94.587 Modelling Discrete-Event Systems Using DEVS (2002 Fall)
Assignment2: Voter Model Cellular Automata

Tao Zheng 258050

Carleton University
Part I

The simplest imaginable probabilistic cellular automata called Multitype Voter Model is first introduced in [2]. The Java applets simulate the voter model with different presets. The voter model is described more clearly in [1]. As described in [1], different colors representing voters with different political preferences fill a board. The voters can either stick their previous political preferences of change their political preferences based on their neighbors. The rules for the next step political preference are defined as follows:

1. The voter sticks to his previous political preference according to a global probability parameter (e.g. 0.5).

2. If the voter decides to change his political preference, one of his four adjacent neighbors (N, S, E, W) is picked at random and that political preference is assigned to this voter.

The voter model starts from random beginning.

In this assignment, the basic rules of the voter model will be kept, and some parameters will be modified to simplify the model in some ways. Each voter is assumed to stick his political preference with a probability of 50%. If the voter decides to change his political preference, the probabilities of changing his political preference to one of his four adjacent neighbors are equivalent, i.e. 25%. Totally, the voter has 50% to stick his political preference and 12.5% to change his preference to one of his four adjacent neighbors’. Only 3 types of political preference are defined in the assignment: Democrat (D), Republican (R) and None (N). The initial values of the cells are assigned with the following probabilities to describe the current US politics at some degrees: Democrat 45%, Republican 45% and None 10%. The cell spaces are in 10 x 10 dimensions.

Part II
Formal Specifications

The formal specification <X, Y, I, S, (, N, d, (, δint, δext, λ, ta> for the atomic Cell-DEVS model is defined as follows:

X = { x | x ([0,3) }

Y = { y | y ([0,3) }

I = <5, 0, {Px1, Px2, Px3, Px4, Px5}, {Py1, Py2, Py3,Py4,Py5}>

S = { s | s ([0,3) }
//[0,1): Republican , [1,2): None , [2, 3): Democrat(D)

(= { (s, phase, (queue, ()}

where
s([0,3),
phase({passive, active},

(queue = {(vi, (i) / i (N, vi ([0, 3), (i (R0+}

and ((R0+

//user transport delay
N (S5

d = 100ms

//fixed for the cell in the model

(=
[image: image1.wmf]ï

ï

ï

î

ï

ï

ï

í

ì

+

+

-

+

+

-

+

y

probabilit

uniform

trunc

y

probabilit

uniform

trunc

y

probabilit

uniform

trunc

y

probabilit

uniform

trunc

y

probabilit

uniform

trunc

%

5

.

12

)

99

.

0

,

0

(

)

1

,

0

(

%

5

.

12

)

99

.

0

,

0

(

)

0

,

1

(

%

5

.

12

)

99

.

0

,

0

(

)

0

,

1

(

%

5

.

12

)

99

.

0

,

0

(

)

1

,

0

(

%

50

)

99

.

0

,

0

(

)

0

,

0

(

//The local computing function should be calculated in every step even though the neighbors are not changed in the last step. The uniform function is used to ensure the execution of local computing function in every step. The trunc function eliminates the random effects of uniform function in the last step. The local computing function is non-deterministic. It has a probability to execute one of the five formulas.

δint:
internal transition function which is defined by CD++ automatically

δext:
external transition function which is defined by CD++ automatically

 λ:

output function which is defined by CD++ automatically

ta(passive) = INFINITY

ta(active) = d

The formal specification <Xlist, Ylist, I, X, Y, η, N {f, c}, C, B, Z, select> for the coupled Cell-DEVS model is defined as follows:

Xlist = {Ф}

Ylist = {Ф}

I = {Ф}

X = {Ф}

Y = {Ф}

//no external inputs and outputs

η = 5

N = {(0,0), (-1,0), (0,1), (0,-1), (1,0)}

//neighborhood

{f,c} = {10,10}
//10x10 cell space

C = { Cij | i ([1,10], j([1,10]} where Cij is an atomic component defined in the previous part.

B = {Ф}

//the border is wrapped

Z(Pijy1) = Pijx1

or
Z(Pijy1) = Pijx1
Z(Pijy2) = Pi-1jx2

Z(Pi+1jy2) = Pijx2
Z(Pijy3) = Pij+1x3

Z(Pij-1y3) = Pijx3
Z(Pijy4) = Pij-1x4

Z(Pij+1y4) = Pijx4
Z(Pijy5) = Pi+1jx5

Z(Pi-1jy5) = Pijx5
Select = {(0,0), (-1,0), (0,1), (0,-1), (1,0)}

Test Cases and Execution Analysis

Two models with the same specification but different initial values and simulation timeare created.

“voter” model:

This is an intermediate model to verify whether the model is implemented correctly. In this model, the initial values are put into the cells in order i.e. all the 0s are followed by 1s and then by 2s. The model is set to stop after 50 steps. According to the local computing function, only the cells whose neighbors have different states have a probability to change their states. This probability is different from each other according to the different combination of the states of the neighbors. In this model, it is easier to determine which cells may have a chance to change their states. The behavior of the voter model is non-deterministic. The simulation results are within the expectation by using the online applet. This model verifies the formal specification.

“voter2” model:

This model is the final model for implementation. In this model, the initial values are put into the cells in a random order generated by an external program. The model is set to stop after 200 steps. Because the specification has been verified in the previous model, this model is just to see what will happen to the political preferences after a longer run. In my simulation, after 200 steps, the minor political preference (None) disappears and one of the major political preferences (Democrat) dominates the cell spaces. The simulation result is similar to that of the Java applet provided in [2]. It looks like the political preference will finally be unified.

The voter model cellular automata simulates how voters’ political preferences are influenced by their neighbors. The testing cases verify the specifications of this model and the simulation result is similar to those of other implementations. In my opinion, the simulation result is a little bit interesting.
Reference:

[1] Voters Models Cellular Automata, Clayton Bjorland, Evolutionary Game Theory.
http://www.cse.ucsc.edu/~cbjorlan/cb_hw1.html

[2] Java Voter Models and a Political Puzzle. http://psoup.math.wisc.edu/java/recipe88.html

(2)

(3)

(4)

(5)

(1)

W

S

E

N

_1098259363.unknown

