IDEA GROUP PUBLISHING

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA 1TJ2987
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

On Feature I nteractions
Among Web Services

Michael Weiss, Carleton University, Canada
Babak Esfandiari, Carleton University, Canada

ABSTRACT

Web Services promise to allow businesses to adapt rapidly to changes in the business
environment and to the needs of customers. However, the rapid introduction of new services
paired with the dynamicity of the business environment also leads to undesirable interactions
that negatively impact service quality and user satisfaction. In this paper, we propose an
approach for modeling such undesirableinteractions asfeatureinteractions. Aseach functional
feature ultimately is motivated by non-functional requirements, we make an explicit distinction
between functional and non-functional features. e then describe our approach for detecting
and resolving feature interactions among Web Services. The approach isbased on goal-oriented
analysis and scenario modeling. It allows us to reason about feature interactions in terms of
goal conflicts and feature deployment. Three case studies illustrate the approach. The paper
concludes with a discussion of our findings and an outlook on future research.

Keywords: feature interaction; goal-oriented analysis; non-functional features; Web
Services

INTRODUCTION Featurelnteraction Problem
Thefeature interaction problem has been
Web Services promise to allow busi- formally studiedfirstinthetelecommunications
nesses to adapt rapidly to changesin the busi- ~domain. It concernsthe coordination of features
ness environment and to the needs of custom- Or services(wewill not distinguish betweenfea-
ers. However, the rapid introduction of new tures and services) such that they cooperate
servicespaired with the dynamicity of thebusi- ~ toward adesired result at the application level.
ness environment also leadsto undesirablein- Theroot causes for feature interactionsin tele-
teractions that negatively impact service qual- ~ Phony systemsareasfollows (Velthuijsen, 1993):
ity and user satisfaction. In this paper, we pro-
pose an approach — featureinteractions—for ® Conflicting goals (services with the same
modeling such undesirable interactions. preconditions, but incompatiblegoalsarein

This paper appears in the journal International Journal of Web Services Research edited by Liang-Jie Zhang.
Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 23

conflict; for example, servicestriggered by a
busy extension);

* Competition for resources (servicescompete
with each other for limited resources that
need to be partitioned among the services);

¢ Changing assumptions on services (ser-
vicesmakeimplicit assumptions about their
operation, which can become invalid when
new services are added); and

¢ Designevolution (services need to be added
to meet new customer needs, and the sys-
temwill need to interoperate with other ven-
dors' systems).

A classical feature interaction is the in-
teraction between Call Waiting and Call For-
warding on Busy. Both features trigger when
the receiver of acall is busy, but only one of
them should become active. Thistype of prob-
lem usually isresolved by introducing priori-
ties. The most prominent implementation of
this approach is the pipe-and-filter model
(Utas, 2001), in which features are connected
in achain of filtersin the order in which they
get to process events.

The interaction between Outgoing Call
Screening and Call Forwarding on No Answer
is slightly more complex. Assume Aliceison
Bob’soutgoing call screeninglist (Alicecould
be the girlfriend of Bob's teenaged son Mark,
and Bob does not want him to call her). But
Mark quickly learns that he only needs to call
hisfriend Joe, who temporarily forwardsincom-
ing callsto Alice. The solution to this type of
problem involves confirming with the originat-
ing party (Bob) if Joe's forwarding the call to
Aliceisacceptable.

However, thefeatureinteraction problem
is not limited to the telecommunications do-
main. The phenomenon of undesirableinterac-
tions among components of a system can oc-
cur in any software system that is subject to
changes. Thisis certainly the case for service-
oriented architectures. First, we can observe
that interaction is at the very basis of the Web
Services concept. Web Services need to inter-
act, and useful Web Serviceswill emergefrom

the interaction of many highly specialized ser-
vices. Second, as the number of Web Services
increases, interactionswill become more com-
plex. Many of theseinteractions will be desir-
able, but other interactions may be unexpected
and undesirable, and we need to prevent their
consequences from occurring. As noted by
Ryman (2003), many such interactions are re-
|ated to security and privacy.

Web Servicesand

Web Service Composition

Much research hasfocused on low-level
concerns, such as how to publish, discover,
andinvokeindividual Web Servicesaswell as
the security of Web Services. Other work has
looked at dynamic Web Service composition
(Constantinescu et al., 2002); that is, how
higher-level services can be composed dy-
namically from lower-level services. Service
composition raises a number of difficult chal-
lenges, such as service description, selection,
and orchestration.

At each of these stages (description, se-
lection, and orchestration), we may experience
undesirableinteractionsthat prevent the proper
performance of the service. However, there has
been little research on managing such interac-
tionsat the level of the servicelogic. Most ex-
isting work islimited to managing the mechan-
icsof theinteraction (e.g., enforcing alegal se-
guence of messages exchanged between the
partiesinvolved).

When composing Web Services, the
functionalities provided by the component ser-
vices must be considered. We also need to en-
sure that data and message types, sequence
logic, and so forth are compatible. However, as
statedin O’ Sullivan et al. (2002), service com-
position amountsto much morethan functional
composition. Consideration also must be given
to non-functional requirements, such asprivacy
and interoperability. For example, when com-
posing a personalized Web Service, we also
must consider utility services, such asidentity
management and user profiling. But maintain-
ing and sharing sensitive user informationina
utility service raises privacy concerns.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

24 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Figure 1. Explicit and implicit WWeb Service composition

Web Service Composition
Excplicit Composition Implicit Composition
Flow Parallelism
—ad =]
Side-effect
— —
A r W
. implements
side-effect

A Web Service can be defined as a set of
endpoints. An endpoint groups service opera-
tions, and each operation is defined by the
messages exchanged to perform it. Web Ser-
vice composition languages, such as the Web
Services Flow Language (WSFL), define the
notionsof activitiesand workflows. Workflows
defineapartial order inwhich activities can be
performed. Each activity can be implemented
by aworkflow in another organization.

The appropriate metaphor for thinking
about composition of Web Services, therefore,
is not the pipe-and-filter model of traditional
telephony systems (Utas, 2001) but that of a
flow system with aricher behavior. Flow sys-
tems have threetypes of components: process-
ing stagesthat can be connected in avariety of
ways (not just sequences), data representations
that are exchanged between stages, and orches-
trators (engines) that coordinate the flows.

Up to this point, we only have consid-
ered explicitly composed Web Services. These
arebest modeled asflow systems. However, as
Figure 1 shows, an equally if not moreimpor-
tant category is that of implicitly composed
services. While they are not composed inten-

tionally, they dtill can interact in undesirable
ways. We distinguish two subcategories. par-
alelismand sideeffect. In parallel composition,
features are deployed independently but may
interact. This case often is encountered in the
traditiona analysisof featureinteractions. Side-
effect composition looks similar to flow com-
position, but the composed features are at dif-
ferent abstraction levels. A lower-level feature
(perhaps from athird party) that implements a
higher-layer feature may have unanticipated
side effects. The latter caseis of particular rel-
evance, as the case studies illustrate.

Our focus, therefore, will be on feature
interactions in the domain of Web Services.
However, at the sametime, we believethat our
results will be applicable beyond this domain.
Our reasoning is that Web Services currently
are being deployed in avery rapid, decentral-
ized, and perhaps ad hoc manner. Problems due
to conflicting goal's, competition for resources,
changing assumptions, and design evolution
will therefore becomevisiblemuch more quickly
and will need to be resolved in a much shorter
timeframe than for telephony features devel-
oped under central control. Lessons we learn

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 25

from Web Servicesthen can be applied back to
the telephony and other domains.

Organization of the Paper

In this paper, we propose an approach
for modeling undesirable interactions among
Web Services as feature interactions. As each
functional featureis ultimately motivated at the
business level by non-functional requirements,
wefirst makean explicit distinction between func-
tional and non-functiond featureinteraction. We
then describe our approach for detecting fea
ture interactions among Web Services. It em-
ploysthe User Requirements Notation, or URN
(n.d.), tomodel features. Thisnotation alowsus
to reason about feature interactionsin terms of
goal conflictsand featuredeployment. Threecase
studiesand an e-commerceexampleillustratethe
approach. The paper concludes with a discus-
sion and an outlook on future work.

FUNCTIONAL AND
NON-FUNCTIONAL
FEATURE INTERACTIONS

Thereisagrowing recognition of thecriti-
cal role of what are alternatively called busi-
nessgoals, qualities, or non-functional require-
ments (NFRs) in system development. Chung
(1991) defines non-functional requirementsas
constraints over the functionality of a target
system. This definition includes properties
such as performance, security, or maintai nabil -
ity. Achieving non-functional requirementscan
be as crucial to system success as providing
itsfunctionality.

Chung et al. (2000) see the role of non-
functional requirementsascriteriafor selecting
between design alternatives that provide the
samefunctionality. They model both functional
and non-functional requirements as goals to
be achieved by the design of a system. These
goals often arein conflict with each other, and
the objective of designisto find the right bal-
ance among thosethat satisfy all relevant goals
(functional or non-functional).

With a specific focus on Web Services,
O’ Sullivan et d. (2002) consider non-functional

Figure 2. Interaction of functional and non-
functional features

Functional Features

0 nnnan

0 D O
0 0 O D D
LTI 1 8
0 D D D D
0 0 0 D
LTI 3
U0 U000

properties of services an essential part of their
description for the purposes of service discov-
ery, negotiation, substitution, composition, and
management. Their definition of non-functional
propertiesincludes billing and payment meth-
ods, provisioning channels, availahility, service
quality, security, trust, and rights.

The Build Business Architecture First
pattern described in Arsanjani’s (2002) pattern
language for Web Services architecture moti-
vates an approach in which business goals are
mapped to services. The reason is that ulti-
mately services must relate back to the busi-
ness value created. Motivated by their work
on Multidimensional Separation of Concerns,
Hailpern and Tarr (2001) also differentiate be-
tween functional and management interfaces
of Web Services. Management interfaces per-
mit control over non-functional service prop-
erties, such as performance, monitoring, and
class of service, that cross-cut all functional
interfaces.

Thus, each functional feature ultimately
ismotivated at the business|evel by non-func-
tional requirements. Similar to the distinction
made in arecent workshop on feature interac-
tion in composed systems (Pulvermuiller et al .,
2001), we make an explicit distinction between
functional and non-functional features. The
cross-cutting nature of non-functional features
underlying thisdistinctioniisillustrated in Fig-
ure 2. In subsequent paragraphswe define what
we mean by functional and non-functional fea-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

26 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Table 1. Types of functional feature interactions between Web Services

Reason

Example

Order of invocation

Order between acompression and an
encryption service impacts the ability to
compress

Race conditions

Between simultaneously sent Order Completed
and Cancellation messages

Overlapping guards

Can occur between subflows of acomposite
Web Service that fires on the same event

Assumption violation

Third-party servicesinvoked by an
intermediary with incorrect or incomplete
arguments

Resource contention

Dueto service hosting (i.e., how the service
deployer manages class of service)

tureinteractions. We also provide examples of
each type of interaction.

Functional Featurelnteractions

Most interactions studied in the context
of traditional features are of a functional na-
ture. An example from telephony isaninterac-
tion between Call Waiting and Call Forwarding
on Busy. A Web Servicesexampleisarace con-
dition between an Order Completed and aCan-
cel message, which could result in situations
in which, due to timing delays, an order is
shipped but payment is cancelled. Functional
featureinteractions occur when functional fea-
tures are composed. Asidentified in the sub-
section “Web Services and Web Services
Composition,” thisincludes both explicit and
implicit compositions.

Figure 5 shows amore detailed example
of afunctional composition of features. A new
Personalization featureis constructed by com-
posing Profiling, Information Filtering, and
| dentity Management features. Profiling takes
care of managing user information. Informa-
tionfiltering isused to make query resultsmore
relevant to the user. Finally, identity manage-
ment provides the user with a unique identity
through which it can be identified to service
providers.

Functional feature interactions can oc-
cur dueto anumber of reasonslistedin Table 1.
Generally, wefound that these are not very dif-
ferent for Web Servicesthan for other types of

features. They include the usual suspects: or-
der of invocation, race conditions, overlapping
guards, assumption violation (in particular, due
to versioning and semantic ambiguity), and re-
source contention. However, some reasons
(such as assumption violation) seem to play a
more prominent role in Web Services due to
their dynamic, decentralized nature.

Non-Functional Features
and Featurel nteractions

However, functional features ultimately
are motivated by some non-functional or sys-
tem-level concerns, such as privacy, security,
or usability. For example, the Personalization
feature of Figure 5 has the goal of enhancing
the usability of an information service (from
the perspective of the service user). Thus, if
functional features are composed, the compo-
sition of these features also will impact the sat-
isfaction of system concerns.

Therefore, it makes senseto talk of non-
functional featureinteractionsand even of hon
functiond features. Non-functional featuresare
system concerns affected by functional fea-
tures, and, on the other hand, they impose con-
straints on how the functionality is provided.
With Pulvermilller et al. (2001), we may con-
sider functional features to be the functional
units of a system and non-functional features
to be its non-functional properties. Asking
whether a feature is an identifiable unit of a

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 27

system or a property can help us to decide
about the nature of the feature.

For example, we could be designing an
instant messaging (IM) feature. Now, wewould
like to secure the messages exchanged. Wethus
add encryption and decryption features that
areinvoked before sending and after receiving
an instant message. However, enabling these
features has asignificantly negative impact on
the performance of the system. Thus, thereisa
tradeoff between performance and security. If
we model performance and security as non-
functional features, we can treat this tradeoff
as afeature interaction.

WheretoDrawtheLine

The distinction between functional and
non-functional featuresisnot alwaysclear-cut.
Also, what is a non-functional feature to one
party (e.g., security) may be a functional fea-
ture for another party (if that party happensto
be a security service provider). Features such
asprivacy, performance, or usability are clearly
non-functional from an end-user perspective.
Features such as order processing or catalog
aggregation are clearly functional.

However, there are features between both
extremes. Featureslikebilling, payment, or spell
checking have aspects of both functional and
non-functional features. On the one hand, they
are supportive and cut across other features.
On the other hand, they are not strictly proper-
ties of a system but implementation units. Be-
cause these features impose constraints on
functional features, they can beviewed as prop-
erties of the system and, thus, as non-func-
tional features, although they still can beimple-
mented as a stand-alone service.

TOWARD A DETECTION

METHODOLOGY

Our approach employsthe User Require-
ments Notation (URN, n.d.) to model features.
This notation allows us to reason about fea
ture interaction in terms of goal conflicts and
feature deployment. Itsfocusison user require-
ments (goalsand functions), but it also enables

their refinement into system requirements
(Amyot, 2003). URN is comprised of two
complementary notations. the Goal-oriented
RequirementsLanguage (GRL, n.d.) andtheUse
Case Maps (UCM) notation (URN, n.d.). GRL
isused to model businessgoals, non-functional
requirements, design alternatives, and design
rationale, whereas UCMsallow the description
of functional requirementsin theform of causal
scenarios.

GRL build on the well-established goal -
oriented analysis techniques introduced by
Mylopouloset d. (1999) and Chung et d. (2000).
In goal-oriented analysis, both functional and
non-functional requirements are modeled as
goalsto be achieved by the design of asystem.
During the analysis, a set of initial goals de-
scribing the requirementsisrefined into agoal
graph. This goal graph aso shows the influ-
ence of goals on each other and can be ana-
lyzed for goal conflicts. The objective of the
design then becomes resolving these conflicts
inaway that satisfiesall initial goals.

Goals describe the objectives that asys-
tem should achieve. In GRL, these also are
known as intentional elements. We call them
intentional because they allow us to answer
guestions such as why certain goals were in-
cluded in the requirements, what design alter-
natives were considered, and why one alterna-
tive was chosen over another. There are four
typesof intentional elementsin GRL : softgoals,
goals, tasks, and resources. GRL also has sup-
port for modeling actors, which can havegoals,
and dependencies between actors. These ele-
mentswill be used in the sixth section.

Softgoal sare used to represent non-func-
tional requirements, their shape suggesting that
there are no clear-cut criteria for determining
when they have been achieved. Goals repre-
sent functional requirements. Tasks are solu-
tionsthat achieve softgoal s or goals. Resources
areentitiesthat need to be availableto perform
atask or achieve a goal. Figure 3 shows the
symbols used by the notation. Further details
of the notation will be explained as they are
used in the case studies.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

28

International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Figure 3. Notation for representing goalsin GRL

Resource

=

Figure 4. Subset of UCM notation used

Components

/

Customer

Online Store

~

PlaceOrder NavigateToSite

PresentCatalog

Start point

® % %
C EnterOrderinfo ReceiveOrder OrderSuIbmitted
3¢ A |
* ;‘ i End point

/

Responsibilities

One of the stated goals of URN isto de-
scribe scenarios without the need to commit to
system components (Amyot, 2003). Thiscapa-
bility is provided by UCMs. The basic nota-
tional elementsfor representing scenariosin a
UCM are responsihilities, paths, and compo-
nents, as shown in Figure 4. A scenario is a
partially-ordered set of responsibilities that a
system performs to transform inputs to out-
putswhile satisfying certain pre- and post-con-
ditions(Amyot, 2003). Scenariosprogressalong
paths from start to end points. The order of the
responsibilities on apath indicatestheir causal
relationship. Paths can fork to represent alter-
nativesand also join alternative path segments.
Responsihilities can be allocated to compo-
nents by placing them within the boundaries of
that component. Thisishow wewill be model-
ing feature deployment.

With UCMs, different structures sug-
gested by alternativesidentifiedinaGRL model
can be expressed and evaluated by moving re-
sponsibilities from one component to another
or by restructuring components (Amyot, 2003).
The ease and flexibility with which this can be
achieved helps designers and stakeholders to
stay focused on addressing core design issues.
UCMsrequire less detail and effort than other

notations, such asactivity diagrams, to achieve
this.

We now will outline the steps of a meth-
odology for detecting feature interactions be-
tween Web Services. It should be understood
that, at this point, thisis not a complete meth-
odology. However, it provided uswith aframe
of reference for our empirical analysis during
the case studies.

e Start by modeling the features you wish to
analyze as a goal graph. Model functional
features as goals, non-functional features
as softgoals, and solutions that help
achieve a goal or softgoal as tasks. Any
part of afeature outside the scope of your
current analysis also should be modeled as
atask (you can make it the focus of an-
other analysis|ater).

* Analyzethegoal graph for conflictsamong
goals. These becomevisible asaset of con-
flicting softgoals (e.g., security vs. perfor-
mance) but can be traced back to tasks; that
is, to particular implementations of agoal or
softgoal. We find that often a solution pro-
posed to address one softgoal ends up nega-
tively impacting another softgoal.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 29

Figure 5. Components of a personalization feature

+ E

Personaliza-
tion

Functional

Composition /

N

{ Profiling } <

Info
Filtering

Identity
Mgmt

) =)

¢ Resolve the interaction, if possible, using
oneof avariety of strategiesto be discussed
further in the fifth section. These include
refactoring the goal graph, changing thein-
vocation order of services, changing their
deployment, creating astand-alone service,
or ensuring that theinitiator of aservicere-
guest is consulted to resolve ambiguities
(negotiation).

CASE STUDIES

Per sonalized Web Service

Personalization enhancesthe usability of
a Web Service. For example, the user’s ship-
ping address could be stored in a profile and
filled in automatically whenever the user sub-
mitsan order form but does not provide a ship-
ping address. Similarly, theresultsof aquery to
an information service can be made more rel-
evant by filtering them against the interests
specified inthe user’sprofile.

Personalizationisparticularly useful ina
mobile e-commerce setting, where users are
accessing information, making purchases, or
monitoring the progress of an auction fromtheir
mobiledevices. Serving them only information
relevant to their current context makes the in-
formation service more valuable. The context
can contain information such asthe user’siden-
tity, profile, and location, aswell asinformation

not specific to the user, such as the current
time.

We can design the Personalization fea-
ture as a composition of three features, as
showninFigure5: Profiling, Information Filter-
ing, and Identity Management. Profiling takes
care of collecting user information and storing
itinaprofile. Information Filtering is used to
select the query results deemed most relevant
based on the user’s profile. Finally, Identity
Management provides userswith auniqueiden-
tity through which they can beidentified to the
information service provider.

Both Profiling and Information Filtering
arerepresented astasksin Figure 5. However,
the Identify Management feature is modeled
as a goal, since we are considering using a
third-party implementation of this feature.
That does not imply, however, that we could
not find interactions involving the other two
features. They simply are not the focus of the
present analysis.

The ldentity Management goal can be
achieved or implemented in different ways. In
goal-oriented analysis, these implementations
areknown as operationalizations. They consti-
tute design alternatives, whose impact on sys-
tem concerns we wish to analyze. In this case,
our goal isto analyze the impact of our choice
of athird-party identity management servicein
termsof (potential) undesirablefeatureinterac-
tionsand to deviseremediesfor resolving them.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

30 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Figure 6. Implementation of the identify management goal

Usability

Personaliza-

tion

+ '

PN

Info
Filtering

< Profiling >

g

Identity
Mgmt

implemented as

Passport

U

éulhemicaiio} <Aulhorizali0r>

Aside from the three functional features
considered, there are many non-functional fea-
tures involved when creating a personalized
service:

* Privacy. Users need to disclose private in-
formation to the service provider, but they
also want to bein control of who has access
towhich information.

* Security. Usersexpect their personal infor-
mation to be protected from interception and
corruption on its way to and from the ser-
vice provider.

¢ Predictability (Trust). Userswill trust aper-
sonalized servicethe morethey perceivethe
guery results as relevant and free of bias
and that their profileis not misused.

¢ Usability. While personalization can enhance
therelevance of information, it also can put
aburden on users in terms of how the user
profilesare collected.

In line with the standard approach of
treating theimplementation of athird-party ser-
vice as a black box, we select the Microsoft
Passport service, based on its documented ser-
vice interface (Microsoft, 2003). Passport is
one of several identity management standards,
theLiberty Alliance standard (Liberty Alliance,
n.d.) being its main competitor. Passport au-
thenticates service users to service providers
and gives providers access to the profiles of
users.

We can model theintegration of the Pass-
port service as atask that satisfies the Identity
Management goal, as shown in Figure 6. Fur-
thermore, we can decompose the Passport fea-
ture into two subfeatures: Authentication and
Authorization. Authentication identified the
user to the service provider, and A uthorization
gives the service provider accessto the user’s
profile. Thisisavery high-level decomposition
but sufficient for our analysis. The next stepin
our detection methodology described in the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 31

Figure 7. Conflict between usability and privacy in the Passport implementation

Non-Functional
Composition

+

V\

Feature conflict

= ¥

Personaliza-
tion
Yjser profiles]
Info Identity
Filtering Mgmt

[gives providers
unrestricted access

éulhenticalio> <Au1horizalior>

third section isto analyze the feature composi-
tion graph for conflicts.

Conflicts often occur asaresult of unan-
ticipated side effects. In goal-oriented analy-
sis, these are shown as implicit contributions
of goals (dashed linesin a goal graph). While
explicit contributions are identified through
decomposition (e.g., Profiling to Personaliza-
tion), implicit contributions (al so known as cor-
relations) show the impact of a goal on goals
other than the one they refine. They are de-
tected asthe graph is developed. Another way
of stating this is that the achievement of one
non-functional feature (e.g., usability) often
affects other non-functional features(e.g., pri-
vacy) in either positive or negative ways.

Returning to our example, the Authoriza-
tion subfeature of the Passport feature gives
service providers accessto the user’sinforma-
tion, no matter who the service provider is. Spe-
cifically, inthecurrent version of Passport (Snell
et a., 2002), the user can only choose to mark

sections of the profile as accessible by service
providersor asinaccessible. Nofiner provider-
specific level of access control can be speci-
fied (e.g., only to provide access to the age
attributeto particul ar service providers, which
the user trusts with thisinformation). Further-
more, profile information effectively can be
shared among service providers without the
user’s knowledge. While the user may have a
trusting relationship with theinitial servicepro-
vider, it may not want its information shared
with other service providers (e.g., subcontrac-
tors of this provider).

As aresult, the implementation of the
Identify Management feature using Passport
isfound to violate the user’s privacy concerns.
Figure 7 showsthe negative side effect of our
particular implementation of the Personaliza-
tion feature on Privacy asacorrelation link. It
is due to the Authorization feature, and con-
sequently, we show a contribution link from
Authorization to Privacy. Upon further analy-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

32 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Figure 8. Resolving the usability-privacy conflict by refactoring the goal graph

Usability
+

Perso
tion

naliza-

N

Profi Iing)

Info
Filtering

[protects privacy]
3P)

Authorization

@&

sis, the reason can be seen in that Passport
blurs the line between authentication and au-
thorization. While it automatically authenti-
catesthe user to service providers, it also pro-
vides unconstrained access to the service
user’sprofile.

Our analysis does not stop here. Since
goal-oriented analysis allows usto experiment
with different design alternatives, itsuseis not
limited to identifying afeature conflict. On the
contrary, we can use it to suggest resolutions
for the feature conflict. One strategy is to re-
group the goalsin the goal graph, perhaps add-
ing new goals and tasks along the way. In ob-
ject-oriented modeling, such regrouping also
isknown asrefactoring, and wewill adopt this
term here.

From our analysis, we know that thefea-
ture interaction is caused by combining Au-
thentication and Authorization in one feature;
that is, under the control of one service pro-
vider. We can decouple those features by re-

v
+ .7
.

Identity
Mgmt

=

£2

My Identity
Service

{Authenticationy

quiring that the implementation of Identity
Management only should authenticate the user.
An alternative design is shown in Figure 8. In
My ldentity Service, Authorization is imple-
mented in accordance with the P3P (Platform
for Privacy Preferences Project) standard (W3C,
2003). Thisdesign givesuserscontrol over what
information they want to be shared with which
service providers. To thisend, we make Profil-
ing a goal to be implemented using P3P. Its
implementation of Authorization satisfies the
user’s privacy goals.

The planned evolution of the Passport
platform supports our analysisresults. Accord-
ing to Perkins (2002) and Snell et a. (2002), the
upcoming version of Passport will include more
measures for privacy protection. It isexpected
to integrate P3P to some degree. Users will be
ableto define policiesfor how their information
should be shared, in line with our proposed
featureinteraction resolution. Thisexampleil-
lustrates how our approach alows us to rea-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 33

son about feature interactions and to explore
refactorings of our design that resolve them.

Similarly, we now could look at the secu-
rity issues associated with the Authentication
feature or any of the other non-functional fea-
turesidentified earlier for thisservice. Itisim-
portant to note that what we had presented
was one view of the system, and we intention-
ally limited the number of issueswe wanted to
deal with at once. Whilethisisusually agood
strategy, it isnot always possible, for example,
if wearedealing withinterrelated non-functional
features(e.g., if security were somehow depen-
dent on privacy). The next case study shows
an example of where our analysis forced usto
resolve multiple interrelated conflicts at the
sametime.

Restaurant Finder

Consider abusinesstraveler looking for
arestaurant in which to have dinner. The trav-
eler could consult a Restaurant Finder service
to get suggestions that take his or her current
location and preferences into account. The
implementation of a Restaurant Finder service
involves many aspectsthat make Web Services
both powerful and difficult to implement. Itis
an example of aWeb Servicethat must beaware
of the user’s context, that will be selected dy-
namically, and that may be part of afederation
of Web Servicesin multiplelocations. Thelat-
ter two aspects were not covered by the Per-
sonalization servicein the previous subsection.
For these reasons, it is often used as a refer-
ence example for the implementation of Web
Services, for instance, by AgentCities
(AgentCities, n.d.) or Sun ONE (Sun, 2003).

At ahigh level, a Restaurant Finder ser-
vice can be decomposed into two features, as
shownin Figure9, Locate Service, and Recom-
mend Restaurant. This decomposition hides
details of how context awareness and service
transparency (transparent selection of the ser-
vice) are achieved, as well as how the service
might interact with Restaurant Finder services
at other locations.

The Locate Service feature determinesa
local instance of the Restaurant Finder service

Figure 9. Components of a restaurant finder
service

Usability

[Location]

Restaurant
Finder

Recommend
Restaurant

Locate
Service

at the user’slocation. It useslocation informa-
tion provided by the user’s mobile device and
could be implemented by consulting a UDDI
(Universal Description, Discover, and Integra-
tion) (UDDI, n.d.) serviceregistry. The Recom-
mend Restaurant feature suggests a restaurant
that matchesthe selection criteria(cuising, price,
rating, etc.) specified inthe user’sprofile.

Where most implementations of a Res-
taurant Finder feature are going to differ isin
how well they satisfy non-functional features.
Theseinclude:

e Usability (Location). Users want to be di-
rected automatically to a Restaurant Finder
servicefor their location (without having to
enter their current location).

* Usability (Service). Users expect that the
most appropriate serviceis selected, if sev-
era Restaurant Finder servicesareprovided
inagiven location.

e Usability (Interface). Usersdo not want to
deal with multiple serviceinterfacesfor dif-
ferent locations but accessthe service from
acommoninterface.

* Predictability (Trust). Userswill trust res-
taurant recommendationsthe morethey per-
celvethem asrelevant and free of bias, and
that their profileisnot misused.

* Predictability (Quality). Users expect the
results to be correct (e.g., the distance of a

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

34 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Figure 10. Implementation of thelocate service
and recommend restaurant goals

Usability
[Location]

Restaurant
Finder

ecommend
Restaurant

Listing and
Ratings

Locate
Service

{ Directory 3

restaurant from their current location) and
personalized to their preferences.

The big selling point of a Restaurant
Finder serviceisitslocation transparency. Since
location transparency contributes to Usability,
wemodel it asan aspect of Usability. In Figure
9, we express the concept of usability due to
location transparency using the GRL concept
of a subtype, Usability [Location] (read as:
Location restricts the type Usability).

In atypical implementation of the Res-
taurant Finder service, Locate Serviceisimple-
mented as a Directory that can be queried for
service providers by name and type of service,
asshownin Figure 10. Recommend Restaurant
isimplemented asamanually compiled listing
of restaurants and ratings assigned by restau-
rant critics, theListing and Ratingsfeature. This
listing can be searched, based on user-defined
criteria(e.g., cuisine, price, rating, etc.).

During the analysis of the feature compo-
sition graph, three side effects are identified, as
shownin Figure 11. The Directory feature does

Figure 11. Conflicts between location and interface aspects of usability, and quality and trust
aspects of predictability in the restaurant finder feature

Predictability Usability Predictability Usability
[Quality] [Location] [Trust] [Interface]
v — - e v
R . 5 = -

Restaurant

[not
personalized]

Locate
Service

[hard to ensure that
implementation is correct]

Directary

Y
[.
'

v

Finder

[idiosyncratic]

[bias]
[no trust building]

Restaurant

Listing and
Ratings

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 35

Figure 12. Resolving the conflict between usability and predictability

+ +

[personalized]

[portal collects
feedback on provider]

Locate
Service
Reputation
Mgmt

not protect the service user fromtheidiosyncra-
sies of theinterfaces of local Restaurant Finder
services. No common interface is provided to
ensure accesstransparency, resultinginaviola-
tion of the Usability [Interface] feature.

It also is hard to ensure that service pro-
viderscorrectly implement the serviceinterface.
Directory only providesan index for searching
service providers but does not police service
quality. That is, it only can guarantee that a
service complieswith itsinterface at a syntac-
ticlevel. However, if the feature miscalcul ates
the distance between user and restaurant, it
could not be detected. Thisrestrictionisin con-
flict with the Predictability [Quality] feature.

The Listing and Ratings lacks personal -
ization. Thismakesthe serviceinconvenient to
use (e.g., it requires re-keying of search crite-
ria) and hurts Predictability [Quality]. Whileit
would relatively easy to extend the feature to
remember the user’s preferences and use them
in future searches, the main drawback of such
personalization is that it reduces serendipity

Predictability Usability
[Quality] [Location]
vx +
+ "
Restaurant §
Finder
ecommend
Restaurant
(Portal)

Predictability
[Trust]

Usability
[Interface]
4
+ +

[builds trust
over time]

[some bias]

[harmonizes]

ollaborative
Filtering

by pigeonholing the user. For exampl e, the ser-
vicewill never suggest restaurantsthat serve a
cuisinetypical for theregion, if itisnotincluded
in the user’s preferences.

Limited personalization alsoisnot agood
basisfor building up atrusting relationship with
the user. Trust is something that only can be
built over time by using aservice. For example,
a service for restaurant recommendations be-
comestrustworthy after it has been recommend-
ing restaurants that the user has liked in the
past (these are not redundant but, on the con-
trary, thebasisfor trust). In addition, theimple-
mentation suffers from the issue of bias; for
example, thereisno way to detect if the service
only returns restaurants that have paid a fee
for being included in the restaurant listing.
Thus, the feature is aso in conflict with the
Trust aspect of Predictability.

As in the previous case study, we can
resolve most of the detected feature interac-
tions by refactoring the goal graph. At the cen-
ter of the solution is a trusted portal through

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

36 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Figure 13. Components of a word processing
service
Maintaina-
bility

Word
Processing

Formatting

< Output > épallcheck’ln%
Generator

which the user will interact with the service.
Thisportal makesthe selection of localized ser-
vicestransparent and policesthe quality of the
recommendations. We & so are not restricted to
acentralized portal but can use afederation of
portals that share information with each other
instead (however, this is not shown in the
present graph). The resulting goal graph is
showninFigure12.

In this solution, users no longer need to
interact directly with the Locate Service fea-
ture. The problem with the varying quality of
service providers also is addressed by imple-
menting Locate Service through a Reputation
Management feature. Thisfeature allowsusers
to rate providers of the Restaurant Finder ser-
vice. Based on this feedback, aranking of the
service providers can be established, using a
collaborative algorithm such as Sporas
(Zachariaet a., 1999). Theportal automatically
selectsthe highest-ranked servicefor theuser’s
location.

Theproblem of limited personalizationis
addressed by using a collaborative filtering
mechani sm to generate recommendationsfrom
a population of users. Recommendations are
no longer based just on the user’s query or

Spelichecking

profileinformation but onthelikesand dislikes
of similar users. Thistype of recommendation
encourages serendipity. The improved quality
of the recommendations also builds up the
user’strust over time. Finally, the portal putsa
single harmonized interface on top of the dif-
ferent interfacesof individua Restaurant Finder
services. It providesamapping layer for adapt-
ing theidiosyncrasies of agiven serviceinter-
facetoacommon interface.

A solution similar to the one proposed as
result of our analysis has been proposed in
oneof the AgentCities projects. A recommender
system based on an opinion-based filtering
method (Montaner et a., 2002) uses a collec-
tion of service and personal agents. Service
agents offer information about restaurants, and
personal agents provide userswith recommen-
dations on restaurants, based on their interac-
tion with similar trusted personal agents. The
underlying trust model enhancesthereliability
of therecommendations. Inthismodel, personal
agentswel gh therecommendationsfrom trusted
contacts higher than those of others.

Third-Party Intermediary

Anintermediary isacomponent that sits
between service usersand service providers. It
isitself a Web Service that provides a certain
valueadded (i.e., authentication, auditing, cach-
ing, brokering). It works by intercepting re-
questsfrom service users, performing itsfunc-
tionality (e.g., authenticating the user) and for-
warding therequest to the server. Later, it inter-
cepts the service provider’s response and re-
lates it back to the service user. This corre-
sponds to Web Services Architecture Usage
Scenario S030 (W3C, 2002).

Consider the example of aWord Process-
ing Web Service that makes use of two third-
party Web Services, Spellchecking and Format-
ting, as shown in Figure 13. Suppose that in
reguests originating from the Word Processing
feature, thelanguage option of the Spellchecker
service is set to UK English. Formatting also
happens to use a third-party spellchecker ser-
vice, which may bethe sameservice. It assumes
that American English should be used for

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 37

Figure 14. Conflicts between maintainability, performance, and correctness in the word

processing service

Correctness
-

+

[uses correct
language]

[does not use user's
language option]

spellchecking. However, following good infor-
mation-hiding practice, the word processing
service isunaware of this.

The main value added by this design of
the Word Processing service is Maintainabil-
ity. A consequence of information hiding, Main-
tainability suggests delegating supplementary
functions, such as Spellchecking and Format-
ting, to third-party services. Thisisafairly real-
istic scenario, given the existence of services
like Google's spellchecking service (Google,
2003). The same reasoning underliesthe use of
Spellchecking inside the Formatting service.

The intermediary in our scenario is the
Formatting service. It executes Spellchecking
on behalf of Word Processing, but does not
disclosethat. AsFigure 14 shows, thisleadsto
two types of conflicts. Asthe spellchecker gets
invoked two times, this negatively impacts per-
formance. More disastrous, though, for the
correct performance of the Word Processing
service is that Formatting overrides the user’s
language preference. Formatting assumes that
an American-English dictionary should be used,
whereas the user preferred the UK spelling.

The problem highlighted by this case
study ishow information hiding by aWeb Ser-

Processing

Output
Generator

Maintaina- Peri
bility erformance
N = - . v
- . + ”) _ —

[service
invoked twice]

Formatting

Spelichecking

vice implementation can lead to negative con-
sequences for Correctness and, in this case,
Performance. The strategy for resolving the
conflict callsfor breaking the information-hid-
ing principle. The conflict nolonger can occur,
if each recipient of a service request (i.e.,
Spellchecking) were to consult with theinitia-
tor of therequest (i.e., Word Processing) about
how to perform the service (in this case, which
language option to use).

DISCUSSION OF
THE CASE STUDIES

In this section, we try to generalize our
results obtained in the case studies. Our guid-
ing question for evaluating each case study is
what type of featureinteraction and what reso-
Iution strategies does the case study illustrate?
We identified three types of interactions: goal
conflicts, deployment and ownership issues,
and issues related to information hiding. Goal
conflicts are illustrated by the case studiesin
the subsections “Personalized Web Service’
and “ Restaurant Finder.” Theimpact of deploy-
ment and ownership issuesisillustrated by all
three case studies. Finally, information-hiding

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

38 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Figure 15. Before and after redeployment of authentication and authorization

User Passport

Provider

Access Service
[taz

Authenticate

Access Profile

[[

) D)

(Aumon’ze
3 se

Perform Service

Ea

User Passport

Provider

Access Service
[£z

Authenticate

Access Profile

[[

Authonize

_ D,

CX

Perform Service

[

-)

issues are touched on by the case studies in
the subsections “Personalized Web Service”
and “Third-Party Intermediary.” Followingisa
discussion of these types of interactions.

Goal Conflicts

We found goal-oriented analysis to be
suitable particularly for the analysis of feature
interactions, not just in Web Services. Thisform
of analysishingeson amodel of the functional
and non-functional goals of a system. This
model is provided by agoal graph, which cap-
turestheinfluence of goals on each other. Goal-
oriented analysisallowsusto reason about fea-
ture interactions such as goal conflicts. (As
features are modeled as goals, we aso have
referred to agoal graph as a feature composi-
tion graph on several occasions.)

Goal conflicts becomevisible asaset of
conflicting softgoals. They often occur as a
result of unanticipated side effects, where, in
trying to achieve one softgoal, we inadvert-
ently negatively impact another softgoal. In our
analysis, we trace conflicts back to the tasks
that cause them. Such interactions often can
be solved by refactoring the goal graph. In
refactoring, we regroup the goals, possibly in-
troducing new goals and tasks to the graph
along the way.

In the first case study, the interaction
between Usability and Privacy is resolved by
grouping the Authorization feature with the
Profiling goal. Thisamountsto decoupling the
Authentication and Authorization features. Al-
though not shown in the goal graph, this
amounts to changing ownership of the Autho-
rization feature from Passport to the service user.
Thus, adeeper justification for refactoring the
goal graphintheway described isprovided by
an analysis of deployment and ownership is-
sues (see the following subsection).

The second case study resolves a con-
flict between Usability and Predictability. The
refactored solution replaces the original List-
ing and Ratings feature by a trusted portal,
whichinturn usescollaborativefiltering torate
the restaurants. Thisimproves the Predictabil-
ity of theservice. Again, itispossibletojustify
thisresolutionin terms of deployment and own-
ership (seethefollowing subsection). The List-
ing and Ratings feature is an indication of a
conflict of interest, which can be resolved by
decoupling the feature into two independently
owned features.

In some cases, we found that we need to
supplement goal -oriented analysiswith deploy-
ment models and use case maps. However, as
such, this finding is not surprising, and the
modeling community already has recognized

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 39

the need to create a notation that combines
goal-oriented analysis (static aspects) with use
case maps (dynamic aspects) (URN, n.d.). The
following subsections illustrate how these
other models can be used in conjunction with
goa graphs.

Deployment and Owner ship

The intrinsically open and distributed
nature of Web Servicesimpliesthat some deci-
sions need to be made as to what services are
needed, who should provide the services (own-
ership), and where services should be deployed
(deployment). Deployment and ownership de-
cisions influence feature interaction issues in
thefollowing ways:

¢ Physical decoupling of services (by making
dependent services run on different hosts
and sometimes under different ownership)
can help solve resource contention issues
(by avoiding that a single host becomes a
bottleneck).

* Grouping of related services givesthe owner
more control over the resulting system and
allowsfor performance optimizations. How-
ever, physical decoupling under the same
ownership can lead to better scalability.

* Conversdly, delegating a functional feature
to a third party removes the need for local
management featuresto assureitsquality. Of
course, we then have to trust the third party
that such features are properly supported.

* Ownership of some services by the same
owner can aso lead to a conflict of interest
and aloss of trust in the owner due to (the
perception of) bias. This provides further
incentives for delegation and physical
decoupling.

In the case study in the subsection “Per-
sonalized Web Services,” the reason for the
feature interaction is that Authentication and
Authorization are owned by the same service
provider (Passport). TheUCM inFigure 15 shows
how the features are assigned to the partiesin-
volved before and after redeployment. It should

be noted, however, that as a consequence of
decoupling, the Personalization feature no longer
can benefit from the profile storage feature that
isimplicitly offered by Passport.

In the case study in the subsection “ Res-
taurant Finder,” the Restaurant Finder service
provider should not provide both listings and
ratings, as this would constitute a conflict of
interest. Our resolution strategy suggests to
decouple these tasks into two independently
owned features. In our solution, both listing
and rating services are based on user feedback.
In this setup, a biased service will receive a
lower ranking over time than an unbiased one.
The case study in the subsection “ Third-Party
Intermediary” isan examplein which delegat-
ing the Spellchecking functionality to a stand-
alonethird-party servicerelievesthe Word Pro-
cessing service from having to assure that its
own spellchecker iskept up-to-date. However,
due to information hiding (see the following
subsection), feature redeployment creates an
unforeseen conflict.

Information Hiding

Information hiding isasoftware engineer-
ing practice that aims at hiding the complexity
of apiece of functionality behind an interface.
Since the functionality of aservice only can be
accessed through this interface, using the ser-
vice does not require detailed knowledge of its
implementation (ease of use), and the decoupling
of interface and implementation promotesreuse.
However, as a consequence of information hid-
ing, users of the service cannot control how the
serviceisimplemented, which leaveslessroom
for application-specific optimizations.

Thelack of control over theimplementa-
tion of a service also means that, in a given
composition, the same Web Service can end up
being used more than once. In the worst-case
scenario, as shown by the Word Processing
service, the hidden use of a service can over-
rideitsexplicit use. Intheexample, Spellchecking
isalso used by Formatting, but after the explicit
invocation within Word Processing. If the hid-
den call usesincorrect or incomplete arguments,
the service override means that the effects of

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

40 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Figure 16. Before and after breaking the information hiding principle

Word Processing Formatter Spellchecker
Request Spelicheck (UK) Apply UK Dictionary
[€ ¥

D)

Spglicheck (US)
£z

Apply US Dictionary N

o 1

Word Processing Formatter

Spelichecker

Request Spelicheck (UK)

Apply UK Dictionary

L ¥
Provide Language (UK)
3%

Consult with [nitiator

D

-

Request Spelicheck (UK)

Apply UK Dicticnary 4

-~)

Figure 17. Causes of feature interactions in Web Services

Cause
| | | |
Goal Conflict Deployment and Information Invocation Order
Ownership Hidin_q
Resource Violation of Policy Conflict
Contention Assumptions

the two invocations are in conflict with each
other. Here, theimplementers of the Formatting
service had made the hidden assumption that
users speak American English.

A similar example could have been given
for athird-party service with a privacy policy
that conflicts with that of the intermediary. In
that scenario, the user trusts the intermediary
but is unaware of the privacy violation caused
by information hiding. There are a number of
ways to resolve such interactions, and we will
discuss three of them. The first strategy is to
assumeacentralized Web Service management
platform with complete accessto all parties. A
simple traversal of the service composition
graph then can detect the conflict.

Given that in practice we do not have
accessto thisinformation, consider an aterna-
tivestrategy, wheretheintermediary aggregates
the input parameters to be supplied to third

parties. In the Word Processing example, the
Formatting service would report back the lan-
guage option to be used by Spellchecking to the
Word Processing service. In the privacy sce-
nario, the intermediary could combine the pri-
vacy policies of the third parties and present
them to the service user, who then can deter-
minewhich information to release or can decide
to providedifferent information to each service
provider in separate parcels (W3C, 2003).

A third strategy isto requirethefinal re-
cipients of a service request (third parties) to
consult with theinitiator of the request (service
user) about how to perform the service. In the
Word Processing scenario, the Spellchecking
and the Word Processing services would agree
on the language to use. Then, it isalso possible
for the service user to detect duplicate invoca
tions of the same service in the same context
and to deny it. Similar reasoning can be applied

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 41

Figure 18. A typical e-commerce application: The Amazon online bookstore

Mana
Profi

e

to the privacy scenario illustrated by the Per-
sondization service. Thesolutionin W3C (2003)
isfor the service user to check the privacy policy
of each third party for compliance with its pri-
vacy preferences.

The use case map in Figure 16 shows
that the third strategy involves breaking the
information hiding principle. Beforeinvoking
the Spellchecking service provided by the
Spellchecker, the Formatting service (provider
of the Formatter) discloses its intention to do
so to the Word Processing service, which then
can pass on the appropriate language setting
(UK English).

Summary of Causesof Feature

I nteractionsin Web Services
Figure 17 summarizesthetypical causes
of feature interaction that either are specific to
the Web Services domain (as discussed in the
previous sections) or have been identified in
previous research on feature interactions in the
telecommunicationsdomain (Utas, 2001) and aso

¥,
Oth
Su ;gpﬁzar

apply here. Our classification of featureinterac-
tionsextends previousclassificationsintelecom-
munications by (1) distinguishing between func-
tional and non-functional interactions and (2)
introducing two causes of interactions that we
consider specific to Web Services: deployment
and ownership, and information hiding. Nei-
ther of these are issues in closed, centralized
telecommunications systems.

APPLICATION
TO E-COMMERCE

In this section, we describe how the
causes of feature interaction identified in the
preceding subsection can be observed in a
typical e-commerce application using Web Ser-
vices. Figure 18 is a so-called actor diagram
for atypical e-commerce application. An actor
diagram shows the actors and their goal de-
pendencies. The diagram modelsthe Amazon
online bookstore that gives Customers access
to its virtual catalog and the option to order
booksfrom the catal og through its Order Pro-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

42

International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Figure 19. Example of a goal conflict in the Amazon application

Customer
— x
~ b
s \

Single Sign-
On

A

IPassport
(Manage) ()
Profile Access Profile

¥ N ‘
Profile
éutne ntlcatlo> <u'1anagemen>

3

Supplier
Order
Processing

-
\ Get Customer

\ Info
\

e

~N

Get Customer
Info

Store Profiles

cessing service. In the actor diagram, the Or-
der Processing service is modeled as goal
dependency, which states that the Customer
depends on Amazon in order to achieve the
Order Processing goal .

Amazon relies on anumber of Suppliers
to fulfill customer orders. Customer loginsare
handled through the iPassport identity man-
agement service, which provides an Authenti-
cate User and an Access Profile service. On
receiving a customer order, Amazon authenti-
cates the customer and then accesses the
customer’s profile. It subsequently selects a
Supplier that stocks the ordered book and in-
vokesits Order Processing service, inturn pass-
ing along the customer’sidentity.

The Supplier determinesthe availability
of the ordered book and, if successful, obtains
the customer’s payment and shipping prefer-
ences from the iPassport service. It then in-
vokesthe Payment Processing service provided
by the PayMe financial service provider and
the Delivery serviceof Amazon’s ShipEx fulfill-
ment partner. Customers can track the progress
of their orders via the Tracking service pro-
vided by ShipEx. They also can manage their

Give Access
to Profiles

Order
Processing

00 00

Amazin

online profiles and payment accounts through
services provided by iPassport and PayMe,
respectively.

If aSupplier cannot fulfill an order, it will
attempt to satisfy it from its network of Other
Suppliers. Although not shown in the diagram,
the selected Other Supplier behaves the same
asaSupplier; that is, it will use the same pay-
ment and delivery services. (Properly modeled,
Other Supplier would be arole that a Supplier
can play; however, thisis not supported in the
current version of GRL). Finally, some Suppli-
ers might choose to share selected customer
information with the EvilAds advertisement
agency viaits ClickAds service asan additional
source of revenue.

To keep the application manageable, we
have avoided thekind of duplication and extra-
neousinformationin the model sthat onewould
observein areal-world example. For instance,
we chose not to model that Amazon might have
itsown inventory from which to fulfill popular
orders, as this would not add anything new to
model with regard to the feature interactions
that we wish to demonstrate. In the following,
we provide examples of the different causes of

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 43

Figure 20. Example of an interaction due to resource contention in the Amazon application

Amazin

-~
e
Fa
rd

Order
Proessing

> Glace Order

Select
Supplier

(

Performance
.
- —_

4
/
I

|
\ [order processing
\ loop]

-
-
-

Supplier
Order
Processing

/

Ved

\
1
I
Fulfill Locally P'“gggf‘“% !
s
-~

-

-

Amazin (Other Supplier)

Order
Processing

featureinteractionsthat can occur between the
servicesmodeled in Figure 18.

Goal Conflict

Amazon and its Suppliers obtain the
customer’s payment and shipping preferences
fromtheiPassport service. Whilethisisconve-
nient for both Customers and service provid-
ers, thereis also potential for undesirable side
effects. The goal graphin Figure 19 allows us
to analyze the situation. It shows that the Us-
ability and Privacy goals of the Customer con-
flict with one another, since any service pro-
vidersregistered with iPassport can access the
profile, including those providers with whom
the customer has no trusting relationship.
While there is a trusting relationship between
the Customer and Amazon, the relationships
between Customers and Suppliers are
untrusted, and thereis no guarantee that a Sup-
plier will adhere to Amazon's privacy policy.
Instead, it could decide, for example, to sell the
profileinformation to Evil Ads, which then will

g

target the Customer with unsolicited ads. This
isanon-functional featureinteraction between
the Manage Profileand Access Profile services.
Itisprimarily anexampleof agoal conflict. How-
ever, it also can be classified as a deployment
and ownership, information hiding, or policy
conflict.

This diagram adds two new notational
elements. Bars, which can be vertical or hori-
zontal, indicate boundaries between actors.
They are used only for emphasisin a manner
similar to swimlanesin activity diagrams. Here,
a bar separates iPassport from Supplier and
Amazon. The square on a contribution or cor-
relation link isused to highlight thelink. It can
be used to draw attention to alink that is the
source of another link. Again, highlighting is
used for emphasis and not strictly required by
our notation. The link from Access Profile to
the Get Customer Info goal of the Supplier rep-
resents that any Supplier can gain access to
theuser’sprofileviathe Access Profile service.
Thislink is highlighted and linked to the Pri-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

44 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Figure 21. Example of an interaction due to invocation order in the Amazon application

Customer

Amazin

PlaceOrder SelectSupplier PlaceOrder
[——
Cancel
° —
PayMe Supplier \
Cancel
i ProcessPayment ProcessOpder
ShipEx
Cafeel
Ship
—5¢-

rderCompleted

vacy goal to indicate that providing uncon-
trolled access to the user’s profile has the side
effect of violating their Privacy concerns.

Resour ce Contention

When Amazon invokes the Order Pro-
cessing of one of its Suppliers, thissupplier, in
turn, will place an order with one of its network
of Other Suppliers, if it does not have the re-
quested book in stock. However, this can lead
to a situation where the order is sent back to
Amazon, resulting in an order processing loop.
Figure 20 showsascenarioinwhich Amazonis
both aclient and asupplier to agiven Supplier.
If undetected, this can lead to an infinite loop
of order requests, which will hurt the perfor-
mance of both servers as a side effect. This
conflict is a feature interaction between the
Order Processing services offered by Amazon
and its Suppliers.

Policy Conflict

A Customer might benefit from morethan
one type of discount, for example, based on
membership and bulk purchases. Thisleadsto
apossibleconflict between policiesasretrieved
through Access Profile (either variouspolicies
within the same profile or acrosslocal profiles
stored with the various Suppliers) andto errors
in Order Processing. There needs to be a way
to specify that one discounting policy should
override the others or whether some or al of
the policies must be applied. In case the im-
plicit meta-policy isto apply only onediscount-
ing policy, then the invocation order among
multiple callsto the Access Profile service can
become another related issue, unless a com-
plete priority list isestablished among the vari-
ous policies. However, establishing such alist
generally isimpractical in an open and distrib-
uted domain such asWeb Service-based e-com-
merce, where suppliers and policies can be
added dynamically.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 45

I nvocation Order

Thereisapotential conflict between Pay-
ment Processing and Order Processing, or Pay-
ment Processing and Delivery, due to timing
errors, as shown in Figure 21. The interaction
can result either in the customer getting charged
without the product being shipped or the cus-
tomer getting the product for free. Both errors
exploit timing glitches; for example, when the
customer cancels his or her order, it could be
that the payment still gets processed but the
order shipment is aborted. The reason is that
the cancellation request was sent just before
payment started but arrived after the payment
process proceeded. Technically, such problems
can be avoided through transaction manage-
ment, but thisrequiresthat the problem be prop-
erly anticipated in thefirst place.

RELATED WORK

Goal-oriented analysis, asintroduced by
Mylopouloset a. (1999) and Chung et a. (2000)
and supported by the GRL notation (GRL, n.d.),
isthe primary analysis method used in this pa-
per. This method has been applied to early re-
quirements engineering in anumber of domains,
including telecommunications. However, to our
knowledge, this is the first study describing
the use of goa graphs for modeling and rea-
soning about feature interactions.

Prior work on using UCMsfor modeling
features and detecting feature interactions is
reported in Amyot (2000). That paper describes
a scenario-based approach to generating vali-
dation test suites and feature interaction de-
tection by identifying scenarios with overlap-
ping preconditions. Although the approach
only has been applied to telecommunication
systems, we don’t see why it could not be ap-
pliedin order to detect similar interactions be-
tween Web Services. However, non-functional
feature interactions and deployment issues are
not considered.

An early version of some of theideasin
this paper is contained in Weiss et al. (2004).
This paper differs from the earlier study in a
number of significant aspects. It introduces a

new case study, makes use of the Use Case Map
notation to analyze deployment and ownership
issues, and provides a much more comprehen-
siveempirical analysisof featureinteractionsin
Web Services. It also presents current results
toward aclassification of featureinteractionsin
Web Servicesand illustratesit with an example
of atypica e-commerceapplication.

CONCLUSION

In this paper, we propose an approach
for modeling undesirabl e interactions between
Web Services as feature interactions and their
detection. Our approach isuniquein its use of
goal graphsfrom goal-oriented analysis (Goal-
Oriented Requirements Language [GRL]) and
to reason about feature interactions and sce-
nario models (Use Case Maps[UCMSg)) for rea-
soning about the deployment of functional fea-
tures. Our paper includesan empirical analysis
of several feature interactions. In our discus-
sion of the case studies, weidentified anumber
of reasons for undesirable interactions among
Web Services, including goal conflicts, deploy-
ment, and ownership, as well as information
hiding issues and strategies for resolving such
interactions.

The combination of GRL and UCMssup-
ports our approach well. The first two steps
outlined in the third section — modeling fea-
tures and analyzing these modelsfor goal con-
flicts— can beachieved by using thegod graph
concept from GRL. Goal graphsallow usto rep-
resent features and to reason about conflicts
among them. Thethird step — resolving inter-
actions — can be supported by using GRL in
combination with UCMs. GRL is suitable for
reasoning about refactorings of the goal graph.
UCM models alow usto explore the different
alternatives suggested by the GRL models.
They particularly are suitablefor analyzing de-
pendencies among and changes to the deploy-
ment and ownership of functional features.
They aso can be used to reason about inten-
tion-disclosing negotiation protocol sfor resolv-
ing interactions due to information hiding.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

46 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

We currently are working on a bench-
mark for feature interactions in Web Services
to encourage the comparison of different mod-
eling and resol ution approaches. We al so study
the formalizations of goal graph refactorings,
for example, using graph-rewriting techniques.
In other work, we are exploring some of the
open research questions triggered by this re-
search— what parallel sare there between non-
functional features and aspectsin Aspect-Ori-
ented Programming (AOP), between goal con-
flicts and the interaction of aspects; and what
kind of architecture can support the runtime
management of feature interactions in aspect-
and service-oriented architectures?

REFERENCES

AgentCities Lisboa Node. (n.d.). Restaurant
finder service. Retrieved September 2004,
from http://agentcities.we-b-mind.org/ser-
vices/RF ServiceDescription.htm

Amyot, D. (2003). Introduction to the user re-
guirements notation: Learning by example.
Computer Networks, 42(3), 285-301.

Amyot, D. et d. (2000). Feature description and
feature interaction analysis with use case
maps and LOTOS. In Proceedings of the
International Workshop on Feature In-
teractions in Telecommunications and
Software Systems (FIW) (pp. 274-289). 10S
Press.

Arsanjani, A. (2002). Towards a pattern lan-
guage for Web Services architecture. Pat-
tern Languages of Programming (PLoP).

Chung, L. (1991). Representation and utiliza-
tion of non-functional requirements for in-
formation system design. In Proceedings of
the Conference on Advanced Information
Systems (CAISE), LNCS(pp. 5-30).

Chung, L., Nixon, B., Yu, E., & Mylopoulos, J.
(2000). Non-functional requirementsin soft-
ware engineering. Kluwer.

Constantinescy, I., Willmott, S., & Faltings, B.
(2002). Abstract behavior representationsfor
service integration. In Proceedings of the
AAMAS Workshop on AgentCities: Chal-
lenges in Open Agent Environments.

Google. (2003). Google Web APIs. Retrieved from
http: //mww.googl e.comyapi s/reference.html

GRL. (n.d.). Retrieved August 2003, from http:/
/mww.cs.toronto.edu/km/

Hailpern, B., & Tarr, P. (2001). Software engi-
neering for Web Services: A focus on sepa-
ration of concerns. In Proceedings of the
OOPSLA Wbrkshop on Object-Oriented Web
Services.

Liberty Alliance. (n.d.). Retrieved August 2003,
from http://mww.projectliberty.org

Microsoft. (2003, May). Microsoft .NET Pass-
port for Developers. Retrieved from http://
www.mi crosoft.conmvnet/services passport/
devel oper.asp

Montaner, M., Lopez, B., & de laRosa, J.L.
(2002). Opinion-based filtering through trust.
In Proceedings of the Workshop on Coop-
erative Information Agents (CIA), LNAI
2446 (pp. 164-178).

Mylopoulos, J., Chung, L., & Yu, E. (1999). From
object-oriented to goal-oriented require-
ments analysis. Communications of the
ACM, 42(1), 31-37.

O'Sullivan, J., Edmond, D., & ter Hofstede, A.
(2002). What'sin a service? Towards accu-
rate description of non-functional service
properties, distributed and parallel data-
bases. Kluwer.

Perkins, E. (2002, February 5). Passing pass-
port, meta group. Tech Update Newsl etter,
ZDNet.

Pulvermiller, E. et a. (2001). Featureinteraction
in composed systems. In Proceedings of the
ECOOP Workshop on Feature I nteractions
in Composed Systems.

Ryman, A. (2003). Understanding Web Services.
Retrieved from http: /mmw.software.ibm.cony
wsdd/library/techarticles/0307_ryman/
ryman.html

Snell, J., Tidwell, D., & Kulchenko, P. (2002).
Programming Web Services with SOAP.
O'Reilly.

Sun. (2003). Sun ONE studio 5: J2EE applica-
tion tutorial. Retrieved from http://
devel opers.sun.convtool s/javatool s/docu-
mentation/s1s5/diningguide.pdf

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 47

UDDI (Universal Description, Discovery, and In-
tegration of Web Services). (n.d.). Retrieved
August 2003, from http: //Amww.uddi.org

URN (User Requirements Notation). (n.d.). Re-
trieved August 2003, from http://
WWW.Usecasemaps.org/urn

Utas, G. (2001). A pattern language of feature
interactions. In L. Rising, Design patterns
in communi cation software. Cambridge, UK:
Cambridge University Press.

Velthuijsen, H. (1993). Distributed artificial in-
telligencefor runtimefeatureinteraction reso-
[ution. | EEE Computer, 45-55.

W3C. (2002). Web Services architecture usage
scenarios, S030. Retrieved from http://
www.w3.0rg/ TR/2002/WD-ws-ar ch-sce-
narios-20020730

W3C. (2003, August). Platformfor privacy pro-
tection (P3P) project. Retrieved from http://
www.w3.org/P3P

Weiss, M., & Esfandiari, B. (2004). On feature
interactions in Web Services. In Proceed-
ings of the Second International Confer-
ence on Web Services (ICWS).

Zacharia, G., Moukas, A., & Maes, P. (1999).
Collaborative reputation mechanismsin elec-
tronic marketplaces. In Proceedings of the
Hawaii International Conference on Sys-
tem Sciences (HICSS), 8026. | EEE.

Michael Weiss is an assistant professor at Carleton University, which he joined in 2000 after
spending five years in industry following the completion of his PhD in computer science in
1993 (University of Mannheim, Germany). In particular, he lead the Advanced Applications
group within the Strategic Technology group of Mitel Corporation. His research interests
include Web Services, software architecture and patterns, business model design, and open

source.

Babak Esfandiari is an assistant professor at Carleton University. He obtained his PhD in
computer sciencein 1998 (University of Montpellier, France) and then worked for two years at
Mitel Corporation asa software engineer beforejoining Carletonin 2000. Hisresearch interests
include agent technology, network computing, and object-oriented design.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

