Queuing Model

SYS5807 (Project

Fall 2003
Student Name:
Khaldoon Al-Zoubi

Student #:

100 275 273

Table of Contents

31
Conceptual Model

42
Formal Specification and Unit Testing

42.1
Queuing Model with N servers Structure (coupled Model)

52.2
Queuing Model with N Servers Formal Specification

62.3
Atomic Models: Formal Specification, Implementation & Unit Testing

62.3.1
Generator Model

72.3.2
Queue Model

92.3.3
Server Model

112.3.4
Performance Model

133
Integration Testing Strategy

144
Simulation Analysis & Examples

144.1
M/M/1

154.2
M/M/2

164.3
M/M/3

174.4
M/M/4

184.5
M/G/1

194.6
D/D/1

204.7
D/D/4

215
Tool Problems

1 Conceptual Model

The model will be build as the following:

1. Generator (Atomic model):

a. It generates a number.

b. It represents the arrival process of customers.

c. The delay between generating numbers is based on a distribution, which is configurable by the user.

2. Queue (Atomic model):

a. It uses FIFO Scheme.

b. It can be connected to one or more servers (number of server is configurable).

3. Server (Atomic model):

a. It represents the service process in the model.

b. The service time is based on a distribution, which is configurable by the user.

c. One or more servers can exist in the system.

4. Performance (Atomic model):

a. It measures performance metrics of the model.

b. Performance metrics are:

i. Lq = Expected number of customers in system.

ii. Ls = Expected number of customers in queue

iii. Ws = Waiting time in system.

iv. Wq = Waiting time in queue.

c. This block should be considered out of the system. Therefore, the user can cut this block of the model without affecting the other model blocks.

A number of examples will be provided as coupled models to study the queuing model. These examples will show the fact that any queuing model with any number of servers can be built without touching the code.

Formal Specification and Unit Testing

2.1 Queuing Model with N servers Structure (coupled Model)

2.2 Queuing Model with N Servers Formal Specification

2.2.1.1 Specification

Note that:

QM = Queuing model.

ServerX = all servers.

IC = Internal connections

EOC = External output connections.

EIC = External Input connection.

QM = {X, Y, {generator, queue, {server_0, server_1 … server_n}, performance}, EIC, EOC, IC, Select}

X = {Get_data}.

Y = {Out, Ws, Wq, Ls, Lq}.

IC = {
(Generator.out, queue.In),

(Queue.out, serverX.In),

(Queue.beReady, serverX.beReady),

(ServerX.request, queue.request),

(Generator.out, performance.enter_sys),

(Queue.out, performance.exit_q),

(ServerX.out, performance.exit_sys)
}

EOC = {(ServerX.out, QM.out), (Performance.Lq, QM.Lq),

 (Performance.Wq, QM.Wq), (Performance.Ls, QM.Ls),

 (Performance.Ws, QM.Ws)}.

EIC = {(QM.get_data, performance.get_data)}

Select: (generator, queue, {server_0, server_1 … server_n}, performance) = generator.

Select: (queue, {server_0, server_1 … server_n}, performance) = queue.

Select: ({server_0, server_1 … server_n}) = Either one.

Select: (performance, any other block) = any other block.

Performance has the lowest priority to run.

2.3 Atomic Models: Formal Specification, Implementation & Unit Testing

2.3.1 Generator Model

2.3.1.1 Specification

Generator = {X, Y, S, Internal Function (IF), External Function (EF), Output Function (OF), TA}

X = None.

Y = {out}.

S = {Active}.

EF = None.

IF = IF (Active) = Active.

OF (Active) = out.

TA (Active) = delay for distribution value.

2.3.1.2 Implementation

Note that the distribution is configurable.

InitFunction:

{

Initialize all values.

Sigma = 0.

}

ExternalFunction: not used.

InternalFunction

{

If all customers were generated for previous time unit

Get the customers generated rate based on a distribution for this time unit.

If there is a customer needs to be generated in this time unit

Sigma = this customer interval time within this time unit.

Else

Sigma = time unit.

}

OutputFunction:

{

If there is a customer needs to be generated in this time unit

{

Increment the customer id by one.

Send the customer id on the “out” port.

Decrement the number of customers that need to be generated in this time unit.

}

}

2.3.1.3 Unit Testing

1. Run simulation for a specific time (e.g. 5 minutes).

2. Produce numbers based on each distribution (e.g. constant):

a. The generated numbers should represent the arrival rate of a distribution.

b. The long-term mean should be closed to the provided distribution mean.

3. Generate test files: generat.bat, generat.ma and generat.out.

Note that the provided exponential distribution failed this unit testing.

This generator block is verified to be working with the following:

1. Constant distribution.

2. Poisson distribution.

2.3.2 Queue Model

2.3.2.1 Specification

Queue = {X, Y, S, Internal Function (IF), External Function (EF), Output Function (OF), TA}

X = {in, request}.

Y = {out, beReady}.

S = {(queue.length >0 with request), (queue.length >0 without request),

 (queue.length = 0 with request), (queue.length = 0 without request)}.

EF:
EF ((queue.length >0 with request), in) = (queue.length >0 with request).

EF ((queue.length >0 without request), in) = (queue.length >0 without request).

EF ((queue.length = 0 with request), in) = (queue.length >0 with request).

EF ((queue.length = 0 without request), in) = (queue.length >0 without request).

EF ((queue.length >0 with request), request) = (queue.length >0 with request).

EF ((queue.length >0 without request), request) = (queue.length >0 with request).

EF ((queue.length = 0 with request), request) = (queue.length = 0 with request).

EF ((queue.length = 0 without request), request) = (queue.length =0 with request).

IF =
IF (queue.length >0 with request) =

IF (any other case) = Passive.

OF (queue.length >0 with request) = beReady and out.

TA (queue.length >0 with request) = 0.

2.3.2.2 Implementation

Note that the number of servers and servers Ids are configurable.

InitFunction:

{

Initialize requests list, request count and queue elements list.

}

ExternalFunction:

{

If message arrived on the “in” port then

{

Push element to the back of the queue.

If this is the first element and there are requests then

Sigma = 0.

Else if there are no requests then

Passivate.

 }

If message arrived on the “request” port and valid server Id then

{

Register server request.

Increment request count by one.

If this is the first request and there are elements in the queue then

Sigma = 0.

Else if there are no elements in the queue then

Passivate.

 }

}

InternalFunction

{

Pop front element from the queue.

If there are more requests and elements in the queue then

Sigma = 0.

Else

Passivate.

}

OutputFunction:

{

Get server Id.

Send the server Id on the “beReady” port.

Send value on the “out” port.

}

2.3.2.3 Unit Testing

1. Test that the queue sending protocol to the correct server Id.

2. Test the queue against incorrect server Ids.

3. Test the queue receiving a request from server already placed a request.

4. Test the queue when it receives a request from other server while serving another.

5. Test the queue when it receives a value while it is busy.

6. Test the order of outputting.

Queue testing related files: queue.ma, queue.bat, queue.out and queue.ev.

2.3.3 Server Model

2.3.3.1 Specification

Server = {X, Y, S, Internal Function (IF), External Function (EF), Output Function (OF), TA}

X = {in, beReady}.

Y = {out, request}.

S = {has_request, process_service}.

EF:
EF (has_request, in) = process_service.

EF (has_request, beReady) = has_request.

EF (process_service, in) = Not allowed.

EF (process_service, beReady) = Not allowed.

IF = IF (process_service) = Passive.

OF (has_request) = out.

OF (process_service) = out, request

TA (process_service) = service time based on a distribution.

2.3.3.2 Implementation

Note that the server Id and the distribution type are configurable by the user.

InitFunction:

{

Force sending initial request to the queue

}

ExternalFunction:

{

If passive and message is received on “beReady” port with my Id

{

Now I am “ready” for data.

}

Else if passive and message is received on “in” port and I am ready for data

{

Sigma = service time based on a distribution.

}

}

InternalFunction

{

Now I am not “ready” for data.

Go to Passive state.

}

OutputFunction:

{

If was ready for data then

Output data on the “out” port.

Output my Id on the request port.

}

2.3.3.3 Unit Testing

1. Test the server receiving protocol: It should receive its Id first on the “beReady” port followed by a value on its “in” port.

2. Test if the server receives other server Id on the “beReady” port followed by a value on the “in” port.

3. Test if the server receives a value on the “in” port without receiving anything on the “beReady” port first.

4. Test the service time if it follows the provided distribution.

Server testing related files: server.ma, server.bat, server.out and server.ev.

2.3.4 Performance Model

2.3.4.1 Specification

Performance = {X, Y, S, Internal Function (IF), External Function (EF), Output Function (OF), TA}

X = {enter_sys, exit_q, exit_sys, get_data}.

Y = {Lq, Wq, Ls, Ws}.

S = {Active, Passive}.

EF =
EF (Active || Passive, get_data) = Active.

EF (Active || Passive, enter_sys || exit_q || exit_sys) = Passive.

IF = IF (Active) = Passive.

OF (Active) = Lq, Wq, Ls, Ws.

TA (Active) = 0.

2.3.4.2 Implementation

Please note that Ws and Wq use “seconds” as the time unit.

InitFunction:

{

Initialize all data collection values and lists.

}

ExternalFunction:

{

If message is received from “enter_sys” port then

{

Count this customer.

Time stamp this customer arrival.

Calculate Lq and Ls.

}

Else if message is received from “exit_q” port then

{

Count this customer.

Calculate Lq and Wq.

}

Else if message is received from “exit_sys” port then

{

Count this customer.

Calculate Ls and Ws.

}

Else if message is received from “get_data” port then set Sigma to zero

}

InternalFunction

{

Passivate.

}

OutputFunction:

{

Output Ls, Ws, Lq and Wq.

}

2.3.4.3 Unit Testing

Feed the model with a number of messages on its ports: enter_sys, exit_q and exit_sys. Then verify output values of Ws, Ls, Lq and Wq a against the calculated values by hand. These values are sent out when the model receives any value on its get_data port.

Please note that Ws and Wq use “seconds” as the time unit.

Performance test files: performance.bat, performance.ma, performance.ev and performance.out.

3 Integration Testing Strategy

A testing was performed for each model as explained in the above Unit Testing sections in the following sequence:

1. Generator

2. Queue.

3. Server.

4. Performance.

5. Queue model examples in section 4 (Final models)

Each model of the above has its test cases in “modelName.ev” file and its structure in “modelName.ma” file. Each model has a script (modelName.bat) that can be run to test it, using command (./modeName.bat).

Simulation Analysis & Examples

Note1:

The simulation is highly dependent on the provided distributions with the tools. I am very sure that is at least one of them is not working correctly. I don’t believe the exponential distribution is working correctly. Therefore, I used Poisson in its place and I am not sure how much this would affect the obtained results for the M/M/c queues.

Note2:

All of the analytical results in this section were obtained from books or papers on the Internet to ensure its accuracy.
Let:

Arrival rate = λ, Service rate = µ. P = probability.

3.1 M/M/1

M/M/1 with the following parameters:

· Single server/Single queue

· λ = 3 customers/per time unit

· µ = 8 customers/per time unit

Analytic method:

Lq = λ 2 / µ(µ- λ).

Wq = λ / µ(µ- λ).

Ls = λ / (µ- λ).

Ws = Ls/ λ.

Ws = 0.2. Ls = 0.6. Lq = 0.225. Wq = 0.075.
Simulation Method:

This model exists in (M_M_1.ma) file.

The generator is configured with Poisson distribution with mean of 3 and the server is configured with Poisson distribution with mean 8.

After running the simulation (M_M_1.bat) for 5 minutes, the following results were obtained (Q_M.out):

00:05:00:000 lq 0.557951

00:05:00:000 wq 0.0216764

00:05:00:000 ls 0.763215

00:05:00:000 ws 0.168861
3.2 M/M/2

M/M/2 with the following parameters:

· Two servers/Single queue

· λ = 35 customers/per time unit

· µ = 25 customers/per time unit

Analytic method:

Lq = ((λ/µ) P (n >= s)) / (1-(λ/µ)). (S = # of servers)

Wq = Lq / λ.

Ls = Lq + λ/µ.

Ws = Ls/ λ.

Ws = 0.064. Ls = 2.263. Lq = 0.863. Wq = 0.0248.
Simulation Method:

This model exists in (M_M_2.ma) file.

The generator is configured with Poisson distribution with mean of 35 and the two servers are configured with Poisson distribution with mean 25.

After running the simulation (M_M_2.bat) for 5 minutes, the following results were obtained (Q_M.out):

00:05:00:000 lq 0.567269

00:05:00:000 wq 0.0288511

00:05:00:000 ls 1.69845

00:05:00:000 ws 0.0442661

3.3 M/M/3

M/M/3 with the following parameters:

· Three servers/Single queue

· λ = 54 customers/per time unit

· µ = 20 customers/per time unit

Analytic method:

Lq = ((λ/µ) P (n >= s)) / (1-(λ/µ)). (S = # of servers)

Wq = Lq / λ.

Ls = Lq + λ/µ.

Ws = Ls/ λ.

Ws = 0.1528. Ls = 8.254. Lq = 7.354. Wq = 0.1362.
Simulation Method:

This model exists in (M_M_3.ma) file.

The generator is configured with Poisson distribution with mean of 54 and the three servers are configured with Poisson distribution with mean 20.

After running the simulation (M_M_3.bat) for 5 minutes, the following results were obtained (Q_M.out):

00:05:00:000 lq 13.4632

00:05:00:000 wq 0.233314

00:05:00:000 ls 16.322

00:05:00:000 ws 0.285632

3.4 M/M/4

M/M/4 with the following parameters:

· Four servers/Single queue

· λ = 100 customers/per time unit

· µ = 30 customers/per time unit

Analytic method:

Lq = ((λ/µ) P (n >= s)) / (1-(λ/µ)). (S = # of servers)

Wq = Lq / λ.

Ls = Lq + λ/µ.

Ws = Ls/ λ.

Ws = 0.0662. Ls = 6.62. Lq = 3.29. Wq = 0.0329.
Simulation Method:

This model exists in (M_M_4.ma) file.

The generator is configured with Poisson distribution with mean of 100 and the four servers are configured with Poisson distribution with mean 30.

After running the simulation (M_M_4.bat) for 5 minutes, the following results were obtained (Q_M.out):

00:05:00:000 lq 2.11242

00:05:00:000 wq 0.0154731

00:05:00:000 ls 5.4825

00:05:00:000 ws 0.0496017
3.5 M/G/1

This example is about the general case. G = D (deterministic)

M/D/1 with the following parameters:

· Single server/Single queue

· λ = 5 customers/per time unit

· µ = 8 customers/per time unit

Analytic method:

Lq = λ 2/2µ(µ- λ).

Wq = Lq/λ.

Note: I couldn’t find how to calculate Ws and Ls for M/G/1.

Lq = 0.5208. Wq = 0.104.
Simulation Method:

This model exists in (M_D_1.ma) file.

The generator is configured with Poisson distribution with mean of 5 and the server is configured with Constant distribution with value 8.

After running the simulation (M_D_1.bat) for 5 minutes, the following results were obtained (Q_M.out):

00:05:00:000 lq 0.649786

00:05:00:000 wq 0.0283375

00:05:00:000 ls 0.953947

00:05:00:000 ws 0.153356

3.6 D/D/1

D/D/1 with the following parameters:

· Single server/Single queue

· λ = 5 customers/per time unit

· µ = 8 customers/per time unit

Analytic method:

Note: I couldn’t find how to calculate these parameters for D/D/c. They are just plotted on a curve.

Simulation Method:

This model exists in (D_D_1.ma) file.

The generator is configured with Constant distribution with mean of 5 and the server is configured with Constant distribution with value 8.

After running the simulation (D_D_1.bat) for 5 minutes, the following results were obtained (Q_M.out):

00:05:00:000 lq 0.499833

00:05:00:000 wq 0

00:05:00:000 ls 0.5

00:05:00:000 ws 0.125

D/D/4

D/D/4 with the following parameters:

· Four server/Single queue

· λ = 30 customers/per time unit

· µ = 8 customers/per time unit

Analytic method:

Note: I couldn’t find how to calculate these parameters for D/D/c. They are just plotted on a curve.

Simulation Method:

This model exists in (D_D_4.ma) file.

The generator is configured with Constant distribution with mean of 30 and the four servers are configured with Constant distribution with value 8.

After running the simulation (D_D_4.bat) for 5 minutes, the following results were obtained (Q_M.out):

00:05:00:000 lq 6.82222

00:05:00:000 wq 0.207972

00:05:00:000 ls 10.5579

00:05:00:000 ws 0.332763

Tool Problems

Exponential distribution:

I don’t believe that the exponential distribution is working correctly. Unfortunately, I don’t have the distri.cpp to take a look at it.

CD++ Builder:

I couldn’t compile my project with the CD++ Builder. The error I am getting is: < A File in the internal directory of the plugin is corrupted. Please re-install CD++ Builder >.

For some reason, my assignment 1 got compiled with the same tools. However, I had a problem when I tried to run it using CD++ Builder. I tried to run it as the following: I filled the appropriate blanks in the “Simulate Project” pop window (I got this window by clicking on the fist icon). However, when I clicked on the “proceed” button of the “Simulate Project” pop window, I was expecting to run, but nothing happened.

Request

Out

In

beReady

Server N

(Service Process)

Request

Out

In

beReady

Server 1

(Service Process)

In Request

Out

beReady

Queue

(FIFO)

Out

Generator

(Arrival Process)

Request

Out

In

beReady

Server 0

(Service Process)

InSys OutQ OutSys

Lq Wq Ls Ws

Get_data

Performance

(Queue.length = 0 with request). → If queue.length = 1 and request > 1.

(Queue.length = 0 without request). → If queue.length = 1 and last request

(Queue.length > 0 with request). → If queue.length >1 and request > 1.

(Queue.length > 0 without request). → If queue.length >1 and last request.

PAGE
2

