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Abstract

Darwen, P. J. and Green, D. G., 1994. Viability of populations
in a landscape. Ecological Modelling, 00: 000 - 000.

It has long been known that extinctions or wild oscillations
in populations can occur when population density is too low, or
when a population is confined to too small an area at high popu-
lation density. This study discovers another cause of extinction.
Cellular automata models of a single population in a landscape in-
dicate that, if a population occupies an unconfined region smaller
than a critical size, it can also become extinct in spite of healthy
population density, the availability of suitable areas to migrate
to, and the absence of competitors and predators.
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INTRODUCTION

1 Introduction

A crucial issue in conserving biodiversity is the relationship be-
tween the area occupied by a population and its chances of sur-
vival. Most studies that address this relationship limit them-
selves to populations that are strictly confined to a small area.
However, both field studies (Krebs et al., 1969) and theoretical
models (Crowley, 1981; Solé & Valls, 1992) suggest, in the words
of Krebs et al (Krebs et al., 1969), “that dispersal is somehow
necessary for normal population regulation” (Krebs et al., 1969,

author’s italics).

Furthermore, simulation studies show that inter-site interac-
tions can cause ecosystems across a landscape to behave very
differently from sets of populations at a single site (Green, 1990;
Taylor, 1990; Hassell et al., 1991; Sabelis et al., 1991; Solé &
Valls, 1992). In considering species viability, then, we need to
ask whether a population is viable in a landscape. Viability of
a population is most often a concern when a population is both
low in numbers and reduced to a small area. It is therefore im-
portant to understand the dynamics of populations under these
conditions.

The above considerations lead to the following basic question,
which we address in this study: if a population is not confined
to an area but is free to expand, is there any connection between
the initial area that it occupies and its chances of survival? We
consider this question for the simplest possible system, a single
species in an obstacle-free landscape.

2 The Model

2.1 What Are Cellular Automata?

As used in this paper, a cellular automaton (Wolfram, 1984) is a
cartesian grid of identical cells each of which is in one of a finite
number of states. At each time step, a cell’s state is updated
according to a function of the states of its neighbouring cells and
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itself. All cells are updated synchronously. Cellular automata are
also known as coupled map lattices (Solé & Valls, 1992).

The best-known cellular automaton is John Conway’s “Game
of Life” (Berlekamp et al., 1982), made famous by Martin Gard-
ner’s column in Scientific American (Gardner, 1970). In Life,
each cell in the cartesian grid is in one of two states, alive or
dead. At each time step, every cell’s state is updated according
to a simple function of its own state and the states of its eight
nearest cells.

The cellular automaton used in our model is more compli-
cated; a cell represents an area of landscape, the cell’s state is
its local population, and the function for updating a cell’s state
comes from inter-cell migration and intra-cell fertility and mor-
tality, as described below.

2.2 Why Cellular Automata?

For a model of a population in a landscape, cellular automata are
better than partial differential equations because:

e Diffusion models smooth out any heterogeneity in popu-
lation density (Hastings, 1990; Hogeweg & Hesper, 1981),
which disagrees with several field studies (Kareiva, 1987;
Krebs et al., 1969; Dodd, 1959; van der Meijden, 1979) that
demonstrate that population density is often heterogeneous,
with local extinctions and local booms.

e Partial differential equations, when approximated numeri-
cally on a grid, consume more computer time than a corre-
sponding cellular automaton (Gerhardt et al., 1990).

2.3 Cellular Automata and Landscape Popu-
lations

Cellular automata (Wolfram, 1984) model a wide variety of com-
plex systems. In landscape ecology, we use them to represent a
landscape as a cartesian grid in which each cell corresponds to an
area of the land surface (Green, 1989; Green, 1990; Hassell et al.,
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1991). Cell states correspond to features in the landscape. Here,
a cell’s state is its local population of plants or animals in the area
of land surface represented by that cell. The state of cell (x,y) at
discrete time step ¢ is denoted by N, ,(t), the (discrete) number
of individuals that occupy the area that cell (z,y) represents.

Migration occurs between each cell and its 4 compass-point
neighbours.

2.4 Local Population Dynamics

The local population dynamics within each cell is based on the
discrete logistic equation for a single population, which applies
to a wide range of population models and works best for species
that reproduce seasonally:
N(t
N(t+1)=rN(t) (1—#) (1)
K
where r > 0 denotes the reproduction rate and K is the maximum
possible local population.

In order to treat the effects of fertility and mortality sepa-
rately, we re-write equation 1 in the form:

N(t+1) = N+ (1 =) N@ + (- ) N0 ()
Here, (1—r) controls fertility, and mortality can be independently
controlled by the term (—%) We relabel these to give:-

N(E+1) = N(t) + aN(t) + BN(t) G)
Here, fertility = r —1 and mortality 8 = —% = — l}ta The im-

portant assumption we make here is that 3 incorporates mortality
in the population, rather than simply a change in fertility.

Note that N, = —% is the equilibrium population size. If the
initial population equals the equilibrium population, N(0) = N,
then it is static for all time, N(t) = N,, for all ¢ > 0.
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2.5 Migration

To allow migration between adjacent cells on the grid we need to
add a migration term to equation 3. We choose the discretised
diffusion operator 9% between a cell (z,y) and its four compass-

point neighbours (Solé & Valls, 1992), defined as:
aQNz,y — Nz,y—l + Nz,y—l—l + Nz—}—l,y + Nz—l,y - 4Nz,y (4)

Adding this to equation 3 gives the behaviour of cell (z,y) at
time step ¢:

Ney(t+1) = Ny () + aNoy (1) + BNoy (1)* + 90" Nay(t)  (5)

Here v < 1 is the per-step migration parameter, i.e., the fraction
of a cell’s population that is prepared to migrate.
We make no attempt to define the exact scale of the grid used

here. In principle, the model can represent any scale, because

B = —% = —12 takes into account a cell’s maximum popula-
K K

tion K, whatever that may be. A small maximum population

per cell implies fine resolution where each cell represents a small
area. A higher maximum per-cell population implies a larger scale
where each cell represents a larger area that could contain more
individuals.

The dispersal rate v adjusts the scale. A larger dispersal rate
can model a species that moves more rapidly, or else it can model
the same species at a finer scale. That is, if cells represent a
smaller area, then movement at the same rate carries individuals
over cell boundaries more often, so increasing the migration rate
~ has the effect of making cells represent a smaller area.

If one lowers the migration rate too far, to see the problem at
an unrealistically large scale where each cell represents a huge
area, then the effects of spatial distribution are modelled too
coarsely and the model would make unrealistic predictions. The
values of migration rate 4 which gives rise to the interesting re-
sults below are high enough to avoid this unrealistic effect.

Finally, populations in the real-world are never negative, but
models like equation 5 can violate this condition for some pa-
rameter values (Solé & Valls, 1992). The usual solution to this
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problem (Crowley, 1981; Solé & Valls, 1992) is to use the Heav-
iside operator H(z), which satisfies: H(z) = z for z > 0, and
H(z) = 0 otherwise.

The full system of difference equations is therefore:

Ny (b 1) = H (Ney (1) + Ny (£) + BNoy (1) + 70 Ny (1)
(6)

For the values of fertility (o < 0.3) used here, the logistic
equation behaves in a non-chaotic manner. However, as each cell
on the grid interacts with its neighbours (as described below),
this tells us little about the whole system due to undecidability
and computational irreducibility in cellular automata (Wolfram,
1985; Darwen, 1992). Suffice to say that in nearly all cellular
automata (including the most famous example, Conway’s Game
of Life (Berlekamp et al., 1982)), the local dynamics alone don’t
offer simple predictions about the global dynamics. For example,
in a very similar but much smaller (10 x 10 cells) model (Solé
& Valls, 1992), chaos was present for values of fertility for which
chaos was not present in the single logistic equation (Solé & Valls,
1992); i.e., chaos is more widely present over a wider range of
parameters in the cellular automaton than in the single logistic
equation.

However, as this is a deterministic cellular automaton with a
finite number of states, any run will ultimately end in a fixed state
or a finite limit cycle (Green, 1993). This is because each cell can
be in a finite number of states, and there are a finite number of
cells, giving a finite number of combinations that the model can
be in. After enough time steps have passed, the model will return
to a combination of states it has already been in, forming a finite
limit cycle.

2.6 Boundary conditions

Endangered species usually occur as isolated populations, so we
will let a population initially occupy a small area (10 x 10 cells or
less) at the centre of the 128 x 128 cell model. if the population
expands to the edge, we will take that to mean that the popu-
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lation is viable. We may also assume that the population is not
augmented by immigrants from outside the model.

Thus, the boundary conditions have no effect on the results.
So without loss of generality, we will use absorbing boundaries
in our model, where anything that migrates “off the edge” of the
matrix disappears from the model.

2.7 Initial conditions

For the initial distribution, we select a small square sub-matrix
in the centre of the 128 x 128 matrix of cells. Each cell in this
sub-matrix is initialized with population N, ,(0) = —%, which is
greater than the equilibrium population for a single cell V., = -5
for the values of o we will use. This assumption guarantees that
the initial population density is high enough to avoid complica-
tions caused by low population density. Each cell outside the

square sub-matrix is initialized to zero population.

2.8 Implementation

The model is written in CM-FORTRAN and runs on the Aus-
tralian National University’s CM-2 Connection Machine super-
computer. It is implemented as a 128 x 128 matrix of cells. Fach
cell’s state (or population) N, can take a value between 0 and
200, i.e., the maximum local population i1s K = 200. The model
is strictly deterministic.

3 Results

At the beginning of a run, the population expands to occupy the
nearest empty cells — a cell is occupied if its population is greater
than zero. Figure 1 shows three sample runs, and demonstrates
the three long-term outcomes:

1. small patches shrink and disappear;

2. medium-sized patches neither expand nor shrink, and their
size 1s constant or oscillates between two sizes;
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3. large patches expand indefinitely.

A large number of runs indicated that if a population was
still expanding after the first 200 time steps, then it would keep
expanding until the whole matrix was occupied. Thus only 200
time steps were executed for each set of variables, with exceptions
handled as follows. If the proportion of occupied cells after 200
time steps was:

1. zero or constant for the 5 most recent time steps, then this
value (zero or constant) was taken as the final number of
occupied cells;

2. still increasing for the 5 most recent time steps, then the
entire matrix was taken as the final number of occupied cells;

3. neither constant nor increasing for the 5 most recent steps,
then the simulation continued until all cells were occupied, or
empty, or the number of occupied cells stayed at a constant
level.

Figure 2 shows that the system undergoes a critical change
when the diffusion parameter v is high enough:

e For high « the population usually expands to occupy the
entire grid, and the population is viable. This is the high
plateau of Figure 2.

e For lower ~, the result depends on the size of the area ini-
tially occupied. If the initial population is small then the
population dies out. For larger initial areas, expansion stops
at a small fraction of the available area, and does not expand
to the edge of the 128 x 128 cell matrix. This is the low floor
of Figure 2, that gradually slopes up at the left-hand corner.

e Between the high plateau and the low floor of Figure 2 there
is sharp transition between these regions of expansion and
stagnation /extinction.

Sharp transitions like this have been demonstrated for many land-
scape phenomena (Green, 1990; Green, 1993).

Figure 3 shows how much initial area is needed to guarantee
the population’s expansion into the empty space. The migration
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parameter v and fertility parameter « in Figure 3 both come from
equation 6. The z-axis represents the smallest initial area that
supports an expanding population (z is the side of the initially
occupied square sub-matrix in the centre of the 128 x 128 cell
landscape) that is just large enough to allow indefinite population
growth. In Figure 3:

e A z-value of 1 indicates that a population will expand indef-
initely from just 1 cell in the grid.

o A z-value of n > 1 indicates that a population will expand
indefinitely if it starts in a square of side n cells, but not if
it starts from a square with side n — 1 cells or smaller.

As described above, we observed that a population that does not
expand to fill all the available area either dies out completely or
stops expanding at a fraction of the available area.

4 Discussion

Figure 2 implies that a population’s viability can depend on the
geographic area it occupies, independently of other factors. Ex-
tinction can occur if a species occupies too small an area, even if
the species is:

e surrounded by empty, habitable land and is free to expand;
e without competitors or predators;

e at a reasonable population density, with neither overcrowd-
ing nor sparseness.

Figure 2 agrees with other models (Crowley, 1981; Hassell et al.,
1991; Solé & Valls, 1992), and with studies of biodiversity on iso-
lated islands (May, 1981), that greater area prevents extinction.
However, those previous studies considered a population confined
to a small area. Our study is unique in that a population is not
confined, and is free to expand out of the small area it initially
occupies. While Figure 2 shows that a population’s initial area
affects its survival, the question that this paper addresses is this:
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what is the minimum area that a population must occupy in or-
der to expand into the space available? How much area ensures
growth?

Figure 3 answers this question. The migration parameter v
and the fertility parameter « are both from equation 5. The z-
axis represents the minimum area that supports an expanding
population (it is the side of the initially-occupied square sub-
matrix).

We may summarize Figure 3 as follows:

e High fertility with low migration rates will expand, even
from a single cell on the grid.

o Low fertility, at any migration rate, requires a larger initial
area to expand.

e Surprisingly, a too-high migration rate also requires a larger
initial area to expand, even with high fertility.

The relevance of the above results depends on the validity
of the model’s underlying assumptions. In particular, the model
represents both time and space discretely. Discrete time steps ac-
curately represent seasonally reproducing species, which include
many plant and animal species. The discrete, cartesian grid used
by this cellular automaton allows the heterogeneous population
distribution exhibited by many species.

The sharp transition in dynamics (from extinction to expan-
sion) is typical of critical phenomena. Criticality has now been
demonstrated for many landscape phenomena (Green, 1990; Has-
sell et al., 1991; Green, 1993). The characteristic features of such
processes include sharp, systematic changes in behaviour and the
three phases noted here — extinction, transition, and expansion.
An important feature of such systems is that the transition zone
tends to be chaotic (Green, 1993). The occurrence of chaos in the
present system may explain the variability in behaviour observed
for many combinations of parameters that lie near the “phase
changes”. Variability of this kind would not otherwise occur in a
deterministic system such as this model.

The model’s results are clearly relevant to a number of issues
in conservation.
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List of Figures

Figure 1: The model runs on a 128 x 128 matrix of cells. A cell
is dark if occupied, and white if empty. Each row of this diagram
shows a particular run of the model, with pictures taken during
the course of that row’s run:

Top Row: In this run, isolated patches are too small to per-
sist. Although larger patches persist for some time, they are
gradually shrinking and extinction eventually occurs (top

right-hand box).

Middle Row: In this run, some isolated patches are large enough
to persist, but not large enough to expand. Smaller patches
shrink and die out.

Bottom Row: Some patches that persist without expanding,
and larger patches expand indefinitely.

Conclusion: small area can destroy the long-term viability of a
population, even though the population is free to expand into
unoccupied space.

Figure 2: This shows what proportion of cells are occupied
after a long time, starting from a square sub-matrix of occupied
cells in the centre of the model. The z-axis measures the mi-
gration parameter v, and the y-axis represents the population’s
initial area (actually, the side of the occupied square sub-matrix
in the 128 x 128 matrix of cells). The z-axis measures the pro-
portion of cells occupied after a long time passes; 1 represents
filling all available space, 0 represents extinction, and intermedi-
ate values represent a stagnant population that doesn’t expand
despite available empty space surrounding it. Note the sharp
transition between expansion and stagnation/extinction.
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Figure 3: The relationship between the migration parameter
v (z-axis), the fertility constant « (y-axis) (both from equation
5), and the minimum initial area needed for the population to
fill the available space (z-axis) (or more precisely, the side of the
initially-occupied square sub-matrix in the centre of the model).
A value of 1 for z indicates that the population will expand in-
definitely from a single cell in the grid. A larger value of z means
the population requires a larger area to ensure expansion, below
which it stagnates or dies out.
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