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Abstract. Evolution of a population consisting of individuals, each holding a
unique “genetic code”, is modeled on the 2D cellular automata lattice. The “ge-
netic code” represents three episodes of life: the “youth”, the “maturity” and the
“old age”. Only the “mature” individuals can procreate. Durations of the life-
episodes are variable and are modified due to evolution. We show that the “ge-
netic codes” of individuals self-adapt to environmental conditions in such a way
that the entire ensemble has the greatest chance to survive. For a stable envi-
ronment, the “youth” and the “mature” periods extend extremely during evolu-
tion, while the “old age” remains short and insignificant. The unstable environ-
ment is modeled by periodic plagues, which attacks the colony. For strong
plaques the “young” individuals vanishes while the length of the “old age” pe-
riod extends. We concluded that while the “maturity” period decides about the
reproductive power of the population, the idle life-episodes set up the control
mechanisms allowing for self-adaptation of the population to hostile environ-
ment. The “youth” accumulates reproductive resources while the “old age” ac-
cumulates the space required for reproduction.

1   Introduction

The cellular automata paradigm is a perfect computational platform for modeling
evolving population. It defines both the communication medium for the agents and
the living space. Assuming the lack of individual features, which diversify the popu-
lation, the modeled system adapts to the unstable environment, developing variety of
spatially correlated patterns (see e.g. [1-3]). Formation of patterns of well-defined
multi-resolutional structures can be viewed as the result of a complex exchange of
information between individuals and the whole population.
      Another type of correlations - correlations in the feature space - emerges for the
models of populations in which each individual holds a unique feature vector evolving
along with the entire system [4].  The aging is one of the most interesting puzzles of
evolution, which can be investigated using this kind of models.
      It is widely known that the aging process is mainly determined by the genetic and
environmental features. The most of computational models of aging involving genetic
factor are based on the famous Penna paradigm [5,6]. This model uses the theory of
accumulation, which says that destructive mutations - which consequences depend on
the age of individual - can be inherited by the following generations and are accumu
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lated in their genomes.  The Penna model suffers from the following important limita-
tions.
1. The location of the individuals in space is neglected, thus the system evolves in

spatially uncorrelated environment with unbounded resources.
2. Only two episodes of life are considered, i.e., the “youth” and the “maturity”. The

durations of the two are the same for each individual. The “old age” is neglected.
In this paper we propose a new model, complementary to the Penna paradigm.  It does
not consider genetic mutations. Instead, it allows for studying the influence of envi-
ronmental factors on the aging process.
       The paper is constructed as follows. First, we describe our algorithm, its principal
assumptions and implementation details. In the following section we discuss the re-
sults of evolution and self-adaptation of population to the hostile environment repre-
sented by periodic plaques. Finally, our findings are summarized.

2   CA Model of Evolution

Let us assume that an ensemble of S(t) individuals is spread on 2D N×N mesh of
cellular automata (CA). The mesh is periodic. Each individual, residing in (i,j) node,
is equipped with a binary chain – the “genetic code” - of length L. The length and the
number of “1”s in the chain correspond to the maximal and actual life-time of indi-
vidual, respectively. Only “1”s from “genetic codes” of each individual are read one
by one along with the evolution while “0”s are skipped. Afterwards the last “1” has
been read, the individual is deleted from the lattice. The individuals are treated as
independent agents, which can move and reproduce according to recombination
(cross-over) operator from the genetic algorithms. The code chain consists of three
sub-chains corresponding to three episodes of life: the “youth” y, the “maturity” m
and the “old age” o. They do not represent biological age of individuals, but reflect
their reproduction ability. Only the “mature” individuals from the Moore neighbor-
hood [7] of an unoccupied node of CA lattice are able to reproduce. Every individual
can move randomly on CA lattice if there is a free space in its closest neighborhood.

Let A = {aij}NxN is the array of possible locations of individuals on the 2D
NxN lattice of the cellular automata. The value of aij∈ℜ, ℜ={0,1}, where “0” means
that the node is “unoccupied” and “1” that it is “occupied”. An individual is defined
by corresponding “genetic code” αij∈ℜL such that:

     if (aij = 1) then (i,j) → ‘is occupied’;
          αij → [yij, mij, oij];
          yij   → [yij

1,yij

2,..., yij

l],  mij  → [mij

1,mij

2,..., mij

m], oij   → [oij

1,oij

2, ..., oij

n],
                             ∧ yij

k, mij

k, oij

k ∈ {0,1}, L=n+m+l
else
          (i,j) → ‘is unoccupied’ and αij → 0

In Fig.1 we show the sequence of instructions describing the process of evolution.
The binary vectors yij, mij, oij represent the subsequent episodes of individual life: the
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“youth”, the “maturity” and the “old age”, respectively. The values of l,m,n are the
maximum lengths of each of the episodes while their actual durations are equal to the
number of “1”s in the corresponding vectors yij, mij, oij. The symbol Ω denotes the
classical recombination operator from the genetic algorithms, t is the number of gen-
eration cycle (time), p(αij)  is the unitation operator, (i.e., it returns the number of
“1”s in αij chain) and the function pk( ) is the “counter” operator defined as follows:

∀ (aij = 1 ∧ p(αij) ≥  k); pk(αij) =  k.

Fig. 1. The pseudo-code describing evolution rules.

We assume that, the population can be attacked by a plaque represented by “seeds”.
The “seeds”, which are generated periodically in time, are scattered randomly on the
CA lattice. The strength of the plague is defined by ε0 - the ratio between the number
of “seeds” and the total number of individuals. If a “seed” is located at the same place
as the population member, both are removed from the lattice. Otherwise, the “seed”
moves randomly on the CA lattice until it “annihilates” with the first encountered
individual. The “seeds” cannot reproduce.

Our system consisting of elements with “genetic codes” evolves not only on
CA lattice but also in the abstract multi-dimensional feature space ℜL represented by
the coordinates of binary chains αij. As shown, e.g., in [4], the clusters of similar
individuals are created both on the mesh and in the feature space ℜL due to the ge-
netic drift. These clusters can be extracted using clustering algorithms [8,9] and then
visualized in 3-D space by employing multidimensional scaling (MDS) algorithms
[8,9].
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3 Results of Modeling

The parameters assumed for a typical run are shown in Tab.1. The periodic lattice of
cellular automata 200x200 and 100x100 were considered as optimal ones balancing
well adequate representation and computational requirements. These parameters are
also sufficient to obtain stable populations and partly eliminate boundary effects.

Table 1. The parameters for typical simulation.

Lattice size (N×N) 100×100, 200×200 Mobility factor ∈(0,1) 1
Initial density (P0) 0.2 – 0.5 Probabability of reproduction 1
“Youth”   - length 32 Probabability of mutation 0
“Mature”  - length 32 Plague period 50
“Old age” - length 32 Dose (ε0) 0.4

At the start of evolution, the population is generated randomly with P0 density
(P0∈(0,1), see Tab.1). Because all individuals are initially “young”, the evolution
scenario depends strongly on P0 (see Fig.2). For both too large and too small P0 val-
ues, after some time, the number of offspring can become marginal in contrast to
massive extermination of “old” individuals from the initial population. This may lead
to fast extinction of the whole population. This effect can be considerably reduced by
increasing mobility factor of individuals, their life-time and initial diversity of popu-
lation.

Fig. 2. Various scenario of the growth of population size in time for increasing P0 (initial
population size). The simulation was started assuming that all the individuals are “young”. The
CA lattice of size 100x100 was simulated.
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We have assumed additionally that:
• the length L of the vector representing the “genetic code” is equal to 96,
• the lengths of vectors y, m, o are identical, i.e., l=m=n=32 (see Definition 1).
The value of L was selected intentionally to have more compact representation (thus
more efficient code) of individual, whose “genetic code” can be implemented then as
three float values. The value of L cannot be too small due to statistical validity (the
number of “1”s in various episodes of individual’s life has initially the Gaussian dis-
tribution) and due to high sensitivity of the system on various simulation conditions.
Other configurations and vector lengths were also examined. The first conclusion is
that, the individuals, even those with the same life-time lengths L, can behave in vari-
ous ways depending on the lengths of subsequent life-episodes y, m, o. On the one
extreme, the population with too short “maturity” period will die quickly. On the
other, the populations with greater reproduction potential (defined by the length of m
vector) will tend to fill the m part of vector α with “1”s. This is due to the population
members who are “mature” for a longer time, have a greater chance to reproduce and
pass their “genetic code” to other generations. One can expect that the similar behav-
ior will be observed for “idle” episodes of individual’s life i.e., the “youth” and the
“old age”, i.e., the individual’s life-time will increase due to the evolution to the
maximum length L. However, the situation is completely different.
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Fig. 3. The histograms representing the number of individuals with various lengths of y, m, o
life-episodes. For initial generation of individuals the distributions are similar (the plot on the
left), but after g=2000 steps they diversifies considerably (the plot on the right).

Let us assume that initially the distribution of “1”s in each of the three episodes of life
is Gaussian and there are in average 16 “1”s in each of y, m and o vectors. These
initial conditions are shown in Fig.3a. After t=2000 time-steps, the situation consid-
erably changed. The distributions of “1”s for each period of life undergo strong diver-
sification (Fig.4b).

As displayed in Fig.4, the distribution of individuals both on the CA lattice and in
the feature space, changed also dramatically. Instead of initially chaotic configuration
of individuals populating 2D lattice, they form distinct clusters. The individuals be-
longing to the same cluster are similar according to the Hamming distance in the L-D
feature space. As shown in Fig.4b there exist four distinct “families” of individuals in
the feature space. In Fig.4a we show them projected onto the CA lattice.
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a) b)

  

Fig. 4. Clusters of individuals on 2D lattice (a) and in the feature space (b). Single plate in
Figs.4b corresponds to a group of individuals with identical “genetic codes”. Fig.4b shows the
result of k-mean clustering in the L-D feature space transformed by using multi-dimensional
scaling to 3-D space. Various colors in b) indicate the spurious clusters obtained using k-means
clustering scheme. While colored 2-D clusters on the CA lattice in Fig.4a represent the four
clusters recognized visually from Fig.4b.

The continuation of the evolution from Fig.4 produces a stable attractor, which con-
sists of four “families” of individuals, which have exactly the same “genetic codes”.
The codes differ between clusters only on two bits positions. Therefore, the offspring
generated due to recombination belong to one of the existing clusters. We did not
obtain any global solution with only one large cluster of individuals having the same
genetic code. It means that the fitness factor for the populations of individuals with the
three life periods is not a trivial, increasing function of the length of life. This is unlike
for populations, which are “mature” and ready for reproduction during the whole life-
time (L=m, l,n=0). In this case the attractor of the evolution process would consist of
individuals with “genetic codes” filled exclusively by “1”s.
    The most basic features of attractors resulting from modeling are collected in
Tab.2. As shown in Tab.2, where apart from the “natural” elimination - resulting from
the limited life-time inscribed in the “genetic code” - there are not any other lethal
factors, the “maturity” period fills with “1”s after relatively small number of evolu-
tion cycles t. This is obvious because longer ability of reproduction gives a greater
chance for passing the genetic code to the offspring. By extending the evolution time
about threefold, also the “youth” vector will be filled with ‘1’s. Surprisingly, even
much longer simulation does not affect the “old age” vector. It remains the mixture of
“1”s and “0”s. This observation confirms also for:

• variable lengths of y,m.o (l≠m≠n),
• long “old age” period (n=64),
• much shorter remaining episodes (l=16, m= 24, respectively).
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Table 2. Number of “1”s in the average “genetic chains” of different lengths for corresponding
episodes of individual’s life after 50,000 time-steps. “mix” -  the mixture of “0”s and “1”s,
“perished”  - the population deceases quickly.

YOUNG MATURE OLD
1 No plague

(32,32,32)
(16,16,16)

(8,8,8)

32
16
8

32
16
8

mix
mix
mix

2 No plague
(16,24,64)
(8,32,64)
(0,40,64)

3
1
0

24
30

perished

mix
mix

perished
3 Plague period < L

(32,32,32)
(32,32,0)
(0,32,32)

0
0
0

32
32
32

mix
0

mix
4 Plague period >L

(32,32,32) 0 32 0
5 Plague period < L

(8,8,8) 0 8 mix
6 Plague period >L

(8,8,8) mix 8 0

a) b)

   
Fig. 5. The histograms of individuals vs. their age for a) stable (l=32, m=32, n=32), and b)
unstable (l=0, m=40, n=64) populations.

Surprisingly, further decrease of the “youth” episode (l=8, m=32, n=64) with respec-
tive extension of the “maturity” episode weakens considerably the population. For
(l=0, m=40, n=64) it dies eventually. This behavior shows that the “youth” period
accumulates reproductive ability of the population. If released too fast it will cause
non-uniform aging (see Fig.5b), which may result in fast extinction of the whole
population.
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As depicted in Fig.6, the population attacked by the periodic plague dies if the
strength (“Dose” in Tab.1) of the plague ε0, defined as the ratio of the number of
“seeds” to the number of individuals, and/or its period exceeds a certain threshold.

a) b)

 

Fig. 6. a) The influence of periodic plague (thin line) on the number of individuals (thick line).
b) The number of individuals (thick line) eliminated by the periodic plague (thin line) in time.

The attractors (i.e., the non-evolving populations of individuals with similar “genetic
codes” obtained due to the long evolution) in a stable environment die very quickly
due to the lack of adaptation ability represented by diversification in the “genetic
codes” of individuals. For example, a uniform population (e.g., see Tab.2 for
l=m=n=32) obtained after long evolution (t=50,000 time-steps) and attacked then by
the plague extincts during the following 100 steps. The same population, but this time
infected at the early stage of evolution (after t=200 steps) survives. The “genetic
codes” of individuals self-adapt to the unstable environment. As shown in Tab.2, the
“genetic codes” of attractors of attacked population are different than those obtained
for the stable environment. Moreover, they differentiate depending on the period of
the plague.
     For the outbreak with a period shorter than the average life-time of individuals, the
“youth” episode, as the obstacle for fast reproduction, is eliminated completely (all
“0”s in vector y). Surprisingly, the “old age” period remains relatively long. Because
the population can have not enough time for reproduction between subsequent
plaques, it has to elaborate sophisticated control mechanism of growth. Let us assume
that:
1. the “old age” is inhibited (n=0) and the population consists of only “mature”

individuals,
2. the majority of individuals are eliminated by the plaque from the lattice in a very

short time.
At the very moment when the plaque ceases, all survivors will produce many new-
borns due to plenty of free space on the lattice. Therefore, after some time, the indi-
viduals of a similar age and approximately the same life-time will dominate in the
population. Their simultaneous death will weaken the population (see Fig.5b). Thus,
the number of “mature” individuals, which survive after the following disasters, may
be too small to initiate new generations and the population may extinct eventually.

Assuming that the “old age” episode is greater than 0 (n>0), post-plaque
demographic eruption (resulting in demographic catastrophe after some time) can be
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much smaller than for n=0. It is easy to remark that the demographic eruption will be
monotonically decreasing function of n because only the “mature” survivors have
reproductive ability. Moreover, the existence of “old” individuals will decrease the
probability of reproduction. The replacement of “old” individuals with newborns will
be also postponed and possible only after their death. All of these demographic in-
hibitors cause that the post-plaque reconstruction of the population takes more time
than in the previous (n=0) case. Instead, the age distribution in the population is more
stable (see Fig.5a). Thus the population allowing the “old age” episode is stronger and
has a greater chance to survive in unstable environment than that consisting of only
“mature” individuals. We can conclude that the “old” individuals accumulate the envi-
ronmental resources (free space) for stable growth eliminating dangerous post-plaque
effects such as demographic eruptions.
    When the plague period is greater than the average life-time of individuals
and simultaneously the “strength” of the plague increases, the “old age” is also elimi-
nated due to evolution. This is because the population has enough time for reproduc-
tion and demographic minimum does not coincide with the plaque.

4 Concluding Remarks

We have discussed the influence of the lengths of three life-episodes: the “youth”, the
“maturity” and the “old age” on population evolution. Of course, their duration of
depends on the biological construction of individuals. The organism requires a mini-
mum time to grow-up and be ready for reproduction. However, the terms “youth”,
“maturity” and “old age” used in this paper have not only biological meaning. Envi-
ronmental factors influence both reproduction ability and the life-time. They may
cause that the same organism can be treated as “young”, “mature” or “old” independ-
ently on his age.
           Summarizing our findings, we can conclude that “maturity” period decides
about the reproductive power of the population and its survival ability. Thus the
population increases its length to a maximum value allowed. The idle episodes of life,
i.e., the “youth” and the “old age” play the role of accumulators of the population
resources and control their growth. The “youth” accumulates reproductive resources
while the “old age” accumulates the space required for reproduction. The idle life-
episodes develop the control mechanisms, which allow for self-adaptation of the
population to unstable environment.
1. In the case of a stable growth the reproductive resources are accumulated in the

“youth” episode of life. The “old age” remains the secondary control mechanism.
2. For periodically infected populations with the period longer than the average

length of the life-time L the population is biased only for reproduction, eliminat-
ing idle episodes of life.

3. For strong enough and frequent pests the „old age” remains non-zero accumulat-
ing additional space required for burst-out of population just after the plague
vanishes.
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Many aspects of the model have not been explored yet. For example, the influence of
lethal mutations and other hostile environmental factors on the survival ability of the
population. However, our model can be an interesting complementary constituent to
the Penna paradigm of aging.
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