 1

1000

T I - =

500

O T T T T T T T T e
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97
—e— Real Value of Z

—m— Tracking Value of Z

Time Sequence
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RMS Prediction Error in the User ‘Response

Time, asRand Q areVaried

T0T 003 0T 03 T 3 iy 30 00

1580661 | 1.580614 | 1.580513 | 1.580522 | 1.580579 | 1.580594 | 1580538 | 1.580645 | 1.580615

(=l =l

0.03 | 1580823 | 1.580642 | 1.580605 | 1.58055 | 1.580504 | 1580587 | 1.580536 | 1.580633 | 1.580616

0.1 | 1582551 | 1.580871 | 1.580675 | 1.58066 | 1.580593 | 1580652 | 1.580635 | 1.58058 | 1.58057

0.3 | 1.588438 | 1.582538 | 1.580831 | 1.580567 | 1.580586 | 1.580542 | 1.580586 | 1.580637 | 1.580469

R 1 | 1823365 | 1.58361 | 1.582575 | 1.580895 | 1.580592 | 1.580661 | 1.580553 | 1.580641 | 1.580638

2.544668 | 1.823382 | 1.588447 | 1.582593 | 1.58083 | 1580653 | 1.580478 | 1.580552 | 1.580506

10 | 4.607373 | 2.724199 | 1.823378 | 1.583604 | 1.582588 | 1580859 | 1.580682 | 1.580517 | 1.580546

30 | 6.438646 | 4.607411 | 2.544659 | 1.82338 | 1.588428 | 158255 | 1.580838 | 1.580686 | 1.580486

[ EH 6 & ¢ &

100 | 8532533 | 6.613938 | 4.607798 | 2.724203 | 1.823348 | 1.583606 | 1.582568 | 1.580887 | 1.58065

3
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Relative RMSErrorsin Tracking Random Changes
in User Think Time Z, for Different Lengths of
; the Measurement Interval S (from 0.4S* to 8S*)

0.35

—_— %

oc

545 \

/

ot
-85
— s B—
r T T T T T T 1
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Logo(¥r) —e— Relative RMS Error of Z (Ea)

—=a— Relative RMS Error of R (Er)
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Relative RM S Errorsin Tracking Random Changes
in User Think Time Z, for Different Disturbance
Variances C (from 0.1to 5)

e ]

1.8 4
16

7

-1.5 -1 -0.5 0 0.5 1
—e— Relative RMS Error of Z (Ea)
—=— Relative RMS Error of R (Er)

Log;oC
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Relative RM S Errorsin Tracking Random Changes
in Multiple Parameter s, for Different Lengths of

? the M easurement Interval S (from 0.4S* to 4S*)
;I Multiple Parameter Tracking with Different Measurement Step
—— DB Demand, 7 Measurements Length
—=—Resp. Time, 7 measurements
—4— DB Demand, 4 Measurements A
—=— Resp. Time, 4 Measurements "
4 -
5
i - e
% \
2 e e —~
k- - ——'\\/
2 Ny
T
0.6 0.4 0.2 0 0 0.4 0.6 0.8 1
L 0gioy7)
76
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Relative RM S Errorsin Tracking Random Changes
in Multiple Parameters, for Different
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Relative RMSErrorsin Tracking Random Changes
in Multiple Parameters, for Different Set of
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% Conclusions from Experiments

m Tracking filters work
= Thefactors affect the tracking quality:
= Large S small measurement errors but fast change rate
= Optimal value: balance the accuracy and change rate
= Theratio of Q/Rrather than Q, R separately matters
= Better to overestimate Q or underestimate R
= The disturbance amplitude
= smaller Cisbetter
= More measurements provide better tracking quality
= Set of response times and throughput seems better
B than the set of utilizations

e ]

; Disturbance Variances C (from 0.1to 2) ; M easurements
) . . ) _ Multiple Parameter Tracking with Different Set of
Multiple Parameter Tracking with Different Disturbance (C) Measurements
—e—Web Demand, z4 = R, Uw, Udb
—=—Resp. Time, z4 = R, Uw, Udb
—+—Resp. Time, 7 Measurement
—a—Web Demand, z5 = R, X, Rdb
—=—Resp. Time, 4 measurements Resp. Time, 76 = R, X Rdb —
—=—Resp. Time, 75 = R,
—4—Think Time, 7 Measurements o i
P
P —=—Think Time, 4 Measurements "7 s
H A E Vs
£ g w
i ’ @
2 H s
x g >
s 2 *
2 - g
ks &
s -
£ Cava—— 7 —
e e 4
p— g
1.2 1 038 06 04 02 0 0.2 0.4
1.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4
LogC
7 9 78
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Provisioning Control

GEE

e — Web server replicas
App demand §, | [thinkTime:Zs.]l (Nusery [N, (affects resour ces)

(affectsdelay and (host)
Web server

retrievePage

saturation) ‘
Workstation

WSProc
(N.)
)
)
™M\ Dataserver replicas
DB demand S; N,, (affects resour ces)
(affects delay and v

% saturation)
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% ServersProvisioning

; = Thedemands (S, S) of atransaction change over
time, taking different combinations (80 in total) of
these two sets of values, each combination lasts 10
measurement steps:
= S, ={5, 10, 15, 20, 25, 30, 35} ms.
= §,={10, 20, 30, 40, 50, 60, 70} ms
= Web server replicas and data replicas are changed to
meet the SLA of user responsetime
= TheSLA is:
= Mean user response time R< 400ms.
Penalty of SLA violation:
= Penalty = };_, gy Max (R;,; —400, 0) / 400

81
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Provisioning Strategies

= Static Provisioning

; = Fixed number of servers
= Dynamic Provisioning
= 1.if (R,>SLA_High)
82

*  2.1Find the minimum number of servers (N,,Ny) with R,
no more than SLA_High

» 2.1f (R,<=SLA_Low)
= 2.1 Find the minimum number of servers (N,,Ny) with R,
no more than SLA_High
= Perfect Provisioning
= Always have minimum number of serversto meet SLA
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% Provisioning Results
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= Static Provisioning

EA‘HS.!:"E[ WebSe:
replicas
VA 1 2 3 4 3

1 13267 | 6309 | 5520 | 5508 | 5483
2 23 22 17.9 174 16.4
3 945 71| a0 | o0 | oo
4 45 6 00 | 00 | oo
5 a1s | 1055 | a0 | o0 | oo
= Dynamic
= average number of servers(N,, + Ny) = 3.09
83

ver replicas (V)

= Penaty =185

= Perfect Provisioning
= average number of servers(N,, + N,) = 3.08
= Pendty=0

Carleton
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% Conclusions

? = Kalman filters are capable of tracking changing model
; parameters
= Thetuning parameters Q, R must be set to appropriate
values for best results (especialy R)
= Thefilter integrates data from many sources, and
estimates hidden parameters.
= |t can be applied to batch (off-line) datafor systems
that are not changing, athough other approaches such
as maximum-likelihood may provide as good or better
answers.
84
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% Potential

; = tracker can select between mode structures
= by tracking multiple models and choosing the best

= policy manager:
= parameterize the adaptive changes to be made
= use heuristic search over these parameters
= optimization with constraints

= Yyou can insert disturbances or intentional inputsto
increase the information flow to the estimators




