Ship Evacuation Model

SYS5807 (Assignment 2

Fall 2003
Student Name:
Khaldoon Al-Zoubi

Student #:

100 275 273

Table of Contents

31
Conceptual Model

42
Formal Specification

42.1
Neighborhood List

42.2
Model States

52.3
Rules Specifications & Implementation

72.4
Testing

73
Simulation Results & Examples

1 Conceptual Model

This model is based on the Cellular Automata model for ship evacuation that is displayed on the Internet at http://www.jweimar.de/jcasim/schiff1.html.

This model has two phases:

1. Each cell calculates its shortest path toward the exit. Furthermore, a person is placed randomly in these empty cells since if a real ship or building is evacuated in case of emergency, people can be anywhere.

2. People run in their initial direction until they encounter another person or an obstacle (e.g. wall). After a while, all persons have left the ship.

I found something very interesting after doing this model that is how much it is critical where you place your Exit or Exits in the building to speed up people evacuation. Section 3 will present these examples.

2 Formal Specification

2.1 Neighborhood List

As the above figure shows, the neighborhood consists of 11 cells:

{(-2,0), (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0, 1), (0, 2), (1, -1), (1,0), (1, 1)} where UU is the upper’s upper cell, UL is the upper’s left cell, U is the upper cell, UR is the upper’s right cell, L is the left cell, R is the right cell, RR is the right’s right cell, DL is the down’s left cell, D is the down cell and DR is the down’s right cell.

2.2 Model States

	State Name
	State Value
	Color
	Comments

	Undefined Cell
	0
	Red
	Unknown Empty cell.

	Wall
	1
	Black
	Represents an obstacle or a wall.

	Exit
	2
	Green
	Represents an exit (e.g. stairs, door).

	ED
	3
	White
	Empty cell and its down (D) cell is the shortest path to the nearest exit.

	ER
	5
	White
	Empty cell and its right (R) cell is the shortest path to the nearest exit.

	EU
	7
	White
	Empty cell and its up (U) cell is the shortest path to the nearest exit.

	EL
	9
	White
	Empty cell and its left (L) cell is the shortest path to the nearest exit.

	FD
	4
	Blue
	A Full cell (cell with person) and its down (D) cell is the shortest path to the nearest exit.

	FR
	6
	Blue
	A Full cell (cell with person) and its right (R) cell is the shortest path to the nearest exit.

	FU
	8
	Blue
	A Full cell (cell with person) and its up (U) cell is the shortest path to the nearest exit.

	FL
	10
	Blue
	A Full cell (cell with person) and its left (L) cell is the shortest path to the nearest exit.

Rules Specifications & Implementation

· The first four rules initialize the model by calculating the shortest path for each undefined cell and placing people randomly in the model. The algorithm works as follows: when a cell detects that is one of its attached cells became defined, it knows that the attached cell is its shortest path.

	Result State
	Input Values

	3 or 4

→ ED or FD state
	(0,0) = Undefined and (1,0) is defined.

	5 or 6

→ ER or FR state
	(0,0) = Undefined and (0,1) is defined.

	7 or 8

→ EU or FU state
	(0,0) = Undefined and (-1,0) is defined.

	9 or 10

→ EL or FL state
	(0,0) = Undefined and (0, -1) is defined.

The above four rules are implemented as the following:

rule : {3 + randInt(1)} 0 { (0,0) = 0 and (1,0) > 1 and (1,0) < 11}

rule : {5 + randInt(1)} 0 { (0,0) = 0 and (0,1) > 1 and (0,1) < 11}

rule : {7 + randInt(1)} 0 { (0,0) = 0 and (-1,0) > 1 and (-1,0)< 11}

rule : {9 + randInt(1)} 0 { (0,0) = 0 and (0,-1) > 1 and (0,-1)< 11}
· The second four rules define when a cell knows that a person will move to it. The cell knows that a person will move to it when it is empty and is the shortest path to at least one cell with a person of its attached cells.

	Result State
	Input Values

	 4

→ FD state
	(0,0) = ED and ((0,1) = FL or (-1,0) = FD or (0,-1) = FR)

	6

→ FR state
	(0,0) = ER and ((1,0) = FU or (-1,0) = FD or (0,-1) = FR)

	8

→ FU state
	(0,0) = EU and ((1,0) = FU or (0,1) = FL or (0,-1) = FR)

	10

→ FL state
	(0,0) = EL and ((1,0) = FU or (0,1) = FL or (-1,0) = FD)

The above four rules are implemented as the following:

rule : 4 100 { (0,0) = 3 and ((0,1) = 10 or (-1,0) = 4 or (0,-1) = 6)}

rule : 6 100 { (0,0) = 5 and ((1,0) = 8 or (-1,0) = 4 or (0,-1) = 6)}

rule : 8 100 { (0,0) = 7 and ((1,0) = 8 or (0,1) = 10 or (0,-1) = 6)}

rule : 10 100 { (0,0) = 9 and ((1,0) = 8 or (0,1) = 10 or (-1,0) = 4)}

· The third four rules define when a cell with a person is attached to the exit. Then, the cell knows that a person will leave it and exit.

	Result State
	Input Values

	 3

→ ED state
	(0,0) = FD and (1,0) is exit.

	5

→ ER state
	(0,0) = FR and (0,1) is exit.

	7

→ EU state
	(0,0) = FU and (-1,0) is exit.

	9

→ EL state
	(0,0) = FL and (0,-1) is exit.

The above four rules are implemented as the following:

rule : 3 100 { (0,0) = 4 and (1,0) = 2}

rule : 5 100 { (0,0) = 6 and (0,1) = 2}

rule : 7 100 { (0,0) = 8 and (-1,0) = 2}

rule : 9 100 { (0,0) = 10 and (0,-1) = 2}
· The fourth four rules define when a cell knows that a person will leave it when it is not near an exit. The cell knows that a person will leave it when it has a person and it is shortest path cell is empty. However, only one person can move to the empty cell when one more than one person is trying to move to the same cell. In this case, the person in the upper cell moves first, then the one in the right, then the one in the down cell, finally the one in the left cell.

Actually, while writing the above paragraph, I wished that I had the time to do it differently, I should’ve made one person moves to the empty list randomly.

	Result State
	Input Values

	 3

→ ED state
	(0,0) = FD and down (D) cell is empty.

	5

→ ER state
	(0,0) = FR and right cell (R) is empty and UR,RR, and DR cells don’t have anybody wants to move to R.

	7

→ EU state
	(0,0) = FU and upper cell (U) is empty and UU and UR cells don’t have anybody wants to move to U.

	9

→ EL state
	(0,0) = FL and left cell (L) is empty and UL doesn’t have anybody wants to move to L.

The above four rules are implemented as the following:

rule : 3 100 { (0,0) = 4 and odd((1,0)) }

rule : 5 100 { (0,0) = 6 and odd((0,1)) and (-1,1) != 4 and (0,2) != 10 and (1,1) != 8 }

rule : 7 100 { (0,0) = 8 and odd((-1,0)) and (-2,0) != 4 and (-1,1) != 10 }

rule : 9 100 { (0,0) = 10 and odd((0,-1)) and (-1,-1) != 4 }

· The last rule is when any of the above rules don’t apply. In this case the cell stays in the same state as shown below.

rule : {(0,0)} 100 { t }

2.3 Testing

This model was tested using CD++ Modeler by checking the new state for each cell after each iteration and verify if it is the expected state.

3 Simulation Results & Examples

The following examples show how much it is critical the Exit or Exits location in the building to speedup the evacuation.

Example 1:

Files: demo_1.bat, draw_1.bat and ship_1.ma.
Two Exits are used in the first and last rows.

It takes 100 iterations (11.6 seconds) to evacuate all people.

Example 2:

Files: demo_2.bat, draw_2.bat and ship_2.ma.
Four Exits are used at the four sides.

It takes 80 iterations (8 seconds) to evacuate all people.

Example 3:

Files: demo_3.bat, draw_3.bat and ship_3.ma.
One Exit is used in the middle.

It takes 90 iterations (9 seconds) to evacuate all people.

Example 4:

Files: demo_4.bat, draw_4.bat and ship_4.ma.
Two Exits are used in the middle.

It takes 60 iterations (6 seconds) to evacuate all people.

UR (-1, 1)

RR (0, 2)

R (0, 1)

DR (1, 1)

DL (1, -1)

L (0, -1)

UL (-1, -1)

D (1,0)

(0,0)

U (-1,0)

UU (-2,0)

PAGE
2

