Vending Machine Controller

The vending machine controller to be described here is similar to the ones that exist in cafeterias. There are a number of items in the machine that can be purchased by inserting sufficient amount of money and then selecting the appropriate button to dispense the item. It can also return the correct amount of change and keep track of how many of each item has been dispensed, when all of a particular item has been dispensed, informed the customer.

This system includes a coin collector, an item selector, a service panel, the item processor, a change maker, the balance display, a message queue and central controller.

Coin Collector: this model is in charge of collecting coins, measuring the amount of the coin that is inserted in a given time unit, and send the amount to the vending controller.

X= (customer_coin_in); Y= (coin_amount_out); S= (phase, sigma, coin_amount, processing_time)

Item Selector: this model is for customer to choose the particular item that customer wants and transfer the item_id to the vending controller in a given time.

X= (customer_selection_in); Y=(item_selected_out); S= (phase, sigma, item_id, processing_time)

Service Panel: this model is for staffs to revise and change the database in the vending controller when the items or the prices are changed. When the control panel is being used, it will disable the customer service and update the database within the vending controller.

X= (service_request_in); Y=(message_out); S = (phase, sigma, message, processing_time)

Change Maker: this model is in charge of making changes when customer make such request, a query is to be made to the vending controller to request for the amount to be changed and then make changes to the customer.

X= (customer_request_in, vending_controller_balance_in); Y=(request_to_controller, coins_to_customer); S= (phase, sigma, request, balance, processing_time)

Item Processor: this model is in charge of providing the item requested to customers and callback to vending controller when it’s done.

X= (vending_controller_item_in); Y=(item_to_customer_out, done_notification_to_controller); S= (phase, sigma, {item, processing_time})

Balance Display: this model can display the balance for the customer.

X= (vending_controller_balance_in); Y=(refresh_display); S= (phase, sigma, balance, refresh_time)

Message Queue: this queue is associated with the central controller to handle the message flow from various models when the central controller is busy. We do not want to lose messages such as a coin inserted at the coin collector when the central controller is busy processing something else.

X= (coin_collector_in, item_selector_in, change_maker_in, service_panel_in, item_processor_in); Y=(message_to_controller_out) S =(passive, sigma)

Central Controller: this model acts as a central processing unit that is in charge of calculating/updating the available balance, processing selected items, supply balance to the change maker, update balance display and validate item database. One timeout is needed in case there has no input from Service Panel for a period of time and customer services will be resumed. The other timeout is required in case the notification from item processor is not received in a given period of time when processing items, item selector will then be enabled for other selections.

X=(message_to_controller_in) Y= (item_processor_out, change_out, balance_display_out)

S = (phase, sigma, item_counter, {service_disable, disable_time}, {balance, calculating_time})

Model structure:

External communication

Internal communication

[top] structure
Left is the customer service interface, right is the service controller

[service_controller] structure, left is vending controller.

[vending_controller] structure includes the following:

Part II

A) The vending machine simulation consists of eight atomic models and two coupled models. Atomic models include CoinCollector, ItemSelector, ChangeMaker, BalanceDisplay, MessageQueue, CentralController, ItemProcessor and ServicePanel. Coupled models include ServiceController and VendingController.

The following is the detailed structure of vending machine controller:

Fig. 1

B) The following is the formal specifications for each atomic model and coupled model.

Formal specification for coin_collector:

X = { Coin (< N, R > };

Y = { Coin_amount (< N, R > };

S = { Phase, sigma, Coin, preparationTime }

(ext (s, e, x)

{

case phase

passive:

sigma = preparatonTime;

get coin_amount;

phase = busy;

 busy:

continue

}

(int (s, e)

{

case phase

busy: passivate

passivate: /* never happens*/

}

((s)

{

send coin_amount to the port out

}

Formal specification for item_selector:

X = { Item (< N, R > };

Y = { Item_id (< N > };

S = { Phase, sigma, Item_id, preparationTime }

(ext (s, e, x)

{

case phase

passive:

sigma = preparationTime;

get Item_id;

phase = busy;

 busy:

continue

}

(int (s, e)

{

case phase

busy: passivate

passivate: /* never happens*/

}

((s)

{

send Item_id to the port out

}

Formal specification for balance_display:

X = { Balance (< N, R > };

Y = { Balance_display (< N, R > };

S = { Phase, sigma, Balance, preparationTime }

(ext (s, e, x)

{

case phase

passive:

sigma = preparatonTime;

save Balance;

phase = busy;

 busy:

continue

}

(int (s, e)

{

case phase

busy: passivate

passivate: /* never happens*/

}

((s)

{

send Balance_display to the port out

}

Formal specification for change_maker:

X = { request_in (< N >, centrol_control_in(< N, R > };

Y = { request_out (< N >, change_out(< N, R > };

S = { Phase, sigma, request, change, preparationTime }

(ext (s, e, x)

{

case port

request_in:

send request to the port request_out;

 central_control_in:

save change;

sigma = preparationTime;

phase = busy;

}

(int (s, e)

{

case phase

busy: passivate

passivate: /* never happens*/

}

((s)

{

send change to the port change_out;

}

Formal specification for message_queue:

X = { coin_controller_in(< N, R >, item_selector_in(< N, R >, change_request_in (< N, R > , control_done(< N > };

Y = { message_out (< N, R };

S = { Phase, sigma, message_queue, message, preparationTime }

(ext (s, e, x)

{

case port

message_in /* this message includes the message from coin_controller,

item_selector and change_request*/

push_back(message_queue);

sigma = preparationTime;

phase = busy;

 done:

pop_front (message_queue);

if (message_queue!= 0);

phase = busy;

sigma = preparationTime;

}

(int (s, e)

{

case phase

busy: passivate;

passive: /*never happens*/

}

((s)

{

send message to the port message_out;

}

Formal specification for central_control:

X = { message_in (< N, R >, service_panel_in(< N, R >};

Y = { control_item_out (< N >, control_change_out(< N, R >, balance_out(< N, R >, done(< N >};

S = { Phase, sigma, balance, change_amount, item_id, preparationTime, serviceTime }

(ext (s, e, x)

{

case port

service_panel_in:

process message value; /* update the item in the centralcontrol

sigma = serviceTime;

phase = busy;

 message_in:

if (message.value < 5) /* this message is from

coin_controller*/

save balance;

sigma = preparationTime;

phase = busy;

elseif (message.value >=100) /* this message is from

item_selector*/

check the balance with the selected item;

send item_id to the port control_item_out;

elseif (message.value = -1) /*this message is from

change_maker*/

change_amount = balance - item.price;

sigma = preparationTime;

phase = busy;

}

(int (s, e)

{

case phase

busy: passivate

passivate: /* never happens*/

}

((s)

{

send change_amount to the port control_change_out;

send balance to the port balance_out;

send done to the port done;

}

Formal specification for item_processor:

X = { control_item_in (< N, R > };

Y = { item_out(< N > };

S = { Phase, sigma, item, preparationTime }

(ext (s, e, x)

{

case phase

passive:

save item;

sigma = preparatonTime;

phase = busy;

 busy:

continue

}

(int (s, e)

{

case phase

busy: passivate

passivate: /* never happens*/

}

((s)

{

send item to the port item_out;

}

Formal specification for service_panel:

X = { service_in (< N, R > };

Y = { service_message_out (< N, R > };

S = { Phase, sigma, message, preparationTime }

(ext (s, e, x)

{

case phase

passive:

save message;

sigma = preparatonTime;

phase = busy;

 busy:

continue

}

(int (s, e)

{

case phase

busy: passivate

passivate: /* never happens*/

}

((s)

{

send message to the port service_message_out;

}

Formal specification for ServiceController

ServiceController = < X, Y, { VendingController, ItemProcessor, ServicePanel }, EIC, EOC, IC, SELECT >

X = { coin_in, item_in, request_in, service_in }

Y = { change_out, balance_out, item_out }

EIC = { (CoinCollector.out, coin_in), (ItemSelector.out, item_in), (ChangeMaker.out, request_in), (ServicePanel.out, service_in) }

EOC = { (change_out, ChangeMaker.in), (balance_out, BalanceDisplay.in), (item_out, ServiceController.out) }

IC = { (coin_in, VendingController.in), (item_in, VendingController.in), (request_in, VendingController.in), (VendingController.out, change_out), (VendingController.out, balance_out), (ServicePanel.out, VendingController.in), (VendingController.out, ItemProcessor.in)}

SELECT : ({VendingController, ItemProcessor, ServicePanel}) = VendingController

({ItemProcessor, ServicePanel}) = ItemProcessor

Formal specification for VendingController

Vending Controller = < X, Y, { MessageQueue, CentralControl }, EIC, EOC, IC, SELECT >

X = { coin_in, item_in, request_in, service_in }

Y = { change_out, balance_out, item_out }

EIC = { (ServiceController.out, coin_in), (ServiceController.out, item_in), (ServiceController.out, request_in), (ServicePanel.out, service_in) }

EOC = { (change_out, ServiceController.in), (balance_out, ServiceController.in), (item_out, ItemProcessor.in) }

IC = { (coin_in, MessageQueue.in), (item_in, MessageQueue.in), (request_in, MessageQueue.in), (CentralControl.out, change_out), (CentralControl.out, balance_out), (VendingControl.out, CentralControl.in), (CentralControl.out , MessageQueue.done), (MessageQueue.out, CentralControl.in)}

SELECT : ({MessageQueue, CentralControl}) = MessageQueue

Part III

Execution Results.

Before explaining the execution input and output. A list of values that passed into the simulation are defined.

coin_in : Coin value inserted into the coin collector. Range from 0.01 to 5.00

item_in : Item requested. In this simulation, to simplify message being passed(coin_in, item_in and request_in goes to the same queue and sent to the central controller from one port), any item selection starts at 101, so if you want item 1, request 101, item 5, request 105. In the simulation, so far there has been only 2 items being included. Item 1 has original price 1.00, quantity 10. Item 2 has original price 1.25 and quantity 15.

request_in:
Make coin change request, Value is always –1

service_in:
This is used by the service personnel to update the food price and quantity. It has the following format: DDQQPPP where DD represents the id of the food. QQ represents the quantity and PPP represents the price.

The following is the couple.ev and its corresponding output file after running the simulation.

Couple.ev

00:00:10:00 coin_in 0.25

//a quarter is inserted at time 00:00:10:00

00:00:15:00 coin_in 1.00

//a dollar is inserted

00:00:20:00 coin_in 0.25

//another quarter is inserted

00:00:25:00 item_in 101

//request item 1.

00:00:35:00 request_in –1

//requested change

00:01:00:00 service_in 0135150
//service request updates the food list

00:02:30:00 coin_in 0.5

//half dollar is inserted (assume we have a half dollar coin)

00:02:33:00 coin_in 2.00

//2 dollars inserted

00:02:35:00 item_in 102

//request item 2

00:02:40:00 request_in –1

//request change
Coupleout

00:00:12:000 out 0.25

//coin display receives 0.25 and display the balance

00:00:17:000 out 1.25

//balance is now 1.25

00:00:22:000 out 1.5

//balance increased to 1.50

00:00:28:000 out 0.5

//after item 1 is purchased, balance display receives 0.5

00:00:30:000 item_out 1

//item 1 is given to user

00:00:36:000 out 0

//user request to make change, balance is now 0

00:00:37:000 change_out 0.5
//$0.5 is return to the user

00:01:02:000 out 0

//make a service request, balance remains 0

00:02:32:000 out 0.5

//0.5 worth of coin is inserted

00:02:35:000 out 2.5

//$2 is inserted

00:02:38:000 out 1.25

//item 2 is selected, balance is now 1.25

00:02:40:000 item_out 2

//item 2 given to user

00:02:41:000 out 0

//change request made, balance become 0

00:02:42:000 change_out 1.25
//$1.25 returns to the user
In the files attached in the zip, including couple.ev* and coupleout* provides more cases that were examined. The service request was verified to be correct. The change request made when balance is 0 returns nothing, invalid item selection is also verified. A number of different testing cases are performed to ensure the correctness of the simulation. Please refer to the zip file attached for more testing cases performed and their results.

Individual testing cases.

Prior to assembly all atomic models together, individual testing cases are being performed to verify the correct behavior of each model. The following are a few sample testing cases performed on selected model.

E.g. the EV file for atomic model CoinCollector.

00:00:10:00 in 1.00

00:00:50:00 in 1.50

00:02:10:00 in 0.75

00:03:00:00 in 2.00

“in” represents the input port , the value “1.00” represents the coin value, and the max coin value is 5.00

Each model is tested based on its functionality, inputs and outputs.

e.g. in the testing of the queue, there different ports accepts user requests and queued up the messages. A message is released when it is the first arrival or when a done message is received from the central_controller. Testing cases are performed to make sure there is no message lost during the queueing time and there is no message released until requested by the central_controller via the ‘done’ message.

Conceptual Model Description. This has been included in part I

Variations.

A small variation is made to remove the link from item_processor back to the central_controller since the central_controller has already updated its food list prior to sending requests to the item_processor. A notification won’t be necessary.

ServicePanel

ItemProcessor

CentralController

MessageQueue

BalanceDisplay

ChangeMaker

ItemSelector

CoinCollector

ServiceController

VendingController

Balance Display

Change Maker

Item Selector

Coin Collector

 Service Controller

Item Out

 Vending Controller

 Item Processor

 Service Panel

Central Controller

 Message Queue

