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PART I

Problem to be solved:

Finite elements analysis has been used successfully since the advent of computers to analyze complex engineering and physical systems. Areas of applications include Structural analysis (aircraft industry, building, etc.), thermal analysis for heat transfer, Electromagnetic analysis (electric motors), and Fluid analysis (aerodynamics, fluid mechanics).

All the above physical problems are modeled with differential equations, and by traditional analysis, these equations are solved analytically for the desired system. This approach only works for very simple systems with simple geometries and property distributions. For any real life problem, obtaining an analytical solution is almost impossible unless many approximations are done.

Usually in problems solved by finite element analysis we find two major components: Field, and Potential. Examples of these are as per [2], p.8.

	Field
	Potential

	Heat flux
	Temperature

	Mechanical stress
	Displacement

	Electric Field
	Voltage

	Magnetic field
	Magnetic vector potential

	Field velocity
	Fluid potential


Finite element analysis consists of dividing the structure under study to a large number of elements. Each element is of a simple geometry, which can be studied easily. The Differential equations can be solved for a particular simple element by assuming a linear change of potential field for example in that element. After approximating the solution for a single element, simple algebraic equations are obtained for the element. All the elements in the structure are connected together through their “nodes” located at their edges. From these connections, we can then obtain a system of equations represented in a form of N x N matrices for the whole structure, where N represents the number of elements in that structure. The only known values would be at certain points in the structure (usually at its boundaries for example, hence the term “boundary conditions”). These known values would be used to get the unknown potential inside the structure.

The general matrix equation is found to represent most systems modeled by finite elements method:

[S] [T] = [P]

Where [S] is N x N “stiffness” matrix and represents elements properties (material constants, dimensions, etc.), [T] is N column vector representing the unknown potential values at each element nodes, [P] is N column vector representing the forcing function.

The problem then converges to solving the system of equations numerically by a suitable methos such as Gaussian elimination. The final solution would give the distribution of the Potential variable over the structure as represented by the obtained values at each element nodes. The obtained solution is a good approximation to the problem under study and its precision can be enhanced by dividing the structure to more elements, or by assuming more complicated distribution of the potential inside the element itself. 

Finite Element analysis has been used successfully in large engineering projects as aircraft modeling, structural analysis, engine design, etc.

The purpose of this project is to explore the use of Cell-DEVS models to model and solve problems used to be tackled by Finite elements Method (FEM). A simple example is treated in this project that shows how to approach the problem definition from Cell-DEVS point of view and try to predict how to extend this to more complex problems. It also compares the results obtained by Cell-DEVS approach to those by FEM as the advantages and disadvantages of Cell-DEVS approach.

Conceptual model description:

The example used in this project is example 10.1 at reference [1], p. 319. This is an example of steady state heat transfer with convection from a fluid into a composite wall of different materials. Although FEM is used with variety of problems, I’ve decided to model a heat transfer problem, as heat flux is a scalar field with only one degree of freedom. Other systems such as mechanical stress would require an element with six degrees of freedom (deformation in 3 dimensions, and rotational deformation around each axis in space). However, It is expected that method of solution of this simple example can be extended to more complex elements and model different fields as well.

In order to model this as a Cell-DEVS, rules of cell value update should be deduced. The way used to do this is to study a simple model composed of 2 elements with three nodes. The resulting formula can then be applied to the general model of steady state heat transfer in one dimension.

PART II

1. Deduction of updating rules.

 Heat transfer occurs when there is a temperature difference within a body or between a body and its surrounding medium. Heat flows from hot spots towards cooler ones. Heat conduction in two dimensions steady state isotropic medium is given by:
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(1)

Where q is the heat flux (W/m2 ), k is the thermal conductivity of the material (W/m. oC), T = T(x,y) is the Temperature field in the medium, and 
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 are the temperature gradients over x and y respectively. The minus sign is to indicate that the direction of heat flux is opposite to direction of increasing temperature.

In convection heat transfer, the heat flux is given by:
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Where h (W/m2.oC) is the film coefficient is a property of the fluid around the surface, 
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 are fluid and surface temperature respectively.

For a small element assuming a linear temperature distribution along its length, the heat flux equation would be:
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Where, Th, Tl are the high and low temperatures of its ends respectively.

To get the updating rules for our Cell-DEVS model, we first consider two elements connected together with three nodes in total as in Fig.1. Each node can be represented with a cell as shown. The cell value represents the corresponding node temperature. We can imagine the node is located in each cell as shown in Fig.1. The element length L and thermal conductivity K would be stored for each element. Theses values are stored in another row of cells above those representing the nodes.


From (1) and assuming a linear temperature distribution along the elements, we get:

Q1  = K1 / L1 . (T2 – T1)

And

Q2  = K2 / L2 . (T1 – To)

As in a steady state, the input heat flux equals output heat flux, Q1 = Q2, We get:
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(3) For heat conduction.

Similarly we get:
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(4) For heat convection.

Equations (3) and (4) above give us the updating rules we need for our cells. 

Every cell value would thus be a function of its right cell value, its stored physical properties, left cell value, and its left cell physical properties.

Please note that in case of identical elements (same K and L), the updating rule for a cell’s temperature would be a simple arithmetic mean of its two neighboring cells.

The example 10.1 in reference [1] can then be modeled as:



Where T4 = 800o C., T0 = 20o C are the boundary conditions.

2.
The rules:

1. The model is initially loaded with values representing material properties on row 0, boundary values on cells (1,0) and (1,4), and arbitrary values in other cells.

2. The model executes until cell values becomes stable. The resultant values would represent temperature gradient in the structure under study.

3. Formal Specification of the coupled Cell-DEVS model

 The area is divided in cells in a grid of 2 by 5 cells. The neighborhood cells are defined as the diagram shows.







M=<I,X,Y,Xlist,Ylist,η, N,{f,c}, C, B, Z, select>

I=<PX,Py>,
with PX={Φ},
Py={Φ};

X= Φ 

Y= Φ;

Xlist= Φ
 
Ylist= Φ
η=5

N={(-1,0) ,(0,0),(0,1), ,(-1,-1),(0,-1)}

f=2; 
c =5;

C={Cij/iε[1,f], jε[1,c]}

B={ (Cij | i = 1; j = 0, 4) , (Cij | i = 0; jε[0,4])}
Z:

PijY1→Pi-1jX1


Pi,j-1Y1→Pi+1jX1  

PijY2→Pi,jX2       

Pi,jY2→PijX2  

PijY3→Pi,j+1X3   

Pi,j-1Y3→PijX3  

PijY4→Pi-1,j-1X4

Pi+1,j+1Y4→PijX4  

PijY4→Pi,j-1X4

Pi,jY4→Pi,j+1X4  

Select = {(-1,0) ,(0,0),(0,1), ,(-1,-1),(0,-1)}

For the model’s specification, please refer to the file – HeatConduction.MA
Rules defined in HeatConduction.ma file:

[conduction-rule]

Rule 1

rule : { ((-1,0)*(0,1)+(-1,-1)*(0,-1)) / ( (-1,0)+(-1,-1) ) } 1 { t }

The above rule implements equations (3) and (4). Physical properties K/L are stored in (-1,0) and (-1,-1).

Rule 2

[Constants]

rule : {(0,0)} 1 {t}

 This rule is for the constant physical properties stored in row 0 as defined in a “zone” in the model.

Rule 3

[Boundary]

rule : {(0,0)} 1 {t}

This rule is for boundary conditions.

4. FINAL REPORT


Execution of the model is done with multiple test cases.

(1) Test Case 1: Cells between hot and cold boundaries are initialized with temperature value of 20 degrees centigrade. The solution converges to the correct answer after 22 steps as shown on output file.

(2) Test Case 2: Cells between hot and cold boundaries are initialized with temperature value of -3000 degrees centigrade. This is to show the effect of an arbitrary value on the correctness of the final solution, as well as number of steps required to converge. The solution converges to correct answer after 30 steps as shown on output file. The final solution is identical of "Test Case 1".

(3) Test Case 3: As previous case, but with initialization of 3000 degrees centigrade. The model converges in about 30 steps to correct solution.

(4) Test Case 4: This test with “Test Case 5” is to compare the number of steps to converge, in both cases. Both cases uses a high temperature equals to 850 degrees. In “Case 4”, the model initialized with cell values resulted from solving previous cases (test Case 1 for example). In “Test Case 5”, the cells are initialized with arbitrary value such as –3000 degrees. The difference in results shows a faster convergence for “Case 4” than “Case 5”. This shows that for a complex and large model, one can enhance subsequent solutions to the same model with different boundary condition. This is done by initializing the model with values obtained from previous simulations, thus changes in boundary conditions from a previous simulation run, would converge to the solution in less steps than if we started from arbitrary values. 

Notes:

· As noted in point 4 above, for large and complex models, initializing the model cells with a previous solution of almost a similar boundary conditions, can cut the time of simulation. In contrary to that with FEM, as it depends on solving a matrix using Gaussian elimination. Unless some intelligence in Gaussian elimination procedure is programmed, FEM would solve the N x N matrix all over again even if a small change were done to boundary conditions. This small change may only affect several cells around that boundary condition, in which a Cell-DEVS model simulation can be more efficient than FEM.

· Gaussian elimination method is known to be O(N3). In order to get the time complexity of our Cell-DEVS model simulation, we would need to run different models with different sizes and to get statistics with number of execution steps.

· One advantage of Cell-DEVS model is that each cell is an intelligent component  working with its neighbors. This would make parallel execution of Cell-DEVS models easier compared of that of FEM. A massively parallel computer with a cell at each of its processors is an ultimate example of parallel execution of Cell-DEVS model, and which is difficult to attain with FEM. 

· In order to extend the Cell-DEVS model to a 2-diminsional, more work need to be done to model 2-dimensional element behavior with its nodes. Finite Element references select triangular elements for modeling heat transfer (or any field forces) in a 2-dimensional space. This is due the symmetry of such shapes. Every element would have 3 nodes, in which 2 of them are connected to a neighboring element. I expect to use a similar approach used in one dimensional to obtain the governing equations in two dimensions. Each node temperature would then be a function in four or more neighboring nodes. Nodes can then be represented with cells in a Cell-DEVS model, with distances between nodes and material properties stored in a 3rd dimension plane cells. 

Extending the model to 2-dimension

To extend the model to 2-dimension, we use the triangular shped element as per figure 10.10, p. 329 at reference [1].

From the reference [1] we get:
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Where: Ae is the triangle area, yij is the distance on y-axis between nodes i and j, Ti  is the temperature  at node i.   

Similarly, we get:
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The heat flux in x-axis and y-axis would be:
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respectively.

By connecting two triangular elements together either by 2 nodes or 1 node, and equating heat flux in both directions, we can get cell updating rules for node temperature as a function of other nodes temperatures, triangular dimensions (xij and yij), and material thermal conductivity k.

Some more work and testing is needed in this subject.
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