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Part I: What it is, How it Works

Marin Litoiu

■ Challenges met by the estimating filter

■ The filter concept and history

■ An example of its use in an autonomic system

later:

■ Part II: Using the Filter for Performance Models

■ Part III: Tracking Effectiveness
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Challenges Old and New

■ the old challenge: to estimate parameters in order to 
calibrate models
� our usual approach is to directly monitor the quantity that is 

the parameter, e.g. CPU time of an operation: 

� intrusive, expensive, time-consuming

■ the new challenge: to track parameter changes
� for adaptive control of dynamically changing systems

� put a model in the loop

� measure the running system

� only at interfaces (source code not available)
4
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Tracking for Model-based Control

■ “Disturbance” 
Changes:
� rate of requests

� demands and 
flows (usage)

■ Control Changes:
� replicas

� processors

� allocation

� threads

� content (modify 
demands)
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Measure at the System and Component Interfaces

Accessible
� can be made without modifying the system

� can be applied to software components for which source 
code is unavailable

■ measure:
� event rates

� response times

� CPU utilizations

■ infer: model parameters such as a service times or 
routing probabilities
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Viewpoint

■ We assume the model structure is correct (and perhaps 
some of the parameter values too)

■ We estimate to find parameter values which make the 
model fit the observations
� not to validate the structure, for instance

■ min mean squared error on the observations
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Parameter Estimation

Performance 
Model

Estimator
Kalman-filter

x: new
parameters y: estimated 

performance( R,X,U)

e= z- y: 
residuals

System
u: workload (λ, 
N, Z)

+
-

Parameter estimator (Kalman filter): a feedback based system, based on past 
and current data from the system

Continuously updates the parameters:

- compares the measured and estimated performance metrics (e)

- adjusts the parameter (state) of the model such that e~0.

z:  measured          
performance( R, X, U),

8

Performance Model Estimation and Tracking using a Kalman Filter
© C. M. Woodside, T. Zheng, M. Litoiu,  2006

A Probabilistic View of the Filter
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•Best estimate:  of x 

x1=z1

• Measurement at t2

•Question: Based on the 
two measurements, what is 
the best estimate of the x at 
t2?
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Conditional Density
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The best estimate of x 
at t2 is

^

x(t2)=x(t1)+K(t2)[z2-x(t1)]
^ ^ ^

Predictor           Corrector

or
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Predictor -Corrector

Process Model
(the dynamic of 
the parameters)

Measurement Model

Predict the new 
parameterCorrect the 

parameter

11

Performance Model Estimation and Tracking using a Kalman Filter
© C. M. Woodside, T. Zheng, M. Litoiu,  2006

The Kalman Filter for Linear Dynamic Systems

■ The original filter (1960) was derived to give optimal estimates
of time-varying states xk:
� Process model: xk+1 = Ak xk + Buk+wk

� Measurement model: zk+1 = Hk+1 xk+1 + vk+1

� wk process noise, with the covariance matrix Q

� vk measurement noise, with the covariance matrix R

� wk and vk- white, independent and with a normal distribution

■ minimize (in min mean square sense) both the prediction error 
(zk+1-Hkxk) and the parameter estimation error
� conditional on:

� the initial estimates of x0

� and P0....We define Pk = estimated covariance of estimates 

� and the observations zi over 0 to k

^
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Filter Equations for Linear Systems

■ Predict xk+1 and observation yk+1 :

x-
k+1 = Ak xk + Bk uk +Ck wk

yk+1 = Hk+1 x-
k+1

■ Predict the error covariance of x-
k+1:

P-
k+1 = APkAT+Q

■ Kalman gain K :

Kk =P-
kHk

T(HkP
-
kHk

T + R)-1

■ Observe zk+1 and correct the estimate of x:

xk+1 = xk + Kk( zk+1 - yk+1)

■ Update the error covariance Pk=(I-KkH) P-
k

^

^

^

^

^

^
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Kalman Gain

■ Minimizes the a posteriori estimate error covariance 
E[ekek

T] = Pk=(I-KkH) P-
k

■ Given
xk+1 = xk + Kk( zk+1 - Hkxk) and
Kk =P-

kHk
T(HkP

-
kHk

T + R)-1

� When we have confidence in measurement (RÆ0)

Kk =H-1    Î xk+1 = H-1zk+1

� When we have confidence in estimate (P-
kÆ0)

Kk =0 Î xk+1 = xk

^ ^ ^

^

^

^
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Convergence

■ suppose x has size n
■ the linear filter converges to a steady state if
� the state dynamics are controllable (guaranteed if every 

parameter has a drift term)
� the state is observable by y. This is satisfied if the 

observability matrix O has rank n 

O = [HT ATHT (AT)2HT .....  (AT)n-1HT ]

� if A = I, then the condition is rank(H) = n

■ this requires at least n linearly independent measures, 
to estimate a state vector x of size n.
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The Extended Kalman Filter (Non-linear Systems)
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Model
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Case Study: Provisioning Trade Application
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Cluster

Capacity-on-Demand

Cluster

Clients (workload )

�Traditional capacity planning (static):

�Alice does capacity planning

Web&App 
Server

Data Server

Web&App 
Server

Data Server

�Clustering (dynamic, by human administrators):

�Alice is system administrator/
�Autonomic…. Alice plays golf☺
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Cluster

Autonomic Capacity-on-Demand

Cluster

Clients (workload ) App Server Data Server

Resource
pool

Workflow 
Engine

Monitoring

Kalman Filter
Performance 
Model

Udb
Uw, Rw,N, Zw

App Server

Data Server

Autonomic manager
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Different Time Scales for Adapting a System

ms s min, hours

tuning provisioningmeasurement

�There is a time delay between measurement and the end of change execution

�tuning (ex: change no of threads) can be done in ms

�provisioning  can be done in s, min, hours…

�Without prediction, the adjustments might come too late

�breaches of SLA, loss of customers…

Performance, AC actions

Dynamic 
clustering

SLO
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Monitoring

■ JMX (Java Management Extension)
� Implements J2EE javax.management.* interfaces

� Available with J2EE application servers

� Provides mean values and variances for  J2EE artifacts ( servlets, 
EJBs.. Pools)

■ TMTP ( Tivoli Monitoring for Transaction Performance)
� Traces end to end transactions

� Available for applications implementing ARM

� Sampling period is too large ( hourly…)
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Performance Model
a) Workload model
� No of users; Arrival rate; Workload type 

(or mix)
� Classes of transactions

b) System model
� Mimics the system from performance 

point of view
� analytic models of the system
� QNMs and LQMs

Solver: matches (a) and (b)
� What is the response time, throughput, 

etc… for a specific workload( 100 users)?
� What if I add 2 App servers?
� The Autonomic Manger queries the 

Solver, not the real system

System
Model

Workload
Model

Solver

22

Performance Model Estimation and Tracking using a Kalman Filter
© C. M. Woodside, T. Zheng, M. Litoiu,  2006

Workload Model

■ Closed models: number of 
users, think time, classes of 
requests

■ Open models: arrival rate, 
classes of requests

■ Measurement based on 
standard interfaces

■ Estimation/prediction based 
on time series

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Real workload

Predicted worklaod
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System Model: Queuing Network Model

∑
=

−+=
K

i

ii QDR
1

)](1[)( 1NN

X=N/(R)

Ui=X *Di

Di=service demand; 

X=throughput

Ui=utilization of 
device i

Qi=queue length at 
device i

ClientClient
Web

Server Data ServerApp 
Server

Predicted arrival 
rates 

Predicted response time, 
utilizations, throughput
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Layered Queuing Model: 
Software and H/W

■ Layered Queuing Models (LQM) are  analytic performance 
models that 
� Extend Queuing Network Models (QNMs)
� Model queuing at software components: threading and data connection 

pools, locks and critical sections
� Model multiple classes of requests

■ LQM Structure
� Software resource interactions: synchronous, asynchronous, forward call
� Demands at hardware resources for each class of request, one user per 

class in the system
� Queuing centers: CPU, DISK, network, threading and data connections 

pools…

Client
Clients

Web Server
Data ServerApp Server

ClientCPU, Disk CPU, 
Disk CPU, DiskCPU, 

Disk
Layer 0

Layer 1
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Model + Estimator : Accuracy

0

20

40

60

80

100

120

140

1 11 21 31 41 51 61 71 81 91 101 111

num of users

predicted resp time

measured resp time

predicted JDBC
response time

measured JDBC
response time

�Measured: servlet response times and CPU utilizations on both tiers, throughput

�Estimated: transaction demands at each tier, no of invocations
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Control Loop Open (i.e., no Provisioning)
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Control Loop Closed (Provisioning Enabled)
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Servers
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Conclusions from the Application Study

■ The closed loop control successfully controlled the 
response time to the desired range
� eliminated the peaks in the graph, that violated the SLA

■ Thus, the tracked model was successful in capturing 
the performance relationships.

■ ....next... more details about how models are 
constructed.
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Part II: Using the Kalman Filter for Performance 
Models

Murray Woodside

■ Filter details for performance models

■ Parameter values

■ Filter details for Closed Queueing Network 
(MVA) model

■ Estimation effectiveness and parameter tuning

■ Issues

later:

■ Part III: Tracking Effectiveness 
30
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The Filter, Used for Performance

■ x = model parameters
� xk+1 = xk : constant parameters (for pure estimation)
� xk+1 = xk + wk : random drift
� or xk+1 = A xk + wk : autoregressive process for x

■ z = vector of measurements
■ y = h(x) = the same quantities, as they are predicted by 

the performance model (nonlinear)
■ observations are averages over a measurement step 

time of length S:

S sec

step for the kth sample 
measurements zk

31
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Extended Kalman Filters

■ For nonlinear dynamics of x (not needed here)

■ And for nonlinear output function 

y = h(x)

In a performance model
� x is the vector of parameters

� y is the vector of predicted measurement values

� components of y match those of the measurement vector z

■ In the filter gain:
� replace A by ∂f(x)/∂x and

� replace H by ∂h(x)/∂x..... 

� evaluated at the predicted estimates 32
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Filter Equations for Performance Models
(for xk+1 = xk + wk )

■ Prediction of xk+1 is the same as xk (x-
k+1 = xk)

■ Find Hk+1 = ∂ h(xk )/∂x

■ Predict the covariance of x-
k+1:

P-
k+1 = APkAT+Q

■ Kalman gain K :

Kk+1 =P-
k+1Hk+1

T(Hk+1P
-
k+1Hk+1

T + R)-1

■ Correct the state vector:

xk+1 = xk + Kk+1( zk+1 - h(xk) )     

■ Correct the error covariance Pk+1:

Pk+1=(I – Kk+1Hk+1)P
-
k+1

^

^

^

^

^

^

^
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Iterative Extended Filter (IEKF)

■ repeat the update several times, using the new value of 
xk+1 as the starting point for the update, and the same 
value for z.
� more rapid convergence in the presence of a nonlinear 

output function, as here.

^
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A Simple Example

■ an M/M/1 model, with 
� parameters = (x(1), x(2))T = (utilization u, service time s)
� they could equally be:   (arrival rate, service time)

� measurements = (z(1), z(2))T = (arrival rate f, response time 
r)

■ model is
� xk+1 = xk + wk

� yk+1 = h(xk+1)
and in components of y:
� yk+1(1) = h(1)(xk+1) = xk+1(1) / xk+1(2) = u/s = f
� yk+1(2) = h(2)(xk+1) = xk+1(2) / [1 – xk+1(1)] = s/[1 – u] = r

35
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Simple Example (2)

■ Linearization of the prediction function:
� Hk+1 =    1/s - u/s2

s/(1 – u)2 1/(1 – u)

=     1/ xk+1(2) - xk+1(1) /xk+1(2)2

xk+1(2)/[1 - xk+1(1)]2 1/[1 - xk+1(1)]     

36
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Transient Estimates of Demands, and Throughput Prediction Errors, in the Base Case

Simple Example (3): Some Results

■ arrival rate 0.3/s

■ service time 1 s.

■ measure:
� arrival rate

� response time

■ estimate
� utilization

� service time

■ measurement step 
= 100000 s.

■ R estimated from 
simulations

■ Q =diag (0.1, 0.1)

service time, actual value s = 1

utilization, actual value u = 0.3

Transient estimates of utilization and service time parameters
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Influence of the Filter Parameters Q, R

■ Filter gain matrix
Kk+1 =P-

k+1Hk+1
T(Hk+1P

-
k+1Hk+1

T + R)-1

■ larger Q makes P larger, and the gain matrix larger
� intuitively, the filter is “prepared” to see larger changes after 

each step
� with Q = 0, P converges to 0 (if the filter converges)
� with P = 0 the gain is 0

■ larger R makes the gain matrix smaller
� intuitively, the filter has less trust in the measurement value 

if the error is larger
� so it responds less to prediction error.
� even with R = 0, the gain is not 0. 38
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Effect of the Estimation Time Step S (1)

■ during one time step, the system parameters can drift
� so, larger S means larger Q

■ measurements are averages over the time step
� so, larger S means more accurate averages and smaller R

■ to quantify this, consider the drift
� suppose it is a process of independent increments at some 

fine time-step, and S contains k fine steps of fixed length:
� w = Σi=1

k ωi , where ω has covariance matrix Θ = diag(θ)
� over one step, drifts are independent
� then Q = k Θ
� Q is proportional to k, i.e. to the step length S.

39
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Effect of the Estimation Time Step S (2)

Effect on R:

■ R represents the covariance matrix of measurement 
errors
� the errors reasonably may be assumed independent, so R is 

diagonal,  R = diag (v)

� where vi is the variance of errors in zi

■ larger S means more accurate estimates
� variance ∼ 1/(number of samples)

At a constant rate of sampling:

� variance  ∼ 1/S

40
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Effectiveness: Two Questions

1. Estimation: can a KF converge to good estimates from 
some (incorrect) starting point?

2. Tracking: can it track the parameters when they 
change?

■ We shall consider the first question first.
� aspects to be evaluated:
� effect of starting estimate
� speed of acquisition
� accuracy of estimation
� sensitivity to Q and R, and to incorrect values for Q and 

R.

■ the second question is considered in Part III.
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Evaluation on a Closed Queueing Network

For nonlinear filtering, we must evaluate from experience. We will 
consider an example in detail: 

■ the system is a known queueing network with constant 
parameters

■ measurement data was generated by simulating the QN

  

0:Users 

 

3: CGI 
 

2: Disk 

 

1: Webserver 

Parameters:
Think Time Z = 0,
Population N = 4,
Demands
(sec/response)

D(1) = 2
D(2) = 3
D(3) = 4

Potential
Measurements:
Throughput f 
Node delays

T(1)
T(2)
T(3)

Node utilizations
U(1), U(2), U(3) 42
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QN: Base Case

Measurement is over a sampling period of length S
■ for S1 = 100000 time units, the variances of elements of z were 

measured as, in order:
v(S1) = [ 0.0374, 0.0745, 0.0000737, 0.0109 ]

■ for other (large) values of S, the statistics of averages gives
v(S) ≈ (S1/S) * v(S1) )

■ set filter parameter R = diag( v(S) )

  

0:Users 

 

3: CGI 
 

2: Disk 

 

1: Webserver 

• N = 4 users, Z = think time = 0
• x is taken to be

D = D(1), D(2), D(3) 
actual values = [2, 3, 4]

• z measured is
z = [ T(1), T(2), T(3), f  ]

• step length S varies...

43
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Estimation: Filter Transient Response
■ initial estimates x0 were set to [4, 5, 6] 

� compared to actual values [2, 3, 4]

■ filter was used to generate a sequence of estimates, e.g.:

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1
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5

6

7

8

Steps from the Start

E
st

im
at
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Transient Estimates of Demands and Throughput in the Base Case

D(3) estimate
D(2)
D(1)

100* Prediction error
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Closed QN Model by MVA: H matrix

■ for H we need the derivatives of performance values 
w.r.to parameters

■ for an exact MVA calculation, the MVA equations can 
be differentiated to get equations for the derivatives
� like the MVA equations, they are recursive in the population
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MVA: Linearization of the Prediction Function

■ The exact recursive mean value analysis equations for 
a separable queueing network are [6], at population N:

T(i)N = (N(i)N-1 + 1) D(i) , i = 1,.., n    
fN = N / Σi T(i)N

N(i)N = fN T(i)N,   i = 1,..., n
■ where:
� N = the population of jobs or customers in the model, 
� N(i)N = mean jobs at node i, at population N,
� T(i)N = residence time at node 1 per system response, at 

population N
� fN = system throughput at population N,
� D(i) = demand at node i, per system response. 46
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MVA: Linearization (2)

■ For performance, the MVA equations are applied with 
initial conditions 

T(i)1 = D(i), 
and are applied for each value of N up to the desired 
value. 

■ For derivatives, differentiate these equations. Thus for 
differentiation with respect to D(j), we obtain:
∂T(i)N /∂D(j) = ∂/∂D(j) [(N(i)N-1 + 1) D(i) ]

= [∂N(i)N-1 /∂D(j)] D(i) , i = 1,.., n
■ use performance values from the MVA, and 

derivatives from the previous recursions
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MVA: Linearization (3)

■ In summary, the derivatives are:

∂T(i)N /∂D(j) = [∂N(i)N-1 / ∂D(j)] D(i) , i = 1,.., n

∂fN /∂D(j) = - [ N / (Σi T(i)N )2 ] Σi ∂T(i)N/∂D(j) 

= - (1/N) (fN )2 Σi  ∂T(i)N/∂D(j)    

∂N(i)N/∂D(j) = T(i)N ∂fN/∂D(j) + fN ∂T(i)N/∂D(j),
� with initial conditions ∂T(i)1/∂D(j) = δij .

■ and the derivatives of U(i), are found from 

U(i) = f(i) D(i) 

∂U(i)N/∂D(j)  = D(i) ∂fN /∂D(j) + f(i) δij .
48
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QN: Drift Matrix Q

■ Q(i,i) defines the “assumed” variance of drift of 
D(i) during one step of length S

■ the filter is “prepared” to deal with one-step 
changes of about √Q(i,i)) in parameter x(i)

■ for this study we assumed Q(i,i) = (S/S1)
� supports tracking change up to about 1 unit of the 

parameter x(i), per 100000 time units (=S1), for any 
step size.

� initial parameter errors were of the order of 1
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Estimation Effectiveness (1): Accuracy

■ across 1000 transients, beginning at x0 = [4, 5, 6]:

standard deviations about 0.07 
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Filter Tuning
■ Choice of Q, R affect the filter gain
■ R was determined to correspond to the measurement 

variances (call this R = R[*])
� What if it is not known? How do we set R?

� Does it matter? i.e. are the parameter estimates and the 
prediction errors sensitive to R?
� Answer = yes

� Experiment: set R = R[*] * Rfactor
� let Rfactor range from 0.01 to 100 
� find the steady state estimation error standard deviation

over 1000 steps after step 20
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Estimation Effectiveness (2): Tuning R

■ smaller R gives more accurate parameter estimation, even when 
the errors are unchanged
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Estimation Effectiveness (3): tuning Q

■ made very little difference.

■ Q governs P, which affects the Kalman Gain Matrix K
� however, the effect seems to be minimal.

� we conclude that all the values of Q are “large enough”

� there are zero drifts in our system in this case.

■ Q must not be too small however, this tends to shut off 
the filter (gains too small).

■ Rule of thumb for “large enough”: 
� pick a value ξ(i) for each parameter x(i) which is the largest 

change in x(i) that you would like to track in one step

� make Q(i,i) = ξ(i)2
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Choice of Step Size S

■ We varied S by factors from 0.01 to 1000

■ This affects both drift and error (discussed above)

■ We applied factors to Q and R corresponding to the 
assumptions recorded about the effect of step size:

� Q increases in proportion to S

� R decreases in inverse proportion to S

■ The steady state tracking error was again recorded by 
its standard deviation
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Estimation Effectiveness (4): step size S
■ effect corresponds to the change in R
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The use of Pk as an Error Estimator

■ P estimates the covariance matrix of the x vector
� meaning, it estimates the variances of estimation error

■ Pk is based on Q, R and H, not on the observed errors 
in measurements

From:
� P-

k = APk-1AT+Q

� Kk =P-
kHk

T(HkP-
kHk

T + R)-1

� Pk=(I-KkHk)P-
k

we can write:
� P-

k = APk-1AT+Q (project)

� Pk= P-
k - P-

kHk
T(HkP-

kHk
T + R)-1 HkP-

k (update) 56
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Effectiveness of P for Estimating Parameter Errors

■ If R was correctly estimated, variances (diagonal 
terms) in P gave good estimates of the actual variances 
of x: 
� diagonal of P in the base case: [0.0027, 0.0040, 0.0036]
� measured variances of parameters: [0.0034, 0.0037, 0.0037]

but:
■ If R was set too small, 
� measured variances of x were reduced,
� variances in P were much smaller

■ if R was set too large, 
� variance of x went up
� variances in P were much bigger
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Structural Issues

1. Is the correct performance model used in the filter?
� what happens to the estimates, if not?

� but, all models are approximations

2. Which measurements to use?
� in principal, the more the better

� adding a measurement cannot increase the errors

3. Are the measurements that are available, sufficient?
� non-convergence with inadequate data

� the value of additional measurements, for enhanced 
accuracy
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Issue (1): Correct Performance Model?

■ the filter finds the best fit it can, for the model it is given

■ the better the structure of the model is, the smaller the error
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Another Incorrect Performance Model
■ incorrect value of a parameter which is not estimated

� An incorrect population (N = 7 in the model, N = 4 in the system)
� Best fit was not very good, because of internal contradictions
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■ Different: z = [T(1), T(2), f] gave slightly larger errors
■ Fewer: z = [U(2), f] gave OK estimates of D(2) and f, but 

poorer accuracy for D(1) and D(3) (over varying S):

■ Too few: z = [f] gave arbitrary parameters (that would give 
good throughput predictions, many solutions)
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Issue (3): Enough Measurements?

■ From the convergence condition, we know that we 
must have:

rank(H) = n

■ If we have m measurements, H is m by n and we must 
have:
� m ≥ n 

� linearly independent measures. E.g., since in our example

ResponseTime = T(1) + T(2) + T(3)

then ResponseTime is not linearly independent of the others

� another example: since f = N/R and N is assumed known, is f
linearly independent of R or of T(1)... T(3)?
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Potential Problem: Bottlenecked System
A bottlenecked model:
� we expect low sensitivity (small elements of H) for 

parameters of non-bottleneck elements. However....
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Estimating the Population: N

■ N enters the MVA equations as an integer, so the 
linearization to find the H matrix is awkward.

■ Our solution: utilize one of the MVA approximations 
in which N enters as a factor only
� here, we experimented with the Schweitzer approximation

� we get a set of simultaneous equations for the derivatives

� use them as auxiliary equations, only to get the derivatives

� thus, solve them using the exact solution values for the 
performance values that also appear as coefficients
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Sensitivity of Measures w.r. to N

■ Schweitzer approximation:

T(i)N ≈ [N(i)N (1 –(1/N)) + 1] D(i),

■ This can be differentiated with respect to N to give:
∂T(i)N /∂N ≈ [∂N(i)N/∂N (1-(1/N)) + N(i)N(1/N2)]D(i)

■ evaluation of the derivative uses T(i), N(i) etc from the exact 
MVA. We also use (found by differentiating the exact MVA 
equations):

∂fN /∂N = 1 / Σi T(i)N – (1/N ) (fN)2 Σi (∂T(i)N/∂N)
∂N(i)N/∂N = ∂fN /∂N D(i)  ,   i = 1,..., n

■ Three simultaneous nonlinear equations, solved by a fixed-point 
iteration starting from:
∂N(i)N/∂N = 1/K  (which corresponds to N(i) = N/K for K nodes)
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Effectiveness to Estimate N

■ Worked well... converged and
� accuracy comparable to other parameters
� SD of the estimate of N about 0.2 for small S, drops down 

to near 0.  
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Part III Estimation Effectiveness for Tracking 
Time-varying Parameters

Tao Zheng

■ effectiveness on deterministic parameter changes

■ effectiveness on random parameter changes

■ effectiveness for controlling resource 
provisioning
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Effectiveness of the Filter for Tracking
■ Previous discussion looked at convergence to an unchanging set 

of parameters

■ Now consider a system like the Trade6 application, with

■ a layered queueing model

■ time-varying parameters

netdelay

Web server
(M threads)

retrievePage
[Sw ms]
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(delay)[50 ms]
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User 
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requestPage
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(host)
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(0.4) (0.2) (host)
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DBProc
(host)
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Model with Time-varying Parameters

Web server
(M threads)
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arrival rate)
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(affects delay and
saturation)
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Plan for Evaluation

■ Experiments were carried out with different values of:
� α = the mean rate of change events, whether periodic or 

random, 
� C = the coefficient of variation of the random values taken 

by all the parameters xi. parameter values were chosen 
independently, or according to some pattern.

� S = the step duration

■ To normalize time, a “characteristic step time” S* was 
defined, long enough to give accurate average 
response time
� S* = the value of S which gives confidence intervals of ±5% 

in response time
= 15.7 sec in the base case.
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Tracking Sudden Deterministic Changes in 
Database Demand Sd ( S = S*)
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Tracking Sudden Deterministic Changes in 
Database Demand Sd ( S = 10S*)
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Tracking Random Changes in Workload (due to 
think time )
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RMS Prediction Error in the User Response 
Time, as R and Q are Varied 

Q

0.01 0.03 0.1 0.3 1 3 10 30 100

0.01 1.580661 1.580614 1.580513 1.580522 1.580579 1.580594 1.580538 1.580645 1.580615

0.03 1.580823 1.580642 1.580605 1.58055 1.580504 1.580587 1.580536 1.580633 1.580616

0.1 1.582551 1.580871 1.580675 1.58066 1.580593 1.580652 1.580635 1.58058 1.58057

0.3 1.588438 1.582538 1.580831 1.580567 1.580586 1.580542 1.580586 1.580637 1.580469

R 1 1.823365 1.58361 1.582575 1.580895 1.580592 1.580661 1.580553 1.580641 1.580638

3 2.544668 1.823382 1.588447 1.582593 1.58083 1.580653 1.580478 1.580552 1.580506

10 4.607373 2.724199 1.823378 1.583604 1.582588 1.580859 1.580682 1.580517 1.580546

30 6.438646 4.607411 2.544659 1.82338 1.588428 1.58255 1.580838 1.580686 1.580486

100 8.532533 6.613938 4.607798 2.724203 1.823348 1.583606 1.582568 1.580887 1.58065
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Relative RMS Errors in Tracking Random Changes 
in User Think Time Z, for Different Lengths of 
the Measurement Interval S (from 0.4S* to 8S*)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Relative RMS Error of Z (Ea)

Relative RMS Error of R (Er)

Log10(γT)

75

Performance Model Estimation and Tracking using a Kalman Filter
© C. M. Woodside, T. Zheng, M. Litoiu,  2006

Relative RMS Errors in Tracking Random Changes 
in User Think Time Z, for Different Disturbance 

Variances C (from 0.1 to 5)
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Multiple Parameter Tracking with Different Measurement Step 
Length
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Relative RMS Errors in Tracking Random Changes 
in Multiple Parameters, for Different 

Disturbance Variances C (from 0.1 to 2)

Multiple Parameter Tracking with Different Disturbance (C)
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Relative RMS Errors in Tracking Random Changes 
in Multiple Parameters, for Different Set of 

Measurements
Multiple Parameter Tracking with Different Set of 

Measurements
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Conclusions from Experiments

■ Tracking filters work 

■ The factors affect the tracking quality:
� Large S: small measurement errors but fast change rate

� Optimal value: balance the accuracy and change rate

� The ratio of Q/R rather than Q, R separately matters 

� Better to overestimate Q or underestimate R

� The disturbance amplitude

� smaller C is better 

■ More measurements provide better tracking quality

■ Set of response times and throughput seems better 
than the set of utilizations 80
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Provisioning Control
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Servers Provisioning

■ The demands (Sa, Sd) of a transaction change over 
time, taking different combinations (80 in total) of 
these two sets of values, each combination lasts 10 
measurement steps:
� Sa = {5, 10, 15, 20, 25, 30, 35} ms.
� Sd = {10, 20, 30, 40, 50, 60, 70} ms

■ Web server replicas and data replicas are changed to 
meet the SLA of user response time

■ The SLA is:
� Mean user response time R ≤ 400ms.

Penalty of SLA violation:
� Penalty = ∑i= 1,800 max (Rm,i – 400, 0) / 400 
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Provisioning Strategies

■ Static Provisioning
� Fixed number of servers

■ Dynamic Provisioning
� 1. if (Rm > SLA_High)

� 2.1 Find the minimum number of servers (Nw,Nd) with Rp

no  more  than SLA_High

� 2. If (Rm <=SLA_Low)

� 2.1 Find the minimum number of servers (Nw,Nd) with Rp

no more than SLA_High

■ Perfect Provisioning
� Always have minimum number of servers to meet SLA
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Provisioning Results

■ Static Provisioning

■ Dynamic 
� average number of servers (Nw + Nd) = 3.09

� Penalty = 18.5 

■ Perfect Provisioning
� average number of servers (Nw + Nd) = 3.08

� Penalty = 0 
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Conclusions

■ Kalman filters are capable of tracking changing model 
parameters

■ The tuning parameters Q, R must be set to appropriate 
values for best results (especially R)

■ The filter integrates data from many sources, and 
estimates hidden parameters.

■ It can be applied to batch (off-line) data for systems 
that are not changing, although other approaches such 
as maximum-likelihood may provide as good or better 
answers.
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Potential

■ tracker can select between model structures
� by tracking multiple models and choosing the best

■ policy manager: 
� parameterize the adaptive changes to be made

� use heuristic search over these parameters

� optimization with constraints

■ you can insert disturbances or intentional inputs to 
increase the information flow to the estimators


