
22 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

On Feature Interactions
Among Web Services

Michael Weiss, Carleton University, Canada

Babak Esfandiari, Carleton University, Canada

ABSTRACT

Web Services promise to allow businesses to adapt rapidly to changes in the business
environment and to the needs of customers. However, the rapid introduction of new services
paired with the dynamicity of the business environment also leads to undesirable interactions
that negatively impact service quality and user satisfaction. In this paper, we propose an
approach for modeling such undesirable interactions as feature interactions. As each functional
feature ultimately is motivated by non-functional requirements, we make an explicit distinction
between functional and non-functional features. We then describe our approach for detecting
and resolving feature interactions among Web Services. The approach is based on goal-oriented
analysis and scenario modeling. It allows us to reason about feature interactions in terms of
goal conflicts and feature deployment. Three case studies illustrate the approach. The paper
concludes with a discussion of our findings and an outlook on future research.

Keywords: feature interaction; goal-oriented analysis; non-functional features; Web
Services

INTRODUCTION

Web Services promise to allow busi-
nesses to adapt rapidly to changes in the busi-
ness environment and to the needs of custom-
ers. However, the rapid introduction of new
services paired with the dynamicity of the busi-
ness environment also leads to undesirable in-
teractions that negatively impact service qual-
ity and user satisfaction. In this paper, we pro-
pose an approach — feature interactions — for
modeling such undesirable interactions.

Feature Interaction Problem
The feature interaction problem has been

formally studied first in the telecommunications
domain. It concerns the coordination of features
or services (we will not distinguish between fea-
tures and services) such that they cooperate
toward a desired result at the application level.
The root causes for feature interactions in tele-
phony systems are as follows (Velthuijsen, 1993):

• Conflicting goals (services with the same
preconditions, but incompatible goals are in

This paper appears in the journal International Journal of Web Services Research edited by Liang-Jie Zhang.
Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 23

conflict; for example, services triggered by a
busy extension);

• Competition for resources (services compete
with each other for limited resources that
need to be partitioned among the services);

• Changing assumptions on services (ser-
vices make implicit assumptions about their
operation, which can become invalid when
new services are added); and

• Design evolution (services need to be added
to meet new customer needs, and the sys-
tem will need to interoperate with other ven-
dors’ systems).

A classical feature interaction is the in-
teraction between Call Waiting and Call For-
warding on Busy. Both features trigger when
the receiver of a call is busy, but only one of
them should become active. This type of prob-
lem usually is resolved by introducing priori-
ties. The most prominent implementation of
this approach is the pipe-and-filter model
(Utas, 2001), in which features are connected
in a chain of filters in the order in which they
get to process events.

The interaction between Outgoing Call
Screening and Call Forwarding on No Answer
is slightly more complex. Assume Alice is on
Bob’s outgoing call screening list (Alice could
be the girlfriend of Bob’s teenaged son Mark,
and Bob does not want him to call her). But
Mark quickly learns that he only needs to call
his friend Joe, who temporarily forwards incom-
ing calls to Alice. The solution to this type of
problem involves confirming with the originat-
ing party (Bob) if Joe’s forwarding the call to
Alice is acceptable.

However, the feature interaction problem
is not limited to the telecommunications do-
main. The phenomenon of undesirable interac-
tions among components of a system can oc-
cur in any software system that is subject to
changes. This is certainly the case for service-
oriented architectures. First, we can observe
that interaction is at the very basis of the Web
Services concept. Web Services need to inter-
act, and useful Web Services will emerge from

the interaction of many highly specialized ser-
vices. Second, as the number of Web Services
increases, interactions will become more com-
plex. Many of these interactions will be desir-
able, but other interactions may be unexpected
and undesirable, and we need to prevent their
consequences from occurring. As noted by
Ryman (2003), many such interactions are re-
lated to security and privacy.

Web Services and
Web Service Composition

Much research has focused on low-level
concerns, such as how to publish, discover,
and invoke individual Web Services as well as
the security of Web Services. Other work has
looked at dynamic Web Service composition
(Constantinescu et al., 2002); that is, how
higher-level services can be composed dy-
namically from lower-level services. Service
composition raises a number of difficult chal-
lenges, such as service description, selection,
and orchestration.

At each of these stages (description, se-
lection, and orchestration), we may experience
undesirable interactions that prevent the proper
performance of the service. However, there has
been little research on managing such interac-
tions at the level of the service logic. Most ex-
isting work is limited to managing the mechan-
ics of the interaction (e.g., enforcing a legal se-
quence of messages exchanged between the
parties involved).

When composing Web Services, the
functionalities provided by the component ser-
vices must be considered. We also need to en-
sure that data and message types, sequence
logic, and so forth are compatible. However, as
stated in O’Sullivan et al. (2002), service com-
position amounts to much more than functional
composition. Consideration also must be given
to non-functional requirements, such as privacy
and interoperability. For example, when com-
posing a personalized Web Service, we also
must consider utility services, such as identity
management and user profiling. But maintain-
ing and sharing sensitive user information in a
utility service raises privacy concerns.

24 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A Web Service can be defined as a set of
endpoints. An endpoint groups service opera-
tions, and each operation is defined by the
messages exchanged to perform it. Web Ser-
vice composition languages, such as the Web
Services Flow Language (WSFL), define the
notions of activities and workflows. Workflows
define a partial order in which activities can be
performed. Each activity can be implemented
by a workflow in another organization.

The appropriate metaphor for thinking
about composition of Web Services, therefore,
is not the pipe-and-filter model of traditional
telephony systems (Utas, 2001) but that of a
flow system with a richer behavior. Flow sys-
tems have three types of components: process-
ing stages that can be connected in a variety of
ways (not just sequences), data representations
that are exchanged between stages, and orches-
trators (engines) that coordinate the flows.

Up to this point, we only have consid-
ered explicitly composed Web Services. These
are best modeled as flow systems. However, as
Figure 1 shows, an equally if not more impor-
tant category is that of implicitly composed
services. While they are not composed inten-

tionally, they still can interact in undesirable
ways. We distinguish two subcategories: par-
allelism and side effect. In parallel composition,
features are deployed independently but may
interact. This case often is encountered in the
traditional analysis of feature interactions. Side-
effect composition looks similar to flow com-
position, but the composed features are at dif-
ferent abstraction levels. A lower-level feature
(perhaps from a third party) that implements a
higher-layer feature may have unanticipated
side effects. The latter case is of particular rel-
evance, as the case studies illustrate.

Our focus, therefore, will be on feature
interactions in the domain of Web Services.
However, at the same time, we believe that our
results will be applicable beyond this domain.
Our reasoning is that Web Services currently
are being deployed in a very rapid, decentral-
ized, and perhaps ad hoc manner. Problems due
to conflicting goals, competition for resources,
changing assumptions, and design evolution
will therefore become visible much more quickly
and will need to be resolved in a much shorter
timeframe than for telephony features devel-
oped under central control. Lessons we learn

Figure 1. Explicit and implicit Web Service composition

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 25

from Web Services then can be applied back to
the telephony and other domains.

Organization of the Paper
In this paper, we propose an approach

for modeling undesirable interactions among
Web Services as feature interactions. As each
functional feature is ultimately motivated at the
business level by non-functional requirements,
we first make an explicit distinction between func-
tional and non-functional feature interaction. We
then describe our approach for detecting fea-
ture interactions among Web Services. It em-
ploys the User Requirements Notation, or URN
(n.d.), to model features. This notation allows us
to reason about feature interactions in terms of
goal conflicts and feature deployment. Three case
studies and an e-commerce example illustrate the
approach. The paper concludes with a discus-
sion and an outlook on future work.

FUNCTIONAL AND
NON-FUNCTIONAL
FEATURE INTERACTIONS

There is a growing recognition of the criti-
cal role of what are alternatively called busi-
ness goals, qualities, or non-functional require-
ments (NFRs) in system development. Chung
(1991) defines non-functional requirements as
constraints over the functionality of a target
system. This definition includes properties
such as performance, security, or maintainabil-
ity. Achieving non-functional requirements can
be as crucial to system success as providing
its functionality.

Chung et al. (2000) see the role of non-
functional requirements as criteria for selecting
between design alternatives that provide the
same functionality. They model both functional
and non-functional requirements as goals to
be achieved by the design of a system. These
goals often are in conflict with each other, and
the objective of design is to find the right bal-
ance among those that satisfy all relevant goals
(functional or non-functional).

With a specific focus on Web Services,
O’Sullivan et al. (2002) consider non-functional

properties of services an essential part of their
description for the purposes of service discov-
ery, negotiation, substitution, composition, and
management. Their definition of non-functional
properties includes billing and payment meth-
ods, provisioning channels, availability, service
quality, security, trust, and rights.

The Build Business Architecture First
pattern described in Arsanjani’s (2002) pattern
language for Web Services architecture moti-
vates an approach in which business goals are
mapped to services. The reason is that ulti-
mately services must relate back to the busi-
ness value created. Motivated by their work
on Multidimensional Separation of Concerns,
Hailpern and Tarr (2001) also differentiate be-
tween functional and management interfaces
of Web Services. Management interfaces per-
mit control over non-functional service prop-
erties, such as performance, monitoring, and
class of service, that cross-cut all functional
interfaces.

Thus, each functional feature ultimately
is motivated at the business level by non-func-
tional requirements. Similar to the distinction
made in a recent workshop on feature interac-
tion in composed systems (Pulvermüller et al.,
2001), we make an explicit distinction between
functional and non-functional features. The
cross-cutting nature of non-functional features
underlying this distinction is illustrated in Fig-
ure 2. In subsequent paragraphs we define what
we mean by functional and non-functional fea-

Figure 2. Interaction of functional and non-
functional features

26 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ture interactions. We also provide examples of
each type of interaction.

Functional Feature Interactions
Most interactions studied in the context

of traditional features are of a functional na-
ture. An example from telephony is an interac-
tion between Call Waiting and Call Forwarding
on Busy. A Web Services example is a race con-
dition between an Order Completed and a Can-
cel message, which could result in situations
in which, due to timing delays, an order is
shipped but payment is cancelled. Functional
feature interactions occur when functional fea-
tures are composed. As identified in the sub-
section “Web Services and Web Services
Composition,” this includes both explicit and
implicit compositions.

Figure 5 shows a more detailed example
of a functional composition of features. A new
Personalization feature is constructed by com-
posing Profiling, Information Filtering, and
Identity Management features. Profiling takes
care of managing user information. Informa-
tion filtering is used to make query results more
relevant to the user. Finally, identity manage-
ment provides the user with a unique identity
through which it can be identified to service
providers.

Functional feature interactions can oc-
cur due to a number of reasons listed in Table 1.
Generally, we found that these are not very dif-
ferent for Web Services than for other types of

features. They include the usual suspects: or-
der of invocation, race conditions, overlapping
guards, assumption violation (in particular, due
to versioning and semantic ambiguity), and re-
source contention. However, some reasons
(such as assumption violation) seem to play a
more prominent role in Web Services due to
their dynamic, decentralized nature.

Non-Functional Features
and Feature Interactions

However, functional features ultimately
are motivated by some non-functional or sys-
tem-level concerns, such as privacy, security,
or usability. For example, the Personalization
feature of Figure 5 has the goal of enhancing
the usability of an information service (from
the perspective of the service user). Thus, if
functional features are composed, the compo-
sition of these features also will impact the sat-
isfaction of system concerns.

Therefore, it makes sense to talk of non-
functional feature interactions and even of non
functional features. Non-functional features are
system concerns affected by functional fea-
tures, and, on the other hand, they impose con-
straints on how the functionality is provided.
With Pulvermüller et al. (2001), we may con-
sider functional features to be the functional
units of a system and non-functional features
to be its non-functional properties. Asking
whether a feature is an identifiable unit of a

Table 1. Types of functional feature interactions between Web Services

Reason Example
Order of invocation Order between a compression and an

encryption service impacts the ability to
compress

Race conditions Between simultaneously sent Order Completed
and Cancellation messages

Overlapping guards Can occur between subflows of a composite
Web Service that fires on the same event

Assumption violation Third-party services invoked by an
intermediary with incorrect or incomplete
arguments

Resource contention Due to service hosting (i.e., how the service
deployer manages class of service)

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 27

system or a property can help us to decide
about the nature of the feature.

For example, we could be designing an
instant messaging (IM) feature. Now, we would
like to secure the messages exchanged. We thus
add encryption and decryption features that
are invoked before sending and after receiving
an instant message. However, enabling these
features has a significantly negative impact on
the performance of the system. Thus, there is a
tradeoff between performance and security. If
we model performance and security as non-
functional features, we can treat this tradeoff
as a feature interaction.

Where to Draw the Line
The distinction between functional and

non-functional features is not always clear-cut.
Also, what is a non-functional feature to one
party (e.g., security) may be a functional fea-
ture for another party (if that party happens to
be a security service provider). Features such
as privacy, performance, or usability are clearly
non-functional from an end-user perspective.
Features such as order processing or catalog
aggregation are clearly functional.

However, there are features between both
extremes. Features like billing, payment, or spell
checking have aspects of both functional and
non-functional features. On the one hand, they
are supportive and cut across other features.
On the other hand, they are not strictly proper-
ties of a system but implementation units. Be-
cause these features impose constraints on
functional features, they can be viewed as prop-
erties of the system and, thus, as non-func-
tional features, although they still can be imple-
mented as a stand-alone service.

TOWARD A DETECTION
METHODOLOGY

Our approach employs the User Require-
ments Notation (URN, n.d.) to model features.
This notation allows us to reason about fea-
ture interaction in terms of goal conflicts and
feature deployment. Its focus is on user require-
ments (goals and functions), but it also enables

their refinement into system requirements
(Amyot, 2003). URN is comprised of two
complementary notations: the Goal-oriented
Requirements Language (GRL, n.d.) and the Use
Case Maps (UCM) notation (URN, n.d.). GRL
is used to model business goals, non-functional
requirements, design alternatives, and design
rationale, whereas UCMs allow the description
of functional requirements in the form of causal
scenarios.

GRL build on the well-established goal-
oriented analysis techniques introduced by
Mylopoulos et al. (1999) and Chung et al. (2000).
In goal-oriented analysis, both functional and
non-functional requirements are modeled as
goals to be achieved by the design of a system.
During the analysis, a set of initial goals de-
scribing the requirements is refined into a goal
graph. This goal graph also shows the influ-
ence of goals on each other and can be ana-
lyzed for goal conflicts. The objective of the
design then becomes resolving these conflicts
in a way that satisfies all initial goals.

Goals describe the objectives that a sys-
tem should achieve. In GRL, these also are
known as intentional elements. We call them
intentional because they allow us to answer
questions such as why certain goals were in-
cluded in the requirements, what design alter-
natives were considered, and why one alterna-
tive was chosen over another. There are four
types of intentional elements in GRL: softgoals,
goals, tasks, and resources. GRL also has sup-
port for modeling actors, which can have goals,
and dependencies between actors. These ele-
ments will be used in the sixth section.

Softgoals are used to represent non-func-
tional requirements, their shape suggesting that
there are no clear-cut criteria for determining
when they have been achieved. Goals repre-
sent functional requirements. Tasks are solu-
tions that achieve softgoals or goals. Resources
are entities that need to be available to perform
a task or achieve a goal. Figure 3 shows the
symbols used by the notation. Further details
of the notation will be explained as they are
used in the case studies.

28 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

One of the stated goals of URN is to de-
scribe scenarios without the need to commit to
system components (Amyot, 2003). This capa-
bility is provided by UCMs. The basic nota-
tional elements for representing scenarios in a
UCM are responsibilities, paths, and compo-
nents, as shown in Figure 4. A scenario is a
partially-ordered set of responsibilities that a
system performs to transform inputs to out-
puts while satisfying certain pre- and post-con-
ditions (Amyot, 2003). Scenarios progress along
paths from start to end points. The order of the
responsibilities on a path indicates their causal
relationship. Paths can fork to represent alter-
natives and also join alternative path segments.
Responsibilities can be allocated to compo-
nents by placing them within the boundaries of
that component. This is how we will be model-
ing feature deployment.

With UCMs, different structures sug-
gested by alternatives identified in a GRL model
can be expressed and evaluated by moving re-
sponsibilities from one component to another
or by restructuring components (Amyot, 2003).
The ease and flexibility with which this can be
achieved helps designers and stakeholders to
stay focused on addressing core design issues.
UCMs require less detail and effort than other

notations, such as activity diagrams, to achieve
this.

We now will outline the steps of a meth-
odology for detecting feature interactions be-
tween Web Services. It should be understood
that, at this point, this is not a complete meth-
odology. However, it provided us with a frame
of reference for our empirical analysis during
the case studies.

• Start by modeling the features you wish to
analyze as a goal graph. Model functional
features as goals, non-functional features
as softgoals, and solutions that help
achieve a goal or softgoal as tasks. Any
part of a feature outside the scope of your
current analysis also should be modeled as
a task (you can make it the focus of an-
other analysis later).

• Analyze the goal graph for conflicts among
goals. These become visible as a set of con-
flicting softgoals (e.g., security vs. perfor-
mance) but can be traced back to tasks; that
is, to particular implementations of a goal or
softgoal. We find that often a solution pro-
posed to address one softgoal ends up nega-
tively impacting another softgoal.

Figure 3. Notation for representing goals in GRL

Figure 4. Subset of UCM notation used

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 29

• Resolve the interaction, if possible, using
one of a variety of strategies to be discussed
further in the fifth section. These include
refactoring the goal graph, changing the in-
vocation order of services, changing their
deployment, creating a stand-alone service,
or ensuring that the initiator of a service re-
quest is consulted to resolve ambiguities
(negotiation).

CASE STUDIES

Personalized Web Service
Personalization enhances the usability of

a Web Service. For example, the user’s ship-
ping address could be stored in a profile and
filled in automatically whenever the user sub-
mits an order form but does not provide a ship-
ping address. Similarly, the results of a query to
an information service can be made more rel-
evant by filtering them against the interests
specified in the user’s profile.

Personalization is particularly useful in a
mobile e-commerce setting, where users are
accessing information, making purchases, or
monitoring the progress of an auction from their
mobile devices. Serving them only information
relevant to their current context makes the in-
formation service more valuable. The context
can contain information such as the user’s iden-
tity, profile, and location, as well as information

not specific to the user, such as the current
time.

We can design the Personalization fea-
ture as a composition of three features, as
shown in Figure 5: Profiling, Information Filter-
ing, and Identity Management. Profiling takes
care of collecting user information and storing
it in a profile. Information Filtering is used to
select the query results deemed most relevant
based on the user’s profile. Finally, Identity
Management provides users with a unique iden-
tity through which they can be identified to the
information service provider.

Both Profiling and Information Filtering
are represented as tasks in Figure 5. However,
the Identify Management feature is modeled
as a goal, since we are considering using a
third-party implementation of this feature.
That does not imply, however, that we could
not find interactions involving the other two
features. They simply are not the focus of the
present analysis.

The Identity Management goal can be
achieved or implemented in different ways. In
goal-oriented analysis, these implementations
are known as operationalizations. They consti-
tute design alternatives, whose impact on sys-
tem concerns we wish to analyze. In this case,
our goal is to analyze the impact of our choice
of a third-party identity management service in
terms of (potential) undesirable feature interac-
tions and to devise remedies for resolving them.

Figure 5. Components of a personalization feature

30 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Aside from the three functional features
considered, there are many non-functional fea-
tures involved when creating a personalized
service:

• Privacy. Users need to disclose private in-
formation to the service provider, but they
also want to be in control of who has access
to which information.

• Security. Users expect their personal infor-
mation to be protected from interception and
corruption on its way to and from the ser-
vice provider.

• Predictability (Trust). Users will trust a per-
sonalized service the more they perceive the
query results as relevant and free of bias
and that their profile is not misused.

• Usability. While personalization can enhance
the relevance of information, it also can put
a burden on users in terms of how the user
profiles are collected.

In line with the standard approach of
treating the implementation of a third-party ser-
vice as a black box, we select the Microsoft
Passport service, based on its documented ser-
vice interface (Microsoft, 2003). Passport is
one of several identity management standards,
the Liberty Alliance standard (Liberty Alliance,
n.d.) being its main competitor. Passport au-
thenticates service users to service providers
and gives providers access to the profiles of
users.

We can model the integration of the Pass-
port service as a task that satisfies the Identity
Management goal, as shown in Figure 6. Fur-
thermore, we can decompose the Passport fea-
ture into two subfeatures: Authentication and
Authorization. Authentication identified the
user to the service provider, and Authorization
gives the service provider access to the user’s
profile. This is a very high-level decomposition
but sufficient for our analysis. The next step in
our detection methodology described in the

Figure 6. Implementation of the identify management goal

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 31

third section is to analyze the feature composi-
tion graph for conflicts.

Conflicts often occur as a result of unan-
ticipated side effects. In goal-oriented analy-
sis, these are shown as implicit contributions
of goals (dashed lines in a goal graph). While
explicit contributions are identified through
decomposition (e.g., Profiling to Personaliza-
tion), implicit contributions (also known as cor-
relations) show the impact of a goal on goals
other than the one they refine. They are de-
tected as the graph is developed. Another way
of stating this is that the achievement of one
non-functional feature (e.g., usability) often
affects other non-functional features (e.g., pri-
vacy) in either positive or negative ways.

Returning to our example, the Authoriza-
tion subfeature of the Passport feature gives
service providers access to the user’s informa-
tion, no matter who the service provider is. Spe-
cifically, in the current version of Passport (Snell
et al., 2002), the user can only choose to mark

sections of the profile as accessible by service
providers or as inaccessible. No finer provider-
specific level of access control can be speci-
fied (e.g., only to provide access to the age
attribute to particular service providers, which
the user trusts with this information). Further-
more, profile information effectively can be
shared among service providers without the
user’s knowledge. While the user may have a
trusting relationship with the initial service pro-
vider, it may not want its information shared
with other service providers (e.g., subcontrac-
tors of this provider).

As a result, the implementation of the
Identify Management feature using Passport
is found to violate the user’s privacy concerns.
Figure 7 shows the negative side effect of our
particular implementation of the Personaliza-
tion feature on Privacy as a correlation link. It
is due to the Authorization feature, and con-
sequently, we show a contribution link from
Authorization to Privacy. Upon further analy-

Figure 7. Conflict between usability and privacy in the Passport implementation

32 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sis, the reason can be seen in that Passport
blurs the line between authentication and au-
thorization. While it automatically authenti-
cates the user to service providers, it also pro-
vides unconstrained access to the service
user’s profile.

Our analysis does not stop here. Since
goal-oriented analysis allows us to experiment
with different design alternatives, its use is not
limited to identifying a feature conflict. On the
contrary, we can use it to suggest resolutions
for the feature conflict. One strategy is to re-
group the goals in the goal graph, perhaps add-
ing new goals and tasks along the way. In ob-
ject-oriented modeling, such regrouping also
is known as refactoring, and we will adopt this
term here.

From our analysis, we know that the fea-
ture interaction is caused by combining Au-
thentication and Authorization in one feature;
that is, under the control of one service pro-
vider. We can decouple those features by re-

quiring that the implementation of Identity
Management only should authenticate the user.
An alternative design is shown in Figure 8. In
My Identity Service, Authorization is imple-
mented in accordance with the P3P (Platform
for Privacy Preferences Project) standard (W3C,
2003). This design gives users control over what
information they want to be shared with which
service providers. To this end, we make Profil-
ing a goal to be implemented using P3P. Its
implementation of Authorization satisfies the
user’s privacy goals.

The planned evolution of the Passport
platform supports our analysis results. Accord-
ing to Perkins (2002) and Snell et al. (2002), the
upcoming version of Passport will include more
measures for privacy protection. It is expected
to integrate P3P to some degree. Users will be
able to define policies for how their information
should be shared, in line with our proposed
feature interaction resolution. This example il-
lustrates how our approach allows us to rea-

Figure 8. Resolving the usability-privacy conflict by refactoring the goal graph

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 33

son about feature interactions and to explore
refactorings of our design that resolve them.

Similarly, we now could look at the secu-
rity issues associated with the Authentication
feature or any of the other non-functional fea-
tures identified earlier for this service. It is im-
portant to note that what we had presented
was one view of the system, and we intention-
ally limited the number of issues we wanted to
deal with at once. While this is usually a good
strategy, it is not always possible, for example,
if we are dealing with interrelated non-functional
features (e.g., if security were somehow depen-
dent on privacy). The next case study shows
an example of where our analysis forced us to
resolve multiple interrelated conflicts at the
same time.

Restaurant Finder
Consider a business traveler looking for

a restaurant in which to have dinner. The trav-
eler could consult a Restaurant Finder service
to get suggestions that take his or her current
location and preferences into account. The
implementation of a Restaurant Finder service
involves many aspects that make Web Services
both powerful and difficult to implement. It is
an example of a Web Service that must be aware
of the user’s context, that will be selected dy-
namically, and that may be part of a federation
of Web Services in multiple locations. The lat-
ter two aspects were not covered by the Per-
sonalization service in the previous subsection.
For these reasons, it is often used as a refer-
ence example for the implementation of Web
Services, for instance, by AgentCities
(AgentCities, n.d.) or Sun ONE (Sun, 2003).

At a high level, a Restaurant Finder ser-
vice can be decomposed into two features, as
shown in Figure 9, Locate Service, and Recom-
mend Restaurant. This decomposition hides
details of how context awareness and service
transparency (transparent selection of the ser-
vice) are achieved, as well as how the service
might interact with Restaurant Finder services
at other locations.

The Locate Service feature determines a
local instance of the Restaurant Finder service

at the user’s location. It uses location informa-
tion provided by the user’s mobile device and
could be implemented by consulting a UDDI
(Universal Description, Discover, and Integra-
tion) (UDDI, n.d.) service registry. The Recom-
mend Restaurant feature suggests a restaurant
that matches the selection criteria (cuisine, price,
rating, etc.) specified in the user’s profile.

Where most implementations of a Res-
taurant Finder feature are going to differ is in
how well they satisfy non-functional features.
These include:

• Usability (Location). Users want to be di-
rected automatically to a Restaurant Finder
service for their location (without having to
enter their current location).

• Usability (Service). Users expect that the
most appropriate service is selected, if sev-
eral Restaurant Finder services are provided
in a given location.

• Usability (Interface). Users do not want to
deal with multiple service interfaces for dif-
ferent locations but access the service from
a common interface.

• Predictability (Trust). Users will trust res-
taurant recommendations the more they per-
ceive them as relevant and free of bias, and
that their profile is not misused.

• Predictability (Quality). Users expect the
results to be correct (e.g., the distance of a

Figure 9. Components of a restaurant finder
service

34 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

restaurant from their current location) and
personalized to their preferences.

The big selling point of a Restaurant
Finder service is its location transparency. Since
location transparency contributes to Usability,
we model it as an aspect of Usability. In Figure
9, we express the concept of usability due to
location transparency using the GRL concept
of a subtype, Usability [Location] (read as:
Location restricts the type Usability).

In a typical implementation of the Res-
taurant Finder service, Locate Service is imple-
mented as a Directory that can be queried for
service providers by name and type of service,
as shown in Figure 10. Recommend Restaurant
is implemented as a manually compiled listing
of restaurants and ratings assigned by restau-
rant critics, the Listing and Ratings feature. This
listing can be searched, based on user-defined
criteria (e.g., cuisine, price, rating, etc.).

During the analysis of the feature compo-
sition graph, three side effects are identified, as
shown in Figure 11. The Directory feature does

Figure 10. Implementation of the locate service
and recommend restaurant goals

Figure 11. Conflicts between location and interface aspects of usability, and quality and trust
aspects of predictability in the restaurant finder feature

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 35

not protect the service user from the idiosyncra-
sies of the interfaces of local Restaurant Finder
services. No common interface is provided to
ensure access transparency, resulting in a viola-
tion of the Usability [Interface] feature.

It also is hard to ensure that service pro-
viders correctly implement the service interface.
Directory only provides an index for searching
service providers but does not police service
quality. That is, it only can guarantee that a
service complies with its interface at a syntac-
tic level. However, if the feature miscalculates
the distance between user and restaurant, it
could not be detected. This restriction is in con-
flict with the Predictability [Quality] feature.

The Listing and Ratings lacks personal-
ization. This makes the service inconvenient to
use (e.g., it requires re-keying of search crite-
ria) and hurts Predictability [Quality]. While it
would relatively easy to extend the feature to
remember the user’s preferences and use them
in future searches, the main drawback of such
personalization is that it reduces serendipity

by pigeonholing the user. For example, the ser-
vice will never suggest restaurants that serve a
cuisine typical for the region, if it is not included
in the user’s preferences.

Limited personalization also is not a good
basis for building up a trusting relationship with
the user. Trust is something that only can be
built over time by using a service. For example,
a service for restaurant recommendations be-
comes trustworthy after it has been recommend-
ing restaurants that the user has liked in the
past (these are not redundant but, on the con-
trary, the basis for trust). In addition, the imple-
mentation suffers from the issue of bias; for
example, there is no way to detect if the service
only returns restaurants that have paid a fee
for being included in the restaurant listing.
Thus, the feature is also in conflict with the
Trust aspect of Predictability.

As in the previous case study, we can
resolve most of the detected feature interac-
tions by refactoring the goal graph. At the cen-
ter of the solution is a trusted portal through

Figure 12. Resolving the conflict between usability and predictability

36 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

which the user will interact with the service.
This portal makes the selection of localized ser-
vices transparent and polices the quality of the
recommendations. We also are not restricted to
a centralized portal but can use a federation of
portals that share information with each other
instead (however, this is not shown in the
present graph). The resulting goal graph is
shown in Figure 12.

In this solution, users no longer need to
interact directly with the Locate Service fea-
ture. The problem with the varying quality of
service providers also is addressed by imple-
menting Locate Service through a Reputation
Management feature. This feature allows users
to rate providers of the Restaurant Finder ser-
vice. Based on this feedback, a ranking of the
service providers can be established, using a
collaborative algorithm such as Sporas
(Zacharia et al., 1999). The portal automatically
selects the highest-ranked service for the user’s
location.

The problem of limited personalization is
addressed by using a collaborative filtering
mechanism to generate recommendations from
a population of users. Recommendations are
no longer based just on the user’s query or

profile information but on the likes and dislikes
of similar users. This type of recommendation
encourages serendipity. The improved quality
of the recommendations also builds up the
user’s trust over time. Finally, the portal puts a
single harmonized interface on top of the dif-
ferent interfaces of individual Restaurant Finder
services. It provides a mapping layer for adapt-
ing the idiosyncrasies of a given service inter-
face to a common interface.

A solution similar to the one proposed as
result of our analysis has been proposed in
one of the AgentCities projects. A recommender
system based on an opinion-based filtering
method (Montaner et al., 2002) uses a collec-
tion of service and personal agents. Service
agents offer information about restaurants, and
personal agents provide users with recommen-
dations on restaurants, based on their interac-
tion with similar trusted personal agents. The
underlying trust model enhances the reliability
of the recommendations. In this model, personal
agents weigh the recommendations from trusted
contacts higher than those of others.

Third-Party Intermediary
An intermediary is a component that sits

between service users and service providers. It
is itself a Web Service that provides a certain
value added (i.e., authentication, auditing, cach-
ing, brokering). It works by intercepting re-
quests from service users, performing its func-
tionality (e.g., authenticating the user) and for-
warding the request to the server. Later, it inter-
cepts the service provider’s response and re-
lates it back to the service user. This corre-
sponds to Web Services Architecture Usage
Scenario S030 (W3C, 2002).

Consider the example of a Word Process-
ing Web Service that makes use of two third-
party Web Services, Spellchecking and Format-
ting, as shown in Figure 13. Suppose that in
requests originating from the Word Processing
feature, the language option of the Spellchecker
service is set to UK English. Formatting also
happens to use a third-party spellchecker ser-
vice, which may be the same service. It assumes
that American English should be used for

Figure 13. Components of a word processing
service

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 37

spellchecking. However, following good infor-
mation-hiding practice, the word processing
service is unaware of this.

The main value added by this design of
the Word Processing service is Maintainabil-
ity. A consequence of information hiding, Main-
tainability suggests delegating supplementary
functions, such as Spellchecking and Format-
ting, to third-party services. This is a fairly real-
istic scenario, given the existence of services
like Google’s spellchecking service (Google,
2003). The same reasoning underlies the use of
Spellchecking inside the Formatting service.

The intermediary in our scenario is the
Formatting service. It executes Spellchecking
on behalf of Word Processing, but does not
disclose that. As Figure 14 shows, this leads to
two types of conflicts. As the spellchecker gets
invoked two times, this negatively impacts per-
formance. More disastrous, though, for the
correct performance of the Word Processing
service is that Formatting overrides the user’s
language preference. Formatting assumes that
an American-English dictionary should be used,
whereas the user preferred the UK spelling.

The problem highlighted by this case
study is how information hiding by a Web Ser-

vice implementation can lead to negative con-
sequences for Correctness and, in this case,
Performance. The strategy for resolving the
conflict calls for breaking the information-hid-
ing principle. The conflict no longer can occur,
if each recipient of a service request (i.e.,
Spellchecking) were to consult with the initia-
tor of the request (i.e., Word Processing) about
how to perform the service (in this case, which
language option to use).

DISCUSSION OF
THE CASE STUDIES

In this section, we try to generalize our
results obtained in the case studies. Our guid-
ing question for evaluating each case study is
what type of feature interaction and what reso-
lution strategies does the case study illustrate?
We identified three types of interactions: goal
conflicts, deployment and ownership issues,
and issues related to information hiding. Goal
conflicts are illustrated by the case studies in
the subsections “Personalized Web Service”
and “Restaurant Finder.” The impact of deploy-
ment and ownership issues is illustrated by all
three case studies. Finally, information-hiding

Figure 14. Conflicts between maintainability, performance, and correctness in the word
processing service

38 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

issues are touched on by the case studies in
the subsections “Personalized Web Service”
and “Third-Party Intermediary.” Following is a
discussion of these types of interactions.

Goal Conflicts
We found goal-oriented analysis to be

suitable particularly for the analysis of feature
interactions, not just in Web Services. This form
of analysis hinges on a model of the functional
and non-functional goals of a system. This
model is provided by a goal graph, which cap-
tures the influence of goals on each other. Goal-
oriented analysis allows us to reason about fea-
ture interactions such as goal conflicts. (As
features are modeled as goals, we also have
referred to a goal graph as a feature composi-
tion graph on several occasions.)

Goal conflicts become visible as a set of
conflicting softgoals. They often occur as a
result of unanticipated side effects, where, in
trying to achieve one softgoal, we inadvert-
ently negatively impact another softgoal. In our
analysis, we trace conflicts back to the tasks
that cause them. Such interactions often can
be solved by refactoring the goal graph. In
refactoring, we regroup the goals, possibly in-
troducing new goals and tasks to the graph
along the way.

In the first case study, the interaction
between Usability and Privacy is resolved by
grouping the Authorization feature with the
Profiling goal. This amounts to decoupling the
Authentication and Authorization features. Al-
though not shown in the goal graph, this
amounts to changing ownership of the Autho-
rization feature from Passport to the service user.
Thus, a deeper justification for refactoring the
goal graph in the way described is provided by
an analysis of deployment and ownership is-
sues (see the following subsection).

The second case study resolves a con-
flict between Usability and Predictability. The
refactored solution replaces the original List-
ing and Ratings feature by a trusted portal,
which in turn uses collaborative filtering to rate
the restaurants. This improves the Predictabil-
ity of the service. Again, it is possible to justify
this resolution in terms of deployment and own-
ership (see the following subsection). The List-
ing and Ratings feature is an indication of a
conflict of interest, which can be resolved by
decoupling the feature into two independently
owned features.

In some cases, we found that we need to
supplement goal-oriented analysis with deploy-
ment models and use case maps. However, as
such, this finding is not surprising, and the
modeling community already has recognized

Figure 15. Before and after redeployment of authentication and authorization

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 39

the need to create a notation that combines
goal-oriented analysis (static aspects) with use
case maps (dynamic aspects) (URN, n.d.). The
following subsections illustrate how these
other models can be used in conjunction with
goal graphs.

Deployment and Ownership
The intrinsically open and distributed

nature of Web Services implies that some deci-
sions need to be made as to what services are
needed, who should provide the services (own-
ership), and where services should be deployed
(deployment). Deployment and ownership de-
cisions influence feature interaction issues in
the following ways:

• Physical decoupling of services (by making
dependent services run on different hosts
and sometimes under different ownership)
can help solve resource contention issues
(by avoiding that a single host becomes a
bottleneck).

• Grouping of related services gives the owner
more control over the resulting system and
allows for performance optimizations. How-
ever, physical decoupling under the same
ownership can lead to better scalability.

• Conversely, delegating a functional feature
to a third party removes the need for local
management features to assure its quality. Of
course, we then have to trust the third party
that such features are properly supported.

• Ownership of some services by the same
owner can also lead to a conflict of interest
and a loss of trust in the owner due to (the
perception of) bias. This provides further
incentives for delegation and physical
decoupling.

In the case study in the subsection “Per-
sonalized Web Services,” the reason for the
feature interaction is that Authentication and
Authorization are owned by the same service
provider (Passport). The UCM in Figure 15 shows
how the features are assigned to the parties in-
volved before and after redeployment. It should

be noted, however, that as a consequence of
decoupling, the Personalization feature no longer
can benefit from the profile storage feature that
is implicitly offered by Passport.

In the case study in the subsection “Res-
taurant Finder,” the Restaurant Finder service
provider should not provide both listings and
ratings, as this would constitute a conflict of
interest. Our resolution strategy suggests to
decouple these tasks into two independently
owned features. In our solution, both listing
and rating services are based on user feedback.
In this setup, a biased service will receive a
lower ranking over time than an unbiased one.
The case study in the subsection “Third-Party
Intermediary” is an example in which delegat-
ing the Spellchecking functionality to a stand-
alone third-party service relieves the Word Pro-
cessing service from having to assure that its
own spellchecker is kept up-to-date. However,
due to information hiding (see the following
subsection), feature redeployment creates an
unforeseen conflict.

Information Hiding
Information hiding is a software engineer-

ing practice that aims at hiding the complexity
of a piece of functionality behind an interface.
Since the functionality of a service only can be
accessed through this interface, using the ser-
vice does not require detailed knowledge of its
implementation (ease of use), and the decoupling
of interface and implementation promotes reuse.
However, as a consequence of information hid-
ing, users of the service cannot control how the
service is implemented, which leaves less room
for application-specific optimizations.

The lack of control over the implementa-
tion of a service also means that, in a given
composition, the same Web Service can end up
being used more than once. In the worst-case
scenario, as shown by the Word Processing
service, the hidden use of a service can over-
ride its explicit use. In the example, Spellchecking
is also used by Formatting, but after the explicit
invocation within Word Processing. If the hid-
den call uses incorrect or incomplete arguments,
the service override means that the effects of

40 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the two invocations are in conflict with each
other. Here, the implementers of the Formatting
service had made the hidden assumption that
users speak American English.

A similar example could have been given
for a third-party service with a privacy policy
that conflicts with that of the intermediary. In
that scenario, the user trusts the intermediary
but is unaware of the privacy violation caused
by information hiding. There are a number of
ways to resolve such interactions, and we will
discuss three of them. The first strategy is to
assume a centralized Web Service management
platform with complete access to all parties. A
simple traversal of the service composition
graph then can detect the conflict.

Given that in practice we do not have
access to this information, consider an alterna-
tive strategy, where the intermediary aggregates
the input parameters to be supplied to third

parties. In the Word Processing example, the
Formatting service would report back the lan-
guage option to be used by Spellchecking to the
Word Processing service. In the privacy sce-
nario, the intermediary could combine the pri-
vacy policies of the third parties and present
them to the service user, who then can deter-
mine which information to release or can decide
to provide different information to each service
provider in separate parcels (W3C, 2003).

A third strategy is to require the final re-
cipients of a service request (third parties) to
consult with the initiator of the request (service
user) about how to perform the service. In the
Word Processing scenario, the Spellchecking
and the Word Processing services would agree
on the language to use. Then, it is also possible
for the service user to detect duplicate invoca-
tions of the same service in the same context
and to deny it. Similar reasoning can be applied

Figure 16. Before and after breaking the information hiding principle

Figure 17. Causes of feature interactions in Web Services

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 41

to the privacy scenario illustrated by the Per-
sonalization service. The solution in W3C (2003)
is for the service user to check the privacy policy
of each third party for compliance with its pri-
vacy preferences.

The use case map in Figure 16 shows
that the third strategy involves breaking the
information hiding principle. Before invoking
the Spellchecking service provided by the
Spellchecker, the Formatting service (provider
of the Formatter) discloses its intention to do
so to the Word Processing service, which then
can pass on the appropriate language setting
(UK English).

Summary of Causes of Feature
Interactions in Web Services
Figure 17 summarizes the typical causes

of feature interaction that either are specific to
the Web Services domain (as discussed in the
previous sections) or have been identified in
previous research on feature interactions in the
telecommunications domain (Utas, 2001) and also

apply here. Our classification of feature interac-
tions extends previous classifications in telecom-
munications by (1) distinguishing between func-
tional and non-functional interactions and (2)
introducing two causes of interactions that we
consider specific to Web Services: deployment
and ownership, and information hiding. Nei-
ther of these are issues in closed, centralized
telecommunications systems.

APPLICATION
TO E-COMMERCE

In this section, we describe how the
causes of feature interaction identified in the
preceding subsection can be observed in a
typical e-commerce application using Web Ser-
vices. Figure 18 is a so-called actor diagram
for a typical e-commerce application. An actor
diagram shows the actors and their goal de-
pendencies. The diagram models the Amazon
online bookstore that gives Customers access
to its virtual catalog and the option to order
books from the catalog through its Order Pro-

Figure 18. A typical e-commerce application: The Amazon online bookstore

42 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

cessing service. In the actor diagram, the Or-
der Processing service is modeled as goal
dependency, which states that the Customer
depends on Amazon in order to achieve the
Order Processing goal.

Amazon relies on a number of Suppliers
to fulfill customer orders. Customer logins are
handled through the iPassport identity man-
agement service, which provides an Authenti-
cate User and an Access Profile service. On
receiving a customer order, Amazon authenti-
cates the customer and then accesses the
customer’s profile. It subsequently selects a
Supplier that stocks the ordered book and in-
vokes its Order Processing service, in turn pass-
ing along the customer’s identity.

The Supplier determines the availability
of the ordered book and, if successful, obtains
the customer’s payment and shipping prefer-
ences from the iPassport service. It then in-
vokes the Payment Processing service provided
by the PayMe financial service provider and
the Delivery service of Amazon’s ShipEx fulfill-
ment partner. Customers can track the progress
of their orders via the Tracking service pro-
vided by ShipEx. They also can manage their

online profiles and payment accounts through
services provided by iPassport and PayMe,
respectively.

If a Supplier cannot fulfill an order, it will
attempt to satisfy it from its network of Other
Suppliers. Although not shown in the diagram,
the selected Other Supplier behaves the same
as a Supplier; that is, it will use the same pay-
ment and delivery services. (Properly modeled,
Other Supplier would be a role that a Supplier
can play; however, this is not supported in the
current version of GRL). Finally, some Suppli-
ers might choose to share selected customer
information with the EvilAds advertisement
agency via its ClickAds service as an additional
source of revenue.

To keep the application manageable, we
have avoided the kind of duplication and extra-
neous information in the models that one would
observe in a real-world example. For instance,
we chose not to model that Amazon might have
its own inventory from which to fulfill popular
orders, as this would not add anything new to
model with regard to the feature interactions
that we wish to demonstrate. In the following,
we provide examples of the different causes of

Figure 19. Example of a goal conflict in the Amazon application

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 43

feature interactions that can occur between the
services modeled in Figure 18.

Goal Conflict
Amazon and its Suppliers obtain the

customer’s payment and shipping preferences
from the iPassport service. While this is conve-
nient for both Customers and service provid-
ers, there is also potential for undesirable side
effects. The goal graph in Figure 19 allows us
to analyze the situation. It shows that the Us-
ability and Privacy goals of the Customer con-
flict with one another, since any service pro-
viders registered with iPassport can access the
profile, including those providers with whom
the customer has no trusting relationship.
While there is a trusting relationship between
the Customer and Amazon, the relationships
between Customers and Suppliers are
untrusted, and there is no guarantee that a Sup-
plier will adhere to Amazon’s privacy policy.
Instead, it could decide, for example, to sell the
profile information to EvilAds, which then will

target the Customer with unsolicited ads. This
is a non-functional feature interaction between
the Manage Profile and Access Profile services.
It is primarily an example of a goal conflict. How-
ever, it also can be classified as a deployment
and ownership, information hiding, or policy
conflict.

This diagram adds two new notational
elements. Bars, which can be vertical or hori-
zontal, indicate boundaries between actors.
They are used only for emphasis in a manner
similar to swimlanes in activity diagrams. Here,
a bar separates iPassport from Supplier and
Amazon. The square on a contribution or cor-
relation link is used to highlight the link. It can
be used to draw attention to a link that is the
source of another link. Again, highlighting is
used for emphasis and not strictly required by
our notation. The link from Access Profile to
the Get Customer Info goal of the Supplier rep-
resents that any Supplier can gain access to
the user’s profile via the Access Profile service.
This link is highlighted and linked to the Pri-

Figure 20. Example of an interaction due to resource contention in the Amazon application

44 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

vacy goal to indicate that providing uncon-
trolled access to the user’s profile has the side
effect of violating their Privacy concerns.

Resource Contention
When Amazon invokes the Order Pro-

cessing of one of its Suppliers, this supplier, in
turn, will place an order with one of its network
of Other Suppliers, if it does not have the re-
quested book in stock. However, this can lead
to a situation where the order is sent back to
Amazon, resulting in an order processing loop.
Figure 20 shows a scenario in which Amazon is
both a client and a supplier to a given Supplier.
If undetected, this can lead to an infinite loop
of order requests, which will hurt the perfor-
mance of both servers as a side effect. This
conflict is a feature interaction between the
Order Processing services offered by Amazon
and its Suppliers.

Policy Conflict
A Customer might benefit from more than

one type of discount, for example, based on
membership and bulk purchases. This leads to
a possible conflict between policies as retrieved
through Access Profile (either various policies
within the same profile or across local profiles
stored with the various Suppliers) and to errors
in Order Processing. There needs to be a way
to specify that one discounting policy should
override the others or whether some or all of
the policies must be applied. In case the im-
plicit meta-policy is to apply only one discount-
ing policy, then the invocation order among
multiple calls to the Access Profile service can
become another related issue, unless a com-
plete priority list is established among the vari-
ous policies. However, establishing such a list
generally is impractical in an open and distrib-
uted domain such as Web Service-based e-com-
merce, where suppliers and policies can be
added dynamically.

Figure 21. Example of an interaction due to invocation order in the Amazon application

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 45

Invocation Order
There is a potential conflict between Pay-

ment Processing and Order Processing, or Pay-
ment Processing and Delivery, due to timing
errors, as shown in Figure 21. The interaction
can result either in the customer getting charged
without the product being shipped or the cus-
tomer getting the product for free. Both errors
exploit timing glitches; for example, when the
customer cancels his or her order, it could be
that the payment still gets processed but the
order shipment is aborted. The reason is that
the cancellation request was sent just before
payment started but arrived after the payment
process proceeded. Technically, such problems
can be avoided through transaction manage-
ment, but this requires that the problem be prop-
erly anticipated in the first place.

RELATED WORK
Goal-oriented analysis, as introduced by

Mylopoulos et al. (1999) and Chung et al. (2000)
and supported by the GRL notation (GRL, n.d.),
is the primary analysis method used in this pa-
per. This method has been applied to early re-
quirements engineering in a number of domains,
including telecommunications. However, to our
knowledge, this is the first study describing
the use of goal graphs for modeling and rea-
soning about feature interactions.

Prior work on using UCMs for modeling
features and detecting feature interactions is
reported in Amyot (2000). That paper describes
a scenario-based approach to generating vali-
dation test suites and feature interaction de-
tection by identifying scenarios with overlap-
ping preconditions. Although the approach
only has been applied to telecommunication
systems, we don’t see why it could not be ap-
plied in order to detect similar interactions be-
tween Web Services. However, non-functional
feature interactions and deployment issues are
not considered.

An early version of some of the ideas in
this paper is contained in Weiss et al. (2004).
This paper differs from the earlier study in a
number of significant aspects. It introduces a

new case study, makes use of the Use Case Map
notation to analyze deployment and ownership
issues, and provides a much more comprehen-
sive empirical analysis of feature interactions in
Web Services. It also presents current results
toward a classification of feature interactions in
Web Services and illustrates it with an example
of a typical e-commerce application.

CONCLUSION
In this paper, we propose an approach

for modeling undesirable interactions between
Web Services as feature interactions and their
detection. Our approach is unique in its use of
goal graphs from goal-oriented analysis (Goal-
Oriented Requirements Language [GRL]) and
to reason about feature interactions and sce-
nario models (Use Case Maps [UCMs]) for rea-
soning about the deployment of functional fea-
tures. Our paper includes an empirical analysis
of several feature interactions. In our discus-
sion of the case studies, we identified a number
of reasons for undesirable interactions among
Web Services, including goal conflicts, deploy-
ment, and ownership, as well as information
hiding issues and strategies for resolving such
interactions.

The combination of GRL and UCMs sup-
ports our approach well. The first two steps
outlined in the third section — modeling fea-
tures and analyzing these models for goal con-
flicts — can be achieved by using the goal graph
concept from GRL. Goal graphs allow us to rep-
resent features and to reason about conflicts
among them. The third step — resolving inter-
actions — can be supported by using GRL in
combination with UCMs. GRL is suitable for
reasoning about refactorings of the goal graph.
UCM models allow us to explore the different
alternatives suggested by the GRL models.
They particularly are suitable for analyzing de-
pendencies among and changes to the deploy-
ment and ownership of functional features.
They also can be used to reason about inten-
tion-disclosing negotiation protocols for resolv-
ing interactions due to information hiding.

46 International Journal of Web Services Research, 2(4), 22-47, October-December 2005

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We currently are working on a bench-
mark for feature interactions in Web Services
to encourage the comparison of different mod-
eling and resolution approaches. We also study
the formalizations of goal graph refactorings,
for example, using graph-rewriting techniques.
In other work, we are exploring some of the
open research questions triggered by this re-
search — what parallels are there between non-
functional features and aspects in Aspect-Ori-
ented Programming (AOP), between goal con-
flicts and the interaction of aspects; and what
kind of architecture can support the runtime
management of feature interactions in aspect-
and service-oriented architectures?

REFERENCES
AgentCities Lisboa Node. (n.d.). Restaurant

finder service. Retrieved September 2004,
from http://agentcities.we-b-mind.org/ser-
vices/RFServiceDescription.htm

Amyot, D. (2003). Introduction to the user re-
quirements notation: Learning by example.
Computer Networks, 42(3), 285-301.

Amyot, D. et al. (2000). Feature description and
feature interaction analysis with use case
maps and LOTOS. In Proceedings of the
International Workshop on Feature In-
teractions in Telecommunications and
Software Systems (FIW) (pp. 274-289). IOS
Press.

Arsanjani, A. (2002). Towards a pattern lan-
guage for Web Services architecture. Pat-
tern Languages of Programming (PLoP).

Chung, L. (1991). Representation and utiliza-
tion of non-functional requirements for in-
formation system design. In Proceedings of
the Conference on Advanced Information
Systems (CAiSE), LNCS (pp. 5-30).

Chung, L., Nixon, B., Yu, E., & Mylopoulos, J.
(2000). Non-functional requirements in soft-
ware engineering. Kluwer.

Constantinescu, I., Willmott, S., & Faltings, B.
(2002). Abstract behavior representations for
service integration. In Proceedings of the
AAMAS Workshop on AgentCities: Chal-
lenges in Open Agent Environments.

Google. (2003). Google Web APIs. Retrieved from
http://www.google.com/apis/reference.html

GRL. (n.d.). Retrieved August 2003, from http:/
/www.cs.toronto.edu/km/

Hailpern, B., & Tarr, P. (2001). Software engi-
neering for Web Services: A focus on sepa-
ration of concerns. In Proceedings of the
OOPSLA Workshop on Object-Oriented Web
Services.

Liberty Alliance. (n .d.). Retrieved August 2003,
from http://www.projectliberty.org

Microsoft. (2003, May). Microsoft .NET Pass-
port for Developers. Retrieved from http://
www.microsoft.com/net/services/ passport/
developer.asp

Montaner, M., Lopez, B., & de la Rosa, J.L.
(2002). Opinion-based filtering through trust.
In Proceedings of the Workshop on Coop-
erative Information Agents (CIA), LNAI
2446 (pp. 164-178).

Mylopoulos, J., Chung, L., & Yu, E. (1999). From
object-oriented to goal-oriented require-
ments analysis. Communications of the
ACM, 42(1), 31-37.

O’Sullivan, J., Edmond, D., & ter Hofstede, A.
(2002). What’s in a service? Towards accu-
rate description of non-functional service
properties, distributed and parallel data-
bases. Kluwer.

Perkins, E. (2002, February 5). Passing pass-
port, meta group. Tech Update Newsletter,
ZDNet.

Pulvermüller, E. et al. (2001). Feature interaction
in composed systems. In Proceedings of the
ECOOP Workshop on Feature Interactions
in Composed Systems.

Ryman, A. (2003). Understanding Web Services.
Retrieved from http://www.software.ibm.com/
wsdd/library/techarticles/0307_ryman/
ryman.html

Snell, J., Tidwell, D., & Kulchenko, P. (2002).
Programming Web Services with SOAP.
O’Reilly.

Sun. (2003). Sun ONE studio 5: J2EE applica-
tion tutorial. Retrieved from http://
developers.sun.com/tools/javatools/docu-
mentation/s1s5/diningguide.pdf

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Web Services Research, 2(4), 22-47, October-December 2005 47

UDDI (Universal Description, Discovery, and In-
tegration of Web Services). (n.d.). Retrieved
August 2003, from http://www.uddi.org

URN (User Requirements Notation). (n.d.). Re-
trieved August 2003, from http://
www.usecasemaps.org/urn

Utas, G. (2001). A pattern language of feature
interactions. In L. Rising, Design patterns
in communication software. Cambridge, UK:
Cambridge University Press.

Velthuijsen, H. (1993). Distributed artificial in-
telligence for runtime feature interaction reso-
lution. IEEE Computer, 45-55.

W3C. (2002). Web Services architecture usage
scenarios, S030. Retrieved from http://
www.w3.org/TR/2002/WD-ws-arch-sce-
narios-20020730

Michael Weiss is an assistant professor at Carleton University, which he joined in 2000 after
spending five years in industry following the completion of his PhD in computer science in
1993 (University of Mannheim, Germany). In particular, he lead the Advanced Applications
group within the Strategic Technology group of Mitel Corporation. His research interests
include Web Services, software architecture and patterns, business model design, and open
source.

Babak Esfandiari is an assistant professor at Carleton University. He obtained his PhD in
computer science in 1998 (University of Montpellier, France) and then worked for two years at
Mitel Corporation as a software engineer before joining Carleton in 2000. His research interests
include agent technology, network computing, and object-oriented design.

W3C. (2003, August). Platform for privacy pro-
tection (P3P) project. Retrieved from http://
www.w3.org/P3P

Weiss, M., & Esfandiari, B. (2004). On feature
interactions in Web Services. In Proceed-
ings of the Second International Confer-
ence on Web Services (ICWS).

Zacharia, G., Moukas, A., & Maes, P. (1999).
Collaborative reputation mechanisms in elec-
tronic marketplaces. In Proceedings of the
Hawaii International Conference on Sys-
tem Sciences (HICSS), 8026. IEEE.

