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ABSTRACT
Cellular Automata (CA) o�er a promising computational
model to simulate complex phenomena that are characte-
rized b y di�erent coupled parameters that account for the
interactions of their di�erent components. In this paper
w e present the Cellular Automata Network (CAN) compu-
tational model and its application to the simulation of de-
bris/
o wphenomena. We carried out some experimenta-
tions developing a CAN application that implements the
SCIDDICA model (Simulation through Computational In-
novative methods for the Detection of Debris 
ow path using
Interactive Cellular A utomatamodel), tested on the land-
slide occurred in Sarno (Italy) in 1998.

CAN model allows to represent each component of a physical
system in terms of cellular automata, and the interactions
among these components in terms of a netw ork of cellular
automata. The adoption of the CAN model allows to exploit
tw o di�erent types of parallelism: the data parallelism that
comes from the use of Cellular Automata classical model,
and the task parallelism that could occur introducing the
netw ork of Cellular Automata.

1. INTRODUCTION
Cellular Automata (CA) [15] provide useful models for many
investigations in natural science, combinatorial mathemat-
ics, and computer science.

In this paper we deal with CA as a natural way of study-
ing the evolution of large complex systems involving discrete
coordinates as well as discrete time steps. In this context
applications of CA are very broad, ranging from the simu-
lation of 
uid dynamics, physical, c hemical, and geological
processes [16].

A con ventional cellular automaton is characterised by the

following informal properties: a regular discrete lattice of
cells, with a discrete variable at each cell that assumes a
�nite set of states; an evolution law, called a transition rule,
that tak es place in discrete time steps and depends only on
the state of the cell and on a �nite number of neighbor cells.
Eac h cell evolves according to the same transition rule.

The presented CAN model has been used to simulate phe-
nomena characterised by a molecular ontology [4, 5, 6], so its
application to di�erent types of physical phenomena needed
to be investigated. The class of phenomena considered in
this paper consists of debris/mud 
ow phenomena.

Landslides look a well appropriate CA application �eld be-
cause their governing 
ow equations (e.g. Navier-Stokes
equations for the debris 
ow) cannot be easily solved without
making substantial simpli�cations. Most of the complexity
is due to the irregular ground topography and to the possi-
bility for the debris/mud 
ows to range, rheologically, from
nearly Newtonian 
uids to brittle solids by water loss [12].

To overcome these di�culties many approaches ha ve been
tried: SCIDDICA is one of them and it w as successfully
applied to di�erent types of landslide: Tessina (Italy 1992)
[1], Mount Ontak e (Japan 1984) [8], and �nally Sarno (Italy
1998) [7]. The SCIDDICA model w as validated by com-
paring the simulation results of the reconstruction of a se-
lected real phenomenon with the actually observed debris{

ow path.

The reference CA model used for SCIDDICA is based on a
single automaton described in terms of substates that evolve,
at each discrete time step, according to a transition rule.
The evolution of cells may depend either on the value of the
cell and on the values of its neighbor cells, or only on the
value of the cell itself.

In this paper we presen t some preliminary results in imple-
menting the Sarno landslide application simulated in SCID-
DICA, according to the CAN model [5].

The CAN model allows to represen t the components of a
ph ysical system in term of CA and their interconections in
terms of a network of CA; each automaton of the network
can be composed of one or more computational grids whose
cells evolv e according to the automaton transition rule.
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The CAN model allows the exploitation of two types of par-
allelism: the data parallelism, intrinsic to the CA program-
ming model, coming from the possibility to concurrently ex-
ecute the automaton transition function on di�erent grid
portions; and the task parallelism, due to the introduction
of the network, coming from the possibility to concurrently
execute automata belonging to the network.

The rest of the paper is organised as follows. In section 2
the CAN model is introduced as an extension of the cellular
automata paradigm. In section 3 the parallel opportunities
o�ered by the CAN model are described. In section 4 the
Sarno SCIDDICA model is brie
y introduced and in section
5 its representation in terms of the CAN model is presented.
Section 6 reports some preliminary results obtained exploit-
ing the data parallelism of the considered application. Fi-
nally some conclusions are reported in section 7.

2. THE CELLULAR AUTOMATA
NETWORK MODEL

The Cellular Automata Network (CAN) model we used in
our work extends the standard CA model introducing the
possibility to have a network of cellular automata. Each
automaton of the network represents a component of the
physical system to be simulated, and connections among
network automata represent a disjoinable evolutive law that
characterizes the physical system evolution.

The CAN model can be applied to complex physical phe-
nomena that can be modelled by means of a reduction pro-
cess in which the main components and their interactions
can be singly identi�ed.

The CAN model provides the possibility to simulate a two{
level evolutionary process in which the local cellular inter-
action rules evolve together with cellular automata connec-
tions.

In this way it o�ers global information{processing capabil-
ities that are not explicitly represented in the network ele-
mentary components or in their interconnections.

In CAN model an automaton is denoted by a name, and its
behavior is described by a set (possibly empty) of properties
(the automaton grids), by a neighborhood type, by a bound-
ary condition and �nally by a transition function. A prop-
erty corresponds either to a physical property of the system
to be simulated, such as temperature, volume and so on, or
to some other feature of the system, such as the probability
of a particle to move. In any case each property corresponds
to a computational grid of a standard CA automaton. In
this schema a cell of an automaton consists of an array of
values, each one given by the corresponding value of the
property's cell. So, as shown in �g. 1, the value of a cell of
the automaton A, denoted by the dark grey box, is given by
the set of values of the three corresponding cells belonging
to the properties composing the automaton. Of course a
necessary requirement is that the property's cells that com-
pose the automaton cell be in correspondence among them
as shown in �g. 1. The cell neighbourhood represents the set
of adjacent cells which the cell can interact with. Boundary
conditions de�ne the bounded property (grid) dimension.
The transition function represents the physical law that de-

Figure 1: Automaton properties in the CAN model.

termines the evolution of the system allowing it to evolve
from one state to another. It depends on grid geometry,
neighbourhood type, boundary conditions and the state set.
This function is applied at each time step to all automaton's
cells, i.e. to all the corresponding property's cells.

In CAN each automaton of the network can have zero or
more properties. Usually automata with no properties ac-
count for global information about the entire physical sys-
tem.

According to our model, it is not always possible to rep-
resent all the system components as properties of a single
automaton. This is why it can be necessary to represent
a physical system as composed of more than one automa-
ton. In CAN this is done through the use of the cellular
automata network abstraction. When an automaton prop-
erty, that represents a component of a physical system needs
to know the values of the cells belonging to another prop-
erty to be able to evolve, it means the physical components
are partially coupled. In this case it is necessary to use a
network of cellular automata. For instance, if a property P1
needs to know the cell values of the property P2 to evolve at
each time step, a network of two automata, A and B, have
to be de�ned, each one having respectively the property P1
and P2. We say that A is the \owner" of property P1, and
B is the \owner" of property P2. The relation between the
automata A and B is given by the following de�nition:

de�nition 1. Let A and B be two automata, if one or
more properties of B are used (read) by the transition func-
tion of A, then we say that A depends on B, and it is
denoted by A � B.

So a network of cellular automata can be represented as a
graph, that is called the CAN dependence graph, where each
node represents an automaton, and an edge a dependence
relation.

Given a network of two automata, A and B, where A�B, the
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transition function of the automaton B is a functional of the
transition function of the automaton A, and the transition
function of the whole network is the functional composition
of the transition functions of the two automata composing
the network.

From an execution model point of view, the network execu-
tion consists of executing, at each time step, all transition
functions of the cellular automata composing the network,
where the execution of the automaton A must precede the
execution of the automaton B due to their dependence rela-
tion.

In order to build applications according to the CAN model
we used a high{level language, the Cellular Automata Net-
work Language (CANL) [9], speci�cally designed to express
the CAN model components. The language provides a set of
primitives to de�ne both a cellular automaton, representing
each component of a physical system, and a network of cellu-
lar automata describing relations that occur among compo-
nents; direct dependence relations among components must
be explicitly declared. The language provides also collective
operators that allow to refer to the neighbors of a property
cell simply calling the given operators on the property name
without having to specify the position of the cell in the grid.

It should be noted that only the owner of a property can
write the property's values, while these values can be read
by all the automata in the network.

CANL permits to de�ne cellular automata that account for
global features of the physical system to be modeled. This
is done introducing global variables in the de�nition of the
considered cellular automata. Also in this case only the au-
tomaton de�ning the global variables can write them, while
all the other automata in the network can read their values.

Once a CANL program is written, it is cross{compiled in the
C language and then linked to the run{time environment of
the target architecture where the application must be exe-
cuted. The set of architectures on which CANL applications
can actually be executed range from sequential, to vectorial
and parallel architectures [10].

3. DATA AND TASK PARALLELISM
IN CAN MODEL

As discussed in the previous sections, CA models o�er a new
methodology for modeling and simulating complex physical
systems. Nevertheless, in the activity of computer simula-
tion a very crucial requirement regards performances of the
resulting applications. CA approach proved to be a good
candidate to meet this requirement since it allows to ob-
tain parallel applications. So parallel computers represent
the natural architectures where CA applications might be
implemented [14].

In fact it is possible to exploit the data parallelism intrinsic
to the CA programming model coming from the possibil-
ity to concurrently execute the automaton transition func-
tion on di�erent grid portions due to the local nature of
cell interactions. So the standard CA programming model
maps quite naturally a SIMD execution model since it has
an inherent data parallelism. In real applications that solve

problems in the computational science area, usually a very
large number of cells are involved in the computation. So
it becomes clear that, when a sequential computer is used
to support the simulation, the computation is very time{
consuming since the transition function is applied to each
automaton cell one after the other. Thus sequential com-
puters do not o�er a viable solution for executing CA appli-
cations.

There are two possible choices to achieve better performances
with respect to sequential computers in the implementation
of CA applications. The �rst one is the design of special
hardware devoted to the execution of CA applications. The
second alternative is based on the design of programming
environments to be used on commercially{available parallel
computers [3].

We adopted the second approach since we used the PECANS
environment [10] designed to write applications written in
CANL according to the CAN model, and execute them on
speci�c architectures that can be sequential or parallel.

It is obvious that attaining a high degree of data paral-
lelism in cellular automata applications is facilitated by the
simplicity of cells' values representation and by their local
interactions. Nevertheless, not only local interactions oc-
cur in the simulation of complex physical phenomena, and
the individuation of di�erent coupled and partially coupled
physical components is necessary.

The possibility to express in CAN model the di�erent com-
ponents of a complex system in terms of a network of cellular
automata allows also for the exploitation of another source
of parallelism that can improve application performances.
This type of parallelism is the task parallelism coming from
the possibility to concurrently execute network automata
(i.e. di�erent system components) whose dependence rela-
tions either do not occur for, or they have been resolved
during the network execution.

The CA network dependence relations involve \precedences"
for the execution of the network automata, so a precedence
relation graph can be obtained.

Let be A = fa1; : : : ; ang the set of CA composing a network;
we de�ne on this set a precedence relation �, where ai � aj
holds if and only if the execution of ai must be completed
before starting the execution of aj . The couple (A;�) is a
partially ordered set.

In our computational model, we have that ai has to be ex-
ecuted before aj , i.e. ai � aj , if and only if there is a set
of automata fb1; : : : ; bmg such that b1 = ai, bm = aj , and
8k 2 f1; : : : ;mg : bk�bk+1. Only when there is not a prece-
dence relation between ai and aj , i.e. ai � aj and aj � ai
both do not hold, automaton ai and aj can be concurrently
executed.

So the precedence relations, that are due to the necessity to
model non{local interactions and to account for global infor-
mation in the modeled physical system, put constraints on
the possibility to exploit all the opportunities of parallelism
o�ered by the CAN model.
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4. THE SARNO SCIDDICA MODEL
SCIDDICA is a cellular automata model for the simulation
of mud and debris 
ow type landslides.

In this model landslides are viewed as a dynamic system that
is subdivided in parts whose components evolve exclusively
on the basis of local interactions in a spatial and temporal
discretum. Space is represented by square cells, whose spec-
i�cations (called the substates) describe the average physical
characteristics of the respective space area.

The CA model used to simulate landslide phenomena is rep-
resented by a quadruple: SCIDDICA = hR;X;Q; �i where

� R = f(x; y) : x; y 2 N; 0 � x � lx; 0 � y � lyg is
the set of points with integer co{ordinates in the �nite
region where the phenomenon evolves, N is the set
of natural numbers, and l is the upper bound of set
of points, i.e. it determines the bounds of considered
region.

� X = f(i; j) : �2 � i � 2;�2 � j � 2g is the set
that identi�es the geometrical pattern of cells which
in
uences the cell state change (as shown in �g. 2),
i.e. the neighborhood set for each cell.

� Q is a �nite set of states.

� � : Q25 ! Q is the deterministic state transition for
the cells in R, where the apex of the Q, i.e. 25, is the
cardinality of the neighbour set.

In the SCIDDICA model the state transition rule can take
account of two di�erent types of evolution:

� internal transformations, denoted by �T , when varia-
tions of substates inside the cell, depend only on the
substates of the cell itself, i.e. in this case the cell
neighborhood is the cell itself;

� local interactions, denoted by �I , when variations of
substates inside the cell (e.g. debris/mud out
ows),
depend on the values of substates in its own neighbor-
hood.

Internal transformations and the local interactions can be
applied in a commutative way.

Examples of practical successful applications on real events
are: the 1992 reactivation of the Tessina landslide in Italy,
the 1984 Ontake volcano debris avalanche in Japan, and a
�rst application to the landslides occurred in the Sarno area
of Campania region (Italy) in 1998.

The Sarno landslides are very complex, because not only
mass moving, but also a strong avalanche{like e�ect in soil
erosion during the evolution of the phenomenon should be
taken into account. The upper soil in the Sarno area is a
detrital cover due to transported volcanic hash. The de-
tachment of small masses determines, in conditions of soil
saturation by water, the mobilization of part of the detrital
cover that is immediately transformed in debris/mud.

So it is necessary to compose the mechanisms of mass mo-
ving, detrital cover mobilization and avalanche e�ect in or-
der to model this type of landslide.

In the SCIDDICA model the overall Sarno landslide phe-
nomenon is fragmented in phenomenological components;
each component has its own neighborhood that usually is
smaller than the whole CA neighborhood set X.

These phenomenological components are described by one
internal transformation and two local interactions, as fol-
lows:

� mobilization e�ect

�T : Qa �Qth �Qdc �Qm �Qr !

Qa �Qth �Qdc �Qr �Qm

� debris/mud and run up out
ows

�I1 : (Qa �Qth �Qr)
5 ! of4th � of4r (X1)

� mobilization propagation

�I2 : (Qa �Qdc �Qm �Qth �Qr)
9 ! of8m (X2)

where ofth individuates a debris/mud out
ow from the cen-
tral cell, ofr individuates the corresponding out
ows of run
up, ofm individuates a \mobilization out
ow", that accounts
for mobilization propagation from the central cell. Again
the apex represent the cardinality of the neighbour set. Of
course the in
ows ifth, ifr, and ifm are trivially derived by
the corresponding out
ows.

The substates, whose Cartesian product gives the set Q =
Qa �Qth �Qr �Qd �Qm �Qdc, have the following role:

� Qa is correlated to the altitude of the cell.

� Qth is correlated to the thickness of debris/mud in the
cell.

� Qr is correlated to a measure of the energy, called \run
up", of the cell's debris/mud and it is given by the
product of debris/mud thickness with the height that
could be exceeded by the debris/mud incoming 
ow;

� Qdc is correlated to the type of detrital cover of the
cell and it individuates the maximum depth of detri-
tal cover that can be transformed by the erosion in
debris/mud;

� Qm is correlated to the \mobilization" activation of
the detrital cover which becomes debris/mud; when
its value is 0, it is not activated, while a value di�erent
from 0 expresses the mobilization width that depends
on the altitude di�erence between the central cell and
its neighbors.

The local interaction \debris/mud and run up out
ows" in-
volves only the neighborhood X1 = f(i; j) : jij + jjj � 1g
(shown in �g. 3); the determination of the next values of
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Figure 2: Neighborhood cells involved in the evolu-
tion of cell (i,j).

Figure 3: Neighborhood types in SCIDDICA model.

Qth and Qr involves the computation of all the in
ows of
\debris/mud and run up" for the cell. The local interaction
\mobilization propagation" involves only the neighborhood
X2 = (i; j) : �1 � i � 1;�1 � j � 1 (shown in �g. 3); the
determination of the next value of Qm involves the compu-
tation of all the in
ows of \mobilization propagation" for
the cell, which needs an e�ective neighborhood X.

In order to determine the total variation of the substates,
each cell must apply the procedures not only to compute in-
ternal transformations of substates and their own out
ows
(of), but also the neighbor cells out
ows which correspond
to their own in
ows (if). So the overall neighborhood of the
cell must include not only the cells necessary to calculate
their own out
ows, but also the cells necessary to calculate
the in
ows (it is forbidden to \write" into the neighbor cells
in the context of CA). This involves a more extended neigh-
borhood and a heavy repetition of the same computations.

Figure 4: CAN network of the Sarno SCIDDICA
model.

5. A CAN REPRESENTATION FOR
THE SCIDDICA MODEL

According to the Cellular Automata Network model, each
phenomenological component of the SCIDDICA model is
represented in terms of a cellular automaton, but the lo-
cal interaction �I1 is fragmented in turn in two di�erent
phenomenological components, each one calculating respec-
tively the ofth and ofr. All the substates of the previous
model become properties in the CAN model. Also 
ows are
represented in terms of properties and the automata that
write them are the owners of that property.

The debris/mud out
ows of an automaton (that are the in-

ows of another automaton) determine the dependence rela-
tions among the automata of the network. They are written
as out
ows by a cell of an automaton, and then they can
be read as in
ows from the adjacent cells of the other au-
tomata. All the other states of the SCIDDICA model are
associated to automata according to this \owner rule".

In the CAN model a network of 5 automata (shown in �g.4)
is de�ned, where each automaton is composed of one or more
properties.

Let's brie
y describe the role of each automata:

� A1 is composed by one property and its transition
function computes part of �I1 of the previous model
calculating the debris/mud out
ows; it reads the prop-
erties Qth , Qr and Qa.

� A2 is composed by one property and its transition
function computes the remainder part of �I1 calculat-
ing the energy of the previously considered debris/mud
out
ows; it reads the the in
ow if4th, the property Qa,
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and the propertyQE that is correlated to the \run{up"
of the previous model but does not have a correspon-
dent substate in the SCIDDICA model.

� A3 is composed by one property and its transition
function computes �I2 of the previous model calcu-
lating the two types of mobilization out
ows of the
detrital cover: one by contact, because a mobilized
cell may transmit mobilization to a neighbor cell if
particular conditions of altitude di�erence occur; the
other by energy transfer, because there is an energy
threshold that permits mobilization, when applied to
the cell detrital cover; it reads the properties Qth, Qa,
Qr and Qm.

� A4 is composed by �ve properties and its transition
function computes �T of the previous model; it reads
Qa, Qr and Qdc and the in
ows if4m. If the mobi-
lization occurs, the detrital cover disappears partially
because it is transformed in debris/mud, so a 
ow of
debris/mud plus run up is generated inside the cell and
the altitude is reduced.

� A5 is composed by two properties and its transition
function computes new values of the properties Qr and
Qth adding in
ows and subtracting out
ows to their
old values; it reads the properties Qa and Qr and the
out
ows of5th and of

5
r (the in
ows if5th and if

5
r for each

cell are trivially derived).

Once the new values of all properties are determined, a new
step of the Sarno SCIDDICA network starts.

The use of a network of automata does not require the rep-
etition of the same computation as in the previous model,
allowing to consider the exact neighborhood set for each phe-
nomenological component in which the phenomenon can be
split. In fact the transition function of the previous model is
split in components applied to di�erent automata belonging
to the de�ned network.

6. EXPLOITING PARALLELISM
IN A SCIDDICA APPLICATION

As described in section 3, applications written according to
the CAN model may o�er two types of parallelism: the data
parallelism intrinsic to CA computational model and coming
from the possibility of applying the same transition function
on all automaton cells, and also the task parallelism com-
ing from the possibility of concurrently executing di�erent
automata belonging to di�erent network branches. So CAN
applications show a multi{level parallelism.

The e�ciency of exploiting both types of parallelism strongly
depends on the number of network branches, and on the
computational costs of the branches that can be concur-
rently executed. Anyway it is clear that scheduling poli-
cies are necessary to decide the amount of parallelism to be
spawned for each level in order to have a better exploitation
of the available parallel computer resources [2].

In the Sarno landslide application described so far, the re-
sulting CAN network presents only two branches, as shown
in �g.4, that are unbalanced since the two branches of the

network have di�erent costs in terms of execution time. We
carried out some experiments exploiting �rst only the data
parallelism and then the multi{level parallelism using the
multithreading execution model. The used target architec-
ture was the SGI Origin2000 multiprocessor computer [13].
It is a cache{coherent NUMA multiprocessor with 6 dual{
processor basic node board. Each node is equipped with two
195 MHZ MIPS R10000 processors and it accommodates a
64 KBytes primary cache and a 4 MBytes secondary cache
per processor. Each node has 4 GBytes of DRAM memory.
The SGI Origin2000 uses the IRIX operating system version
6.5.4. We chose to use the IEEE POSIX threads package
[11] to be able to exploit also the two{level parallelism in a
nested way.

In the experimentation carried out the total number of threads
allocated for parallelism is �xed and threads are bound to
processors so the number of generated threads represents
the actual number of cpus allocated for the application.

In order to be able to compare performances, in terms of ex-
ecution times, obtained exploiting only data parallelism to-
wards two{level parallelism approaches, we varied the num-
ber of used processors.

In the data parallelism approach, since automata are com-
puted one by one, we allocated all available processors (thre-
ads) to the execution of each automaton, where each thread
execute the transition function on portions of the automa-
ton grid obtained dividing each property along rows into
equal{sized chunks.

When exploiting both types of parallelism, a static schedul-
ing strategy is adopted. It consists of assigning a di�er-
ent number of threads (we refer to as thread pool) to each
branch according to its computational costs. All threads of
the pool were allocated and uniformly distributed for data
parallel processing, while one thread was also responsible for
managing thread creation and synchronization.

The results obtained showed no signi�cant di�erences in the
two approaches in terms of speedups obtained by the ratio of
the sequential execution time with the CAN multithreaded
execution time.

This was an expected result due to the low number of net-
work branches present in the considered application. In fact
this means that in the considered application the data par-
allelism, depending on the size of the grids (that is �xed for
the given application), is predominant compared to the task
parallelism coming from the presence of only two branches
of computationally independent set of automata in the net-
work.

In �g. 5 the speedups obtained for the data parallelism are
reported. They show the application scalability up to 10
processors. Of course increasing the number of processors
with the same problem size, the computation grain size as-
signed to each thread/processor decreases, and so the costs
due to the parallel execution start becoming relevant.

7. CONCLUSIONS AND FUTURE WORKS
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Figure 5: Speedups in data parallel execution.

In this paper we presented some preliminary results obtained
mapping the Sarno SCIDDICA model in the CAN model.
This work proved that CAN model is a good candidate to
simulate debris/mud 
ow phenomena.

The advantage of using the CAN model is the possibility to
provide a methodological approach closer to the representa-
tion of physical phenomena in terms of their components.
This is why we tested and verify the possibility to enlarge
the class of phenomena that can be simulated with the CAN
computational model. Furthermore this approach allows to
detect di�erent opportunities of parallelism that are not in-
trinsic to the standard CA model.

It should be noted that in the considered application the
data parallelism available is predominant since the network
has only two branches. Nevertheless performances obtained
exploiting both types of parallelism do not degrade.

This is an encouraging result since we adopted a simply
sheduling strategy that is static; so we foresee better results
designing a dynamic scheduling strategy that could take into
account the run{time computational costs of the network
branches.

Furthermore it is very likely that more complicated debris/

ow phenomena can expose a degree of task parallelism
greater than the one available for the application considered
in this work.

So we plan to carry out more experiments mapping other
SCIDDICA applications in the CAN model in order to test
on real applications the e�ectiveness of exploiting both types
of parallelism in a nested way.
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