On the Generation of High Quality
Random Number by
Two-Dimensional Cellular Automata
Using Advanced Cell-DEVS Models
with CD++

Abdulelah Al-Sanad
Student ID: 3521674
aalsa079@site.uottawa.ca
SITE, University of Ottawa

Term Projects for SYSC 5104
Methodologies for Discrete-Event Modelling and Simulation
Fall 2005

December 12, 2005

Contents

1

Introduction

1.1 Using cellular automata models to generate random numbers .

1.2 Contribution of the project

Background

2.1 Quality of the random number generated by cell automata
models

2.2 Rules for random number generator

Models defined

3.1 Formal specifications for the Cell-DEVS models

3.2 Enhancement techniques proposed for better result
3.2.1 Changing the neighbourhood size
3.2.2 Extracting the numbero
3.2.3 Applying different delays

3.3 Building the Cell-DEVS model using CD++

Simulation Results Analysis

4.1 Testing the rules of the model
4.2 Extracting the random number from the model
4.3 Testing the quality of randomness in the numbers
4.4 Result analysis oo

4.4.1 Uniform vs. non-uniform

4.4.2 Random vs. fixeddelay
4.5 Simulating the model using parallel CD++

Conclusions

1 Introduction

Random numbers are used in a wide variety of applications that could could
be in scientific, mathematical, engineering, or industrial applications [1]. For
example, they are used in cryptography to provide network security, and in
many optimization algorithms such us simulated annealing. The performance
of these applications depends highly on the quality of the random numbers
being generated for them. Therefore, random number generators plays an
essential role in many practical systems in our life. However, finding a good
random number generator is not an easy task as will be explained in following
section.

Testing tools are used to evaluate the randomness of the numbers gener-
ated using statistical properties and measurement [2]. Good random number
generators has to produce numbers that are uniformly distributed and at
the same time there should not be any correlation between these numbers.
Also, the numbers should have long periods such that they do not produces
themselves again [3].

There are several approaches used to generate random number. For ex-
ample, linear feedback shift register is one of the most common used methods
as a random number generator [4]. Other approaches are based on mathe-
matical equations to generate random number. Cellular automata models
can also be used to generate random numbers. It have been proved that
the randomness of the numbers generated by cellular automata have better
quality compared with other techniques. It is assumed that the readers are
aware of cellular automata systems.

1.1 Using cellular automata models to generate ran-
dom numbers

There are many advantages that makes cellular automata better than other
methods [5]. The followings are some advantages to use cellular automata
for generating random numbers:

e Simplicity: cellular automata is a simple model that just consist of
cells with state variables. A cell changes its state based on the rules
applied to it and its neighbors.

e Regularity: cells in cellular automata are arranged in a regular man-
ner that could have one or more dimensions.

e Locally interconnected: a cell in cellular automata is connected
locally with its neighbors.

e Easier to implement in hardware: because of their simplicity, reg-
ularity, and interconnection, cellular automata are easy to implement
in hardware and in other recent technology such as FPGA.

e Produce random number rapidly: cellular automata can also gen-
erate random number in very short time compared with other methods.

1.2 Contribution of the project

In this project several models are implemented and simulated with different
properties to generate random numbers. The results of these models are
analyzed to test the behaviour of the randomness of the number generated.
New techniques are proposed to enhance the quality of the random number
generated such as changing the neighborhood size for two-dimensional cell
model, the way the number extracted from the model and applying different
delays for the rules. The results of the simulation shows out these enhance-
ments proposed to the models, help in producing better randomness in the
number generated.

2 Background

Generating random number using one dimensional cellular automata models
have been studied extensively in the past. Recent researches nowadays focus
in two dimensional cellular models in order to provide higher quality random
number generator at the expense of adding a little bid of complexity [6].

2.1 Quality of the random number generated by cell
automata models

There are four properties of cellular automata models that can affect the
quality of random number generators. These properties are:

e Uniform vs. non-uniform models: When the same rules are ap-
plied to all the cells, then this is called uniform model. However, when
different rules are applied to different cell randomly, then this is called
non-uniform model. Both models are simulated in this project. Non-
uniform models produce better randomness to the number generated
than uniform models.

e Boundary condition: The boundary of the models can affect the
randomness of the number generated by that models. Two condition
are simulated: wrapped and non-wrapped models.

4

Table 1: Rules are specified in the form of rule table
Possible Input Configuration
Rule Name || 111 \ 110 H 101 \ 100 \ 011 \ 010 \ 001 \ 000

90 0 1 0 1 1 0 1 0
165 1 0 1 0 0 1 0 1
150 1 0 0 1 0 1 1 0
105 0 1 1 0 1 0 0 1

e Length of the cellular model: The size of the model can also affect
the quality of the randomness of the numbers. However, by increasing
the length of the models, the time it takes to generate the random
number will also be longer. Therefore, a trad off should be made to
choose the optimal size.

e Initial configuration: The initial configuration of the cells in the
model is another factor that can affect the randomness of the numbers.

2.2 Rules for random number generator

The rules or the transition function are specified in the form of rule tables.
Then, the table has an entry for every possible configuration of the states
of the neighbourhood. Therefore, for a neighborhood of size 5, there will
be 2° = 32 possible configurations of the states of these cells which will
give 232 possible rules might be applied. Therefore, for cell cells of 8x8, the
search space for the best rules will be (232)%* which is extremely high. As a
result, in order to find the rules which generate a good random number, an
approximation algorithm or a heuristic is required to do the searching.

A rule numbering scheme is used to describe the rules by encoding the
rule table using binary number. For example, for one-dimensional cellular
model with a neighbourhood size of 3, there are 23 possible configurations of
the states and 2% possible rules. Then, these 256 rules are numbered from 1
to 256 by encoding the output of these rules as shown in Table 1 for some of
the rules.

3 Models defined

The states of the cells are of type boolean, therefore, S; € {0,1}. Two-
dimension 8x8 cellular model with a neighbourhood size of 5 cells is simu-
lated.

rule 15
rule 63

.rule 31

i rule 47

Figure 1: The rules map showing the best rules that generate high-quality
random number [7].

Rules that give rise to high-quality sequence of random number are de-
rived from [7]. The rules map are shown in Figure 1

Reference [7] claims that rules : 15, 63, 31, and 47 are the best to use
for generating random number due to the mathematical characteristic of the
pattern that the generate. These rules are applied randomly to the cells for
more randomness.

These rules can be written in a form of boolean equation for more efficient
execution of the rules. Let s; ;(t) be the state of the currant cell at row ¢ and
column 5 at time ¢, then the next state for this cell at the next time step for
rule 15 is defined as:

sij(t+1) = s5i-1;(t) @ sij-1(t) @ siy1,5(t) © si541(2) (1)

Also, rule 31 can be applied using the equation:

Sij(t+1) =51j(t) D sij1(t) D siy1,5(t) © sij41(t) B s65(t) (2)

Similarly, the following equation represents rule 47:

Sij(t+1) =1@® si1;(t) B sij-1(t) B si41,5(t) S s511(2) (3)
Moreover, rule 63 is defined by:

Si,j(t + 1) =1 D Si—1,j (t) D SZ'J_l(t) @ Si4+1,j (t) D Sij+1 (t)) Si.j (t) (4)

3.1 Formal specifications for the Cell-DEVS models

The formal specification for the model is as follows:
M =< [7 Xa }/a Xli5t7 nistv 1, Nv m,n, Ca B7 Z> select >

KXiist = (Z)a

Yiist = (Z)J

n =9

I =< P*, PY > withP* = (; PY = ();
N = (_170)7(07—1)7(070)’(071)7(170);
X =0,1;

Y =01,

m=S_;

n=_;

B = {;

D =1-100;

C= CA”/Z S [1,8],] S [1,8],

7 -

PyiYi — Pij 1 Xy PjaYr — PXy
PYs — P jXo Py jYs — PXo
PiiYs — Pij1Xs PijaYs — B X3
PyYy — Pi1; Xy PaYe — PijXy
PijYs — P X5 PyYs — P X5

select = (—1,0), (0,—1),(0,0), (0,1), (1,0);

3.2 Enhancement techniques proposed for better re-
sult

There are many different possible implementations that can affect the qual-
ity of randomness in the number generated. In this section, some of these
techniques that are proposed, are explained.

3.2.1 Changing the neighbourhood size

In the model defined above, only five neighbor cells are considered. However,
for two-dimensional cellular models, there could be 8 neighbor of a cell which
will give a neighbourhood of size 9. By increasing the size neighborhood,
more cells will be involved in determining the next state which might increase
the quality of randomness. However, this will also add more complexity to the
model which will contradict with the constraint in random number generator
to keep them simple.

3.2.2 Extracting the number

The method used to extract the number from the model can also affect the
quality of the number. For example, not all bits can be considered as part of
the random number by skipping some cells in the model. This can be done
randomly or by predefining the locations of the cells that are involved in the

process.

3.2.3 Applying different delays

By changing the delays of the rules to produce the results, the quality of

the random number can be more efficient.

Most of the models proposed

in the literature used fixed time delay for the rules. Therefore, making the
delay to be variable is tested in this project to check its effect on the model
to generate random numbers. The randInt function is used to generate a
random number for the delay between 1 and 100 as shown below:

rule

1 and (0,0)

: 0 {randInt(100)} { ((-1,0) = 1 and (0,-1) =
and (0,1) =

1) and (if(randInt(3) = 1,1,0) =

1 and (1,0)
D}

3.3 Building the Cell-DEVS model using CD++

A cell-DEVS model is built using CD++ to generate random number. A
truth table is constructed for each of the equations used to define the rules.
For example, the equation for rule 15 has four operands with XOR operations.
Therefore, a truth table of size 2% is required to execute that equation. For
example the macro below shows the rules used to implement rule 15.

#BeginMacro (rng-rulelb)

rule :

rule :

rule :

rule :

rule

rule

1 randInt(100) {
and

0 randInt(100) {

and

0 randInt(100) {

and
1 randInt(100) {
and

: 0 randInt(100) {

and

: 1 randInt(100) {

and

((-1,0)
(0,1) =
((-1,0)
(0,1) =
((-1,0)
(0,1) =
((-1,0)
(0,1) =
((-1,0)
(0,1) =
((-1,0)
(0,1) =

=1 and (0,-1) =1 and (1,0) =
1) and (if(randInt(3) = 2,1,0)
=1 and (0,-1) = 1 and (1,0) =
0) and (if(randInt(3) = 2,1,0)
=1 and (0,-1) = 1 and (1,0) =
1) and (if(randInt(3) = 2,1,0)
=1 and (0,-1) = 1 and (1,0) =
0) and (if(randInt(3) = 2,1,0)
=1 and (0,-1) = 0 and (1,0) =
1) and (if(randInt(3) = 2,1,0)
= 1 and (0,-1) = 0 and (1,0) =
0) and (if(randInt(3) = 2,1,0)

=1 = I Ol Ol = Il =

D}

D}

D}

D}

D}

D}

rule : 1 randInt(100) { ((-1,0) = 1 and (0,-1) = 0 and (1,0) =
and (0,1) = 1) and (if(randInt(3) = 2,1,0)
rule : 0 randInt(100) { ((-1,0) =1 and (0,-1) = 0 and (1,0) =
and (0,1) = 0) and (if(randInt(3) = 2,1,0)
rule : 0 randInt(100) { ((-1,0) = 0 and (0,-1) = 1 and (1,0) =
and (0,1) = 1) and (if(randInt(3) = 2,1,0)
rule : 1 randInt(100) { ((-1,0) = 0 and (0,-1) =1 and (1,0) =
and (0,1) = 0) and (if(randInt(3) = 2,1,0)
rule : 1 randInt(100) { ((-1,0) = 0 and (0,-1) = 1 and (1,0) =
and (0,1) = 1) and (if(randInt(3) = 2,1,0)
rule : 0 randInt(100) { ((-1,0) = 0 and (0,-1) = 1 and (1,0) =
and (0,1) = 0) and (if(randInt(3) = 2,1,0)
rule : 1 randInt(100) { ((-1,0) = 0 and (0,-1) = 0 and (1,0) =
and (0,1) = 1) and (if(randInt(3) = 2,1,0)
rule : 0 randInt(100) { ((-1,0) = 0 and (0,-1) = 0 and (1,0) =
and (0,1) = 0) and (if(randInt(3) = 2,1,0)
rule : 0 randInt(100) { ((-1,0) = 0 and (0,-1) = 0 and (1,0) =
and (0,1) = 1) and (if(randInt(3) = 2,1,0)
rule : 1 randInt(100) { ((-1,0) = 0 and (0,-1) = 0 and (1,0) =
and (0,1) = 0) and (if(randInt(3) = 2,1,0)

honmnoil =11 =1 ol ol = I = IO IO

#EndMacro

The random function is used to apply different random delays for the
rules. Also, it is used to check to make the model non-uniform by applying
the rules randomly to the cells.

4 Simulation Results Analysis

In this section, the outputs of the models are analyzed for different possible
implementations of random number generator. After building the model
using CD++, the model is tested thoroughly before collecting the result as
explained in the following subsection.

4.1 Testing the rules of the model

The rules are tested also separately to make sure that their functionality
is correct. For example, the expected output of rule 15 for a certain cell
configuration is derived and compared with the actual output of the model.
Figure 2 shows one such output of applying rule 15 for all the cells with the

D}

D}

D}

D}

D}

D}

D}

D}

D}

D}

Figure 2:

same delay. For testing, the initial values of the cells are defined such away
that the outputs are known.

Figure 3 shows also an example of a result produced by rule 47.

Similarly, the output of rules 31 is shown in Figure 4 and compared with
the expected output generated manually.

Moreover, Figure 5 shows the output generated by rule 63 which validate
the functionality of this rule.

All the rules are tested with different inputs to validate the functionality
of the model. After that, all the rules combined together in one model.
However, to apply the rules to different cells, a random function is required
to make the model non-uniform.

4.2 Extracting the random number from the model

Once the output of the model is generated, the random number has to be
extracted from the model. There are several methods to do this each with
its own complexity. The method used here is taken from [7] because of its
simplicity and efficiency. In this method, the cell model is traversed four
times to get four bits from each cells which might be encoded in hexadecimal
number. Thus, for an 8 x 8 cell model, 64 hexadecimal random digits are
produced.

10

Figure 3: Example of an output for rule 47

HE B BN
| B
HEE

|

Figure 4: Example of an output for rule 31

11

Figure 5: Example of an output for rule 63

4.3 Testing the quality of randomness in the numbers

Several statistical tests are used to measure the quality of a random number.
One of the best tests of random sequences is called DIEHARD developed
by George Marsaglia [2]. DIEHARD test is used in this project to test the
random number generated by the cell model.

DIEHARD test return a p-value on the interval [0,1) if the input file
contains truly independent random bits. This p-value is obtained by p =
F(X), where F' is the assumed distribution of the sample random variable
X.

4.4 Result analysis

The following subsection discusses some of the results generated by the model
defined earlier. All the enhancements proposed are tested to check their
effects on the randomness of the number.

4.4.1 Uniform vs. non-uniform

Two models different models are simulated and compared: uniform model
where the same rule is applied to all of the cells and non-uniform where
different rules are applied randomly to the cell. The non-uniform model

12

Figure 6: Example of an output for the non-uniform model with the rules
15, 63, 21, and 47.

generate better random number than the uniform model as the DIEHARD
test give higher entropy for the non-uniform model.

For example, Figure 6 shows an example of an output generated by the
non-uniform model with rules 15, 63, 21, and 47 applied to different cells at
random.

4.4.2 Random vs. fixed delay

Another two different models are simulated to check the effect of the delay
on the quality of the number. One model uses a random function is used
to generate time delay between 1 and 100. The other model has a fix delay
for all the rules. The first model with a random delay produces random
numbers with higher quality than the other model with fixed delay based on
the measurement used by DIEHARD test.

This is can also be proven with output shown in Figure 7 and comparing
it with Figure 2. It is very clear from the figures how the randomness of the
bits is different by applying different delay for the rules.

Figure 7: Example of an output for rule 15 with random delay.

4.5 Simulating the model using parallel CD++

The models presented in the previous subsection were implemented using the
original version of CD++ that has single state variable. The time it takes
to get the result is quite long for the models that uses random rules and
random delay. However, since the size of the cell model is small, i.e. 8 x §,
the execution time is sometime acceptable.

However, a new version of CD++ is now available that supports multiple
state variables. It has a tool to execute Parallel Cell-DEVS models in parallel
or distributed environments based on Warped and MPI (Message Passing
Interface) architectures.

Therefore, the previous models were developed to be compatible with
the new version by defining state variable called value as the following code
shows:

statevariables: value
statevalues: O
initialvariablesvalue: rng.sval

The rules are also changed accordingly where the state variable is refer-
enced as shown below:

rule : { $value } { $value := 1; } {randInt(100)} { ((-1,0) = 1 and

14

(0,-1) =1 and (1,0) = 0 and (0,1) = 0 and $value = 0) and
(if (randInt(3) = 1,1,0) = 1)}

By simulating the new version of the model, the simulation time is reduced
compared with the previous model. The speed of simulation can be noticed
clearly with the non-uniform model that has random rules and random delay
as these type of model took quite long time to execute them in the previous
implementing.

5 Conclusions

There are many application that used random numbers and they critically de-
pends on the quality of these random number generated for them. However,
finding a good random number generator is a hard problem. It have been
shown that two-dimensional cellular automata models can rapidly generate
high quality random numbers. There are many different possible implemen-
tations that can affect the quality in randomness of these number.

In this project, cell models are simulated to test the quality of the ran-
dom numbers they generate by applying different techniques to the models.
The results of the simulation shows out these enhancements proposed to the
models, help in producing better randomness in the number generated.

In conclusion, a high quality random number can be generated using small
size two-dimensional cellular model with non-uniform ruling and different
delays for the rules.

References

[1] S. Nandi, B. K. Kar, and P. P. Chaudhuri, “Theory and applications of
cellular automata in cryptography,” IEEE Transactions on Computers,
vol. 43, pp. 1346 — 1357, Dec. 1994.

[2] G. Marsaglia, “Dichard test,” http://stat.fsu.edu/pub/diehard/, 2003.

[3] P. BARDELL, “Analysis of cellular automata used as pseudorandom
pattern generators,” in Proceedings of the IEEE 21st International Test
Conference, Sept. 1900, pp. 762-768.

[4] S. Guan and S. Zhang, “An evolutionary approach to the design of
controllable cellular automata structure for random number generation,”
IEEFE Transactions on Fvolutionary Computation, vol. 7, pp. 23-36, Feb.
2003.

15

[5]

M. Sipper, M. Tomasso, M. Zolla, and M. Perrenoud, “Generating high-
quality random numbers in parallel by cellular automata,” Future Gen-
eration Computer Systems, vol. 16, pp. 291-305, Dec. 1999.

B. Shackleford, M. Tanaka, R. Carter, and G. Snider, “High-
performance cellular automata random number generators for embedded
probabilistic computing systems,” in Proc. 4th NASA/DOD Conference
on FEvolvable Hardware, July 2002, pp. 191-200.

M. Tomassini, M. Sipper, and M. Perrenoud, “On the generation of
high-quality random numbers by two-dimensional cellular automata,”
IEEE Transactions on Computers, vol. 49, pp. 1146-1151, Oct. 2000.

S. U. Guan and S. K. Tan, “Pseudorandom number generation with self
programmable cellular automata,” IEEFE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 23, pp. 1095-1101,
July 2004.

M. Matsumoto, “Simple cellular automata as pseudorandom m-sequence
generators for built-in self-test,” ACM Transactions on Modeling and
Computer Simulation, vol. 8, pp. 31 — 42, Jan. 1998.

16

