SYSC 5807:Methodological
Aspects of Simulation and
Modeling

Assignment No.1

By:

Umar Farooq
ufarooq@sce.carleton.ca

Student No. 258695

Systems and Computer Engineering
Carleton University

October 20t, 2003.

System to be analyzed with DEVS:

MOBILITY MANAGEMENT IN TUPLE BASED

MIDDLEWARE SYSTEMS

PART 1

1. Brief Description

The system chosen to be analyzed with DEVS involves managing user mobility in mobile
wireless tuple based middleware systems. It consists of a mobile user that accesses the
tuple space through different access points (wireless gateways) at different points in time
due to its mobility. The application running at the user’s mobile device writes a client
object in the tuple space (through the wireless gateway it is currently connected to) to be
serviced by the server. The space notifies the server about the object. The server after
servicing the object puts it back to the space. The wireless gateways register the clients
they are currently serving with the space. Hence, whenever a new object for the client is
written into the space, the space locates in its list the gateway which is currently serving
this client and notifies it. That gateway after acquiring the object from the space delivers

it to the mobile client.

2. Sketch of the Model Structure

MOBILITY MANAGEMENT IN TUPLE BASED MIDDLEWARES

MOBILE TERMINAL TUPLE SPACE
WIRELESS
IN L, GATEWAY 2
> > serv - Server
Transceiver Obje erver Request Server
Fadd - ~ bject Handling | | Object
N " —n Thread [* (%
F Y
[=
=
B >
i _ Client
Regls‘ter Dbject
Client GliEnt Client
Object,, WIRELESS Request
Mobility GATEWAY 1 | Client Handling >
Moclule Handoff A Thread

SERVER

The above figure shows the sketch of the model structure. It consists of 3 levels and
involves 10 unique atomic models. Note that all the inputs and output ports present in
wireless gateway I are also present in wireless gateway 2. However, they are not shown
in the figure for clarity purposes. The user communicates to one of the gateways at one
time depending on its current location. The details of each of the component are given in
the next section.

3. Description of the Components

1. Mobile Terminal

This component represents the user’s mobile device. The application running on the
device provides inputs to this component in the form of client objects to be serviced and
the component outputs the serviced objects to the application. It consists of transceiver
and mobility module.

1a) Transceiver

The transceiver is the component that sends the client objects from the application to the
wireless gateway to which the user is currently connected to. Similarly, it transfers the
server objects from the gateway to the application. It maintains the reference to the
gateway to which the user is currently connected as one of its state variables (possible
values: gateway 1, gateway 2).

1b) Mobility Module

This component simulates user mobility and keeps track of the user’s location and hence
the gateway to which the user is currently connected to. It maintains as one of its state
variables the reference to the current gateway the user is connected to. After a certain
period of time (another state variable), it goes an internal transition and switches the user
from one gateway to the other. At this moment it informs the transceiver of the change of
gateway and also sends a handoff request to the new gateway.

2. Wireless Gateway 1 (and 2)

The wireless gateway transfers the client objects from the mobile terminal to the tuple
space and the server objects from the space to the mobile terminal. If it receives a handoff
request from the client, it registers itself with the space as the active gateway for the
objects for this client.

3. Tuple Space

The tuple space represents the shared repository of objects. The mobile client and server
communicate with each other by writing and reading objects from the space. The space is
multithreaded and consists of client request handling thread and server request handling
thread.

3a) Client Request Handling Thread

The client request handling thread services requests from the client (wireless gateway). It
delivers the client objects from the wireless gateway (1 or 2) to the server.

3b) Server Request Handling Thread

This component delivers the server objects from the server to the wireless gateway to
which the user is currently connected to. It maintains as one of its state variables a
reference to the gateway to which the user is currently connected to. Whenever the
mobile terminal switches from one gateway to the other, the new gateway sends a
registration request to this thread to deliver all the incoming server objects for this client
to it. At this moment, this thread updates its state variable containing the reference to the
active gateway for the user.

4) Server

The server acquires client objects from the space to service and after servicing them
writes them back to the space. It has several state variable associated with it: object id
(the id of the object it is currently servicing), object queue (the queue of the objects it
still needs to service), phase (busy or idle) and sigma (the time function).

PART 2

1. Organize the model as atomic/coupled models; define the
structure and coupling scheme.

1) Mobile Terminal

During the redefinition of the model it was found necessary to have an atomic model that
can queue different events coming for the transceiver. Hence a new model called
TransceiverQueue was defined. The Mobile Terminal component thus consists of 3
atomic models given as follows:

1a) Atomic Model: TransceiverQueue

done
— W inApp outCobject ———
——plinGateway outSObject ——
— | posiion location ———

1b) Atomic Model: Transceiver

—————OutApp outGateway 1l
—» inApp posifionset! ——m
—pfinGateway DUtGatew ay?

»| POSItion positionSet? —

1c) Atomic Model: MobilityModule

locaton|——w

1d) Coupled Model: Mobile Terminal

OOLAI
TRANSCEMNER
TRANSCENER QUEUE outApp outGateway 1 > IS
— inApp— inApp outCObject W inapp posiionset » PG1
M ING — 3 inGateway outSOhject plinGaeway oulGateway? » D52
P oSO dore location position positionSet? » P2
F Y
- k4
Incation M
MOBILTY
MODLULE

VYov

2) Wireless Gateway

During the redefinition of the model it was found necessary to have an atomic model that
can queue different events coming for the gateway. Hence a new model called
GatewayQueue was defined. The Gateway component thus consists of 2 atomic models
given as follows:

2a) Atomic Model: GatewayQueue

— p inCOhject outCObject ——
—{ inSOhject outSOhject

—® handoff registerclient —— jw
done

!

2b) Atomic Model: Gateway

— | INCOhject outCObject ——m
—{ iNS0hject outSOhject

— ™ handoff registerClient ——m

2¢c) Coupled Model: Wireless Gateway

GATEWAY QUEUE GATEWAY
—» inC —®inCcOhject QUICOWect ——m inCoOnject outCObject » OUtC
—®| NS — inSohject outSOhject —— iNSOkject outsObject » OULS
—phandoff——m handoff dm;egisterﬁ:lierrt w handoff registerClient wreiste
Y
{
"
4

3) Tuple Space

During the redefinition of the model, it was found necessary to have queues for each of
the client request handling thread and server request handling thread. The client request
handling thread uses the queue model explained in the class and hence not given here.
The server request handling thread uses a queue called tuplequeue to queue the different
requests. The atomic models for tuple space are given as follows:

v vy

3a) Atomic Model: TupleClient

—minCObject outCOhject

3b) Atomic Model: TupleQueue

— p|inS0hject outZObject] g

—wyegisterClient registerc —

done

3c) Atomic Model: TupleServer

— gl inSOhbject autSObject! | g

outS0bjectd —
—mregisterClient

cHegisterad —m

3d) Coupled Model: Tuple Space

TUPLE SERVER
TUPLE QUEUE oUtSOhject POLLS T
— ™ INS ——» insChject outSObject p inSObject outSObject2 »OLES 2
— R ——registerClient registerc » registerClient cRegistered
done
ry
-
-
-
QUELE TUPLE CLIENT
—inc _ wlin out »inCObject outCOhject B OULC
done

4) Sever

The Sever consists of a Queue and CPU model explained in the class and hence are not
presented here. The coupled server model is given as follows:

4a) Coupled Model: Server

QLUELUE CPU
—ine ——m in ——® in out e oUtS
done
5) Coupled Model: Mobility Management (Top)
YARELESS
SGATEWLY 1
outs ins
N T—F inc register ‘ auts 1
0G1 |—+ handoff OUtC ‘ _
«——OUtADD -— outApp e iNC
os2 OUtC —— ! INC
L oUtS outc
PG2 _ OutS2
inc register SERVER
MOBILE TUPLE
TERMINAL handdff in3 4—| SPACE
YWIRELESS
GATEWANY 2

2. Write a formal specification for each of the coupled models.

1) Mobile Terminal

Let MOB, TRANS and QUEUE be the instance of Mobility Module, Transceiver and
Transceiver Queue respectively.

MOBILETERMINAL = <X,Y,{MOB,QUEUE,TRANS}, EIC, EOC, IC, SELECT>
X = {inApp, inG}

Y

{outApp, outG1, outG2, pG1, pG2}

EIC = {(MOBILETERMINAL.inApp, QUEUE.inApp),
(MOBILETERMINAL.inG, QUEUE.inGateway)}

EOC = {(TRANS.outApp, MOBILETERMINAL.outApp),
(TRANS.outGatewayl, MOBILETERMINAL.outG1), (TRANS.outGateway?2,
MOBILETERMINAL.outG2), (TRANS.positionSetl, MOBILETERMINAL.pGl),
(TRANS.positionSet], MOBILETERMINAL.pG1)}

IC = { (QUEUE.outCObject, TRANS.inApp), (QUEUE.outSObject,
TRANS.inGateway), (QUEUE.location, TRANS.position), (MOB.location,
QUEUE.position), (TRANS.outApp, QUEUE.done), (TRANS.outGateway]l,
QUEUE.done), (TRANS.outGateway2, QUEUE.done), (TRANS.positionSet1,
QUEUE.done), (TRANS.positionSet2, QUEUE.done) }

SELECT= ({MOB, QUEUE, TRANS}) = MOB
({QUEUE, TRANS}) = QUEUE

2) Wireless Gateway
Let GW and GWQ be the instance of Gateway and Gateway Queue respectively.

WIRELESSGATEWAY = <X,Y,{GW,GWQ}, EIC, EOC, IC, SELECT>
X = {inS, inC, handoff}

Y

{outS, outC, register}

EIC = {(WIRELESSGATEWAY.inC, GWQ.inCObject),
(WIRELESSGATEWAY..inS, GWQ.inSObject), {(WIRELESSGATEWAY .handoff,
GWQ.handoff)}

EOC = { (GW.outCObject, WIRELESSGATEWAY .outC), (GW.outSObject,
WIRELESSGATEWAY .outS), (GW.registerClient, WIRELESSGATEWAY .register) }

IC = {(GWQ.outCObject, GW.inCObject), (GWQ.outSObject, GW.inSObject),
(GWQ.registerClient, GW.handoff), (GW.outCObject, GWQ.done), (GW.outSObject,
GWQ.done), (GW.registerClient, GWQ.done)}

SELECT = ({GWQ, GW}) = GWQ

3) Tuple Space
Let TQUEUE, TCLIENT, TSERVER and TSQUEUE be the instance of Queue, Tuple
Client, Tuple Server and Tuple Queue respectively.

TUPLESPACE = <X,Y,{TQUEUE, TCLIENT, TSERVER, TSQUEUE}, EIC, EOC, IC,
SELECT>

X = {inS, inC, RC}
Y = {outS1, outS2, outC}
EIC = {(TUPLESPACE.inC, TQUEUE.in), (TUPLESPACE.RC,

TSQUEUE.registerClient), (TUPLESPACE.inS, TSQUEUE.inSObject)}

EOC = {(TCLIENT.outCObject, TUPLESPACE.outC), (TSERVER.outSObjectl,
TUPLESPACE.outS1), (TSERVER.outSObject2, TUPLESPACE.outS2)}

IC = {(TQUEUE.out, TCLIENT.inCObject), (TCLIENT.outCObject,
TQUEUE.done), (TSQUEUE.registerC, TSERVER registerClient),
(TSQUEUE.outSObject, TSERVER.inSObject), (TSERVER.outSObjectl,
TSQUEUE.done), (TSERVER.outSObject2, TSQUEUE.done), (TSERVER.cRegistered,
TSQUEUE.done)}

SELECT = ({TQUEUE, TCLIENT}) TQUEUE
({TSQUEUE, TSERVER}) = TSQUEUE

4) Server
Let SERV and SERVERQUEUE be the instance of CPU and Queue respectively.

SERVER = <X,Y,{SERV, SERVERQUEUE}, EIC, EOC, IC, SELECT>

X = {inC}

Y = {outS}

EIC = {(SERVER.inC, SERVERQUEUE.in)}

EOC = {(SERV.out, SERVER.outS)}

IC = {(SERVERQUEUE.out, SERV.in), (SERV.out, SERVERQUEUE.done)}
SELECT = ({SERVERQUEUE, SERV}) = SERVERQUEUE

10

5) Top (Mobility Management)
Let MOBTERM, TS and SERVER be the instance of Mobile Terminal, Tuple Space and
Server respectively while WG1 and W2 are the instances of Wireless Gateway.

TOP = <X, Y, {MOBTERM, TS, SERVER, WG1, WG2}, EIC, EOC, IC, SELECT>

X = {inAppj

Y = {outApp}

EIC = { (TOP.inApp, MOBTERM.inApp) }

EOC = { (MOBTERM.outApp, TOP.outApp) }

IC = { (MOBTERM.outGl, WGL.inC), (MOBTERM.outG2, WG2.inC),

(MOBTERM.pG1, WGl.handoff), (MOBTERM.pG2, WG2.handoff), (WGl.outS,
MOBTERM.inG), (WG2.outS, MOBTERM.inG), (WGl.outC, TS.inC), (WG2.outC,
TS.inC), (WGl.register, TS.RC), (WG2.register, TS.RC), (TS.outS1, WGI1.inS),
(TS.outS2, WG2.inS), (TS.outC, SERVER.inC), (SERVER.outS, TS.inS)}

SELECT = ({MOBTERM, TS, SERVER, WG}) = WG (1 or 2
depending on which one is active)
({TS, SERVER, MOBTERM}) = MOBTERM
({TS, SERVER}) = TS

3. Write a formal specification for each of the atomic models.

1) Atomic Model: TransceiverQueue

done
—» indpp outCobject ——
——plinGateway outSObject ——
— {position location —— pw

TRANSCEIVERQUEUE =<8, X, Y, Oint, Oext, A, ta>
X = {inApp, inGateway, position, done}

Y

{outSObject, outSObject, location}

11

S = {phase, job-queue}

where
phase = {idle, busy}
job-queue = List of jobs in the queue where each job element consists of
two fields object-id and port-id (the id of the port from
which job entered the queue).
ta(Busy) = preparation time
ta(Idle) = infinite
Sini(8){
case phase
busy:
if (job-queue empty)
passivate
else
get next job from the queue in preparation time
passive:
//never happens
b
Oext(S, €, X){
case port
inApp:
add the job to the queue with object-id equal to the id of the job
and port-id equal to 1.
inGateway:
add the job to the queue with object-id equal to the id of the job
and port-id equal to 2.
position:
add the job to the queue with object-id equal to the id of the job
and port-id equal to 3.
done:
pop the first element in the queue.
b
A ()4
case port-id of the front element in the job
I:
send the job to the port outCObject
2:
send the job to the port outSObject
3:
send the job to the port location
}

12

2) Atomic Model: Transceiver

—————OutApp outGateway 1l
—» inApp posifionset! ——m
—pfinGateway DUtGatew ay?

»| POSItion positionSet? —

TRANSCEIVER =<8, X, Y, Oint, Oext, A, ta>

X = {inApp, inGateway, position}
Y = {outApp, outGateway1, outGateway?2, positionSetl, positionSet2 }
S = {phase, object-id, inport-id, gatewayID}
where
phase = {idle, busy}
object-id = The id of the object currently being served by the
transceiver
inport-id = The id of the input port from which the current job is
received.
gatewaylD = The id of the gateway to which the terminal is currently
connected.
ta(Busy) = send time
ta(Idle) = infinite
Sint(8){
case phase
busy:
passivate after send time
passive:
//mever happens
}
Sexi((s, €, X){
case port
inApp:
Set port-id equal to 1.
inGateway:
Set port-id equal to 2.
position:
Set port-id equal to 3 and gatewaylD equal to the object-id of the job.
}

13

A ()i

case inport-id

I:
if (gatewayID equal to 1)
send the job to the port outGateway 1
else
send the job to the port outGateway?2
2:
send the job to the port outApp
3:

if (gatewayID equal to 1)

send the job to the port positionSetl
else

send the job to the port positiontSet2

j
3) Atomic Model: MobilityModule

location|———w

MOBILITYMODULE =<8, X, Y, 8in Sext, A, ta>

X = 0
Y = {location }
S = {gatewaylID}
where
gatewaylD = Id of the current gateway to which the mobile terminal is
connected.
ta = handoff time
Sint(s){
Do nothing for time interval equal to handoff time
h

dexi(S, €, X) Unavailable

14

A ()i

send the current gatewaylID to the port location.
case gatewaylID-id
I:
gatewaylD equal to 2
2:
gatewaylID equal to 1
}

4) Atomic Model: GatewayQueue

— »inCObject outCObject —w
—»{ iNSOBjEct pursOpject

e
— | handoff registerClient ——
tone
GATEWAYQUEUE =<8, X, Y, Sint, Oext, A, ta>
X = {inCObject, inSObject, handoff, done}
Y = {outCObject, outSObject, registerClient}
S = {phase, job-queue}
where
phase = {idle, busy}
job-queue = List of jobs in the queue where each job element consists of
two fields object-id and port-id (the id of the port from
which job entered the queue).
ta(Busy) = preparation time
ta(Idle) = infinite
Sini(8){
case phase
busy:
if (job-queue empty)
passivate
else
get next job from the queue in preparation time
passive:
//mever happens
}

15

Jexi((s, €, X){
case port

inCObject:
add the job to the queue with object-id equal to the id of the job
and port-id equal to 1.

inSObject:
add the job to the queue with object-id equal to the id of the job
and port-id equal to 2.

handoff:
add the job to the queue with object-id equal to the id of the job
and port-id equal to 3.

done:
pop the first element in the queue.
}
A (s){
case port-id of the front element in the job
I:
send the job to the port outCObject
2:
send the job to the port outSObject
3:
send the job to the port registerClient
}

5) Atomic Model: Gateway

— | INCORjeCt outCObject ——m
—{ inSOhject outSObject [g
— ™| handoff registerClient ——m

GATEWAY =<8, X, Y, Sin. Sext, A, ta>

X = {inCObject, inSObject, handoft}
Y = {outCObject, outSObject, registerClient}
S = {phase, object-id, inport-id}
where
phase = {idle, busy}
object-id = The id of the object currently being served by the
gateway

16

inport-id = The id of the input port from which the current job is

received.
ta(Busy) = send time
ta(Idle) = infinite
Sint(s){
case phase
busy:
passivate after send time
passive:
//mever happens
h
SeXt(S’ c, X){
case port
inCObject:
Set port-id equal to 1.
inSObject:
Set port-id equal to 2.
handoff:
Set port-id equal to 3.
h
A (s)4
case inport-id
I:
send the job to the port outCObject
2:
send the job to the port outSObject
3:

send the job to the port registerClient

}

6) Atomic Model: TupleClient

—inCObject outCOkject

TUPLECLIENT =<8, X, Y, Sint, Sext, A, ta>

17

X = {inCObject}
Y = {outCObject}
S = {phase, object-id}
where
phase = {idle, busy}
object-id = The id of the object currently being served by the
gateway
ta(Busy) = write time
ta(Idle) = infinite
Sini(8){
case phase
busy:
passivate after write time
passive:
//never happens
}

6ext(sa e: X){
receive the object
}

A ()4
send the job to the port outCObject

b
8) Atomic Model: TupleQueue

— p|in30bject out3Object] g

——wmyegisterClient registerc —m

done

|

X = {inSObject, registerClient, done}

TUPLEQUEUE = <8, X, Y, in. Sext A, ta>

Y

{outSObject, registerC}

18

S = {phase, job-queue}

where
phase = {idle, busy}
job-queue = List of jobs in the queue where each job element consists of
two fields object-id and port-id (the id of the port from
which job entered the queue).
ta(Busy) = preparation time
ta(Idle) = infinite
Sint(s){
case phase
busy:
if (job-queue empty)
passivate
else
get next job from the queue in preparation time
passive:
//mever happens
}
Jext(s, €, X){
case port
inSObject:
add the job to the queue with object-id equal to the id of the job
and port-id equal to 1.
registerClient:
add the job to the queue with object-id equal to the id of the job
and port-id equal to 2.
done:
pop the first element in the queue.
}
A ()4
case port-id of the front element in the job
I:
send the job to the port outSObject
2:
send the job to the port registerC
}

9) Atomic Model: TupleServer

TUPLESERVER = <S, X, Y, i, Sext, A, ta>

19

— | InS0hject outS0bjectl | g

outS0bjectd —

—mregisterClient _
cRegistered —m

X = {inSObject, registerClient}
Y = {outSObjectl, outSObject2, cRegistered}
S = {phase, object-id, inport-id, gatewayID}
where
phase = {idle, busy}
object-id = The id of the object currently being served by the
tuple server request handling thread.
inport-id = The id of the input port from which the current job is
received.
gatewaylD = The id of the gateway to which the mobile terminal whose
object is being served is currently connected to.
ta(Busy) = transfer time
ta(Idle) = infinite
Sini(8){
case phase
busy:
passivate after transfer time
passive:
//never happens
}
Oext(S, €, X){
case port
inSObject:
Set port-id equal to 1.
registerClient:
Set port-id equal to 2. Set gatewayID equal to the object-id of the
job.
}
A (s){

case inport-id
I:
if (gatewayID equal to 1)
send the job to the port outSObjectl

20

else
send the job to the port outSObject2

send the job to the port cRegistered

4. Propose a testing strategy for each one of the models.

1) Atomic Model: TransceiverQueue

This atomic model can be tested by giving inputs through different ports of the model and
checking whether the model generates the output at the correct output port and in the
expected amount of time. Since this queue has not been connected to the Transceiver yet,
the ‘done’ event would have to be fed manually. The details of the event file and test
output of the tests conducted on this model are given in Part 3 of this assignment (not
given here to avoid repetition).

2) Atomic Model: Transceiver

This atomic model can be tested by giving inputs through different ports of the model and
checking whether the model generates the output at the correct output port and in the
expected amount of time. It is important to check that the model outputs the client object
to the gateway the user is currently connected to and it correctly updates the gateway 1D
when it receives an event from the mobility module. The details of the event file and test
output of the tests conducted on this model are given in Part 3 of this assignment (not
given here to avoid repetition).

3) Atomic Model: MobilityModule

This atomic model can be tested by checking the output of the model. The model should
generate alternate gateway ID at its location port after every handoff interval. The test
outputs of this model are given in Part 3 of this assignment (not given here to avoid
repetition).

4) Coupled Model: Mobile Terminal

This coupled model can be tested by giving inputs through different ports of the model
and checking whether the model generates the output at the correct output port and in the
expected amount of time. It is important to check that the model outputs the client object
and the ‘position set request’ to the gateway the user is currently connected to. The
details of the event file and test output of the tests conducted on this model are given in
Part 3 of this assignment (not given here to avoid repetition).

5) Atomic Model: GatewayQueue

This atomic model can be tested by giving inputs through different ports of the model and
checking whether the model generates the output at the correct output port and in the
expected amount of time. Since this queue has not been connected to the Gateway yet,
the ‘done’ event would have to be fed manually. The details of the event file and test

21

output of the tests conducted on this model are given in Part 3 of this assignment (not
given here to avoid repetition).

6) Atomic Model: Gateway

This atomic model can be tested by giving inputs through different ports of the model and
checking whether the model generates the output at the correct output port and in the
expected amount of time. The details of the event file and test output of the tests
conducted on this model are given in Part 3 of this assignment (not given here to avoid
repetition).

7) Coupled Model: Wireless Gateway

This coupled model can be tested by giving inputs through different ports of the model
and checking whether the model generates the output at the correct output port and in the
expected amount of time. The details of the event file and test output of the tests
conducted on this model are given in Part 3 of this assignment (not given here to avoid
repetition).

8) Atomic Model: TupleClient

This atomic model can be tested by giving input through inCObject port of the model and
checking whether the model generates the output at the outCObject port in the expected
amount of time. The details of the event file and test output of the tests conducted on this
model are given in Part 3 of this assignment (not given here to avoid repetition).

9) Atomic Model: TupleQueue

This atomic model can be tested by giving inputs through different ports of the model and
checking whether the model generates the output at the correct output port and in the
expected amount of time. Since this queue has not been connected to the Tuple Server
yet, the ‘done’ event would have to be fed manually. The details of the event file and test
output of the tests conducted on this model are given in Part 3 of this assignment (not
given here to avoid repetition).

10) Atomic Model: TupleServer

This atomic model can be tested by giving inputs through different ports of the model and
checking whether the model generates the output at the correct output port and in the
expected amount of time. It is important to check that the model outputs the server object
to the gateway the user is currently connected to and it correctly updates the gateway ID
when it receives a handoff request from a wireless gateway. The details of the event file
and test output of the tests conducted on this model are given in Part 3 of this assignment
(not given here to avoid repetition).

11) Coupled Model: Tuple Space

This coupled model can be tested by giving inputs through different ports of the model
and checking whether the model generates the output at the correct output port and in the
expected amount of time. It is important to check that the model outputs the server object
to the gateway the user is currently connected to. The details of the event file and test

22

output of the tests conducted on this model are given in Part 3 of this assignment (not
given here to avoid repetition).

12) Coupled Model: Server

This coupled model can be tested by giving input through inC port of the model and
checking whether the model generates the output at the outS port in the expected amount
of time. The details of the event file and test output of the tests conducted on this model
are given in Part 3 of this assignment (not given here to avoid repetition).

13) Coupled Model: Mobility Management (TOP)

This coupled model can be tested by giving input through inApp port of the model and
checking whether the model generates the output at the outApp port in the expected
amount of time. To verify that the object travels through each of the component in the
expected amount of time and follows the expected path through gateways, we can
connect testing output ports to the model at different points in the model. This would
provide a detailed transition map of the input objects during their ‘journey’ through the
model. The details of the event file and test output of the tests conducted on this model
are given in Part 3 of this assignment (not given here to avoid repetition).

PART 3

1. Execution Results/Testing

1) Atomic Model: TransceiverQueue
The following events file was input to the TransceiverQueue atomic model with the
preparation time of the TransceiverQueue equal to 10ms.

00:00:10:00 inApp 1
00:00:18:00 inGateway 2
00:00:30:00 done 1
00:00:45:00 position 3
00:00:50:00 done 2
00:00:52:00 done 3

The output is as follows:

00:00:10:010 outcobject 1
00:00:30:010 outsobject 2
00:00:50:010 location 3

As the output results show that the model outputs the inputs at the correct port and in the
expected amount of time. The model is found to be working correctly.

23

2) Atomic Model: Transceiver

The following events file was input to the Transceiver atomic model with the send time
of the Transceiver equal to 1 second and GatewayID equal to 1 initially. Note that since
the Transceiver is to be connected to TransceiverQueue in the coupled model, it cannot
receive any more events until it is done serving the current event. Hence for the tests the
events are placed far enough to ensure that no events are missed.

00:00:10:00 inApp 1
00:00:30:00 position 2
00:00:40:00 inApp 3
00:00:50:00 inGateway 4

The output is as follows:

00:00:11:000 outgatewayl 1
00:00:30:000 positionset2 2
00:00:41:000 outgateway2 3
00:00:51:000 outapp 4

As the output results show that the model outputs the inputs at the correct port and in the
expected amount of time. For example, before the event ‘positon 2’ the user was connect
to gatewayl and hence inApp event at 10 was outputted to outgatewayl but after the
‘position 2’ event that changes the active gateway to gateway2 the inApp event is
outputted to gateway2. The model is thus found to be working correctly.

3) Atomic Model: MobilityModule

This model does not take any input. The output with handoff time equal to 30 seconds
and the total simulation time of 3 minutes is shown as follows:

00:00:00:000 location
00:00:30:000 location
00:01:00:000 location
00:01:30:000 location
00:02:00:000 location
00:02:30:000 location
00:03:00:000 location

HN RN RN

The results clearly show that the mobility module alternates the connected gateway after
every 30 seconds (handoff time). The model is thus found to be working correctly.

4) Coupled Model: Mobile Terminal

The coupled model Mobile Terminal was tested by using the following input events file.
The total simulation time was set as 5 minutes.

00:00:10:00 inApp 1
00:00:25:00 inG 2
00:00:40:00 inApp 3
00:00:50:00 inG 4
00:01:10:00 inApp 5
00:01:40:00 inApp 6

24

The output is as follows:

00:00:00:010 pgl 1
00:00:11:010 outgl 1
00:00:26:010 outapp 2
00:00:30:010 pg2 2
00:00:41:010 outg2 3
00:00:51:010 outapp 4
00:01:00:010 pgl 1
00:01:11:010 outgl 5
00:01:30:010 pg2 2
00:01:41:010 outg2 6
00:02:00:010 pgl 1
00:02:30:010 pg2
00:03:00:010 pgl
00:03:30:010 pg2
00:04:00:010 pgl
00:04:30:010 pg2

NEFE NN

The output shows that the model delivers the input objects to the correct gateway. For
example during the first 30 seconds of the simulation when the mobile terminal was
connected to gateway|, it outputted the inApp 1 at 10 seconds to outgl. Similarly in the
next 30 seconds when the mobile terminal was connected to the gateway?2, it outputted
the handoff request at pg2 and inApp 3 at 40 seconds to outg2. All objects coming from
the gateway are correctly outputted to outApp. The model is thus found to be working
correctly.

5) Atomic Model: GatewayQueue
The following events file was input to the Gatewayqueue atomic model with the
preparation time of the Gatewayqueue equal to 10ms.

00:00:10:00 inCObject 1
00:00:18:00 inSObject 2
00:00:30:00 done 1
00:00:45:00 handoff 3
00:00:50:00 done 2
00:00:52:00 done 3

The output is as follows:

00:00:10:010 outcobject 1
00:00:30:010 outsobject 2
00:00:50:010 registerclient 3

As the output results show that the model outputs the inputs at the correct port and in the
expected amount of time. The model is found to be working correctly.

6) Atomic Model: Gateway

The following events file was input to the Gateway atomic model with the send time of
the Gateway equal to 100ms. Note that since the Gateway is to be connected to

25

GatewayQueue in the coupled model, it cannot receive any more events until it is done
serving the current event. Hence for the tests the events are placed far enough to ensure
that no events are missed.

00:00:10:00 inCObject 1
00:00:18:00 inSObject 2
00:00:45:00 handoff 3

The output is as follows:

00:00:10:100 outcobject 1
00:00:18:100 outsobject 2
00:00:45:100 registerclient 3

As the output results show that the model outputs the inputs at the correct port and in the
expected amount of time. The model is found to be working correctly.

7) Coupled Model: Wireless Gateway
The coupled model Wireless Gateway was tested by using the following input events file.

00:00:10:000 inC 1
00:00:25:000 inS 2
00:00:40:000 handoff 2
00:00:41:000 inC 3
00:00:41:030 insS 4
00:01:40:000 inC 5

The output is as follows:

00:00:10:110 outc 1
00:00:25:110 outs 2
00:00:40:110 register 2
00:00:41:110 outc 3
00:00:41:220 outs 4
00:01:40:110 outc 5

As the output results show that the model outputs the inputs at the correct port and in the
expected amount of time. The model is found to be working correctly.

8) Atomic Model: TupleClient

The following events file was input to the TupleClient atomic model with the write time
of the TupleClient equal to 2 s. Note that since the TupleClient is to be connected to
Queue in the coupled model, it cannot receive any more events until it is done serving the
current event. Hence for the tests the events are placed far enough to ensure that no
events are missed.

00:00:10:00 inCObject 1
00:00:18:00 inCObject 2
00:00:45:00 inCObject 3

26

The output is as follows:

00:00:12:000 outcobject 1
00:00:20:000 outcobject 2
00:00:47:000 outcobject 3

As the output results show that the model outputs the inputs at the output port in the
expected amount of time. The model is found to be working correctly.

9) Atomic Model: TupleQueue
The following events file was input to the TupleQueue atomic model with the preparation
time of the TupleQueue equal to 10ms.

00:00:10:00 inSObject 1
00:00:18:00 inSObject 2
00:00:30:00 done 1
00:00:45:00 registerClient 3
00:00:50:00 done 2
00:00:52:00 done 3

The output is as follows:

00:00:10:010 outsobject 1
00:00:30:010 outsobject 2
00:00:50:010 registerc 3

As the output results show that the model outputs the inputs at the correct port and in the
expected amount of time. The model is found to be working correctly.

10) Atomic Model: TupleServer

The following events file was input to the TupleServer atomic model with the transfer
time of the TupleServer equal to 100 ms and GatewayID equal to 1 initially. Note that
since the TupleServer is to be connected to TupleQueue in the coupled model, it cannot
receive any more events until it is done serving the current event. Hence for the tests the
events are placed far enough to ensure that no events are missed.

00:00:10:00 inSObject 1
00:00:30:00 registerClient 2
00:00:40:00 inSObject 3

The output is as follows:

00:00:10:100 outsobjectl 1
00:00:30:000 cregistered 2
00:00:40:100 outsobject2 3

As the output results show that the model outputs the inputs at the correct port and in the
expected amount of time. For example, before the event ‘registerClient 2’ the active
gateway was gatewayl and hence inSObject event at 10 was outputted to outSObjectl
but after the ‘registerClient 2’ event that changes the active gateway to gateway2 the

27

inSObject event is outputted to outSObject2. The model is thus found to be working
correctly.

11) Coupled Model: Tuple Space

The coupled model Tuple Space was tested by using the following input events file.

00:00:10:000 inC 1
00:00:25:000 inS 2
00:00:40:000 RC 2

00:00:45:000 insS 3
00:00:50:030 inS 4
00:01:40:000 inC 5

The output is as follows:

00:00:12:010 outc 1
00:00:25:110 outsl 2
00:00:45:110 outs2 3
00:00:50:140 outs2 4
00:01:42:010 outc 5

As the output results show that the model outputs the inputs at the correct port and in the
expected amount of time. For example, in the beginning when the active gateway was
gateway 1, the model outputs the inS 2 object to outs1. But after receiving an event RC at
40 seconds, gateway2 becomes the active gateway. The model thus forwards the next inS
objects inS 3 and inS 4 to outS2. All client objects are delivered successfully to outC. The
model is thus found to be working correctly.

12) Coupled Model: Server

The coupled model Server was tested by using the following input events file. The queue
preparation time was set as 10 ms while the CPU processing time was set as a normally
distributed with a mean of 10 seconds and standard deviation of 2.

00:00:10:000 inC
00:00:15:000 inC
00:00:16:000 inC
00:00:40:000 inC
00:01:40:000 inC

g w N

The output is as follows:

00:00:19:985 outs
00:00:27:587 outs
00:00:35:512 outs
00:00:50:080 outs
00:01:48:375 outs

g w N

As the output results show that the model outputs the inputs at the correct port and in the
expected amount of time. The model is found to be working correctly.

28

2. Integration Testing

All the coupled models in the system were combined to do the integration testing. Few
additional output ports were added to the top model to trace the path of the objects inside
the model during the simulation. The maximum time of the simulation was set as 5
minutes. The following input event files was used.

00:00:10:00 inApp 1
00:00:20:00 inApp 2
00:00:40:00 inApp 3
00:01:10:00 inApp 4

The output is as follows:

00:00:11:120 clientobjectoutofgatewayl 1
00:00:13:130 clientobjectoutoftuple 1
00:00:21:120 clientobjectoutofgatewayl 2
00:00:23:115 objectoutofserver 1
00:00:23:130 clientobjectoutoftuple 2
00:00:23:335 serverobjectoutofgatewayl 1
00:00:24:345 outapp 1

00:00:30:732 objectoutofserver 2
00:00:30:952 serverobjectoutofgateway2 2
00:00:31:962 outapp 2

00:00:41:120 clientobjectoutofgateway2 3
00:00:43:130 clientobjectoutoftuple 3
00:00:51:055 objectoutofserver 3
00:00:51:275 serverobjectoutofgateway2 3
00:00:52:285 outapp 3

00:01:11:120 clientobjectoutofgatewayl 4
00:01:13:130 clientobjectoutoftuple 4
00:01:23:210 objectoutofserver 4
00:01:23:430 serverobjectoutofgatewayl 4
00:01:24:440 outapp 4

The extra output ports helps in locating the object and verifying the model. The results
show that the model is giving the exact behavior as expected. For example, during the
first 30 seconds, the first two input objects are outputted to gatewayl as the user is
connected to gatewayl during that instant of time while during the next 30 seconds, the
object 3 is outputted to gateway 2 as the mobile terminal is connected to gateway?2.
Similarly in the next 30 seconds, the object 4 was outputted to the gateway|1.

Note that after the client objects are served by the server and are in tuple space. The space
sends the object to the gateway to which the user is connected. For example, in the first
30 seconds, the first object was sent to the mobile terminal through gateway1 while in the
next 30 seconds the object 2 and object 3 were sent to the mobile terminal through
gateway2. Similarly, in the next 30 seconds, the object 4 was sent through gateway 1.

29

The model is thus giving expected behavior and the trace of the object through the model
is in accordance with the prediction. A number of tests were performed to double check
the behavior and the similar results were obtained.

The model is thus found to be working correctly.

3. Reaction of the Model to Different Inputs Than Those

Defined in the Specifications.

The top model (mobility management) has only one input port called inApp. This port
takes the id of the object to be serviced by the server. The id could be any integral value.
Even if a floating number is entered it is cast to integer by the model and thus similar
results are obtained as shown in the above section.

However, it is worth mentioning here that when the individual models are tested, there
are only 2 possible values of the gateway ID (1 or 2). If during the individual testing of
the model a value other than 1 or 2 is specified, the model is unable to locate the gateway
with that ID. In an integrated model, however, since the IDs of the gateway are generated
by the MobilityModule, it is always either 1 or 2 and hence no problems occur.

It should also be mentioned here that all queue models have some preparation time. If
events are sent to the queue model spaced less than the preparation time, some of the
events are lost. However, the preparation time is kept quite small to decrease the
probability of any such occurrence.

30

