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Abstract 
Autonomic control of a service system can take 
advantage of a performance model only if a way 
can be found to track the changes in the system. A 
Kalman Filter provides a framework for integrat-
ing various kinds of measured data, and for track-
ing changes in any time-varying system. This 
work evaluates the effectiveness of such a filter in 
tracking changes in performance parameters of a 
software system that occur at different rates and 
amplitudes. The time-varying system is a Web 
application deployed in a data centre with layered 
queuing resources, in which parameter variations 
happen at random instants. The tracking filter is 
based on a layered queuing model of this system, 
with parameters representing CPU demands and 
the user load intensity. Experiments were per-
formed to evaluate the effectiveness of the filter in 
tracking the changes, and the requirements for the 
filter settings for fast and slow variations in the 
parameters. The target application is autonomic 
control of a service centre. 

 

1. Introduction 
The goal of autonomic control[18] of a 

computer service centre is to make controlled 
changes in the system configuration to offset dis-

turbances in the workload or the system, and to 
maintain Service Level Agreements (SLAs). Dis-
turbances in the workload include changes in the 
load intensity or the types of services requested. 
Disturbances in the system include failures or 
load imbalances, or responses to security attacks. 
A second goal of control is to optimize the use of 
resources. Control is based on observations of the 
ongoing Quality of Service (QoS), and of other 
system measures reflecting system status and ac-
tivity, interpreted with the help of a performance 
model.  

The model in turn needs to reflect the system 
structure and behavior and provide means to infer 
current and future changes in the system. Figure 1 
shows an application offering a service interface 
to system users at the top right. System measures 
at the bottom drive an autonomic control loop, 
which tracks and updates a model, makes deci-
sions based on the model, the SLA, and other sys-
tem goals, and makes the controlled changes. 

Control strategies have been described based 
on different kinds of performance models, includ-
ing regression functions, queuing models [14] 
[15], and dynamic models [1][3][6][7][13]. In 
[12], the present authors described a hierarchical 
structure of models and controllers, and suggested 
the use of layered queuing models to quantita-
tively assess the effect of component and applica-
tion tuning or provisioning on the performance of 
the application. Layered queuing models 
[4][5][17] are extensions of Queuing Network 
models [8], which capture contention for software 
resources such as threads and critical sections, as 
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well as for hardware. This paper assumes the use 
of layered queues, which are described further in 
Section 2. 
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loop based on a tracking model 

 

An important aspect of the autonomic con-
trol loop in Figure 1 is the model-building ele-
ment.  Its role is to maintain accurate model pa-
rameters as the system evolves.  In tracking 
changes in the model parameters, various kinds of 
data give useful but indirect information. Some 
means is needed to integrate this data, in order to 
estimate the model parameters. In [20], it was 
proposed to integrate performance data and track 
the parameters of queuing models with a tracking 
filter. A tracking filter updates past estimates of 
parameters from observations on functions of 
them (such as performance observations), based 
on a performance model and a statistical model of 
the dynamic parameter change. Tracking filters 
are used in many fields, but not yet in computer 
system control. This paper evaluates the effec-
tiveness of the filter mechanism for tracking pa-
rameters of a model of a time-varying layered 
system. 

The first application of a tracking filter to 
performance model parameter estimation in [20] 
used an Extended Kalman Filter to estimate the 
parameters of a queuing network with unknown 
but constant parameter values. The transient re-
sponse of the filter when it first acquired the pa-
rameter value was evaluated under a wide range 
of conditions. The filter showed: 

• Almost instantaneous convergence to the 
transient parameter change 

• Low sensitivity to tuning parameters that 
describe the measurement accuracy and the 
parameter drift process 

This work extends [20] to evaluate the suc-
cess of the filtering approach to track a time-
varying parameter in a layered queuing model. 
The novel aspects of this work are: 

• Evaluation of the effectiveness of approxima-
tions needed to make the filter practical 

• The use in the filter of an approximate sensi-
tivity matrix for the layered queuing network 

• The interaction of the rate of system change, 
the system measurement accuracy, and the 
length of the measurement steps, in determin-
ing the accuracy of tracking 

 

A Kalman Filter is a model-based estimator 
for time-varying state values in a dynamic system 
that can be derived either as an optimal least-
squares estimator, or a Bayesian estimator. At 
each step, the filter compares measured values (in 
our case, performance measures) to predicted val-
ues from a model, to give a prediction error e. 
From e, it updates the state estimates x with a 
linear update equation: 

xnew=xold+Ke. 

The Kalman gain matrix K is a function of 
certain properties of the model and of estimates of 
the accuracy of both the measurements and the 
model, which are also updated by the filter.  K is 
updated at each step to minimize the mean of the 
square of the prediction error e (or the mean of a 
quadratic norm on a vector e). Details are given in 
Section 2. 

Kalman Filters were originally derived for 
estimating states of a linear dynamic system [10], 
and were extended to provide an approximately 
optimal filter for parameter estimation and for 
estimating states in non-linear systems. The Ex-
tended Kalman Filter is heavily used to estimate 
positions in space from radar data (see [2]). There 
is a vast literature on Kalman Filters; the refer-
ences cited provide further background.  

The remainder of the paper is organized as 
follows. Section 2 describes a Web application 
and its layered queuing performance model; Sec-
tion 3 explains the Extended Kalman Filter and its 
implementation for tracking layered queuing pa-
rameters; Section 4 presents the experiments and 
the results. The practical implementation issues of 



the Kalman Filter are detailed in Section 5, and 
conclusions are presented in Section 6.  

 

2. Time-varying Web Appli-
cation 
We consider a Web-based application and its 

associated layered queuing model structure as 
shown in Figure 2.  In terms of Figure 1, the Web 
application represents the controlled Application 
while the layered queuing model is the Model 
element in the autonomic control loop.  In this 
section, we identify the structure of the perform-
ance model, the directly measurable data, the indi-
rectly measurable data and the change characteris-
tics of the above. 
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Figure 2. The Layered Queuing Model of a Web 

application, showing its organization 

 

The User block in Figure 2 represents N 
separate users and their browsers, which alter-
nately send requests to the Web Server every Z 
ms. (as a default, Z = 1000). Z is known as the 
think time. The WebServer block represents the 
server software with M threads, running on proc-
essor WSProc (indicated by the “host” relation-
ship). The model represents M servers with a sin-
gle queue of user requests. The box labeled Re-
trievePage represents the operation done for the 
users, and requires a CPU demand of Sw ms (de-
fault value 5 ms), one network latency of 50 ms, 
and on average 0.4 database operations and 0.2 
disk operations. The disk and the database are 
here represented as single servers with a queue, 
running on their own devices DBProc and Disk-
Dev, with CPU demands of Sd (default value 10 
ms) and 15 ms, respectively. 

We will consider this model as a representa-
tion of a Web-based application system with a 
similar structure and the same structure of re-

quests between its components. In a real system, 
the behaviour of the components would be more 
complex than in the model, and the structure 
could contain more detailed substructures. For 
instance, a real database server would include 
threads, concurrency control mechanisms, and 
perhaps its own storage subsystem.  

For this study, we will represent the real sys-
tem by a simulated system with the same structure 
as Figure 2. In this way, we can study the success 
of the tracking filter in tracking the parameters of 
the simulated system, if they vary. 

2.1 Parameter Changes 
Figure 2 shows five parameters as variables: 

N = number of active users (default 100) 

M = number of Web-server threads (default 
50) 

Z = mean User think time per request (de-
fault 1000 ms) 

Sw = mean Web server demand per user re-
quest (default 5 ms) 

Sd = mean database server CPU demand per 
database request (default 10 ms) 

A major challenge to autonomic systems is 
variation in offered load arriving at a service cen-
ter. This phenomenon can be modeled by varia-
tions in Z or in N; a larger N or a smaller Z leads 
to a higher level of offered load. Variation in the 
type of transaction being executed by users is a 
second challenge, and it can be captured by varia-
tion in the CPU demand, or the request frequen-
cies. CPU demands in a data centre can also vary 
because of provisioning (upgrading or downgrad-
ing the hardware). We will vary Z and the CPU 
demands, and keep N and the request frequencies 
constant. 

We assume that the system has parameters 
that change over time, according to a parameter 
change process as follows: 

• Changes in some parameter a occur at dis-
crete random instants, at a mean rate of αa 
changes/s, and the parameter values are con-
stant between changes 

• At a change point, the new value a’ is inde-
pendent of the previous value a, and is gov-
erned by a distribution with density function 
f(a), mean ma , variance σ2

a, and coefficient 
of variation Ca = σa/ ma 



The amplitude and frequency of this change proc-

ess are characterized by Ta = 1/αa, the mean time 
between changes for a, and by Ca. 

There might be other change processes, such 
as a smooth process of gradual increments over 
time.  

For simplicity, we assume that only Z and Sd 
change. Thus, for tracking purposes, the parame-
ter vector is a = [Z] or a = [Sd].  

2.2 Performance Measures 
The directly measurable performance data 

would be taken, in a real system, from instrumen-
tation and operating system counters. In our simu-
lation, we consider: 

• Mean response time to users (R) 

• Utilization of the Web server processor(Uw) 

• Utilization of the database processor(Ub) 

• Utilization of the disk(Ud) 

Thus the measurement vector is z = [R, Uw, Ub, 
Ud], averaged over a measurement time interval of 
length T.  

Other measures might be of interest, such as 
quantiles of response time, or the probability of 
exceeding a stated target response time. However, 
the measures above are well understood and will 
give us a first view of the capability of tracking.   

Values for the think time Z, or the CPU de-
mands Sw or Sd are not directly accessible at run 
time. They also vary over time, so we compute 
and track them indirectly by using the Extended 
Kalman Filter and the layered queuing models.  
The next section describes the tracking filter, 
which deduces these hidden measures from the 
measures that are available. 

 

3. The Tracking Filter 
The filter takes the standard form of an Ex-

tended Kalman Filter (EKF) as described, for in-
stance, in [2]. It applies to cases where there is a 
model xnew = f(x old) for the evolution of the de-
sired state-and-parameter vector x, and a model z 
= h(x) for the relationship between the observa-
tion vector z and x. Here, we replace x by our 
unknown parameter vector a. In Kalman’s classic 
paper [8] the relationships f and h were linear and 
an optimal (least-squares) estimator was derived; 
in the extended filter the relationships are non-

linear and the optimality is only approximate. In 
our case, f is the identity, but h is a nonlinear 
function. 

 In the discrete time filter used here, time 
advances in steps of duration T, indexed by a step 
counter k. The change process of the parameter 
vector ak is modeled as a drift driven by random 
increments: 

ak = ak-1 + wk-1 (1)  

The random vector wk has a mean of zero and has 
the disturbance covariance matrix Qk (which we 
assume to be a constant Q), and is independent 
from one step to the next.  

The system observation vector zk is modeled 
as a function h(ak), defined in our case by the 
relationship that determines the performance from 
the parameters, including an error of measure-
ment. Thus, it assumes: 

zk = h(ak)+ vk (2)  

The assumed random error vector vk has a mean 
of zero, is independent from one step to the next, 
and has the measurement error covariance matrix 
Rk.  

The filter assumes that the relationship h is 
given by a performance model, the layered queu-
ing model for the system, which includes the pa-
rameter vector a. 

3.1 The Filter Computations 
The filter computations are recursive, begin-

ning from an initial estimate a0, and an initial er-
ror covariance matrix P0. Each recursive step can 
be summarized as follows:  

(1) Based on the most recent parameter estimate 
ak-1, the filter predicts the measurements as h(ak-1) 
(because the assumed drift has zero mean, the 
predicted parameter value is the same as the pre-
vious estimate). From the current observation 
vector zk, it computes a prediction error vector ek: 

ek  = zk - h(ak-1) (3)  

(2) The core filter calculation is the update of the 
estimates by the linear feedback equation: 

ak  = ak-1 + Kk ek (4)  

where the “Kalman Gain” matrix Kk is computed 
as follows:  



(a) Computation begins from an estimate Pk 
of the covariance matrix of estimation errors 
for ak . Pk is projected forwards one step, 
based on the drift covariance matrix Q: 

P-
k = Pk-1+Q (5)  

(b) Then the optimal gain matrix Kk (which is 
only suboptimal when h is a nonlinear func-
tion, as it is here) is given by:   

Kk =P-
kHk

T(HkP
-
kHk

T + Rk)
-1 (6)  

In this equation, the matrix Hk is the matrix of 
partial derivatives of the performance model func-
tion h, with respect to the parameters a at their 
current values ak-1. Thus, Hk is a matrix of sensi-
tivity values for the performance model.  

(3) When ak is updated, the covariance estimate 
Pk is also updated, to take into account the im-
proved accuracy after the filter step:   

Pk=(I-KkHk)P
-
k (7)  

  Where there is no ambiguity, the step subscript 
k will be omitted. Figure 3 shows the organization 
of the filter. 
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Figure 3. The Kalman Filter architecture 

 

The optimality and convergence properties 
of the EKF depend on the way the functions are 
linearized around the current estimate of a [11]. 
This Extended Kalman Filter (EKF) [2][19] lin-
earizes f(a) and h(a) by a first order Taylor series 
around the state estimate â-

k-1 and does not take 
linearization errors into account. A variant called 
the Iterative Kalman Filter (IEKF) linearizes h(a) 
around the predicted state estimate  ak-1. Other 
variants of the filter, like the Unscented Kalman 
Filter [9] or the Divided Difference Filter [16] 
capture the linearization errors in the covariance 
matrices. They were shown in [11] to provide 
better estimates when dealing with non-linear f(a) 

functions, while  EKF and IEKF provide better 
performance when dealing with non-linear h(a).   

3.2 The Influence of the Filter 
Parameters 
The matrices Q and R capture knowledge or 

assumptions about the disturbances and the meas-
urement errors, and they also influence how the 
filter reacts to new data. Both Q and R can often 
be assumed to be diagonal, with variance terms 
for the one step disturbances and the measurement 
errors, respectively. 

Small values in Q indicate that only small 
changes are expected, and lead to a small filter 
gain matrix K that can only adapt slowly. A large 
value of Q leads to large P and thus large gains 
that might overreact to measurement errors.  

Each diagonal element Qii should be set to 
the square of an estimate of the magnitude of the 
changes to be tracked in parameter ai: 

Qii = (approx. magnitude of change in ai)
2 

Each diagonal element Rii should be an es-
timate of the variance of the measurement error in 
zi. If the averaging time T is large enough (which 
we shall assume is the case) Rii varies as: 

              Rii = const/T                         (8) 

A standard step-length T* was determined (by 
experiment) that gave a 95% confidence interval 
of +- 5% in the user response time measure z1. For 
the system in Figure 2 with the default values of 
the parameters, T* = 15.7s. From the asymptotic 
properties of the t distribution, the confidence 
interval is 1.96 times the standard deviation. This 
implies that when T = T*,  

R11 = (0.05 (mean of z1)/1.96)2. 

For other values of T, the ratio of T to T* is de-
noted by γT: 

γT = T / T* 

 and then, approximately: 

R11 =  (0.025 (mean of z1))
2/ γT    

This value could be used in the filter, with the 
model prediction to estimate the mean of z1.  

Further, it can be assumed that the confi-
dence intervals of the other measures have similar 
accuracy. Thus: 

Rii =  (0.025 (mean of zi))
2 / γT        (9) 

 



4. Results 
 To demonstrate the ability of the filter to fol-
low parameter changes, the system in Figure 2 
was simulated with deterministic and random 
parameter changes (disturbance changes). A 
tracking filter was set up, based on the same 
model solved by an approximate analytic calcula-
tion with the LQNS solver.  

 The filter was driven by the measurement 
vector defined above, made up of the user re-
sponse time and the device utilizations: 

z = [R, Uw, Ub, Ud] 

These are typical of readily available performance 
measures from a real system.  

Changes in a single parameter were tracked, 
with either Z or Sd. 

The goodness of tracking can be measured 
in two ways, by the performance prediction error 
ER or by the parameter tracking error EA. We will 
use the RMS (root-mean-square) tracking error 
measures for both of these quantities. 

4.1 Tracking Deterministic 
Changes in Parameters 
The tracking performance was recorded for a 

series of alternating step changes in value of two 
parameters: 

• User think time Z (which affects the arrival 
rate; smaller Z gives a higher arrival rate)  

• Database service time Sd 

 

Case 1: Z alternates between 500 ms and 2500 ms 
with a change every 471 s. (30T*). This creates a 
much larger arrival rate for small Z than for large 
Z (about 168/s when Z = 500, vs 39/s when Z = 
2500). Equivalently, we could have modified the 
arrival rate directly. 

The filter parameters were set to: 

• T = T* = 15.7 s. (making γT = 1). This gives 
an estimation accuracy such that the 95% 
confidence interval in the mean user response 
time is +-5% at the base case parameters. 

• Q = 4,000,000. Q is a scalar, since there is 
just one parameter to track, and this is the 
square of the step change in Z that is applied 
in going from 500 to 2500. 

• Rk was a diagonal matrix with an element for 
each performance measure. From Eq. (9), the 
ith element is Rk,ii = (0.025*hi(ak))

2 

 

 Figure 4 shows a fragment of the record of 
values taken from the simulation and the tracking 
filter. The filter tracks the change in Z with a one-
step delay plus a few steps to settle to the new 
value. 
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deterministic sequence of mean user think times. 
(T = T*) 

 

 The high and low values of Z give a moderate 
load and a heavy load on the system, respectively. 
Thus the performance calculations traverse the 
knee in the performance curves between these two 
regimes, where the function h is the most nonlin-
ear. 

 The tracking error is visibly greater for Z = 
2500. The arrival rate is lower, and there are 
fewer response times in the averaging period, so 
the variance of the measurement error is larger 
than is allowed for by R when it is calculated by 
Eq. (9). The variation of measurement errors with 
load is quite a complex phenomenon, and Eq. (9) 
makes the simplifying assumption that the relative 
accuracy is constant in a neighborhood of the con-
figuration for which it was measured (in establish-
ing T*). This assumption allows constant values 
to be used for Q and R.  

 The assumption is justifiable if the sensitivity 
to R is low. Figure 4 supports the assumption, in 
that the tracking errors at both extremes are mod-
erate. Further tuning of Q and R might give even 
better performance. 

 



Case 2: The database demand Sd alternates be-
tween 10 ms and 40 ms, with changes every 471 
s. At the lower value, the system is lightly loaded; 
the higher value creates a significant load at the 
database, with a queuing delay that blocks some 
application threads. 

 Q was set to 900, and R was set as in Case 1. 

 Figure 5 shows how the filter tracked the 
changes, corresponding to Figure 4 for Case 1. 
Again, the filter takes a few steps to track the 
(very large) change. 

 In this case, the larger tracking errors are 
evident for the larger value of Sd, which corre-
sponds to a heavier load (as opposed to the case 
above in which the larger value of Z gives the 
lighter load). This time the number of responses 
in an averaging period decreases with heavy load, 
since the delays at the server back up the traffic. 
Also, there is a general tendency for the accuracy 
of statistics to suffer as system load increases, 
because of increased correlation of the successive 
responses. This dependency is complex and was 
not accounted for in setting R according to Eq. 
(9).  

 Again the system is traversing through the 
most nonlinear range of the performance relation-
ships expressed in h(a). 
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4.2 Tracking Random Changes in 
Parameters 
A random change process was generated in 

the simulation, with step changes of a parameter 
value occurring at randomly chosen instants (mul-
tiples of a common time step), at a mean rate of α 
changes/s. The change process was applied to one 
parameter at a time, first to Z and then to Sd. 

Figure 6 shows a fragment of a trace of the 
filter tracking random changes in the mean User 
think time. Sometimes the “real” mean value used 
by the simulation (the line with the diamonds) 
changes in the middle of a measurement step, so 
there is a point between two values. Generally, the 
filter follows a change within a few steps. 
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Experiments were done for a range of values 
of the measurement step time T, the rate of 
changes α, and the variance of the changes σ2. 
The time T*, which is characteristic of the system 
and designates the time to get a moderately accu-
rate average by measurement, was used to nor-
malize these values. 

The normalized relative parameter change 
rate, γα, specifies the change rate relative to T*: 

γα = αT*. 

As already defined, the normalized relative meas-
urement interval γT specifies the measurement 
interval T relative to the time T*: 

γT = T/T* 

Base values of these parameters in the following 
experiments were γα  = 0.025 and γT  = 4. 

At each change instant, a new value of the 
parameter (Z or Sd) was chosen independently 
according to a shifted hyper-exponential distribu-
tion (such as: Z = constant + random part), which 
had a mean value equal to the average value of the 
parameter and a stated coefficient of variation C. 
The base value of C was C = 1, but in Case 7, C 
was varied from 0.1 to 2.   

 

Case 3: Parameter Tuning. 

 The filter tuning parameters Q and R might 
affect the way the filter reacts. Small entries in Q 



make the filter conservative, as it assumes only 
small changes are possible in a single step. Small 
entries in R make the filter track more aggres-
sively, as it assumes that the measurements are 
accurate and therefore the filter must react in or-
der to explain them. We must learn how to set 
these parameters, and also it is important to un-
derstand how sensitive the whole filter process is 
to their values. 

To investigate these effects, the entries of Q 
and R were multiplied by factors denoted as QFac 
and RFac respectively. These two factors were 
varied over two orders of magnitude. Otherwise, 
the experiments had the usual base values of γα  = 
0.025, γT = 4.0 and CVa= 1.0. The expressions 
used for Q and R were: 

Qii =  (QFac(mean of ai)CVai)
2       (9a) 

Rii =  ((RFac) (zi) / 1.96)2 /γT         (9b) 

 

Table 1. (Case 3) The RMS tracking error in the 
mean user think time Z, as R and Q are varied 

   QFac     RFac 

 0.01 0.025 0.05 0.1 0.25 0.5 1 2 

0.02 124.6 140.0 143.7 143.7 143.7 143.8 144.6 2.72E7 

0.05 156.4 124.6 131.2 143.7 143.8 143.8 143.8 143.6 

0.1 186.4 145.9 124. 6 131.2 143.8 143.8 143.8 143.8 

0.2 221.1 176.1 145.9 124.6 140.0 143.8 143.8 143.8 

0. 5 264.8 221.1 186.4 156.4 124.6 131.1 143.7 143.8 

1 290.6 255.1 221.1 186.4 145.9 124.6 131.2 143.7 

2 317.0 282.6 255.1 221.8 176.1 145.9 124.6 131.0 

4 345.1 308.1 282.6 255.1 290.9 176.1 145.9 124.6 

 

The results in Table 1 show that it is the ra-
tio of Q to R that is important, rather than the 
values of the parameters. Also, above the diagonal 
(when Q is too large, and the filter over-responds 
to measurement errors), there is only a modest 
effect up to the point in the top right corner, 
where the error explodes. On the other hand, 
when Q is too small (the filter is sluggish), the 
error increases steadily.  

We can conclude that the tracking perform-
ance is somewhat insensitive to Q and R. Around 
the ideal balance between Q and R, there is a 
wide band (more than a factor of 10 up or down) 
in which the filter is “not bad” (within a factor of 
2 in RMS tracking performance). This agrees with 
the results reported in [20] for transient response 

and queuing models. Furthermore, it is better if Q 
should be somewhat overestimated (rather than 
underestimated) relative to R. 

For the rest of the paper, we set QFac =0.1 
and RFac = 0.2. 

 

Case 4: Measurement Time 
The next investigation considers how the 

measurement step time affects the accuracy of 
tracking. The mean number of parameter changes 
per measurement step is given by the ratio αT, for 
a given parameter change process with mean rate 
of α changes/s. We expect that low values of this 
ratio, such as αT << 1, will be necessary for good 
tracking, but we are also interested in determining 
the relationship between αT and tracking. Given a 
measurement step T, the results will show how 
fast a parameter change process can be tracked. In 
terms of the normalized values γT and γα, αT = γT 
γα . 

The mean user think time Z, and thus the re-
quest arrival rate, changed at random instants as 
described above. Z was chosen from a distribution 
with mean 1000 ms. and CZ = 1 (thus, Q was set 
to 105). The relative change rate was set to γα = 
0.025, which makes the average time between 
changes 40T*. The relative measurement interval 
was varied over the range γT = [0.4, 40], so that 
the smallest value gives measurement intervals of 
relatively poor accuracy, while the largest value is 
so long that it equals the mean change time. 

Figure 7 plots the RMS tracking error (Ea) 
in the estimate of Z from 1000 measurement and 
tracking steps and also the RMS prediction error 
(Er) for the user response time coming from the 
estimated model. The horizontal axis again gives 
log10 γT, which ranges from 0.4 to 40.   

The longer measurement intervals clearly 
are too slow and fail to keep up with changes; at 
γT = 40 (the right-hand end) there is on average 
one change per measurement interval, so the filter 
never has a chance to settle. The shorter intervals 
give lower measurement accuracy, but have the 
opportunity to smooth more.  

Up to γT = 4 (with log = 0.6), the parameter 
tracking is quite good, with RMS error Ea of 
about 100, which is 10% of the mean value mZ = 
1000 ms. It is also insensitive to γT, which sug-
gests that the key factor for tracking is to make 
the measurement interval much shorter than the 



inter-disturbance time (frequent measurements are 
better than accurate ones). According to Figure 6, 
there should be 10 measurement and tracking 
steps between disturbance changes. With fewer, 
longer measurement intervals, accuracy deterio-
rates steadily. 

The RMS prediction error (Er) has the same 
trend as the RMS tracking error. In the “good 
tracking” regime at the left, Er is about 5, which is 
less than 10% of the mean response time of this 
system in light loads. 
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Figure 7. (Case 4) RMS errors in tracking random 
changes in user think time Z, for different lengths 

of the measurement interval. 

 

Case 5: Rate of Disturbance Changes 

 The rate of change of the User think time was 
varied, so the normalized rate γα = αT*  varied 
from 0.01 to 1 while γT  = 4. For γα less than 0.04 
(which gives one change every 10 measurement 
steps) the RMS tracking error is again around 50, 
which is only 5% of the mean value of Z. Up to γα 
=0.1 (one change every 4 measurement steps) it is 
still less than 130, or 13% of the mean. Above this 
point, the error increases rapidly. 
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Figure 8 (Case 5) The RMS errors in Z as 
γα varies from 0.01 to 1  

 The error in predicting the mean user re-
sponse time shows a similar trend. The filter 
gradually loses the capability to predict accu-
rately, when the disturbance change rate is faster 
than one every tenth measurement step.  

 This confirms the evidence in Case 3 when 
the disturbance rate was held constant and the 
measurement step was varied. 

 

Case 6: Disturbance to Service Demand 

 Disturbances to service demands can arise 
when the users of a system swing to using differ-
ent functions or using functions differently, for 
example to requiring larger database searches for 
each operation.  

 The mean database server demand Sd changed 
randomly, using the same random disturbance 
process as for Z in Case 4 and 5 above. The aver-
age value is mSd = 10 ms., and CSd = 1.  

 As in Case 4, the normalized measurement 
time interval was varied from γT = 0.4 to 40, and 
the RMS tracking and prediction errors were de-
termined. 
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Figure 9 (Case 6). RMS errors in tracking random 
changes in Sd, as the measurement step (and γT) 

change. 

 

Figure 9 shows quite small tracking errors 
for γT below 1 (Ea  is about 1, or again about 10% 
of the mean parameter value mSd = 10 ms.). In the 
“good” range, the response time prediction error 
(Er about 50) is similar to previous cases. 

 

Case 7: Different Disturbance Variances C 
 This final case considers different amplitudes 
of the random changes to the think time Z. The 
coefficient of variation CZ of the disturbances to Z 
was varied over a range from 0.1 (quite small 

Log10(γα) 

Log10(γT) 

Log10(γT) 



changes) to 2. The other parameters took the base 
values. 

 In Cases 4 and 5 the changes to Z around the 
mean of 1000 ms. had a standard deviation of 
1000 also; here the standard deviation σZ = mZCZ 
varies from 100 to 2000. As expected, Figure 10 
shows that the RMS prediction error is smaller 
when the disturbances are smaller.  

For small values of CZ (CZ < 0.3) the track-
ing error approaches a constant value; this is be-
cause the filter responds to measurement errors 
even when disturbances are very small. Up to CZ 
= 1, the errors are still moderate. At CZ = 2, they 
explode to very large values. 
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Figure 10. (Case 7) Tracking results for different 
values of C 

 

5. Guidelines for Practical 
Implementation  
One of the most important issues in imple-

menting the filter is the choice of the size of 
measurement interval T. This interval is not only 
going to affect the performance of the filter, and 
hence the accuracy of the layered queuing model, 
but also it will dictate the timing for the actions of 
the Decision element (see Figure 1). Regarding 
the latter relationship, in classical control, the 
control and measurement intervals are the same: if 
the Decision element actuates the system every 
second, the decision is based on the measurements 
taken in a second-long time window. The experi-
ments reported in the paper shows that the per-
formance of the filter is dependent on the size of 
the measurement interval, with an optimum 
around a system constant T*.  

T* is approximately 15.7s for the case study 
of this paper. The value of T* can be determined 

by experiment on the system to be controlled, by 
estimating the accuracy of averages over any pe-
riod T and then applying Eq (8).  

In practical implementations of the filter, 
what is important is not the length of the meas-
urement in physical time units, but the number of 
events we observe, such as user interactions, 
which in turn triggers new measurable perform-
ance metrics such as response time or utilization. 
The system constant period of 15.7 s in our exam-
ple translates to about 1500 measured response 
times, which suggests that the observation win-
dow should be set in the order of thousands meas-
urable events. This result is also consistent with 
the results reported in [20]. However, this obser-
vation window might be too large for the Decision 
element and might allow the errors to accumulate. 
To compensate for that, the filter and the Decision 
elements might work as follows:  

• A large observation window T could be cho-
sen, with about 5000 events; the first control 
change can happen after the first 5000 events. 

• A smaller control-step window ∆ could be 
chosen, with about 100 or 500 events. The 
tracking and control calculations could be re-
peated every ∆ seconds, using data from the 
past T seconds. 

Other parameters needed for the implemen-
tation of the filter are the covariance matrices Q 
and R that characterize the errors of the model 
and of the measurement process, respectively. 
Both are diagonal matrices representing inde-
pendent errors and disturbances. We found that it 
is best to update R at every filter step k, taking 
into account the measured values as in Eq. (9). 
Since Q represents expectations about the distur-
bance process, it also could be updated based on 
recent tracking experience. However, we have not 
experimented with this parameter.  

The experiments of Case 3 showed that it is 
the ratio of Q to R that matters, not the values 
separately, and that Q can be overestimated (or R 
can be underestimated) by up to 2 orders of mag-
nitude with only a slight effect on tracking qual-
ity. 

The initial values for the estimated vector a 
as well as the structure of the layered queuing 
model h(a) must be chosen prior to starting the 
filter. This can be done by tracing or monitoring 
the software system under control. Experiments 
conducted in [20] showed that the convergence of 



the filter depends only slightly on the initial value 
P0; the filter has a good convergence when P0 is a 
diagonal matrix with the diagonal elements the 
square of the initial estimates a.  

The sensitivity matrix Hk, is computed at 
every step k as the numerical approximate deriva-
tives of measured variables represented in z, com-
puted at the estimated parameter values a. The 
numerical derivatives are calculated here by using 
the layered queuing model LQNS [4], with the 
results denoted h(a) in the equations (1)-(7).   The 
elements of a were varied one at a time by an in-
crement δ, and the model was solved to find the 
differences in the vector z. We found it was essen-
tial to use double precision arithmetic in the ma-
trix operations of the filter. 

A simplified version of the LQM calcula-
tions might provide adequate accuracy for the 
sensitivities, more quickly. However, for the sys-
tem in Figure 2 the LQNS solution takes only a 
few milliseconds. 

6. Conclusions 
The most important conclusion from these 

results is that an Extended Kalman Filter is a 
practical tool for tracking the parameters of a 
time-varying layered queuing system. Its parame-
ters can be set from information and assumptions 
about the system that are reasonable and not too 
difficult to make, and tracking performance is 
adequate over wide ranges of the parameters (not 
very sensitive). 

Various filter modifications that have been 
found useful in other settings should still be inves-
tigated for the application to performance models. 
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