
Hierarchical Model-based Autonomic Control of Software 
Systems 

Marin Litoiu 
IBM Center for Advanced Studies 

Markham, Ontario  
L6G 1C7  1-(905) 413-4095 

marin@ca.ibm.com 

Murray Woodside 
Carleton University 

Ottawa, Canada  
1-(613) 520-5721 

cmw@sce.carleton.ca

Tao Zheng 
Carleton University 

Ottawa, Canada 
1-(613) 520-2600 x 5728 

zhengtao@sce.carleton.ca 
 

ABSTRACT. Various control algorithms are used in 
autonomic control designeded to maintain Quality of Service 
(QoS) and Service Level Agreements (SLAs). Controllers are all 
based to some extent on models of the relationship between 
resources, QoS measures, and the workload imposed by the 
environment. This work discusses the range of algorithms with an 
emphasis on richer and more powerful models to describe non-
linear performance relationships, and strong interactions among 
the system resources. A hierarchical framework is described 
which accommodates different scopes and timescales of control 
actions, and different control algorithms. The control algorithms 
and architectures can be considered in three stages: tuning, load 
balancing and provisioning.  Different situations warrant different 
solutions, so this work shows how different control algorithms 
and architectures at the three stages can be combined to fit into 
different autonomic environments to meet QoS and SLAs across a 
large variety of workloads.  
 

Categories and Subject Descriptors 

D.2.11 [Software Engineering]: Software Architectures-domain 
specific-architectures; C.2.4 [Computer-Communication 
Networks]: Distributed Systems- distributed applications; C.4 
[Computer-Communication Networks]: Performance of 
Systems- modeling techniques, performance attributes; K.6.3 
[Management of Computing and Information Systems]: 
Software Management-software maintenance;  

General Terms 
Management, Measurement, Performance 

Keywords 
Self-management, performance models, autonomic computing. 

1. INTRODUCTION 
Software systems can be adjusted to their users and environments 
in many ways, to provide satisfactory functionality and 
performance. If these adjustments are made at early stages in 
design they become limitations on the uses that can be made of 
the system in other environments. When they are made during 
deployment or installation they may limit adaptation to load 
levels. Autonomic systems solve this problem through built-in 
adaptive capability. 

Autonomic systems have built-in points of dynamic variation that 
can be controlled at run time to modify their functionality or their 
use of resources. When they are installed, they first tune 
themselves to the demands of the users and the nature of the 

execution environment, and then they can track time-variations in 
the users and the environment, and accept updates to the system 
and its requirements. Roughly speaking, instead of making design 
and configuration choices they retain many choices, with 
algorithms for adapting the choices and a reflective architecture 
for gathering information, and for making the decisions and 
effecting the changes. In this, they imitate homeostatic systems 
found in nature. 

Autonomic self-optimizing systems have two kinds of goals: they 
must maintain adequate quality of service (QoS), typically defined 
by service-level agreements (SLAs), and they may also seek to 
provide efficient operation, using a minimum of resources. The 
former goals are constraints to be maintained, such as constraints 
on average delay, or the probability of exceeding a target delay, 
and the latter goals provide a cost function to be minimized by 
tuning. Typically priority is given to maintaining the SLA 
constraints at all times, while seeking the minimum cost. 

1.1 Autonomic Self-Optimizing  Systems 
Basic autonomic capability is provided by a controller with 
functions 

• monitor (some system variables, denoted y) 

• decide (to make a change in a controlled parameter of the 
application or the operating system) 

• execute (implement the decision, as control variables u) 

in a feedback configuration as in Figure 1. The Figure is based on 
the MAPE-K architecture for autonomic systems  [18].  

 

 Decide 
(Analyze,    Plan) 

Monitor 

Sensor 

Managed Resources 

Effector 

Knowledge 
(Model) 

Execute 

(observation)  y u (control) 

 (disturbance)    z 
 

Figure 1.   Feedback control for autonomic systems 

The Decision operations determine the control, and may include 
heuristic estimators and controllers, or may be based on a system 
model (as in conventional linear system control [9]). 

Threshold control: A common heuristic controller is a threshold 
adjustment function as illustrated in Figure 2. For example, in a 
web server the queue of requests is observed and when it passes a 



threshold, new threads are created; when it is zero for some time, 
idle threads are destroyed. The threshold reduces the frequency of 
control actions when the system is in a desirable regime, to reduce 
the cost of control.  

Policy Function control: Threshold control has been generalized 
to multiple variables and control levels in [1], [6], [17] using an 
optimal control policy in an n-dimensional space, illustrated in 
Figure 3. The policy can be optimized by methods of Markov 
Decision Theory based on a Markovian model for the system 
behaviour. 

 add a unit to 
the pool if <M 

y 

remove a 
unit from the 
pool if >1 

∆u 
 
  1 
 
  0 
 
 -1 

 

Figure 2. Illustration of threshold control of a single resource  

 

 

u = 1 

2 

3 
4 

Observation  y1 

Observation
y2

 

Figure 3.  Optimal u given as a control policy (as in [1]) 

Linearized dynamic control: Hellerstein and his co-workers[4] 
and others have used controllers based on a linearized dynamic 
model given by equations such as: 

x(k+1)=Ax(k)+Bu(k)                                        (1) 

       y(k) = C x(k) + D u(k) + E z(k)                        (2) 

with control equations based on a well-developed theory [2]. If 
the disturbance term z includes errors of observation then the 
optimal controller includes a filter to estimate the state from 
observations y. In [8] they controlled the memory used by a Lotus 
Notes application. Linearized dynamic control has been also used 
by Abdelzaher and co-workers [12] to adjust the number of 
threads in a web server. 

In equations (1) and (2),  x denotes the state variable vector of the 
dynamic model. The coefficient matrices A B C D E can be fitted 
to historical data [9], as a kind of regression model. They can be 
updated to give a tracking model, in case the system changes. The 
controlled parameter u is recomputed at every step.  

The theory of control based on tracking models in a more general 
context was studied intensively by Astrom and co-workers (see 
[3]), and was applied to time-varying linear systems and to non-
linear systems in which the operating point changed (requiring a 

new linearization). It is worth noting that most performance 
relationships are markedly non-linear, so linear models like this 
are not robust and need to be updated constantly. Updating can be 
quite slow.  

The approaches in these three groups often do not monitor and 
control QoS directly. They apply indirect control through other 
variables such as utilization or queue length (see [2] for example). 
Thus their relationship to the SLA is indirect, and has to be 
calibrated. The secondary goal of optimization of resource use is 
often absent. The above approaches also control just one 
component of the software system and the interaction between 
different components or applications is ignored.  

This paper proposes a framework which accommodates the above 
approaches, and also a more ambitious approach based on a 
holistic performance model for the interactions of the resources 
and workloads in the system. The model can be used to accelerate 
the autonomic reactions to workload changes, and to search for 
resource-optimal configurations. The types of systems that can 
benefit from our approach are information- and transaction-based 
software applications, such as e-commerce, insurance claim 
submission, Web banking, brokerage, and others.  In these 
systems, users log-in, alternates requests with think times and then 
log-out. In terms of performance modeling, these systems are best 
described by closed models. 

2. A HIERARCHICAL ARCHITECTURE 
This paper describes a flexible approach to building autonomic 
systems with many control points (controlling points of variation) 
that have interacting effects. The approach is hierarchical, to 
separate controls with different localities and time-scales of 
application, and it can support different kinds of control policies, 
and different kinds of models of the system. Feedback policies to 
tune the control values can be combined with model-based 
accelerators to provide faster reaction to major changes. 

Figure 4 shows the building blocks and the data flow of the 
proposed control architecture. The basic building blocks of the 
system, both for functionality and for management, comprise a set 
of Managed Components. Each managed component includes a 
management layer with sensors for monitoring and effectors for 
modifying controlled system parameters. To each Managed 
Component is attached a low-level autonomic controller, called 
the Component Controller or CController level. Information local 
to the component is used to adjust run-time tuning parameters, to 
achieve local QoS-related targets. 

A model of the managed component is built and/or calibrated at 
runtime with the data provided by the sensors. The model helps 
the Component Manager to predict the effect of tuning one 
parameter or another. Examples of local tuning parameters are the 
size of a thread pool (which is often adjustable in, for example, 
web servers) and the size of a buffer pool or cache. Component 
tuning can be active at all times and is relatively fast and 
inexpensive, so it is the preferred way to achieve QoS goals. 
However it may not be capable by itself of maintaining a SLA, 
and it cannot set its own QoS targets. 

The middle level is the Application Controller or AController 
level, which manages system-wide tuning and the interactions 
between the components. It sets QoS targets for the components, 
and takes over when they are incapable of maintaining their 
targets. Similarly to the Component Controller, the Application  



 

Tuning Monitor

Management
Unit

S
en

so
rs

E
ffecto

rs

Functional
Unit

Managed Resource

(Web) services

Tuning Manager

Goals(SLAs )

Model Builder

T
C

o
n

tro
ller

TModel

Load balance  Manager

Model Builder

L
C

o
n

tro
ller

LModel

Provisioning Controller

Model Builder

P
C

o
n

tro
ller

PModel

Load  Monitor

Autonomic component
Autonomic system

Autonomic system

*
*

Monitor

Management
Unit

S
en

so
rs

E
ffecto

rs

Functional
Unit

Managed Component

(Web) services

Component Controller

Goals(SLAs )

Model Builder

C
D

ecisio
n

CModel

Application  Controller

Model Builder

A
D

ecisio
n

AModel

Provisioning 

Model Builder

P
D

ecisio
n

PModel

Autonomic component
Autonomic application

Autonomic system

*
*

 
 

Figure 4. Component diagram of hierarchical control of software systems 

 

Controller builds a model of the system under control in order to 
evaluate and predict the effect of its load balance decisions. 
However, the model and the decisions are different than those for 
tuning as they have to take into account more component 
interactions. AController balances resources and workload across 
the system, involving interactions between components. Examples 
include the partitioning of request streams across a number of web 
servers, or replicated databases, the establishment of connection 
pools between processes, or the sharing of database buffer pools 
between application classes. 

If the workload intensity changes substantially it may provide an 
opportunity for cost savings that can only be achieved by 
removing a node and its software from the active resources of the 
application. Similarly an increase of workload intensity may be 
still within the SLA and require that additional hardware and 
software components must be provided. Self provisioning is the 
ability of a system to add or remove instances of its hardware and 
software components at run-time without disrupting the 
application, and is provided by the third (highest) level, 
Provisioning Controller, or PController. Examples include adding 
and removing new web servers or application servers in a cluster.  

Similarly to previous control levels, the Provision Controller 
builds a model of the system and evaluates different provisioning 
decisions before performing any change.  

2.1 Architecture Implications 
Figure 5 shows a framework which implements the hierarchical 
control model proposed in this paper. PController, AController 
and CController extend the class Controller which provides the 
basic interface. Controller interacts with a managed element at any 
level through Sensor and Effector interfaces, and bases its 
decisions on one or more Performance Models. The models, 
which are detailed later, can be grouped in four categories: 
Threshold, Policy, Dynamic and Queuing Models (which include 
layered queueing models (LQMs) as a special case). 

A strength of the framework is the ability to change the model or 
control algorithm modules. Controller provides an interface which 
can be tailored to different kinds of algorithms and the data they 
require.  

Since the models and the control decisions are at the core of the 
architecture, we will detail them in more details in the next 
sections. 

 

 
 

Figure 5.  Class diagram of an hierarchical self-management infrastructure 

 



2.2 Control Decisions by Level 
The decisions about changes in controlled parameters are made by 
Decision elements at each level. A Decision element(xDecision in 
Figure 4 and decision() method in Figure 5) is based on an 
implicit or explicit model of the system, which characterizes the 
impact of the decision. The processing of a decision element can 
be summarized as follows: 

1. monitor the managed component performance metrics 
and the input workload and setpoints 

2. use the performance model to estimate future metrics 
and future adjustments of controlled parameters 

3. if the future workloads cannot be accommodated by 
local adjustments, alert the upper level; otherwise 
perform the local adjustments. 

A decision element at a higher level establishes setpoints for the 
lower level and it also has the ability to preempt and validate the 
changes at the lower levels. 

As described above, the controllers at different levels differ in the 
types of changes they control. These differences are partly in 
scope (restricted to one component, or system-wide) and partly in 
time-scale and cost (changing the provisioning is the slowest and 
most expensive). A PController makes more dramatic and last 
resort changes in the system. It adds and removes servers and 
software components to the system to face the variations of the 
load that cannot be properly handled by the CController and 
AController.  To implement those changes, a PController can use 
predefined workflows written in scripting languages. For 
example, user controlled provisioning in [10] uses a version of 
Python as a scripting language for defining provisioning 
workflows. 

To perform component tuning, application tuning and self-
provisioning, a software system has to be aware of its 
performance characteristics, to detect and predict changes in 
workload and to decide which action or combination of actions it 
should take. All management structures and actions can be viewed 
as being based on models of the system and its behaviour. For the 
simplest cases, the model may not be explicit, but to manage a 
complex system with interacting measures and decisions, a model 
is essential. Different kinds of model can be used; the choice of 
model and of control algorithm have implications for the system 
architecture. This paper places the control strategy and the 
architectural choices  together in the context of the system 
complexity and the required speed of adaptation to change. 

A standard reflective architecture is suitable for systems which are 
simpler in some sense (typically, for control of a single variable 
from a single measure), while a system-wide multivariate control 
architecture is required in more complex cases. The model may be 
incorporated directly or it may be solved or optimized, and the 
solutions incorporated as controllers. 

2.3 Performance Models for Autonomic Controllers 
Four kinds of performance models can be used at each level of 
control described above.  The type of performance model has an 
influence on the decision elements and on the Controllers in 
general.   

A. Queue-based Performance Models can predict the QoS 
measures from the resource levels and the values of 

environmental “disturbance” quantities. The model can be created 
statically from the plans for the system, or calibrated periodically 
with special measurements, or updated periodically from 
operational data. Then a search technique can be applied to the 
model to find resource levels or alternative configurations that 
will satisfy the QoS requirements (see Figure 6).   

These performance models include queueing models and layered 
queues (LQMs). An example of combining LQMs and search for 
the optimal configurations is [11]. Most models that are practical 
to solve give steady-state performance measures. They handle 
system non-linearities, but to track changes in workload or 
environment parameters the model must be periodically updated. 
Fluid models can be used for systems in overload and provide 
rather simple dynamic models for these situations.  

Scope: Menasce described an architecture with a component that 
manages its own resources using a queuing model [13][14].  
LQMs can be used at any control level since it can be used to 
model systems, applications and components. We will detail the 
use of LQMs later in the paper. 

 

Managed 
Component 

Find (search) 
“good” or 

optimal resource 
allocation 

Performance model 
Parameter estimation 

y 

u 

 

Figure 6.  Performance model-based resource management 

 

B. Dynamic models, such as those described in equations (1) 
and (2) in Section 1 can be used in a control structure shown in 
Figure 7. Once a model is built ( on- or off-line) a controller is 
designed. The controller (a linear function between u and y) 
continuously updates u as a function of the difference between the 
measured value y and the setpoint v. There are consecrated 
techniques for designing optimal controllers that provide a high 
quality of control while minimizing a cost function.  

Scope. In principle any system can be modeled by the 
autoregressive schemes described in [8]. In a significantly 
nonlinear system the linear control may work badly or have to be 
updated frequently. 

 

 

Linear 
Controller 

Managed 
Component 
(state x(k)) 

Parameter estimation and 
Controller Derivation 

u x y 

y 

z 

u y 

 

Figure 7.  Adaptive dynamic control functions 



 C. Monotonic static models relate a QoS measure to be 
controlled to a control value u, and give rise to threshold 
controllers. The controller is determined by discretising a  
performance model or else it expresses well-known heuristic 
principles in performance engineering.  In terms of control style, 
the performance model and the control (decision) elements are 
combined in one entity.  

Scope: Static models and threshold control are suitable for any of 
the levels of control detailed above, for a single controlled 
variable with negligible interactions with other resources. 
Reflective software components monitor a small number of 
parameters of their environment and behavior and modify 
themselves, if the measures go out of a desirable range. Such a 
reflective component can hide its adaptive behaviour, or it can 
export its measures and actions to an encapsulating self tuning 
manager. Performance-related autonomic behaviour can be 
provided if the reflective components encapsulate resources (as 
for example in processes with thread pools that adapt to demand).  

D. Policy based models. An optimal policy may control 
multiple resources, based on multiple measures.  Optimization can 
be directly on measures taken from the system, (as in taking the 
shortest delay path in updating a routing table according to 
observed delays), or it can be based on a model.  As is the case 
with Threshold models, Policy models can be discrete 
representations of more complex models. A Markov Decision 
Process model has been used [1] to compute optimal reactions to 
state changes, combining observations on the system (for 
example, an observation of the system state) with assumptions 
about the rate of changes of state that are expected in the future. 
In an MDP model the variables u, y, and z take a discrete set of 
values only (such as “high”, “medium” and “low”). 

Error! 

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

0 5 10 15

time

Metric

 

Figure 8. The quality of control 

 

The optimal policy may be stored as a map, table or set of rules 
showing the policy to be applied in each situation, as a set of 
particular values of the control variables for that situation. Thus it 
resembles a decision table. An illustration as a map is given in 
Figure 3. 

Scope: An optimal policy for one measure and one control is 
typically a threshold policy. Optimal policies over several 
measures and controls requires a kind of system-level reflection, 

gathering measures from several sources and controlling resources 
in a coordinated way across a sub-system. 

 

2.4 Optimization and quality of control  
As in any control system, good control brings the QoS into the 
desired range quickly, without either too-long delay or excessive 
oscillations. Figure 8 shows some possible responses over time of 
a controlled QoS metric related to delay, beginning from an 
unsatisfactory configuration with excessive delay. There is a 
target “setpoint” value and a target range including values near to 
but below the setpoint. The upper curve responds too slowly; the 
oscillating curve shows over-reaction; the middle curve settles 
into the desired range and stays there, within a reasonable 
“settling time”. What is achievable for a settling time depends on 
the time to obtain good estimates ad decisions, and the precision 
of decision making. 

 

2.5 Accelerated Control 
If an upper level controller is equipped with a sufficiently detailed 
model, such as a layered queueing model including the 
application and component resources, then it could use the model 
to determine optimal settings for its own level and those below it. 
This propagates suitable values for the lower-level controls to 
accompany a new value of the higher level control, and avoids the 
need for the lower level controllers to detect and adapt to the 
change on their own. If the model is only partly complete for the 
lower system, then the propagated values can cover what is 
included. 

This acceleration is particularly effective in dealing with strong 
interactions between decisions at different levels. 

The choice of which type of model or combination of models to 
use is driven by the nature of the system and the rapidity of 
changes in the “disturbances”.  We’ll expand on the tradeoffs of 
each model in the next section 

2.6 Discussion 
The four control approaches above differ in: the nature and the 
scope of the model, in how often the models are built or 
recalibrated and how difficult is to build them, and in the 
optimization techniques that can be applied on top of them. We 
already described the scope of the models and how appropriate 
they are for each level of control and finally. In the remainder of 
this section we look at the rest of the differences.  

The nature of the model 

- A, C and D are static models, that is, they model the system 
in a steady or equilibrium state. B is a dynamic model, which 
can model transient phases of the system. As an example, A, 
C and D model and estimate well the performance of a 
software system when there is a constant number of users in 
the system, such as 100 or 200; B can estimate the 
performance metrics when the number of users suddenly 
changes from 100 to 200.  

- C does not require an explicit model, and is limited to a local 
scope (one measure determines one control). The others may 
be applied to any scope. 

- C and D can use linear and non-linear models, B is a linear 

too slow 

oscillatory 

settling time 

target zone 

good 

setpoint 



model, A models the non-linearities implicit in performance 
relationships.  

Model building and the speed of response to a changed situation 

Building the model of control in a timely manner and updating or 
calibrating it regularly is an important requirement for self-
optimizing systems because, by definition, the system’s structure 
and parameters are dynamically changed by the autonomic 
managers’ actions.  

- Models of type C are very component specific, they 
implement rules of thumb about the performance of the 
component and its internal resources. It is relatively easy to 
build, and responds very fast, but lose effectiveness and can 
have side effects if their monotonic assumptions are violated. 
For example, a simple model like, “if the number of users 
increases by x, increase the number of threads by 2x” 
become counterproductive when the memory is low or a 
resources become saturated. 

- D covers more ground than C because it bases its decisions 
on more inputs. Rule-based control algorithms of type D can 
be effective as they take into account not only thresholds of 
the input variables, but the derivatives of those inputs. They 
also open the possibility of self-learning approaches to be 
used at runtime to dynamically change the parameters of the 
control algorithms.  

- Model of type B are build in general experimentally by 
sampling the system across large number of input-output 
combinations. The relationships between x, y, u, z  as well as 
well as the matrices A, B, C, D and E can hardly be 
extrapolated beyond the conditions under which sampled 
were taken. For example, the actions of load balancing or 
provisioning (such as adding or removing a server) can make 
the models of type B obsolete, when those models refer to 
system wide variables. Nevertheless, for systems that 
preserve their structure constant over large intervals, the 
models of type B can be very appropriate. 

- Model of type A require measurement of resource 
consumption such as demand or service time with one user in 
the system. That poses a problem, since, at run-time, it is 
hard to accurately isolate one user request demand from the 
rest.  Most of the research in building performance models of 
type A has concentrated so far on how to do it at 
development time. It is therefore conceivable that the models 
of type A are ready at the deployment time and then 
calibrated periodically at run time. An advantage of 
performance models is that structural changes in the system 
can be quickly reflected in the model. For example, adding 
and removing servers in the system is translated in the model 
in a change in the multiplicity of a cluster.  Comparing with 
the rest of models, models of type A are easier to update; in 
the same time solving them takes longer. 

 

3. THE USE OF LAYERED 
PERFORMANCE MODELS 
 

Interacting components are a reality of many systems, including 
distributed systems with layered servers. Even within the same 
administrative scope there are components and resources that 

interact. The form of interaction is often through layered service 
patterns, and this work envisages the use of layered queueing 
models (LQMs) to represent an entire system or subsystem, to 
evaluate and optimize the use of resources. The high-level 
controllers will include the model and a technique for extracting 
control values or policies from it. Previous work by the authors 
has considered static optimization of resource use in layered 
systems. Litoiu and Rolia in [11] considered optimal allocation of 
processes to processors in a layered service system, and Zheng, 
El-Sayed, Cameron and Woodside in [5],[19] optimized priorities 
and allocations, to meet soft deadlines. Both of these works had 
good results with heuristic optimization strategies. Both used 
layered queueing models [7], [16],[20]. 

In real distributed systems it might not be enough to attempt to 
optimize a single component, such as a single application server 
(as in the strategy proposed in [12]). The bottleneck may move 
from one server to another, taking a long time to settle, and with 
incorrect threshold settings it might even thrash, with first one 
server being saturated (unloading a second server), such that an 
increase in capacity at the first server shifts the saturation to the 
other and unloads the first one. The best operating point may be 
many steps away from the current point. That is why we propose 
to execute the optimization search on a layered queueing model, 
in accelerated decision-making. 

The use of layered performance models addresses several essential 
issues: 

1. interactions between the usage of layered components, 
especially when congestion at a lower resource is creating 
saturation at higher resources (software bottlenecks [15]) 

2. the essential non-linearity in performance models as 
saturation is approached. This is a critical regime for correct 
decision-making for real systems. 

The price that it requires is the creation of a hierarchical system-
wide control architecture, which is less modular than the simple 
Q-components in [14]. This trade-off cannot be avoided. While 
completely decentralized decision-making (as in simple Q-
components) may be able to eventually reach globally optimal 
operating points, we are convinced that it will take them much 
longer. We are studying this question. 

If we can learn how to build a flexible overall architecture as 
described above, then the approach above would occupy one 
extreme (global control) and the simple Q-components, the other 
(every component providing its own control). The choice of the 
actual architecture used could be governed by the sharing of 
resources (as described above) and also by issues of practicality in 
obtaining and sharing information across the system. 

 

4. CONCLUSIONS 
Briefly,  

• the hierarchical framework solves problems of scope and 
timescale differences in the adaptation; 

• it also provides flexibility in choice of control algorithms, 
including migration over time if necessary, 

• the framework has a distinct role for models of behaviour, 
and can accommodate many different models, including 
performance models. We intend to explore the use of layered 



models (LQMs), 

• it supports accelerated decision making based on LQMs, that 
propagates the effect of a high-level change rapidly into the 
lower levels. 

The value of better models is the subject of current research, in 
the context of this framework. 

 

5. ACKNOWLEDGEMENTS 
This research was supported by the IBM Center for Advanced 
Studies (CAS), Toronto, and by the Natural Sciences and 
Engineering Research Council of Canada. 

6. REFERENCES 
[1] Abdeen, M. and Woodside, C. M. Seeking Optimal Policies 

for Adaptive Distributed Computer Systems with Multiple 
Controls. Proc. Third International Conference on Parallel 
and Distributed Computing, Applications and Technologies 
(PDCAT'02), Kanazawa, Japan, Sept. 2002. 

[2] Abdelzaher, T., Shin, K.J and Bhatti, N.,  Performance 
Guarantees for Web Server End-Systems: A Control-
Theoretical Approach. IEEE Transactions on Parallel and 
Distributed Systems, Vol. 13, No. 1, Jan 2002. 

[3] Åström, K.J. and  Wittenmark B. Adaptive Control. 2nd 
edition. Addison-Wesley Publ Co, 1995. 

[4] Diao, Y., Lui, X., Froehlich, S., Hellerstein, J.L., Parekh, S. 
and Sha, L. On-Line Response Time Optimization of An 
Apache Web Server. International Workshop on Quality of 
Service, 2003. 

[5] El-Sayed, H. E., Cameron, D. and Woodside, C. M.  
Automation Support for Software Performance Engineering. 
Proc Joint Int. Conf on Measurement and Modeling of 
Computer Systems (Sigmetrics 2001/ Performance 2001), 
Cambridge, MA, June 16 - 20, 2001, pp 301-311. 

[6] Franken, L.J.N. and Haverkort, B.R. Reconfiguring 
Distributed Systems using Markov-Decision Models. Proc. 
Trends in Distributed Systems (TreDS’96), Oct. 1996, pp. 
219-228. 

[7] Franks G., Majumdar, S., Neilson, J., Petriu, D., Rolia, J. and 
Woodside C.M. Performance Analysis of Distributed Server 
Systems.  The Sixth International Conference on Software 
Quality (6ICSQ), Ottawa, Ontario, 1996,  pp. 15-26. 

[8] Gandhi, N., Hellerstein, J. L., Parekh, S. and Tilbury, D. M.  
Managing the Performance of Lotus Notes: A Control 
Theoretic Approach. Proceedings of the Computer 
Measurement Group, 2001. 

[9] Hellerstein, J., Diao, Y., Parech, S., Tilbury, D. Feedback 
Control of Computing Systems, John Wiley &Sons, Inc., 
2004.  

[10] IBM Tivoli Intelligent Orchestrator, http://www-
306.ibm.com/software/tivoli/products/intell-orch/, Jan 23, 
2005. 

[11] Litoiu, M. and Rolia, J. Object Allocation for Distributed 
Applications with Complex Workloads. Lecture Note in 
Computer Science 1786, Springer, 2000, pp 25-39. 

[12] Lu, Y., Abdelzaher, T., Lu, C., Sha, L. and Liu, X. 
Feedback Control with Queueing-Theoretic Prediction 
for Relative Delay Guarantees in Web Servers. Real-
Time and Embedded Technology and Applications 
Symposium, Toronto, Canada, May 2003. 

[13] Menasce, D. A. and Bennani, M. On the Use of 
Performance Models to Design Self-Managing 
Computer Systems. Proc. 2003 Computer 
Measurement Group Conference, Dallas, TX, Dec. 7-
12, 2003. 

[14] Menasce, D. A. QoS-aware software components. 
IEEE Internet Computing, March/April 2004, Vol. 8, 
No. 2. 

[15] Neilson, J.E.,  Woodside, C.M.,  Petriu, D.C. and 
Majumdar, S. Software Bottlenecking in Client-Server 
Systems and Rendez-vous Networks. IEEE Trans. On 
Software Engineering. Vol. 21, No. 9, September 
1995, pp. 776-782. 

[16] Rolia, J. A. and Sevcik, K. C. The Method of Layers. 
IEEE Trans. on Software Engineering. vol. 21, August 
1995. no. 8,  pp. 689-700. 

[17] Shin, K. G., Krishna, C. M. and Lee, Y-H. Optimal 
Dynamic Control of Resources in a Distributed 
System. IEEE Transactions on Software Engineering. 
Vol. 15, No. 10, October 1989. 

[18] Stojanovic, L., Schneider, J., Maedche, A., Libischer, 
S., Studer,  R., Lumpp, T., Abecker, A., Breiter,  G. 
and Dinger, J. The role of ontologies in autonomic 
computing systems. IBM Systems Journal, v. 43, n. 3, 
2004. 

[19] Zheng, T. and Woodside, C. M. Heuristic Optimization 
of Scheduling and Allocation for Distributed Systems 
with Soft Deadlines. Lecture Notes in Computer 
Science, Springer-Verlag, vol. LNCS 2794, 2003, pp 
169-181. 

[20] Woodside, M. Tutorial Introduction to Layered 
Modeling of Software Performance, 
http://www.sce.carleton.ca/rads/lqn/lqn-
documentation/, April 2005. 


