
The Relationship of Performance Models to Data
Murray Woodside

Carleton University, Ottawa, Canada
cmw@sce.carleton.ca

Abstract: Performance engineering of software could benefit from a closer
integration of the use of performance models, and the use of measured data. Models
can contribute to early warning of problems, exploration of solutions, and scalability
evaluation, and when they are fitted to data they can summarize the data as a special
powerful form of fitted function. Present industrial practice virtually ignores models,
because of the effort to create them, and concern about how well they fit the system
when it is implemented. The first concern is being met by automated generation
from software specifications. The second concern can be met by fitting the models
to data as it becomes available. This will adapt the model to the new situation and
validate it, in a single step. The present paper summarizes the fitting process, using
standard tools of nonlinear regression analysis, and shows it in action on examples
of queueing and extended queueing models. The examples are a background for a
discussion about the relationship between the models, and measurement data.

1 Motivation

Software performance modeling and measurement are insufficiently integrated. Roughly
speaking we may say that measurement is used to test software and to identify
performance problems, often in laboratory conditions; modeling is used for prior analysis
of planned systems (when there are no measurements available), for capacity and
scalability analysis (exploiting the capability to model large deployments), and for insight
into deep problems. There are a number of exceptions; one is in tracking performance
models for adaptation of time-varying systems (e.g. [19]).

In [20] the potential benefits of more strongly unifying these two aspects of
performance analysis were identified as
• end-to-end performance process unifying prior estimates with testing/debugging and

capacity modeling
• better quality models calibrated frequently and routinely from data, using a strong and

maintained connection between the model and the system,
• more efficient measurement, by using models to plan the measurement trials.
The weak link here seems to be the calibration of models from data. Long experience in
creating models teaches how difficult it can be to determine their parameters empirically.
Some critical kinds of data are often difficult to obtain, notably the CPU demands of

particular operations. However, recent work on tracking model parameter values with a
Kalman Filter estimator has indicated how data-gathering can be eased by use of a
suitable estimator [20]. That work was for tracking parameters which are changing. This
paper considers a different problem, modeling a system which is not changing, but which
is operated under different workloads and configurations. It describes a simple framework
for estimating a model by nonlinear regression, and some properties of the resulting model
(including how it differs from one made up from expert knowledge alone). Standard
statistical concepts provide a bridge between the practice of measurement and the practice
of modeling.

The reduction of difficulty comes from indirect estimation of model parameters, using
only measurements at the interfaces of the system. A prime example is the difficulty of
estimating the CPU demand of a particular operation. Direct measurement requires
source-code instrumentation (as in profiling, for instance) but a model-based estimator
only requires accessible performance measures such as operation response times, and then
estimates the CPU demand to fit the measured values.

Recent efforts to calibrate CPU demands from accessible measures include [10] and
[3], in which individual operations were measured in separate benchmark experiments,
and the patent application [16], which applies an optimization technique to fit a queueing
model to data. The patent motivation includes the rationale:

“There should be a simple method to estimate the parameters of the model,
given high-level system measurements obtained by external monitors, rather
than adding instrumentation with detailed level measurement probes to
applications.” [16]

The present paper combines ideas from statistics textbooks and the performance

modeling literature, and shows how they might be able to unify the practice of
performance engineering of software. Its methods can be applied to any performance
modeling formalism. Relevant background for modeling is given by Smith and Williams
[14], Balsamo et al [1], and in the proceedings of the WOSP conference [21].
Representative material on measurement is provided in the Paradyn papers by Miller and
co-workers (e.g. [11]), and by the online tutorial [2].

2 Software Performance Analysis

2.1 A Unified Process

The vision of a unified process, which this paper intends to support, is sketched in Figure
1 reproduced from [20]. Performance predictions and data feed a common data repository
with a united definition of the semantics of predicted, measured and required values,
defined during requirements analysis. Performance values are derived early and evolve

with the design and the product. Performance knowledge can be leveraged, rather than
being abandoned soon after it is produced. The awkward fact that performance is a
moving target and one never measures or models the same system twice, is covered by
versioning the data in synchrony with versions of the design, the run-time configuration
and the code.

improves_estimates

<<WorkProduct>>
Performance-related

Conclusions

<<Document>>
Design

Specification

<<Activity>>
Performance

Model Building

<<WorkProduct>>
Performace

Model

<<Activity>>
Model Solving

<<WorkProduct>>
Performance Test

Results

<<Document>>
Scenarios

<<WorkProduct>>
Performance

Model Results

<<Process>>
Develop & Deploy

System

<<Activity>>
Performance
Test Design

<<Activity>>
Monitor Live

 System

<<Activity>>
Run Performance

Tests

<<WorkProduct>>
Monitoring

Results

<<Activity>>
Interpretation of Performance

Results
optimizes

<<Document>>
OperationalProfile

<<Document>>
PerfRequirements

<<WorkProduct>>
ParameterEstimate

<<Guidance>>
Expertise

compares

guides

diagnosis

validates

<<Activity>>
Parameter
Estimation

Fig. 1 A proposed landscape for a unified SPE process, from [20]

Additional activities that could be added to this figure. Model-generated performance
prototyping for example would fit in above “Develop and Deploy” on the right.

The estimators described in this paper provide the links shown by the very heavy
arrows, by which parameter values are calibrated from data from a test or an operational
system. These links maintain the parameters of the model as the software is completed
and make the model available for planning deployments and new versions of the system.

The estimators form a bridge between what we will term a data-centric view of
performance, on the right-hand side of Figure 1, and a model-centric view, on the left.

2.2 Data-Centric View

An extreme data-centric view is that only measurement data is significant, because only
the data can capture the full complexity and interactions of the system. Measurements are
carried out in tests or trials, in which a controlled and instrumented configuration is
operated under a specified workload, and as much data is recorded as possible, including
performance measurements at system interfaces, and measures on internal operations.

A high-level view of system measurement is sketched in Figure 2(a), showing the
inputs and outputs of a single measurement test or trial, identified as trial number t:
• ut, a vector of controlled parameters whose values can be assigned in a measurement

experiment or a proposed configuration. These are system parameters that could be
significant for performance. They might include the number of processor cores, the
size of a thread pool, cache or buffer pool, the size of files to be transferred or of
database transactions. Qualitative attributes of a configuration, such as the use of a
particular middleware or component, or the presence/absence of some feature, can be
included through categorical variables in u, but will not be considered here.

• zt, a vector of measured values of any performance quantities of interest. These can
be average values, percentiles of delay distributions or any other well-defined
measure. We assume the system is stationary, and for any value of the controlled
parameters the measures have defined and repeatable values apart from sampling
error due to a finite measurement period.

A series of measurement trials gives a tabulated relationship between the controlled
variables u and the measured responses z, which for one component of each can be plotted
as shown in Figure 2(b). The measurement errors are indicated as a shaded band.

Many kinds of measurement systems have been used. We can categorize types of data

into four groups, in increasing order of difficulty to obtain it:
1. data gathered by the operating system, such as processor and process utilizations,

and I/O counts
2. data collected at system interfaces by timers and counters,
3. profiling data on CPU usage by operation, down to quite fine grained methods,

using embedded source code instrumentation (in for instance Purify [4]) or stack
sampling (as in gprof).

4. Logical resource usage, such as critical section monitoring in Paradyn [12].
In much of the performance analysis of commercial software it is not practical to use

the more sophisticated tools in groups 3 and 4, because of time and cost, and because
source code is not available for third-party components. And those tools often distort the
system by introducing significant fine-grained costs. Field measurements are often
restricted to groups 1 and 2, and even in the lab there is an advantage in only requiring the
simpler forms of instrumentation.

In measurements to support the model fitting described below, the performance
measures are delays measured at component and messaging interfaces, and utilizations of
processors and processes. If a model is fitted to the data, shown as a solid line, its

predictions also have a prediction error indicated by the darker shaded band. This band is
narrower than the measurement error band, because the fitting process smooths out the
errors of individual measurements.

Instrumented and Controlled
System Under Measurement

 Configuration
 Variables

ut

Performance
Measures
 zt

z

u

Measurement error band

Fitted curve

Prediction error band

(a) Trial Number t

(b) Results of Fitting a Model

Data Output
t ut zt
1
2
..

Fig. 2 Inputs and outputs of a system performance measurement trial

2.3 Model-Centric View

The model-centric view seeks an abstraction that captures the essence of the system
performance in its simplest form. Performance models often do not start from data. For
example, to provide insight into performance issues during the system design phase,
performance models can be created based entirely on the design and on expert judgment
[14]. A given model has a structure, based on the elements of the design, and parameters
which describe what the system will do. (The particular modeling method to be used is not
our focus here, but is surveyed in [1].) We should regard the model calculation as a vector
function h(x, u), as illustrated in Figure 3:

u = configuration parameters as before
x = parameter values in the model, which must be obtained by some process

y = vector of predicted performance measures = h(x, u)

Performance Model

y = h(x, u)
(x = parameters)

 Configuration
 Variables

ut

Calculated Performance
Measures
 yt

Fig. 3 Performance model as a function

Despite the difficulties in obtaining parameter values, Smith and Williams (who have
developed procedures for gathering structure and parameters for early models) show that
the results have many practical uses in practice [14]. Their approach includes the
important notion of expressing a parameter as an interval expressing expert judgment as a
range of values parameter value in the range [min, most likely value, max].
Using these interval values we can show the model predictions as a plot with a central
value and an uncertainty band, for parameters within these intervals, similar to the darker
band in Figure 2(b).

It may be confidently stated that good insight into structure is often available, but the
parameter values are often problematic. The main barrier to usability of these early
models lies in lack of confidence in the parameter values.

The Bridge: Estimation

To fit a model to experimental data it is common to estimate its parameters directly, by
measuring the property represented by the parameter. For CPU demand parameters (for
instance) this often requires recording the CPU associated with each operation, as in
profiling. Other kinds of parameters include the relative frequency of different operation
invocations or messages, and the sizes of data objects.

Here we consider a more general version of estimation, which includes direct
estimation as a special case. We assume a model structure is determined, within the
chosen formalism, from expert knowledge or system design documents. To this structure
we attach three kinds of parameters:
• assumed parameters, whose values are known and do not vary during the estimation

process or in planned deployments. We will not consider these further here; they are
lumped in with the structure.

• controlled parameter vector u, as above, taking value ut in trial t,
• estimated parameter vector x, assumed to be constant.
and performance measures of interest, given by
• vector y for the model and

• vector zt for measurement trial t, also as above.
The result of a series of trials is a pair of sequences zt and ut for t = 1,...Tmax.

A standard basis for estimation, which we will use, is to maximize the likelihood of the
model. We assume that the measurements z are determined by an unknown function h(x,
u) (to be found) plus a measurement error vector v:

zt = h(x, ut) + vt

Assuming that vector ut is independent over time with a joint normal distribution with

mean zero and covariance matrix R, we obtain the maximum-likelihood estimate as the
vector x that minimizes E(x):

x̂ = arg min E(x), E(x) = Σt (yt − zt)TR-1(yt − zt)

If we only know R to within a constant, the constant can also be estimated. If

components of v are independent with the same variance, R is proportional to I and x̂ is
the familiar least squares estimator. Estimates made with I in place of R (that is, plain
least-squares estimates) are unbiased but less accurate.

This is a standard optimization problem, which can be solved in many ways. Many of
these exploit the special structure of E(x), which is a quadratic form. A standard approach,
treated in statistics texts such as [8], is Gauss-Newton iteration which gives an
approximate solution through a series of linear regressions. Gauss-Newton iteration was
used to analyze the example given below. Since it is not a widely-known procedure, the
adaptation of Gauss-Newton iteration to performance models is given in detail in the
Appendix.

If xt is not assumed to be constant, then it can be modeled as a function of time
(provided the trials are regularly spaced in time) and estimated with an optimal filter such
as the Kalman filter; this case is not considered further here.

2.4 Inference: Knowledge and Uncertainty

A major impediment to the use of any kind of model (not just a performance model) is
the feeling, in a potential user, that one should not trust the predictions if one does not
understand the limitations of the model. A substantial part of these limitations is, the
prediction uncertainty due to inaccurate parameter values, and these can be estimated as
confidence intervals. This informs the potential user of the accuracy, which may be
different for different measures coming from the model, and poor accuracy may identify
the need for more information, depending on the decisions to be made. It also places the
predictions into a familiar framework of statistical predictions and statistical quality
control, which industrial decision makers can deal with. For example, if one can give the

probability of missing a performance target by different amounts, it enriches the
consideration of risk.

Within these confidence bounds, the model becomes a representation of the data.
Using the approximate maximum likelihood and non-linear regression framework

considered here, estimation errors and prediction errors are effectively assumed to be
normally distributed. Normality is a reasonable assumption for measurement errors which
are averages or sums, due to the central limit theorem. However the nonlinearity of the
model reduces the validity of the assumption for estimation and prediction errors.

The most basic and familiar representation of uncertainty takes the form of confidence
intervals, which are found as part of the standard inference results for regression:

• confidence intervals for the parameters x = x̂ ± CIx

• confidence intervals for the predictions y = h(x̂ ,u) ± CIy
where the vector CIx is the confidence interval half-widths for x. As we will see,
parameters that make little difference to the prediction tend to be estimated with large
confidence limits.

3 Illustration: Queueing Model

The small queueing network model shown in Figure 4 will be considered as the first
example. It represents a small Web server with its disk (node 2) and a separate node for
CGI application service (node 3). A response includes all the work done between visits to
the “Users” node in the Figure, which represents the operation in which a user responds to
one system output and generates the next request to the system. Users have a
characteristic “think” time for this operation, which will be set to zero here. Service times
are assumed to be exponential. We consider one controllable parameter, three demand
parameters to be estimated, and four measures.

0:Users

3: CGI 2: Disk

1: Webserver

Fig. 4 A small queueing model

Then the queueing model has four parameters:
u = N = the number of active jobs, assumed to be constant (so this is a “closed” model),

with default value 4,
x = [x(1), x(2), x(3)] = the total average demands for service by nodes 1, 2 and 3, with

actual values [2, 3, 4] sec/response.
y = [y(1), y(2), y(3), y(4)] = [T(1), T(2), T(3), f], where T(i) is the mean response time

of node i, totalled over a user response, and f is the throughput of user requests.
The model is assumed to satisfy the separability conditions for product form queueing
networks, which means that it can be solved by Mean Value Analysis (MVA) [5].

The data for illustrating the use of nonlinear regression were obtained by simulating the
same queueing network for different durations, and with different numbers of users, as
shown in Figure 5. Clearly this oversimplifies the fitting problem, since the performance
model ought to fit to some degree. However it serves to demonstrate that the method can
find the right model, and it illustrates the important issue of accuracy of the fitted
parameters.

Simulated
Queueing
Network

(parameters x)

 Configuration
 Variables

ut

Performance
Measures
 zt

Data Output
t ut zt
1
2
..

Model
Fitting
Process

Fitted
Parameters
 x̂

Fig. 5 Configuration of the Computations for the Illustration

To simulate measured data, the system was simulated for 10 trials, each of duration S

time units, with from 1 to 10 users; node 3 approaches saturation at a population of about
8. S was varied from 1000 time units to 100000, and the total simulation time was varied
from 104 to 107 time units. The throughput ranged from about 0.1/time unit with one user,
to 0.25 with 10 users, so a trial of length 1000 includes between 100 and 250 responses. In
the estimation, analytic derivatives were computed for the H matrix by extending the
MVA algorithm as described in [19].

Two sets of experiments were performed with zero “think time” at node 0, and with a
mean think time of 10 units. Table 1 shows the demand parameter estimates and their
confidence intervals. Since the random think time introduces additional variation in the
data, it is not surprising that most confidence intervals are a little wider for the second set.

Table 1 Queue Model Parameter Estimates and their Confidence Intervals

Expt/Trials/
Length of Trial

Think
Z

x̂ (1) ± CIx(1)

x̂ (2) ± CIx(2) x̂ (3) ± CIx(3)

A1/10/1000000 0 2.003 0.0109 3.005 0.0108 4.005 0.0087
A2/10/100000 0 1.992 0.0223 2.989 0.0222 4.011 0.0178
A3/100/10000 0 2.011 0.039 3.077 0.038 4.044 0.031
A4/10/10000 0 2.018 0.018 2.994 0.018 4.004 0.014
A5/10/1000 0 2.182 0.204 2.967 0.217 3.848 0.181
B1/10/1000000 10 2.005 0.0089 2.994 0.0097 4.009 0.0081
B2/10/100000 10 2.003 0.0215 3.010 0.0234 4.036 0.0194
B3/100/10000 10 2.001 0.025 2.999 0.027 3.941 0.023
B4/10/10000 10 1.939 0.072 2.944 0.078 3.925 0.065
B5/10/1000 10 1.854 0.221 2.798 0.247 3.980 0.188

From the results in Table 1, we can see that:

• the confidence intervals are tighter for the largest demand values (server 3), which
corresponds to the most saturated resources. This is very natural, since the regression
is controlled by the sensitivity of the performance measures to the parameters. This is
shown by the sensitivity matrix H, which at convergence (in experiment B5, but the
others are similar) is

 H = 2.9219 -0.3164 -1.8522
 -0.1388 5.6991 -3.5126
 -0.4019 -1.7367 10.3132
 -0.0044 -0.0119 -0.0474

The columns represent the sensitivity of the four measures (three node response times
and one throughput) to the three node CPU demands. The bold values show that each
server response time is most sensitive to its own service time, but the other values
show larger magnitudes in column 3 than the other columns. In particular row 4
showing sensitivity of overall system performance, has its largest element in column
3.

• Although server 2 is more heavily utilized than server 1, (and its demand shows
greater sensitivity in the H matrix) the confidence intervals for their demands are
similar, since neither is determining for performance.

• longer measurement trials give more accurate estimates, which is not surprising since
the measurement error is less. However Table 1 does not provide very consistent
advice on how much better the accuracy will be. Estimates by averaging improve
their accuracy in the ratio of the square root of the estimation time, but these
estimates improve more slowly (a factor of 10 more simulation time gives only a
factor of 2 or less reduction in the confidence interval width).

• It is interesting that dividing the total trial time into 100 shorter trials gave worse
confidence intervals, than 10 trials each ten times as long. Possibly end effects in the
simulations (start-up of the queues) account for this.

The response-time predictions of the model for populations from 1 to 20 are plotted in
Figure 6, for Expt. 5 with the shortest simulations, including 95% confidence intervals.
We see an increasing error band because the parameter errors are amplified at larger
populations, Essentially they reflect the percentage error in the demand parameters,
particularly the dominant one.

Fig 6. Output predictions of the queue model found for Case B5, with 95% confidence intervals

3.1 Structure

A recurring question is, have we captured all the structure of the system? In a classical
queueing model, this means, is there another queueing resource that is not provided for in
the model. Given the very straighforward structure of queueing models, one can easily
add a node and fit its demand. The data used for the tests in this section was generated by
a simulation of a three-queue model. If we attempt to fit a fourth queue, we can test to see
if the fit is significantly better. Table 2 shows results for fitting four service demands to
the same data as used in experiments B1 (long measurement runs) and B5 (short runs,
giving larger measurement errors). The sums of squares criterion E(Ci) is given for these
results to compare to the value E(Bi) for a three-queue model. We can see there is no
reduction.

Table 2 Results for fitting models with four queues when the system has only three

Expt x̂ (1)± CIx(1) x̂ (2)± CIx(2) x̂ (3)± CIx(3) x̂ (4)± CIx(4) E
for Ci

E
for Bi

C1(as B1) 2.005 0.009 2.994 0.010 4.010 0.009 0.005 0.201 2.577 2.579
C5(as B5) 1.858 0.231 2.808 0.263 4.006 0.203 0.470 4.127 1482 1481

It is easy to see that the fourth queue in this model is not useful or significant to the fit.
One giveaway (that the fourth queue is not very significant) is that the confidence interval
half-width is much larger than the fitted demand. When the data is very accurate, in C1,
the fitted value is also near zero, but when it is less accurate as in C5, the fitted value is
quite a lot more than zero. Some delay due to servers 1 and 2 is evidently being accounted
for in this case by the extra ghost server.

The significance is tested using the sums of squared errors E. The test statistics are:

For C1: [(E(B1) - E(C1))/1]/[E(B1)/36] = [0.001]/[2.579/36] = 0.014
For C5: [(E(B5) - E(C5))/1]/[E(B5)/36] = [-1]/[1481/36] = -0.024

The test statistic cannot be negative in linear regression, where the model is a sum of

terms each with a coefficient. However this is a nonlinear regression in which the model is
not a sum of terms, and we are comparing the results of two independent approximate
minimizations. Even so the model with additional parameters should give a smaller E; the
fact that we obtained a larger sum of squares must be due to approximation error. The
critical value at the 95% level is F(1,36,0.95) = 4.14. Case C1 is two orders of magnitude
from significance, and case C2 also does not indicate significance.

4 Illustration with a layered model

Real software systems have a lot more structure to their resource use, than a classical
queueing network model. The layered queueing network (LQN) formalism [5][6][12]
captures the nested use of resources, including logical resources such as process threads,
buffers, and locks, and does so in a formalism that represents large-scale aspects of the
software architecture, such as concurrent processes.

Figure 7 shows an example LQN representing a web application. The bold rectangles
represent concurrent processes (called tasks in LQN terminology) with the attached
rectangles representing their externally invoked operations (called entries), and associated
to oval symbols representing their host processors. Entries are labeled with their CPU
demand, in suitable time units, and in the figure the entry labels show both a symbolic
name prefixed by $, and a value. The name identifies a parameter which was estimated,

and the value is the value used in the simulation to generate the data. We can later judge
the estimation process by how close it comes to the original value. Entries call or request
service from other entries, indicated by arrows; the solid arrowheads here indicate that the
caller waits for the response (blocking calls). An entry may have a second phase or
delayed operation, after it sends a response to its requester, so here the entry appOp
shows host demands and database requests for two phases.

 users
[think=5]

Directory
{1}

dirServ
[$dirD=0.1]DataBase

{1}
dbOp

[$dbD=0.1]

Application
{$mApp=1}

appOp
[$apDph1=0.2,
$apDph2=0.2]]

WebServer
{$wsThreads=3}

webServ
[$wsD=0.4]

Users
{$nusers=1:50}

UserP
{inf}

WSP
{2}

UserP
{1}

AppP
{1}

(1)

(0.7)

(0.1) (1.5,0.7)

Fig 7. Layered Queueing model used for the illustration. The parameters with
$name were estimated; the numbers show the values used in the simulation

The servers in an LQN include both the tasks and the processors. Processors can have a
relative rate (not shown) and a multiplicity, in curly brackets (to represent multicore or
symmetric multiprocessors), and tasks can also have a multiplicity (shown in curly
brackets) representing the size of a finite thread pool. The Users are a special class of task,
that does not serve any requests, and represent the customers to the system. An infinite
processor represents one processor per task.

This model was simulated to generate data for 10 trials, using numbers of users from 5
to 50 in steps of 10. For estimation of the seven parameters, the configuration vector u
again consisted of the number of users. Estimation was by Gauss-Newton iteration of the
nonlinear regression problem, as described in theAppendix. The derivatives needed for the
H matrix were computed by finite differences, after re-running the analytic solver for a
slightly (1%) perturbed value of the parameter, for parameters with real values.
Parameters with integer values ($wsThreads and $mApp) were perturbed by 1 unit.

Table 3 shows the results for the parameters with the half confidence interval below
each result, for two experiments. In experiment D1 there were 10 trials of duration 1000
units, in experiment D2 there were 10 trials of 100000 units. Under the name of each
estimated variable is given, in brackets, the value of the variable in the simulation. This is
the “correct” value for the variable, and the estimate should be close to this value.

Table 3 Results for fitting seven parameters of the LQN in Fig 6 to data generated by

simulation
Expt./

Trial length
$dirD

$WSD

$appDph1 $appDph2 $dbD $mApp $wsThreads E

Correct value 0.1 0.4 0.2 0.2 0.1 1 3
D1/1000 0.695 0.559 0.192 0.234 0.101 1.000 3.000 0.5935
Confidence Int.

±
0.693 0.138 0.021 0.232 0.002 0.207 0.050

Conf. Int. as % 100% 25% 11% 100% 2% 21% 16%
D2/100000 0.378 0.608 0.195 0.111 0.100 1.000 3.000 0.1960
Confidence Int.

±
0.367 0.059 0.011 0.202 0.001 0.140 0.024

Conf. Int. as % 97% 10% 6% 182% 1% 14% 8%

The results show that
• all the confidence intervals cover the correct values of the parameters. That is, the

estimation technique was able to recover the parameter values, given the correct
model structure. This is a basic requirement for a trustworthy estimator.

• The longer experiments produced only moderately more accurate results. In
estimating a mean value, 100 times as many samples (as in experiment C2) would
give a confidence interval only 1/10 as wide; here the ratios are no better than 1/3 and
mostly worse than that. This suggests that more short experiments are more
worthwhile.

• Curiously, one result has lower accuracy for the longer experiment, the second phase
demand of the application task App. Since the second phase does not block the web
server, it only affects the visible performance through congestion of App. However as
App is quite busy (96% utilized, see below), the performance might be expected to be
sensitive to this parameter.

• The most accurately estimated parameters were the demands for the database and
application phase 1. We can see that lower-layer parameters are more accurately
estimated. Since they block higher-layer tasks, they influence

• The resource utilizations show push-back between the layers, as is well-known for
software bottlenecks. The utilizations with 50 users are:

• processor utilizations:
o WSP: 0.88 (for a dual processor, that is maximum utilization

of 2.0)
o AppP: 0.61
o DBP: 0.34

• task utilizations:
o WS: 3.0 (for three threads)
o App: 0.96
o DB: 0.34
o Dir: 0.04

The App task is virtually saturated, and waiting for it introduces delays which make
the WS task also saturated (the push-back). But the servers below the App task (its
processor and the database server) are not heavily utilized.
The most sensitive parameters (indicated by the percentage confidence interval
widths) are the App processor and database server, which determine the holding time
of the App task for one service, and thus the system throughput and delay.

• one parameter dirD is of marginal significance, based on its confidence interval. If we
examine the LQN we see that the directory service is a relatively light load on
processor AppP, so apparently it doesn’t have enough impact to be accurately
estimated. The accuracy of estimation, relative to the actual value of 0.1, is also poor.

• the estimation of integer parameters was successful. The confidence intervals are
found in the conventional way, but are only of interest if the half-width is near to or
greater than 1.

Experiment D2 was repeated for a test with a longer user think time (15 units instead of
5). Provided the correct think time was used as a controlled parameter in the calculations
for fitting, the estimated parameters and confidence intervals were identical. The predicted
performance for think times of 5 and 15 units are plotted in Figure 8 with their 95%
confidence intervals.

Equally, the model can be used to extrapolate from these experimental conditions to
different values of population, think time, and demands of operations for resources.

Fig. 8 Response time predictions for two values of the user think time (5 units and 15 units)

5 Exploiting the Model

A brief summary of uses of the model is (see also Figure 1):
1. Performance test design: the equation for confidence intervals (in the appendix)

shows that they depend on the covariances R and sensitivities H (which come from
the model). H can be affected by the configuration used to gather test data, and
should be chosen so that configurations that give high sensitivities to all the desired
parameters, should be combined. The duration of performance tests can also be
chosen, to give adequate accuracy.

2. Performance problem diagnosis and analysis of improvements: where performance is
inadequate, solutions at the architecture level can be analysed by changes to the
performance model.

3. Scalability analysis: scope out the space of probably configurations to identify
scalability limitations, by creating models of large configurations, built from
submodels for components. This is straightforward for LQN models, where each
process has a submodel. Different kinds of scaling strategy can be analysed.

4. Product configurations for individual clients can be evaluated, using a mature
calibrated model of the product.

5. Product upgrade analysis: when new features are planned, estimates for their
workload can be included in an existing model for a quick evaluation of their impact;
this can be refined using prototypes.

6. Product performance management: some techniques for adaptive control of service
configurations use a model of the application, with parameters that are updated online
to track changes in system usage, efficiency or load (e.g. [8]).

5.1 Validity of the Model

The fitting process effectively validates the model for the operational conditions under
which the data is gathered, and for nearby conditions within the range of the configuration
parameters. In this range we may say the model is used for interpolation in the data. Of
course additional validation may be done by additional measurements within that range.

Many of the uses listed above require extrapolation from the data, and here is where
performance models are most useful. The advantage of fitting a performance model
instead of a polynomial or some other arbitrary function, comes from its realistic
underlying resource-usage semantics. So, how can we maintain confidence in the
predictions of the model.

Roughly speaking there are two ways the model may fail in extrapolation. First, as we
move away from the fitted range the confidence interval of predictions becomes wider, as
seen in Figures 6 and 8. This is understandable and can simply be recorded. Second, some
resource which was not included in the model, or which was not heavily enough utilized
to be accurately modeled, may become an active constraint in a larger configuration.
Consider for instance if the directory server in Figure 7 were shared among 30 replicas of
the application, it would be an important limitation. Or imagine a database buffer pool
which is not restricting at the scales of the test, but which becomes a constraint in larger
systems. Some comments follow:
1. Many parameters which are insensitive in small-scale testing are always insensitive,

and therefore their accuracy is not critical. The model itself can be used to calculate
the sensitivity in large-scale versions, if it is a concern.

2. Resources which may become critical in larger deployments should be identified
based on system expertise, and perhaps tests can be constructed which stress those
resources.

3. Traffic statistics, both the intervals between arrivals and the distribution of demands
made on applications, can challenge the assumptions of the performance modeling
tools. Long-tailed distributions for arrivals and demands, and correlations between
successive demands, are examples. These possibilities should not be ignored in any
case, as they typically require more reserve capacity to handle them with adequate
performance. If they occur they also may require a more sophisticated model.
However the methods for parameter estimation would be the same, as shown here.

5.2 Simplified Models

Regression modeling usually seeks to fit the simplest model that can explain the data. One
indicator of having excessive model structure and parameters is, fitted values with large
confidence intervals, as shown for queueing models in Table 2. However an LQN model
is simplified not by removing a single parameter, but by removing or approximating a
structural unit, a task or subset of tasks. A suitable approximation for elements left out of
a model is to introduce a pure delay in the holding time of an affected resource, or in the
response time. This delay can be fitted, and has a similar role to fitting a constant in linear
regression.

6 Conclusions

Performance models can be maintained in sync with a developing product, by calibrating
their parameters from performance test data. The estimation techniques described here use
standard statistical methods, and non-intrusive monitoring to obtain test data. The
limitations of prediction accuracy can also be estimated.

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC), the Ontario Centres of Excellence (OCE), and by the IBM
Centre for Advanced Studies, Toronto.

References

[1] S. Balsamo, A. DiMarco, P. Inverardi, and M. Simeoni, "Model-based Performance Prediction
in Software Development," IEEE Trans. on Software Eng., vol. 30, no. 5 pp. 295-310, May
2004.

[2] S. Barber, “Beyond performance testing”, parts 1-14, IBM DeveloperWorks, Rational Technical
Library, 2004, www-128.ibm.com/developerworks/rational/library/4169.html

[3] A. Bogardi-Meszoly, T. Levendovszky, H. Charaf, T. Hashimoto, “Improved Evaluation
Algorithm for Performance Prediction with Error Analysis”, Proc. 11th Int. Conf. on Intelligent
Engineering Systems, 2007, pp. 301-306.

[4] IBM, IBM Rational PurifyPlus, Purify, PureCoverage, and Quantify: Getting Started, May
2002. G126-5339-00.

[5] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia, and M. Woodside, "Performance
Analysis of Distributed Server Systems," in Proc. Sixth International Conference on Software
Quality (6ICSQ), Ottawa, 1996, pp. 15-26.

[6] G. Franks, D. Petriu, M. Woodside, J. Xu, and P. Tregunno, "Layered bottlenecks and their
mitigation," in Proc of 3rd Int. Conference on Quantitative Evaluation of Systems QEST'2006,
Riverside, CA, Sept 2006, pp. 103-114.

[7] R. Jain, The Art of Computer Systems Performance Analysis. John Wiley & Sons Inc., 1991.
[8] M.H. Kutner, C.J. Nachtsheim, J. Neter, W. Li, Applied Linear Statistical Models, 5th edition,

McGraw Hill, 2005
[9] M. Litoiu, T. Zheng, and M. Woodside, "Service System Resource Management Based on a

Tracked Layered Performance Model," in Proc. IEEE Int. Conf. on Autonomic Computing,
Dublin, June 2006.

[10] Y. Liu, A. Fekete, and I. Gorton, "Design-Level Performance Prediction of Component-Based
Applications," IEEE Trans. on Software Engineering, vol. 31, no. 11 pp. 928-941, Nov. 2005.

[11] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L. Karavanic,
K. Kunchithapadam, and T. Newhall, "The Paradyn Parallel Performance Measurement Tool,"
IEEE Computer, vol. 28, no. 11 pp. 37-46, Nov. 1995.

[12] J. A. Rolia and K. C. Sevcik, "The Method of Layers," IEEE Trans. on Software Engineering,
vol. 21, no. 8 pp. 689-700, August 1995.

[13] P. C. Roth and B. P. Miller, "On-line Automated Performance diagnosis on Thousands of
Processes," in ACM SigPLAN Symp. on Principles and Practices of Parallel Programming
(PPOPP06), New York, Mar. 2006.

[14] C. U. Smith and L. G. Williams, Performance Solutions. Addison-Wesley, 2002.
[15] A. J. Storm, C. Garcia-Arellano, S. S. Lightstone, Y. Diao, and M. Surendra, "Adaptive self-

tuning memory in DB2," in Proc. 32nd Int. Conf. on Very large data bases, Seoul, 2006, pp.
1081 - 1092.

[16] A. N. Tantawi, "Method and system for dynamic performance modeling of computer
application services." USA, Patent Application 20070299638, 2007.

[17] Kay White Vugrin, Laura Painton Swiler, Randall M. Roberts, Nicholas J. Stucky-Mack, and
Sean P. Sullivan, “Confidence Region Estimation: Techniques for Nonlinear Regression: Three
Case Studies”, Sandia Laboratories Report SAND2005-6893, October 2005.

[18] M. Woodside, D.C. Petriu, D.B. Petriu, H. Shen, T. Israr, J. Merseguer, “Performance by
Unified Model Analysis (PUMA)”, Proc. WOSP’2005, Mallorca, pp 1-12.

[19] C. M. Woodside, T. Zheng, and M. Litoiu:, "The Use of Optimal Filters to Track Parameters of
Performance Models.," in Proc. 2nd Int. Conf. on Quantitative Evaluation of Systems, Torino,
Italy, 2005, pp. 74-84.

[20] Murray Woodside, Greg Franks, Dorina C. Petriu, "The Future of Software Performance
Engineering", Proc Future of Software Engineering 2007, at ICSE 2007, IEEE Computer
Society Order Number P2829, May 2007, pp 171-187.

[21] WOSP, the Proceedings of the ACM International Workshop on Software and Performance,
ACM Press 1998-2007

Appendix: Nonlinear Regression

Various numerical minimization techniques can be used to find x̂ . A simple one which
gives some insight into the nature of the problem is a simple gradient descent. We form
the derivative vector ∂E(x)/ ∂x:

∂E(x)/ ∂x = −2 Σt HT(x; ut) R-1 et,

where H(x; ut) = ∂h(x; ut)/ ∂x, and from any starting point x we make a gradient descent
step proportional to the negative gradient:

xnew = x + Δx = x − a ∂E(x)/ ∂x = x + (2a) Σt HT(x; ut) R-1 [z(t) − h(x; ut)]

where a is the constant of proportionality, or step size control parameter. If this is repeated
until x converges, we have simple gradient descent.

Various quasi-Newton methods are better. They use an approximation to the Hessian
matrix Exx (the matrix of second derivatives of E(x)):

Exx = ∂2E(x)/∂x2 = −2 Σt ∂HT(x; ut)/∂x R-1e +2 Σt H(x; ut)TR-1H(x; ut)

 ≈ 2 Σt H(x; ut)T R-1 H(x; ut)

The first term is ignored because it is small when the residuals are small, for instance near
the best fit (if the fit is good). Then the step size is determined by Exx. For example, by
differentiating a quadratic approximation for E(x) (a Taylor expansion around the point
x)), we could choose the minimum of the approximation, which is at

xnew = x + Δx = x − Exx ∂E(x)/∂x

Other quasi-Newton methods can also be applied to E(x). Some of them build a Hessian
approximation from information gathered over several steps.

Successive Linear Regressions

The same iterative algorithm is obtained by considering a sequence of weighted least-
squares problems based on linearizing h(x; u) about the current estimates of x. One output
of this interpretation is a standard calculation for the sampling covariance of the estimates
x, which gives confidence intervals.

Ordinary regression equations can be written based on the Taylor expansion around
any current estimate x as (referring to [8] Chapter 13):

zt = h(x; ut) + H(x; ut)(Δx) + vt

(where v is still the hypothetical random error term) and finding the increment Δx to
minimize the weighted sum of squares for this linear model. We put all the observations
into a single partitioned vector of mT components, and similarly all the residuals e,
random errors v, the predictions h, and also put the sensitivities H into a single
partitioned matrix, giving (using the notation of Kutner et al, chapter 13):

Y = vector combining the T error vectors et = zt − h(x; ut) at the current starting
estimate x

D = matrix combining the H matrices computed at x
W = a matrix with T “R-1” matrices on its diagonal, one for each period

These partitioned matrices look like this:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−

−

−

1

1

111

...00
............
0...0
0...0

,

),(
...

),(
...

),(

,
...

...

R

R
R

W

uxH

uxH

uxH

D

e

e

e

Y

T

t

T

t

and the model to be fitted in the neighborhood of some starting estimate x is

Y = D Δx + v,

where the elements of D are treated as the observations. Now by conventional least-
squares solution the value of Δx which minimizes the weighted sum of squares (Y- D
Δx)TW(Y- D Δx) is

Δx = (DTWD)-1 DTWY
x̂ new = x̂ + Δx

and this is used to update x̂ , and to iterate to convergence. It may be more convenient to
see it in terms of sums over the matrices and vectors for each measurement period, by
expanding the partitioned matrices:

Δx = (Σt Ht

TR-1Ht)-1 ΣtHt
TR-1et

Remember that H and e are those values for the starting estimate x for this step, and Ht is
different for each step because ut is different.

The covariance matrix of Δx (and thus of the solution) is

 P = (mse) (DTWD)-1 = (mse) (Σt Ht

TR-1Ht)-1

where mse estimates a scale factor for the covariance, given by:

 mse = (YTWY − ΔxTDTWY)/(mT − n) = (Σt et
TR-1et

 − ΔxT ΣtHt
TR-1et)/(mT − n)

which as the iteration converges and Δx goes to zero, becomes:

 mse = YTWY/(mT − n) = (Σt et

TR-1et)/(mT − n)

The factor (mT − n) is the degrees of freedom remaining in the data after fitting n
parameters to mT measured values.

Confidence Intervals

The converged solution x̂ of the above linear approximation can be used to give
conventional confidence interval estimates for each parameter separately. Under the
assumptions we have made (normality of measurement errors, and approximate linearity
of h(x,u)), the posterior distribution of x is normal with covariance matrix P. Then the
confidence interval at level α for the kth parameter is

 x̂ k ± t(1-α/2; mT-n) (sqrt(Pkk))

where t in this equation is the t-statistic with (mT-n) degrees of freedom (measured values
- fitted parameters), and Pkk is the estimated variance of Δxk, a diagonal element of P.

According to the linearization of h, a small deviation Δy of the predicted performance
y, due to a small deviation Δx in x, is given by

 Δy = H Δx

Therefore the approximate distribution of the predictions y of the performance model, for

the fitted parameters x̂ and a given u, is also normal with mean ŷ = h(x̂ ,u) and
covariance matrix C:

 C = Cov(y) = H(x̂ , u) P HT(x̂ ,u)

From this we can derive a confidence interval for the prediction yi as

 ŷ i + t(1−α/2; mT-n) (sqrt(Cii))

When we want to state a combined uncertainty interval for a set of parameters (e.g. all

of them at once) it is called a confidence region. Based on the normality approximation
for the estimated parameters and the predicted performance values, both of these vectors
have ellipsoidal confidence regions, bounded by contours of the normal distribution,
which are given by

for parameters: (x − x̂)TP-1(x − x̂) = constant
for predictions: (y − ŷ)TC-1(y − ŷ) = constant

A simpler approach is to consider a rectangular subspace or box bounded by the

intersection of the separate intervals. The “Bonferroni” approximation assumes this has a
probability given by the product of the probabilities associated with each parameter
separately. For instance if there are three parameters with 95% confidence intervals, the
intersection of these only has probability no greater than 0.953 = 0.857. (It may be less
because of interaction effects between the parameter estimates.) With this approach, a
conservative confidence region for n parameters at level α is given by the intersection of
separate estimates at level α/n. Examples of more exact confidence regions, showing
interactions between the variables, and references are given in [17].

Comparison of Structures

Two models M1 and M2 of different structures may be compared, to evaluate if one is
significantly better fit than the other, using a standard F test. Suppose the values of E are
E1 and E2 (E2 < E1), and the number of fitted parameters are respectively n1 and n2 (n2
> n1), then M1 is judged to be significantly better at the level α if

[(E2 − E1)/(n2 − n1)]/[E2/(mT − n2 -1)] > F(n2 − n1, mT − n −1, α)

where F() is the F-statistic with degrees of freedom (n2-n1, mT - n - 1) corresponding to
the degrees of freedom in the two mean squares [8]. A model with more parameters
should not be able to give a larger residual error, so the fraction should always be positive.

