
Vesicle-Synapsin Interactions Modeled with Cell-DEVS

Rhys Goldstein
Department of Systems and Computer Engineering

Carleton University
Ottawa, Ontario, Canada
rhys@sce.carleton.ca

Keywords
DEVS formalism, cellular automata, presynaptic nerve ter-
minal, vesicle, synapsin

1. INTRODUCTION
The interactions of vesicles and synapsins were modeled us-
ing the Cell-DEVS formalism. These interactions take place
within a presynaptic nerve terminal of a neuron, which is
represented by a circular region in a 2-dimensional cellu-
lar automaton. Simulation results show the formation and
separation of vesicle-synapsin clusters in response to action
potentials.

This paper begins with background information about vesicle-
synapsin interactions and Cell-DEVS modeling. In Section
3, the model itself is specified. Section 4 describes the im-
plementation of the model using the CD++ toolkit, and
presents selected test results. The paper concludes with a
few observations about the model, and a discussion of pos-
sible improvements.

2. BACKGROUND
This section describes the vesicle-synapsin interactions in
general, briefly introduces the DEVS and Cell-DEVS mod-
eling formalisms, and discusses the application of Cell-DEVS
to the biological system.

2.1 Vesicle-Synapsin Interactions
When signals, known as “action potentials” propagate along
a neuron, they terminate at presynaptic nerve terminals.
These round structures may transmit the signal to other
neurons. At the risk of adopting an over-simplistic interpre-
tation of a complex system, one can strive to understand
this process by studying the interactions between vesicles
and synapsins.

Synaptic “vesicles” move within a presynaptic nerve termi-
nal. If they encounter the “active zone”, a region of the sur-

rounding membrane, they may remain there. When an ac-
tion potential arrives, these docked vesicles may release neu-
rotransmitters through the membrane, which may in turn
trigger an action potential in the adjacent neuron.

Also moving withing a presynaptic nerve terminal are pro-
teins known as “synapsins”. Synapsins may tether vesicles
together to form clusters. It has been proposed that the clus-
tering of vesicles aids signal transmission by controlling the
number of vesicles in the vicinity of the active zone. When
an action potential arrives, a chemical reaction takes place
during which these clusters tend to break up. The separated
vesicles and synapsins then start binding with one another,
forming new clusters before the arrival of the next action
potential.

The complex chemical interactions that take place at a presy-
naptic nerve terminal are discussed in far greater detail in
[1] and [2].

2.2 DEVS and Cell-DEVS Formalisms
DEVS (discrete event systems specification) is a formalism
developed in the 1970’s. It allows a model to be specified in
one of two ways. If specified in isolation, a model is referred
to as an “atomic model”. If specified as a group of intercon-
nected models, it is a “coupled model”. As a model within a
coupled model can itself be a coupled model, complex DEVS
models can be organized in hierarchies.

Using DEVS, a programmer can prepare a simulation with-
out implementing loops. All DEVS models are specified in-
dependently of the simulator responsible for advancing time.
The programmer’s main task is to specify how models are
interconnected, and what state transitions can take place.

Cell-DEVS is an extension to DEVS designed for the speci-
fication of cellular automata. A “cell”, in this case, is a unit
in a cell-space. If a cell-space is 2-dimensional, a cell can be
thought of as a square on a grid.

In the Cell-DEVS formalism, each cell of a cell-space has
an associated timed DEVS cell model. The cell-space as a
whole has an associated DEVS coupled model, which con-
tains all of the cell models. The interconnections between
cell models are defined by the “neighborhood”, which is a set
of relative coordinates.

An overview of DEVS and Cell DEVS is provided by [3],

which also describes the CD++ implementation of these for-
malisms.

2.3 Vesicle-Synapsin Interaction Models
Of particular interest in the presented Cell-DEVS model is
the formation and separation of vesicle-synapsin clusters,
and the motion of these clusters. Reactions triggered by ac-
tion potentials are modeled as periods of time during which
binding probabilities are altered. An active zone is modeled
as a region of the membrane adjacent to which any vesicle
or synapsin is rendered motionless. The release of neuro-
transmitters was not modeled.

The presented model is an enhancement of a preexisting
model described in [4]. In the original, the locations of vesi-
cles and synapsins were represented by single cells in a 2-
dimensional cell-space. When isolated, vesicles and synapsins
would move randomly through the space. After each cycle,
they would bind to one another to form stationary clusters.
Arbitrary probabilities controlled the binding of vesicles and
synapsins, as well as their separation from clusters.

The circular region representing the membrane, the active
zone, the motion of clusters, and the effect of action poten-
tials were enhancements introduced in the development of
the presented model.

3. MODEL SPECIFICATION
This section provides a formal specification of the model.
First, the coupled Cell-DEVS model and DEVS cell atomic
model are presented. Next, the initial conditions of the cell-
space are established, followed by general transition rules.
Transition rules specific to action potentials, vesicle-synapsin
binding, and cluster motion are subsequently explained.

3.1 Presynaptic Nerve Terminal Model
The function presynapticGCC results in a Cell-DEVS cou-
pled model that represents a presynaptic nerve terminal.
The parameter R, which must be a positive integer, is the
inner radius of the terminal. In the absence of an action
potential, the probability that a vesicle will bind to an adja-
cent synapsin is prest. If they are already bound, then there
is a probability of qrest that they will separate. The binding
and separating probabilities during an action potential are
pact and qact respectively.

presynapticGCC(R, prest, qrest, pact, qact) =
〈Xlist, Y list, XGCC , YGCC , n, [t1, t2], N, C, B, Z〉

The coupled model has one input port, named in, on which
to receive a value of either receivingact or receivingrest.
This represents the arrival of an action potential from the
axon of the neuron, or the point at which the action-potential-
induced reactions have subsided. The input value is received
by the cell [0, 0].

Xlist = {[0, 0]}

XGCC = {[in, Φ′]};

Φ′ ∈ {receivingact, receivingrest}

There are no output ports.

Y list = ∅

YGCC = ∅

The cell-space is a 2-dimensional square grid, just large
enough to surround the inner terminal will a membrane layer
of at least one cell in any direction.

n = 2

t1 = t2 = 2 ·R + 1

A von Neumann neighborhood is used.

N = {[0, 0], [1, 0], [0, 1], [−1, 0], [0,−1]}

A function named presynapticTDC results in the DEVS cell
atomic model of each cell in the cell-space. It is defined in
a section 3.2.

C([i1, i2]) =
presynapticTDC(prest, qrest, pact, qact);

(i1 ∈ N) ∧ (0 ≤ i1 < t1)

(i2 ∈ N) ∧ (0 ≤ i2 < t2)

Because the vesicle-synapsin interactions take place in a cir-
cular region within the cell-space, the conditions of the ac-
tual model border are irrelevant. For simplicity, a wrapped
border can be used.

B = ∅

The translation function Z is defined by the Cell-DEVS for-
malism.

3.2 Presynaptic DEVS Cell Model
As mentioned above, the timed DEVS cell atomic model
for each cell results from the presynapticTDC function. Its
parameters, the four binding and separating probabilities,
are the same for each cell.

presynapticTDC(prest, qrest, pact, qact) =
〈XTDC , YTDC , S, N, delay, d, δext, δint, τ, λ, ta〉

The cell model’s set of input values, XTDC , includes the
corresponding set from the coupled model, XGCC , as well
as the set of states from changing neighbors, X. A cell’s set
of output values, YTDC , includes only those values derived
from its own changing state. As the sets X and Y deal
only with interacting neighboring cells, their meanings are
implied by the Cell-DEVS formalism.

XTDC = X ∪XGCC

YTDC = Y

A cell’s state must belong to the set S. It is described by
seven variables: type, b, Φ, φ, v, z, and σ.

S = {[type, b, Φ, φ, v, z, σ]}

The type variable indicates whether a cell is part of the
empty region inside the terminal, a vesicle, a synapsin, part
of the neuron’s membrane, or part of the active zone within
the membrane.

type ∈ {empty, vesicle, synapsin, membrane, zone}

The function b is defined for the four vectors pointing from
a cell to its adjacent neighbors. For each of these directions,
the function result can be either free, seeking, unseeking,
looking, or binding. This information facilitates the model-
ing of vesicle-synapsin binding and separation.

b([i, j]) ∈ {free, seeking, unseeking, looking, binding};

([i, j] ∈ N) ∧ ([i, j] 6= [0, 0])

The variable Φ indicates whether the cell has received an
event external to the coupled model (receiving[...]), is start-
ing or ending an action-potential-induced reaction (starting[...]),
or is waiting for a change (holding[...]).

Φ ∈ {
receivingact, receivingrest,
startingact, startingrest,
holdingact, holdingrest}

There are eight phases, which are cycled through in succes-
sion each time vesicles and synapsins move. The current
phase is indicated by the variable φ.

φ ∈ {
starting, holding,
selecting, bindingS , bindingV ,
aiming, steering, moving}

The variable v represents the direction in which a vesicle or
synapsin is intending to move. In membrane and active zone
cells, which never move, v is always zero. In empty cells, the
variable may be used to indicate the intended direction of
an approaching vesicle or synapsin.

v ∈ N

The priority number z is used to resolve conflicts between
moving vesicles and synapsins.

0 ≤ z ≤ 1

The time remaining until the next internal transition is rep-
resented by σ. As the model uses inertial delays, the tran-
sition indicated by σ may be interrupted by a change in a
neighboring cell.

σ ≥ 0

Aside from one exception, the external transition function
δext, internal transition function δext, and output function λ
are defined as in the Cell-DEVS formalism. The exception
pertains to an external event representing an action poten-
tial, which is described in a section 3.4. The local computing
function τ and time advance function ta are also specified
further below.

3.3 Initial Conditions
The cell-space is initialized by the function presynapticinit,
which has four arguments. The parameter R, again, rep-
resents the inner radius of the terminal. The size of the
active zone is described by the angle θ. The probabilities
pV and pS provide a convenient way to distribute vesicles

and synapsins within the terminal.

presynapticinit(R, θ, pV , pS) = sinit;

sinit([i1, i2]) = [
typeinit([i1, i2]),
binit,
Φinit,
φinit,
vinit,
zinit,
σinit];

(i1 ∈ N) ∧ (0 ≤ i1 < t1)

(i2 ∈ N) ∧ (0 ≤ i2 < t2)

The radius can be used to partition the cell-space into a re-
gion inside the terminal, and a bordering region representing
the membrane of the neuron.

typeinit([i1, i2]) =„
r([i1, i2]) ≥ R → typeouter([i1, i2])
r([i1, i2]) < R → typeinner([i1, i2])

«
The function r gives the distance from the center of the
cell-space.

r([i1, i2]) =
p

(i1 −R)2 + (i2 −R)2

On the outside, all cells encompassed by the angle θ are part
of the active zone. Otherwise, they are regular membrane
cells.

typeouter([i1, i2]) =„
i1 −R > r([i1, i2]) · cos(θ

2
) → zone

i1 −R ≤ r([i1, i2]) · cos(θ
2
) → membrane

«
On the inside, each cell has a probability pV of being a
vesicle, and a probability pS of being a synapsin. Otherwise
the cell is empty.

typeinner([i1, i2]) =0@ rand < pV → vesicle
pV ≤ rand < pV + pS → synapsin
pV + pS ≤ rand → empty

1A ;

rand = uniform()

The function b initially results in free regardless of position
and direction. This reflects the absence of vesicle-synapsin
clusters. The terminal is not undergoing an action-potential-
induced reaction, and the initial phase is starting. Initially,
the intended direction v is [0, 0], and z and σ are both zero.

binit([i, j]) = free

Φinit = holdingrest

φinit = starting

vinit = [0, 0]

zinit = 0

σinit = 0

Figure 1 shows one possible initial configuration of cell types.

Figure 1: An initial cell-space configuration (R = 16,
θ = 90◦, pV = 9%, pS = 12%). On the inside, black
cells represent vesicles while the light grey cells are
synapsins. White cells are empty. On the outside,
the dark region at the bottom is the active zone,
while the remainder are normal membrane cells.
Though it is not part of the model, one could imag-
ine a connection to the axon of the neuron some-
where near the top.

3.4 Transitions
Used as an argument in transition functions, the state func-
tion s gives the cell state for each cell in a neighborhood.
The expression s([1, 0]), for example, represents the state of
the cell with coordinates [1, 0] relative to the cell in question.

s([i, j]) ∈ S;

[i, j] ∈ N

The functions type, b, Φ, φ, v, z, and σ are defined implicitly
by the equation below. It will be assumed that they are all
available in whatever context the state function s is avail-
able. The expression z([1, 0]), for example, gives the priority
number of the cell with coordinates [1, 0] relative to the cell
in question.

s([i, j]) = [
type([i, j]),
b([i, j]),
Φ([i, j]),
φ([i, j]),
v([i, j]),
z([i, j]),
σ([i, j])]

For convenience, the variables type0, b0, Φ0, φ0, v0, z0, and
σ0 will be used to represent the state of the cell in ques-
tion. The expression Φ0, for example, will be used as an

alternative to Φ([0, 0]).

s([0, 0]) = [type0, b0, Φ0, φ0, v0, z0, σ0]

The time advance function ta is defined as follows.

ta(s) = σ0

The local computing function τ is partially defined below.
The eight phase-specific local computing functions (τstarting,
τholding, etc.) will be defined in subsequent subsections.

τ(s) =

0BBBBBBBBB@

φ0 = starting → τstarting(s)
φ0 = holding → τholding(s)
φ0 = selecting → τselecting(s)
φ0 = bindingS → τbindingS (s)
φ0 = bindingV → τbindingV (s)
φ0 = aiming → τaiming(s)
φ0 = steering → τsteering(s)
φ0 = moving → τmoving(s)

1CCCCCCCCCA
Several functions are defined here for convenience. The func-
tion anytype indicates whether any of the adjacent cells are
of the indicated type.

anytype(s, type′) =
(type([1, 0]) = type′) ∨ (type([−1, 0]) = type′)∨
(type([0, 1]) = type′) ∨ (type([0,−1]) = type′)

The function anyb0 indicates whether the state function b0

contains the indicated binding-related value.

anyb0(s, b
′
0) =

(b0([1, 0]) = b′0) ∨ (b0([−1, 0]) = b′0)∨
(b0([0, 1]) = b′0) ∨ (b0([0,−1]) = b′0)

If any of the adjacent cells have the indicated action state,
anyΦ will yield a truthful result.

anyΦ(s, Φ′) =
(Φ([1, 0]) = Φ′) ∨ (Φ([−1, 0]) = Φ′)∨
(Φ([0, 1]) = Φ′) ∨ (Φ([0,−1]) = Φ′)

If any of the adjacent cells have the indicated phase, anyφ

will be true.

anyφ(s, φ′) =
(φ([1, 0]) = φ′) ∨ (φ([−1, 0]) = φ′)∨
(φ([0, 1]) = φ′) ∨ (φ([0,−1]) = φ′)

The function uniform results in a random value based on
a uniform probability distribution. The range lies between,
but does include, 0 and 1.

uniform()

The expression below results in a value randomly selected
from the vector V . All values of V are given an equal prob-
ability.

random(V)

3.5 Action Potentials
Action potentials are triggered by events external to the
Cell-DEVS coupled modeled. The input is received on the
port in, which is directed to cell [0, 0]. Any other membrane
cell could have been used. The receipt of an action potential
changes the cell’s action state, as indicated by the equation

below. Also note the change in σ, the time remaining until
the next internal event.

δext(s, e, [in, Φ′]) = [type0, b0, Φ
′
0, φ0, v0, z0, σ

′
0];

Φ′
0 = Φ′

σ′
0 = σ0 − e

Action-potential-related information is propagated in the
starting phase, and sustained during the holding phase. Be-
cause the starting phase has instantaneous events, the con-
ditional formula below is necessary. It states that if any of
a cell’s adjacent neighbors is in the holding phase, that cell
must itself transition to the holding phase without delay.
This need to immediately update the phase is a recurring
theme in the model.

τstarting(s) =

„
anyφ(s, φ′

0) → s′now

¬anyφ(s, φ′
0) → τ ′

starting(s)

«
;

φ′
0 = holding

s′now = [type0, b0, Φ0, φ
′
0, v0, z0, σ

′
0];

σ′
0 = 0

If the cell is in a holding[...] action state, but at least one
of its adjacent neighbors is starting[...], then the cell adopts
the new state without delay. It also adopts the appropri-
ate starting[...] value if the neighbor’s value is receiving[...].
Once a cell’s action state value changes, it then propagates
this information to other neighboring cells.

A transition from holdingrest to startingact indicates the be-
ginning of an action potential. The transition from holdingact

to startingrest indicates that the chemical reactions induced
by the action potential have subsided. This simple ”ON-or-
OFF”model of action potentials suffices to break up vesicle-
synapsin clusters.

The formulas below specify the propagation of action states.
If none of a cell’s neighbors are starting a new action state,
then the cell transitions to the holding phase in 1 time unit.
Note that this delayed transition will be interrupted if a

neighbor’s state changes within that time.

τ ′
starting(s) =

0@ anyact → sact

anyrest → srest

¬anystart → slater

1A ;

anyact =
((Φ0 = holdingact) ∧ anyΦ(s, startingact))∨
(Φ0 = receivingact)

anyrest =
((Φ0 = holdingrest) ∧ anyΦ(s, startingrest))∨
(Φ0 = receivingrest)

anystarting = anyact ∨ anyrest

sact = [type0, b0, Φ
′
0, φ0, v0, z0, σ

′
0];

Φ′
0 = startingact

σ′
0 = 0

srest = [type0, b0, Φ
′
0, φ0, v0, z0, σ

′
0];

Φ′
0 = startingrest

σ′
0 = 0

slater = [type0, b0, Φ0, φ
′
0, v0, z0, σ

′
0];

φ′
0 = holding

σ′
0 = 1

Once a starting[...] action state has been propagated during
the starting phase, it must be converted to a corresponding
holding[...] state during the holding phase. For example,
suppose the presynaptic nerve terminal is at rest. When
an action potential arrives, the Φ0 of cell [0, 0] becomes
receivingact. Sometime later, during the starting phase,
every cell becomes startingact. After 1 time unit, during
the holding phase, every cell becomes holdingact. A similar
process takes place when the cell-space returns to the rest
state.

As indicated below, a cell in the holding phase enters the
selecting phase if any of its adjacent neighbors is in the
selecting phase. The Bselecting function will be explained
in section 3.6.

τholding(s) =

„
anyφ(s, φ′

0) → snow

¬anyφ(s, φ′
0) → τ ′

holding(s)

«
;

φ′
0 = selecting

snow = [type0, b
′
0, Φ0, φ

′
0, v0, z0, σ

′
0];

b′0 = Bselecting(s)

σ′
0 = 0

The formulas below convert starting[...] action states into
corresponding holding[...] action states.

τ ′
holding(s) =

0@ isstartingact → sact

isstartingrest → srest

¬isstarting → slater

1A ;

isstartingact = (Φ0 = startingact)

isstartingrest = (Φ0 = startingrest)

isstarting = isstartingact ∨ isstartingrest

sact = [type0, b0, Φ
′
0, φ0, v0, z0, σ

′
0];

Φ′
0 = holdingact

σ′
0 = 0

srest = [type0, b0, Φ
′
0, φ0, v0, z0, σ

′
0];

Φ′
0 = holdingrest

σ′
0 = 0

slater = [type0, b
′
0, Φ0, φ

′
0, v0, z0, σ

′
0];

b′0 = Bselecting(s)

φ′
0 = selecting

σ′
0 = 1

If, or when, there are no starting[...] values to convert, a
delay of 1 time unit elapses and the cell enters the selecting
phase. This is the first step in the vesicle-synapsin binding
process.

3.6 Vesicle-Synapsin Binding
After handling information related to action potentials, but
before vesicles and synapsins move, vesicle-synapsin bind-
ings are permitted to change. Adjacent but unbound vesicle
and synapsins may bind together, while those that are al-
ready bound may separate.

When a cell enters the selecting phase, its b0 function is
replaced with the result of the Bselecting function. The b0

value is only changed if the cell is either a synapsin or a vesi-
cle. If it is a synapsin, then the result of b0 becomes free
in any direction that does not point to an adjacent vesicle.
If it does point to a vesicle, b′S must be evaluated. For vesi-
cles, b0 results in looking for each direction that points to

an adjacent synapsin. Otherwise, the result is free.

Bselecting(s) =

0@ type0 = synapsin → bS

type0 = vesicle → bV

¬isparticle → b0

1A ;

isparticle = type0 ∈ {vesicle, synapsin}

bS([i, j]) =„
type([i, j]) 6= vesicle → free
type([i, j]) = vesicle → b′S(s, [i, j])

«
bV ([i, j]) =„

type([i, j]) 6= synapsin → free
type([i, j]) = synapsin → looking

«
In the case of a synapsin with a adjacent vesicle, the corre-
sponding result of b0 depends first on whether the pair are
already bound. If so, the result becomes unseeking, which
can be interpreted as ”seeking separation”. If the pair are
not already bound, then the bfree function is evaluated.

b′S(s, [i, j]) =„
b0([i, j]) = binding → unseeking
b0([i, j]) = free → bfree(s, [i, j])

«
Complications arise from the fact that a synapsin can only
bind in two opposite directions. If the synapsin is binding
the direction [−i,−j], then it may seek a vesicle in direction
[i, j]. In this case, b0([i, j]) becomes seeking. Otherwise,
b′free is evaluated.

bfree(s, [i, j]) =„
b0([−i,−j]) = binding → seeking
b0([−i,−j]) = free → b′free(s, [i, j])

«
In the case that the synapsin is not binding in the direction
opposite [i, j], the two perpendicular directions are checked.
If the synapsin is binding in either of these directions, its
alignment prohibits binding in the direction [i, j]. The re-
sult of b0([i, j]) therefore becomes free. Otherwise, b′′free is
evaluated.

b′free(s, [i, j]) =„
bindingperp → free
¬bindingperp → b′′free(s, [i, j])

«
;

bindingperp =
(b0([j, i]) = binding) ∨ (b0([−j,−i]) = binding)

In the final case, the synapsin is not binding in any direction.
If then has a 50% chance of seeking the vesicle at [i, j] as a
candidate for binding.

b′′free(s, [i, j]) =„
isaligned → seeking
¬isaligned → free

«
;

isaligned =
((|i| = 1) ∧ isvertical) ∨ ((|j| = 1) ∧ ¬isvertical)

Note that the random value of isvertical is evaluated once
per cell, not once per direction.

isvertical = uniform() < 0.5

The complex Bselecting function is evaluated during the tran-
sition into the selecting phase. Once this phase begins, its

sole purpose is to waste 1 time unit to ensure that Bselecting

has been evaluated on each cell.

τselecting(s) = [type0, b0, Φ0, φ
′
0, v0, z0, σ

′
0];

φ′
0 = bindingS

σ′
0 = 1

The bindingS phase is when the synapsins firmly decide
whether they will bind with adjacent vesicles. It is followed
by the bindingV phase, in which vesicles identify bindings
by looking at the synapsins. The formula below indicates
an immediate transition to the bindingV phase in the event
that any of a cell’s adjacent neighbors is already in that
phase. Otherwise, τ ′

bindingS
is evaluated.

τbindingS (s) =

„
anyφ(s, φ′

0) → snow

¬anyφ(s, φ′
0) → τ ′

bindingS
(s)

«
;

φ′
0 = bindingV

snow = [type0, b0, Φ0, φ
′
0, v0, z0, σ

′
0];

σ′
0 = 0

An unresolved direction, in the case of a synapsin, is one for
which the b0 function results in seeking or unseeking. If
there are any unresolved directions, τ ′′

bindingS
is evaluated.

τ ′
bindingS

(s) =

„
anyunresolved → τ ′′

bindingS
(s)

¬anyunresolved → s′later

«
;

anyunresolved =
anyb0(s, seeking) ∨ anyb0(s, unseeking)

s′later = [type0, b0, Φ0, φ
′
0, v0, z0, σ

′
0];

φ′
0 = bindingV

σ′
0 = 1

When τ ′′
bindingS

is evaluated, b0 is changed in each unre-
solved direction. If it results in seeking for one direction,
there is a probability p that it will become binding. Oth-
erwise it will become free. If b0 results in unseeking for a
direction, there is a probability q that it will become free.
Otherwise, it becomes binding. Here p and q depend on the
action state. If the presynaptic nerve terminal is at rest, the
model parameters prest and qrest are used. If the terminal
is responding to an action potential, then pact and qact are

used.

τ ′′
bindingS

(s) = [type0, b
′
0, Φ0, φ0, v0, z0, σ

′
0];

b′0([i, j]) =

0@ b0([i, j]) = seeking → bp([i, j])
b0([i, j]) = unseeking → bq([i, j])
resolved → b0([i, j])

1A ;

resolved =
(b0([i, j]) 6= seeking)∧
(b0([i, j]) 6= unseeking)

bp([i, j]) =

„
rand < p → binding
rand ≥ p → free

«
;

p =

„
Φ0 = holdingrest → prest

Φ0 = holdingact → pact

«
rand = uniform()

bq([i, j]) =

„
rand < q → free
rand ≥ q → binding

«
;

q =

„
Φ0 = holdingrest → qrest

Φ0 = holdingact → qact

«
rand = uniform()

σ′
0 = 0

Once synapsins have chosen their binding directions, and the
cell-space transitions from bindingS to bindingV , the vesi-
cles respond. The first thing specified is the condition where
a cell’s neighbor has already transitioned to the aiming
phase, in which case that cell must also transition. Oth-
erwise τ ′

bindingV
is evaluated. The functions Vaiming and

Zaiming are explained in section 3.7.

τbindingV (s) =

„
anyφ(s, φ′

0) → snow

¬anyφ(s, φ′
0) → τ ′

bindingV
(s)

«
;

φ′
0 = aiming

snow = [type0, b0, Φ0, φ
′
0, Vaiming(s), Zaiming(s), σ′

0];

σ′
0 = 0

In the case of a vesicle, an unresolved direction is one for
which b0 results in looking. The function τ ′′

bindingV
is eval-

uated if any directions are unresolved.

τ ′
bindingV

(s) =

„
anyunresolved → τ ′′

bindingV
(s)

¬anyunresolved → s′later

«
;

anyunresolved = anyb0(s, looking)

s′later = [type0, b0, Φ0, φ
′
0, Vaiming(s), Zaiming(s), σ′

0];

φ′
0 = aiming

σ′
0 = 1

When τ ′′
bindingV

is evaluated, the result is a change in b0([i, j])
for each unresolved direction [i, j]. Suppose the adjacent
synapsin, in direction [i.j], is binding in the opposite direc-
tion, [−i,−j]. In that case, b0([i, j]) is binding. Otherwise

it is free.

τ ′′
bindingV

(s) = [type0, b
′
0, Φ0, φ0, v0, z0, σ

′
0];

b′0([i, j]) =

„
b0([i, j]) = looking → b′′0 ([i, j])
b0([i, j]) 6= looking → b0([i, j])

«
b′′0 ([i, j]) =„

badj([−i,−j]) = binding → binding
badj([−i,−j]) = free → free

«
;

badj = b([i, j])

σ′
0 = 0

By the time the cell-space transitions into the aiming phase,
all bindings between vesicles and synapsins have been re-
solved.

3.7 Cluster Motion
While it would be relatively straightforward to allow isolated
single-cell particles to move randomly through the presynap-
tic nerve terminal, it is challenging to specify the motion of
vesicle-synapsin clusters. A cluster is any group of vesicles
and synapsins connected through binding links defined by
the b0 functions. Clusters move randomly, remaining intact
and avoiding obstacles such as other clusters. The algorithm
designed to accomplish this is based on priority numbers.

Upon transitioning to the aiming phase, the intended direc-
tion v0 and priority number z0 of each cell may be changed.
The new values are obtained from the Vaiming and Zaiming

functions respectively. If a cell is a vesicle or synapsin, and if
it is not adjacent to the active zone, then both the direction
and priority number are randomized. Otherwise the direc-
tion is [0, 0], indicating no motion. In this case, the priority
number given to empty cells is 1, which is the weakest num-
ber. If the motionless cell is not empty, the priority number
is zero, which is the strongest.

Vaiming(s) =

„
ismovable(s) → Vrandom()
¬ismovable(s) → [0, 0]

«

Zaiming(s) =

„
ismovable(s) → Zrandom()
¬ismovable(s) → Zfrozen(s)

«
ismovable(s) =

(type0 ∈ {vesicle, synapsin})∧
¬anytype(s, zone)

Vrandom() = random([[1, 0], [0, 1], [−1, 0], [0,−1]])

Zrandom() = uniform()

Zfrozen(s) =

„
type0 = empty → 1
type0 6= empty → 0

«

The first phase associated with cluster motion is aiming. A
cell, with any neighbors that have already advanced to the

steering phase, must itself advance.

τaiming(s) =

„
anyφ(s, φ′

0) → s′now

¬anyφ(s, φ′
0) → τ ′

aiming(s)

«
;

φ′
0 = steering

s′now = [type0, b0, Φ0, φ
′
0, v0, z0, σ

′
0];

σ′
0 = 0

During the aiming phase, directions and priority numbers
are repeatedly shared within each cluster. A cell will adopt
these values from an adjacent neighbor, provided that the
neighbor has a lower priority number than that of the cell
itself. The process ends when each vesicle and synapsin has
the same direction and priority number as any other com-
ponent in the same cluster.

It is useful to define a function gaiming, which results in a
truthful value if a neighbor at [i, j] has a lower priority num-
ber and is bound to the cell. Another function, Gaiming, is
truthful if all neighbors have advanced past the bindingV

phase, and gaiming([i, j]) is true for any [i, j] describing an
adjacent cell.

gaiming(s, [i, j]) = (z([i, j]) < z0) ∧ (s0([i, j]) = binding)

Gaiming(s) = ¬anyφ(s, bindingV) ∧ (
gaiming(s, [1, 0]) ∨ gaiming(s, [−1, 0])∨
gaiming(s, [0, 1]) ∨ gaiming(s, [0,−1]))

So long as the result of Gaiming is false, there is nothing to
do other than transition to the steering phase after 1 time
unit.

τ ′
aiming(s) =

„
Gaiming(s) → τ ′′

aiming(s)
¬Gaiming(s) → s′later

«
;

s′later = [type0, b0, Φ0, φ
′
0, v0, z0, σ

′
0];

φ′
0 = steering

σ′
0 = 1

If Gaiming is true, the lower priority number and direction
are copied from the adjacent neighbor.

τ ′′
aiming(s) =

0BB@
gaiming(s, [1, 0]) → obey(s, [1, 0])
gaiming(s, [0, 1]) → obey(s, [0, 1])
gaiming(s, [−1, 0]) → obey(s, [−1, 0])
gaiming(s, [0,−1]) → obey(s, [0,−1])

1CCA
The copying is specified by the obey function below.

obey(s, [i, j]) = [type0, b0, Φ0, φ0, v
′
0, z

′
0, σ

′
0];

v′
0 = v([i, j])

z′
0 = z([i, j])

σ′
0 = 0

By the time the cell-space transitions beyond the aiming
phase, all particles and clusters have an intended direction.
That direction may change, however. Vesicles and synapsins
must not collide, and must not enter the membrane. All pos-
sible collisions are to be resolved during the steering phase.

First, cells are to transition to the moving phase if adja-
cent neighbors have already done so.

τsteering(s) =

„
anyφ(s, φ′

0) → s′now

¬anyφ(s, φ′
0) → τ ′

steering(s)

«
;

φ′
0 = moving

s′now = [type0, b0, Φ0, φ
′
0, v0, z0, σ

′
0];

σ′
0 = 0

As was the case in the aiming phase, a direction and pri-
ority number are copied from an adjacent cell only if the
priority number is lower. In the case of steering, any one of
three conditions must also be met. One of those case is the
same as in the case of aiming; specifically, that the cell is
bound to the adjacent neighbor. Clearly, the two particles
must have the same direction.

The second possible condition is that the cell is either a
vesicle or a synapsin, and is currently intending to move to-
wards the adjacent neighbor with the lower priority number.
This condition helps to prevent collisions.

The third possible condition is that the adjacent neighbor is
a vesicle or synapsin, and the adjacent neighbor is intending
to move towards the cell. This also helps to prevent colli-
sions. Note that in this case, the cell in question may be
empty. In the steering phase, empty cells can adopt direc-
tions from vesicles and synapsins.

The conditions described above are defined formally in the
function gsteering.

gsteering(s, [i, j]) =
(z([i, j]) < z0) ∧ (

(s0([i, j]) = binding)∨
((type0 ∈ {vesicle, synapsin})∧

(v0 = [i, j]))∨
((type([i, j]) ∈ {vesicle, synapsin})∧

(v([i, j]) = [−i,−j])))

Suppose that an empty cell has an approaching vesicle on
either side. Suppose also that the one on the right has a
lower priority number. The empty cell in the middle will
adopt the direction and priority number from the right. In
this case, the direction is pointing to the left. The vesicle on
the left will then adopt this lower priority number as well,
and reverse its direction. This example illustrates how a
possible collision is avoided.

Continuing the example above, suppose that the vesicle on
the right in now pushed upwards by a synapsin with a lower
priority number. The empty cell now has no approaching
particles. In order to reset its direction and priority num-
ber, this condition checked using the function γsteering.

γsteering(s, [i, j]) =
(type0 = empty)∧
(v0 = [i, j])∧
(v([i, j]) 6= [−i,−j])

All the conditions described above are combined into the
single function Gsteering.

Gsteering(s) = ¬anyφ(s, aiming) ∧ (
gsteering(s, [1, 0]) ∨ gsteering(s, [−1, 0])∨
gsteering(s, [0, 1]) ∨ gsteering(s, [0,−1])∨
γsteering(s, [1, 0]) ∨ γsteering(s, [−1, 0])∨
γsteering(s, [0, 1]) ∨ γsteering(s, [0,−1]))

As long as Gsteering(s) is false, a cell has nothing to do
except wait 1 time unit then transition to the moving phase.

τ ′
steering(s) =

„
Gsteering(s) → τ ′′

steering(s)
¬Gsteering(s) → s′later

«
;

s′later = [type0, b0, Φ0, φ
′
0, v0, z0, σ

′
0];

φ′
0 = moving

σ′
0 = 1

If Gsteering(s) is true, then one of the conditions that re-
quires a change of direction and priority is also true. These
possible changes are specified below. The function obey is
the same as in the aiming phase, while obeyall resets empty
cells.

τ ′′
steering(s) =0BBBBBBBBB@

gsteering(s, [1, 0]) → obey(s, [1, 0])
gsteering(s, [0, 1]) → obey(s, [0, 1])
gsteering(s, [−1, 0]) → obey(s, [−1, 0])
gsteering(s, [0,−1]) → obey(s, [0,−1])
γsteering(s, [1, 0]) → obeyall

γsteering(s, [0, 1]) → obeyall

γsteering(s, [−1, 0]) → obeyall

γsteering(s, [0,−1]) → obeyall

1CCCCCCCCCA
;

obeyall = [type0, b0, Φ0, φ0, v
′
0, z

′
0, σ

′
0];

v′
0 = [0, 0]

z′
0 = 1

σ′
0 = 0

The final phase is moving. At this point, all vesicles and
synapsins have intended directions. These directions will not
break bindings, and will not cause collisions. The function
gmoving indicates whether a cell has an incoming particle in
a given direction. The function Gmoving indicates whether
a cell has an incoming particle in any direction.

gmoving(s, [i, j]) =
(type([i, j]) ∈ {vesicle, synapsin})∧
(v([i, j]) = [−i,−j])

Gmoving(s) =
gmoving(s, [1, 0]) ∨ gmoving(s, [−1, 0])∨
gmoving(s, [0, 1]) ∨ gmoving(s, [0,−1])

If a cell has an incoming particle, τ ′
moving is evaluated. Oth-

erwise, its future state depends on a function named move.

τmoving(s) =

„
Gmoving(s) → τ ′

moving(s)
¬Gmoving(s) → move(s)

«
The τ ′

moving function obtains the type0 and b0 values from
the cell with the incoming vesicle or synapsin. The transition

occurs after 1 time unit.

τ ′′
aiming(s) =0BB@

gmoving(s, [1, 0]) → from(s, [1, 0])
gmoving(s, [0, 1]) → from(s, [0, 1])
gmoving(s, [−1, 0]) → from(s, [−1, 0])
gmoving(s, [0,−1]) → from(s, [0,−1])

1CCA ;

from(s, [i, j]) = [type′0, b
′
0, Φ0, φ

′
0, v

′
0, z

′
0, σ

′
0];

type′0 = type([i, j])

b′0 = b([i, j])

φ′
0 = starting

v′
0 = [0, 0]

z′
0 = 0

σ′
0 = 1

If there are no incoming particles, the one condition to check
is whether the cell represents a vacating vesicle or synapsin.
If so, the cell becomes empty. Otherwise, its type remains
as is.

move(s) =

„
vacating → fromnone

¬vacating → s′later

«
;

vacating =
(type([i, j]) ∈ {vesicle, synapsin}) ∧ (v 6= [0, 0])

fromnone = [type′0, b
′
0, Φ0, φ

′
0, v

′
0, z

′
0, σ

′
0];

type′0 = empty

b′0([i, j]) = free

φ′
0 = starting

v′
0 = [0, 0]

z′
0 = 0

σ′
0 = 1

s′later = [type0, b0, Φ0, φ
′
0, v

′
0, z

′
0, σ

′
0];

φ′
0 = starting

v′
0 = [0, 0]

z′
0 = 0

σ′
0 = 1

4. IMPLEMENTATION AND TESTING
This sections discusses the implementation of the model, and
presents the results of a selected test.

4.1 CD++ Implementation
The model was implemented using CD++. This toolkit was
developed in conjunction with a language designed specifi-
cally for the implementation of Cell-DEVS models. Macros

were written to separate the model parameters from the
code, and to facilitate the reuse of certain expressions.

While the specification defines a single Cell-DEVS coupled
model, the implementation also included an“axon”model to
provide external events at regular intervals. The axon model
was given two parameters: one to represent the number
of cycles between action potentials, and one to specify the
duration of each reaction triggered by an action potential.
A “cycle” is a complete rotation through each of the eight
phases, a time period during which vesicles and synapsins
can move at most once. For convenience, the axon model
was itself defined as a Cell-DEVS coupled model containing
a single cell. A DEVS atomic model could have been imple-
mented instead.

Extra conditions were added to the implementation to ad-
dress the possibility that two randomly-generated priority
numbers might be equal in value. Mathematically this is
an impossibility, so the specification is not incorrect for ne-
glecting the issue. In the code, in the event that conflicting
directions and priority numbers are encountered, a vesicle
or synapsin is rendered motionless with a priority number
of zero.

4.2 Test Results
Tests demonstrated that the model captures the desired
qualitative behaviour of vesicles and synapsins. One such
test involved the simulation of a cell-space with the follow-
ing initial conditions.

R = 8

θ = 90◦

pV = 9%

pS = 12%

In the model, vesicles and synapsins were given a 100%
chance of binding while the terminal was at rest. The prob-
ability of adjacent vesicles and synapsins binding was ac-
tually closer to 50%, as synapsins bind in only two of four
directions. A 1% probability of separation was added to
discourage the formation of extremely long and narrow clus-
ters. During an action-potential-induced reaction, the bind-
ing probability was lowered to 10%, while the probability of
separation was raised to 50%.

prest = 100%

qrest = 1%

pact = 10%

qrest = 50%

At the beginning of the simulation, vesicles and synapsins
were randomly distributed in the terminal. Although this
initial condition does not represent reality, clusters began
forming within the first few cycles. As intended, the clus-
ters mostly broke up after the arrival of an action potential,
but regrouped thereafter.

Figure 2 shows three snapshots from the simulation: one

Figure 2: Three snapshots from the test described in the text. The one on the left shows clusters formed
after 75 cycles. The first action potential arrived immediately after, and the resulting reaction lasted 5
cycles. Immediately after these 5 cycles, as shown in the center image, the vesicles and synapsins in the large
clusters dispersed. Different clusters reformed, as shown on the right, after an additional 75 cycles. Black
cells represent vesicles, while the light grey cells are synapsins.

immediately before the first action potential, the next im-
mediately following the resulting reaction, and the third im-
mediately prior to the second action potential. One can also
observe vesicles and synapsins in the vicinity of the active
zone at the bottom.

Clusters are smaller and more numerous than they appear
in the snapshots. Noting that synapsins may bind to at
most two vesicles, one can identify groups of adjacent, small
clusters that at first appear as single, large clusters. The
tendency for clusters to form in straight lines was not in-
tended, but is a logical consequence of the binding rules. A
greater value of q would likely result in rounder clusters, as
the linear clusters would be rendered unstable.

5. CONCLUSIONS
Simulations demonstrated that the model captured the de-
sired qualitative behaviour of vesicles and synapsins in presy-
naptic nerve terminals. Specifically, test results showed the
formation and break-up of clusters in response to action po-
tentials, the random motion of clusters, and the docking of
vesicles and synapsins near the active zone. No efforts have
yet been made to assess the validity of the model, nor to
optimize the models parameters.

The Cell-DEVS formalism proved particularly useful for the
propagation of action-potential-related information, and for
the avoidance of collisions during cluster motion. These as-
pects of the model relied on instantaneous transitions. In
retrospect, the specification may have been simpler if the
zero-delay transitions used for binding had been avoided.

The cluster motion algorithm is the most interesting and
perhaps the most novel aspect of the model. Unfortunately,
it has two drawbacks: inefficiency and asymmetry. It is in-
efficient because many random directions and priority num-
bers are propagated, most of which are to be replaced with
other directions and smaller priority numbers. The motion
of clusters is asymmetric because, in the steering phase, the
final combination of directions depends on the order in which

simultaneous events are resolved. If the order of events was
itself randomized, there would be no bias. But as the order
of events depends on positions and directions, clusters will
likely have a tendency to favour certain directions over oth-
ers. The effect of this bias was neither studied nor observed.

Possible future enhancements include the adaptation of the
model to a 3-dimensional cell-space, and the fusion and for-
mation of vesicles on the membrane. It may also be possible
to change the vesicle-synapsin binding rules to better reflect
reality. One drawback of the Cell-DEVS approach is that it
would be difficult to allow a cluster to rotate. Representing
long actin structures, which are known to influence vesicle-
synapsin clusters, would also be a challenge.

6. REFERENCES
[1] K. M. Turner, R. D. Burgoyne, and A. Morgan,

“Protein phosphorylation and the regulation of synaptic
membrane traffic,” Trends in Neurosciences, vol. 22,
no. 10, pp. 459–464, 1999.

[2] E. Fdez and S. Hilfiker, “Vesicle pools and synapsins:
New insights into old enigmas,” Brain Cell Biology,
vol. 35, pp. 107–115, 2006.

[3] G. Wainer, “CD++: a toolkit to develop DEVS
models,” Software, Practice and Experience, vol. 32,
no. 3, pp. 1261–1306, 2002.

[4] G. Wainer, S. Jafer, B. Al-Aubidy, A. Dias, R. Bain,
M. Dumontier, and J. Cheetham, “Advanced devs
models with application to biomedicine,” Artificial
Intelligence, Simulation and Planning (AIS 2007),
Buenos Aires, Argentina.

