
Selecting Security Patterns that Fulfill Security Requirements

M. Weiss1, H. Mouratidis2
1Department of Systems and Computer Engineering, Carleton University, Canada

weiss@sce.carleton.ca
2School of Computing and Technology, University of East London, England

haris@uel.ac.uk

Abstract

Over the last few years a large number of security

patterns have been proposed. However, this large
number of patterns has created a problem in selecting
patterns that are appropriate for different security re-
quirements. In this paper, we present a selection ap-
proach for security patterns, which allows us to under-
stand in depth the trade-offs involved in the patterns
and the implications of a pattern to various security
requirements. Moreover, our approach supports the
search for a combination of security patterns that will
meet given security requirements.

1. Introduction

A considerable effort from the industrial and aca-

demic world is focused on the solution of problems
related to the security of software systems and it is now
generally accepted that security should be treated as
part of the software system development process [1]
and from the early stages of the software system devel-
opment process [3], not as an afterthought.

However, an important issue on realizing the above
is the lack of security expertise by a large number of
software engineers [4]. Towards the solution of this
problem, security patterns have been proposed. Securi-
ty patterns capture design experience and proven solu-
tions to security-related problems in such a way that
can be applied by non-security experts.

Over the last few years the number of security pat-
terns has increased considerably [6]. Although this
situation has been beneficial for the development of
secure software systems, it has created a new problem.
It is now difficult to select appropriate security patterns
from the large pool of existing patterns that satisfy the
security requirements of a system. In fact, representing
and selecting security patterns remains largely an em-
pirical task [7]. Using current pattern representations, it
is difficult to recognize, under what conditions a pat-

tern should be selected, and understand the conse-
quences of its application, in particular, when choosing
between patterns that address the same problem.

Some efforts [6] [12] have been reported in the lite-
rature focused on identifying and documenting security
patterns. However they have neglected the issue of
selecting them. Another line of research [18] [19] [21]
has focused on modeling the impact of patterns. That
research is important and we consider it complementa-
ry to our work. However, such research mostly
represents general guidelines and lack formalization
that would allow software engineers to verify that the
selected patterns actually satisfy the security require-
ments.

In this paper we present such a formalized ap-
proach. Our security patterns selection approach is
formalized, on one hand, in terms of the Goal-Oriented
Requirements Language (GRL) [8] and on the other
hand in terms of Prolog rules. The GRL model shows
which contributions a pattern makes on security-related
properties such as confidentiality, and the strengths of
those contributions. The Prolog rules are used to rea-
son about the evaluation mechanism and to project the
effect of combining security patterns. Section 2 briefly
introduces the concept of security patterns and intro-
duces our work. Section 3 describes a pattern search
engine and Section 4 concludes the paper.

2. Proposed Approach

The goal of our approach is to assist a designer with

the selection of security patterns by a) helping them
navigate through a possibly large set of patterns or
unfamiliar ones through annotations to the patterns
(such as impact on NFRs), and b) documenting the
rationale for selecting those patterns. The output of
pattern selection is a list of patterns, as well the list of
requirements that will be met by them and the underly-
ing forces as a way of explaining the selection.

16th IEEE International Requirements Engineering Conference

1090-705x/08 $25.00 © 2008 IEEE

DOI 10.1109/RE.2008.32

169

The concept of patterns originated as an idea in the
area of architecture [9] at the late 1970s. According to
Alexander et al. [9], a pattern is a three-part rule that
defines a relationship between a context, a system of
forces that occurs repeatedly in that context, and a so-
lution which allows these forces to resolve themselves.
Forces are design trade-offs affected by the pattern.

In our work, the selection of security patterns is
formalized in terms of the Goal-oriented Requirements
Language (GRL) and Prolog rules. GRL supports rea-
soning about requirements, and is especially appropri-
ate for dealing with non-functional requirements
(NFRs). A GRL model can show the contributions that
a pattern makes on security-related NFRs, and the
strength of those contributions. The effect of combin-
ing patterns can be visualized, but also be reasoned
about using an evaluation mechanism. Prolog rules can
also be used at this stage: the type and strength of con-
tributions, as well as the evaluation mechanism can be
expressed in terms of Prolog rules. However, using
Prolog queries we can also use the same pattern repre-
sentation to search for ways of satisfying a specified
level of contributions.

Although a number of pattern representations have
been proposed in the literature, for this work, we em-
ploy the representation proposed by Araujo and Weiss
[21], which was later refined by Mussbacher et al. [22].
The representation is based on GRL, using the notation
proposed in [8]. This representation allows us to effec-
tively reason about the forces of each security pattern,
and understand the contributions of each security pat-
tern to the various security forces. In our work, we
only use a subset of the intentional elements and rela-
tionships provided by the Goal-oriented Requirements
Language. In particular, we employ task elements
(modeled as hexagons) to represent patterns, and soft-
goal elements (modeled as clouds) to represent the
forces of a pattern and NFRs they affect. In addition,
decomposition links are employed to model the rela-
tionships between patterns and contribution links to
represent the contributions (positive or negative) that a
pattern makes to specific forces.

A pattern can make these contributions: AND con-
tributions are positive and necessary; OR contributions
positive, but not necessary; MAKE contributions are
positive and sufficient; HELP indicates that the pattern
can positively contribute towards a force, but is not
sufficient; BREAK and HURT are the opposites of
MAKE and HELP; UNKNOWN indicates that there is
a contribution from a pattern to a force, but that the
extent and the sense of the contribution is unknown.
Consider, for instance, the GRL representation of the
Single Access Point pattern [6]. Fig. 1 shows a GRL
model of this pattern. It shows the forces, and their
impact on security NFRs. So, a Single Access Point

provides Accountability (NFR) by ensuring Central
Logging (force) of requests to a system.

Figure 1. GRL model of Single Access Point

Graphically, closed arrow heads indicate AND, and

open arrow heads indicate OR types of contributions.
The label on the link indicates the strength of the link.
In this model, the selection of forces to describe the
security patterns is based, in part, on the analysis of
security patterns in terms of their implications on secu-
rity and non-security related NFRs in [7,23]. This
model was defined in the OmniGraffle diagram editor
[24], since it was easy to process the XML representa-
tion of the model, and extract the structure of the GRL
graph, so it could be mapped into Prolog facts. How-
ever, other tools such as OME [25] can be used.

In the Prolog representation, the different types of
elements are mapped to goals with a satisfaction level
and contribution links. Contribution links have strength
and a type. In particular, all strengths are represented
numerically, with 0.00 (BREAK), 0.25 (HURT), 0.50
(UNKOWN), 0.75 (HELP) and 1.00 (MAKE), and a
type of AND, OR or DEPENDS, which indicate in
what way the contribution is made. For AND contribu-
tions, the weakest contribution decides about the com-
bined effect, and for OR contributions, the strongest
contribution. For a DEPENDS link, the satisfaction
level of the dependee determines the satisfaction level
of the depender. One way of using DEPENDS links
here is to model the context in which a pattern is ap-
plied, that is, the user’s requirements. Patterns are
represented by the following predicate:

pattern(Name, FulfilledNFRs, RequiredNFRs).

where FulfilledNFRs are the NFRs that positively con-
tribute to security requirements, and RequiredNFRs the
NFRs that negatively contribute to security require-
ments. Consider four well-known security patterns for
access control: Single Access Point, Check Point, Se-
curity Session, and Role-Based Access Control
(RBAC) [6]. These patterns can be represented as:

170

pattern('Single Access Point', ['Integrity',
 'Confidentiality', 'Accountability'], ['Availability']).
pattern('Check Point', ['Availability', 'Integrity',
 'Confidentiality'], []).
pattern('Security Session', ['Availability', 'Integrity',
 'Confidentiality', 'Accountability', 'Usability'], []).
pattern('RBAC', ['Manageability', 'Availability',
 'Integrity', 'Confidentiality'], []).

We model uses and conflicts relationships between
patterns. For the above patterns, we have:

uses(and, 'Single Access Point', 'Check Point').
uses(or, 'Check Point', 'Security Session').
uses(or, 'Check Point', 'RBAC').

Moreover, satisfaction levels are expressed as a
membership function, so that we can use fuzzy logic to
evaluate a GRL model. Satisfaction levels can range
from 0.00 to 1.00. A satisfaction level of 1.00 (0.00)
means that a goal is fully satisfied (denied). Contribu-
tions links are modeled using a contributes predicate.
The first argument indicates the type of contribution
(AND, OR, DEPENDS), and the third argument the
strength of the contribution. For example, the Single
Access Point makes an AND contribution of strength
1.0 toward the goal May Limit Concurrency. Note that
there are two sets of contributions: from patterns to
forces, and from forces to NFRs. To obtain the satis-
faction levels of the top-level goals (Availability etc.),
we recursively follow the contribution links. In Prolog,
we collect the contributions to each goal, and then run
an evaluation method for that goal. Before the value
can be returned, we may need to perform these two
steps for each contributing subgoal recursively, unless
they are leaf nodes of the goal graph. To help collect
the contributions, we have defined four rules as shown
in Fig. 2.

The first three rules handle OR, AND and
DEPENDS, whereas the last rule looks up the satisfac-
tion level of a terminal node. The evaluation rules are
defined in Fig. 3. As in fuzzy logic, we evaluate a goal
graph by taking the maximum over OR contributions
and the minimum of AND contributions. DEPENDS
contributions are evaluated to the value of the depen-
dum (dependee), as a depender (dependum) cannot
have a higher satisfaction level than the dependum
(dependee).

The propagate predicate defines how single contri-
butions affect the satisfaction level of a goal. It defines
how a satisfaction level VA is mapped by applying a
contribution of strength Lambda into a value VB. In
the evaluation rules above, we first determine the satis-
faction level of a contributing goal, VAT (the “T”

represents the tail of the contribution link), then propa-
gate this to a satisfaction level VA. These propagation
rules create a fixpoint at 0.5 (UNKNOWN). It should
not be possible to “escape” from an UNKNOWN level
by some chain of contribution links of HELP or
MAKE.

Figure 2. Collecting the contributions to each goal

Figure 3. Recursive evaluation of goal graph

3. Pattern Search Engine

To support the selection of security patterns, we

have implemented a pattern search engine, which given
a set of requirements will find sets of patterns that,
together, will satisfy those requirements. A user re-
quest indicating security and other non-functional re-
quirements provides input to the search engine. The
search engine then attempts to match those require-
ments against the patterns in a pattern repository. The
patterns have been annotated with the information
about the NFRs that each pattern fulfills as well as
those that it requires, in turn. Relationships between
patterns are also represented in those annotations.

% evaluation rules
eval(or, [A/K|R], V) :-
 prove(A, VAT), propagate(VAT, K, VA), eval(or,
R, VR), max(VA, VR, V).
eval(or, [A/K], V) :-
 prove(A, VAT), propagate(VAT, K, V).

eval(and, [A/K|R], V) :-
 prove(A, VAT), propagate(VAT, K, VA), eval(and,
R, VR), min(VA, VR, V).
eval(and, [A/K], V) :-
 prove(A, VAT), propagate(VAT, K, V).

eval(depends, [A, B], V) :-
 depends(A, B), prove(B, V).

% prove a given goal
 prove(G, V) :-
 findall(A/K, contributes(or, A, K, G), L),
 eval(or, L, V).
 prove(G, V) :-
 findall(A/K, contributes(and, A, K, G), L),
 eval(and, L, V).
 prove(G, V) :-
 depends(G, D),
 eval(depends, [G, D], V).
 prove(G, V) :-
 mu(G, V), !.

171

At the core of the search engine is an algorithm that
matches patterns against user requirements until either
there are no more requirements, or no more patterns
that can be matched against them. The algorithm has
two main parts: an index function that indexes all pat-
terns according to the set of all the requirements they
fulfill, and a search function that will search according
to the user required security requirements. An output
function returns the selected patterns to the users.

Intuitively, the algorithm indexes patterns from a
pattern repository P = {p1,…,pn} according to the set of
all the requirements N = {n1,…,nk} satisfied by pat-
terns in the repository. Users can search the index
against their security requirements R (NR ⊆). An
output function takes any pi that fulfills a user require-
ment and adds it to a set Q (PQ ⊆) that includes the
patterns that fulfill user requirements. Since the rela-
tionships of the patterns in the repository are annotated,
this function also checks for dependencies between
patterns. One pattern may require another pattern as a
prerequisite (PREREQ). For example, Single Access
Point requires Check Point. Therefore, our algorithm
also returns all the patterns (p.PREREQ) that are pre-
requisite for Pp ⊆ . In addition, the algorithm returns
the set NF ⊆ of unfulfilled requirements.

4. Conclusions

In this paper, we introduced a novel approach to

find the most suitable security patterns for a given set
of security and other non-functional requirements. The
proposed pattern search engine also takes into account
pattern dependencies, and goodness of fit between the
requested requirements (security and others) and those
fulfilled by each security pattern.

Our work is based on formalizing security patterns
in terms of the Goal-oriented Requirements Language
(GRL) and mapping these models into Prolog. As a
result, the proposed work demonstrates a number of
novel and important contributions: (i) We focus on the
explicit consideration of the forces of each pattern for
the selection process. This allows us to understand, in
depth, the trade-offs involved in the patterns and the
implications of this pattern to the various security con-
cerns; (ii) We are concerned with the relationships of
the patterns at the pattern language level. In reality,
some security patterns can only be applied after certain
other security patterns have been already applied.
Therefore, to effectively select a set of patterns we
must identify and explicitly consider their relation-
ships; (iii) We formalize the representation of patterns.
This allows us to effectively and accurately describe
how each pattern makes a distinct contribution to a

non-functional security requirement. The formalization
also allows us to uncover liabilities imposed by a pat-
tern, which are not easy to identify from a textual re-
presentation. Finally, formalization allows us to auto-
mate parts of the pattern selection process.

References
[1] H. Mouratidis, P. Giorgini, Integrating Security and
Software Engineering: Advances and Future Visions, Idea
Group Publishing, 2006.
[3] A. van Lamsweerde, Elaborating Security Requirements
by Construction of Intentional Anti-Models, in Proceedings
of the 26th International Conference on Software Engineer-
ing (ICSE), 148-157, IEEE-ACM, 2004.
[4] M. Schumacher, Security Engineering with Patterns:
Origins, Theoretical Models, and New Applications, Lecture
Notes in Computer Science, 2754, Springer, 2003.
[6] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson,
F. Buschmann, P. Sommerlad, Security Patterns: Integrating
Security and Systems Engineering, Willey, 2005
[7] M. Weiss, Modelling Security Patterns Using NFR Anal-
ysis, in Integrating Security and Software Engineering: Ad-
vances and Future Vision, H. Mouratidis, P. Giorgni (eds),
Idea Group Publishing, 2006
[8] GRL, Goal-oriented Requirements Engineering,
http://www.cs.toronto.edu/km/GRL (last accessed 23/2/2007)
[9] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Lan-
guage, Oxford University Press, 1979
[12] M. Schumacher, U. Roedig, Security Engineering with
Patterns, in the Proceedings of the 8th Conference on Pattern
Languages for Programs (PLoP 2001), 2001
[18] L. Chung, K. Cooper, and A. Yi, Developing Adaptable
Software Architectures Using Design Patterns: An NFR Ap-
proach. Computer Standards & Interfaces, 25, 253-260, 2003
[19] D. Gross, and E. Yu, From Non-Functional Require-
ments to Design through Patterns. Requirements Engineer-
ing, 6(1), 18-36, Springer, 2001
[21] I. Araujo, M. Weiss, Linking Non-Functional Require-
ments and Patterns, Conference on Pattern Languages of
Programs (PLoP), 2002
[22] G. Mussbacher, D. Amyot, and M. Weiss, Formalizing
Architectural Patterns with the Goal-Oriented Requirement
Language, Nordic Pattern Languages of Programs Confe-
rence (VikingPLoP), 2006
[23] R. Wassermann, B. Cheng, Security Patterns, Technical
Report, MSU-CSE-03-23, Michigan State University, 2003
[24] OmniGroup, Omnigraffle,
http://www.omnigroup.com/applications/omnigraffle/ (Last
accessed: 23/2/2007)
[25] Organisation Modelling Environment, OME,
http://www.cs.toronto.edu/km/ome/ (Last accessed:
23/2/2007)

172

