
SYSC 5104 Term Project:
Creation of DEVS Models using Imitation Learning

Michael W. Floyd
Department of Systems and Computer Engineering

Carleton University
1125 Colonel By Drive

Ottawa, Ontario
mfloyd@sce.carleton.ca

Keywords: DEVS, imitation learning, case-based reasoning,
real-time, transfer learning

Abstract
Modelling and simulation of robotic control systems allows
for low cost analysis and experimentation. However, creating
these models requires a level of technical expertise. If a do-
main expert has the knowledge required for a model but lacks
the necessary technical skills they may be unable to success-
fully implement the model. To overcome this technical re-
quirement, we propose a case-based reasoning approach to
learn the behaviour of DEVS models. By observing a desired
behaviour, in the form of outputs produced in response to in-
puts, a DEVS model of the behaviour can be built. This model
can then be used during simulation to imitate the behaviour of
interest. Our results show that this learning approach can be
used to successfully imitate the behaviour of several DEVS
models. Additionally, it can be used to transfer behaviour to
and from a non-DEVS model.

1. INTRODUCTION
Modelling and simulation (M&S) allows for analysis and

experimentation on a variety of systems. One class of systems
M&S can be used on is robotic control. These systems are of-
ten based on human-defined behaviour, so the robot reacts
to its environment in a specific way as defined by an expert.
However, developing a model requires some level of technical
skill. This could be knowledge of the modelling formalism
being used or of the programming language used to imple-
ment the model. If a domain expert does not have this techni-
cal knowledge they may not be able to successfully transfer
their knowledge into a model. Instead of placing the technical
burden of model creation on the expert, we look to learn the
desired model behaviour.

The ability to learn a model’s behaviour is beneficial in
three primary ways. First, as mentioned previously, it allows
the transfer of knowledge from a non-technical user into a
model. This removes the need for the user to learn technical
skills or to enlist the aid of someone with the necessary tech-
nical skills. Secondly, even if the user is technically able to

create the model they may not wish to explicitly create the
model, possibly due to time constraints. Instead they could
demonstrate the desired behaviour which would require sig-
nificantly less of their time. Lastly, it would be possible to
learn the behaviour of other models. This would be particu-
larly useful if the model was created with a different formal-
ism or incompatible technology. The model behaviour could
then be converted for use in an existing modelling framework.

In order to perform this learning, we first model the human
or model as a black box. No assumptions are made about the
underlying design or behaviour of the black box, only that
it receives some external inputs and produces outputs in re-
sponse (Figure 1). We can say that the output events, Eo, are
a based on the input events, Ei, as a function of the internal
reasoning process of the black box:

Eo = f (Ei) (1)

While we may not know the details of this function, we can
attempt to approximate it based on observations of the inputs
and outputs. After collecting a series of such observations, it
then becomes possible to learn how the black box will behave
when it receives input. Thus, we can then create a model that
uses this information to imitate the behaviour of the black
box.

Figure 1. Representing the human or model as a black box

The remainder of this paper will detail a method for learn-
ing the behaviour of a DEVS model using imitation learning.
Section 2 provides background information about embedded
CD++ and case-based reasoning. The DEVS models used to
observe and imitate are presented in Sections 3 and 4. Exper-
imental results using these models are described in Section 5

followed by areas of future work and conclusions in Sections
6 and 7.

2. BACKGROUND
In this section several background topics, which are cen-

tral to the remainder of the paper, are described. More specif-
ically, details of the the modelling and simulation framework,
embedded CD++, and the learning technique, case-based rea-
soning, are provided.

2.1. Embedded CD++
Embedded CD++ (eCD++) [1] is an extension of the CD++

toolkit [2] that allows for real-time execution of models. Both
CD++ and eCD++ allow models to be defined using the Dis-
crete Event Systems Specification (DEVS) [3] formalism.
The primary advantage of these tools is that they provide a
clear separation between the models and simulators. This al-
lows models to be created without any knowledge of the un-
derlying simulation engine, so the same model can be used
with a variety of simulators.

The standard version of CD++ operates in simulated time,
so the internal simulator clock advances based on the time
of the next scheduled event. As a result, the execution time of
the simulation may not be the same as the amount of time that
is simulated. For example, a model could be used to simulate
the events of an entire day, but the execution of the simulation
might only take several seconds.

Embedded CD++, however, allows for simulation in real-
time so events are processed at their scheduled time. Since
models can be simulated in real-time, they are able to interact
with external hardware. These hardware devices can produce
input events for the DEVS model or receive output events
(Figure 2). If the simulation was not in real-time, the internal
simulation time might differ from the real-world time caus-
ing synchronization problems when hardware events are re-
ceived.

Figure 2. Using embedded CD++ to interact with external
hardware

Models can then be used at various stages of the modelling
and simulation process using eCD++. Initial simulation can
be done in simulated-time using simulated input events. Pro-
vided the model’s behaviour can be verified and validated in
simulated-time, the same model can then be used in real-time

to interact with actual hardware. This allows a more thorough
testing of the model since interacting with hardware might
produce events that were not considered during simulated-
time experimentation.

2.2. Case-Based Reasoning
Case-based reasoning (CBR) [4] is a learning method that

relies on the assumption that similar problems have similar
solutions. CBR makes use of instances of previously encoun-
tered problem-solution pairs, called cases, that are used to
solve novel input problems. In CBR, a collection of cases,
called a case base, is used to represent the knowledge learnt
by the system. When an input problem is received, a CBR
system compares the input to cases in the case base. Cases
that have similar problems as the input problem can then
have their solutions used to determine how the input problem
should be solved.

Case-based reasoning lends itself well to a task like imita-
tion learning because ideally the imitator should behave ex-
actly as the teacher would when presented with the same input
problems. In the case of a DEVS model, the problem would
be the inputs received and the solution would be the outputs
produced. In order to successfully imitate the model’s be-
haviour it becomes necessary to observe which inputs cause
the model to produce which outputs, and in turn to use those
observed cases to determine how to behave during run-time.

In fact, there have been many promising uses of CBR for
imitation learning in games. Examples of this include Tetris
[5], real-time strategy [6], poker [7], chess [8] and space
invaders [9]. The primary limitation of these works is that
they are domain specific and require information about the
tasks being imitated. The requirement of information about
the task being performed is not limited to CBR as other im-
itation learning approaches suffer similarly1. Our own work
has focused on a domain-independent approach to software
agent imitation using case-based reasoning [13, 14, 15] but
has looked only at ad hoc simulators, never with formal mod-
elling techniques like DEVS.

3. MODEL OBSERVATION
In order to imitate the behaviour of a DEVS model, it first

becomes necessary to observe how the model responds to
input events2. This observation is performed with a model,
Observer, that is placed between the DEVS model being ob-
served and the external hardware (Figure 3). The Observer

1Some examples include imitating robotic arms [10], robotic helicopters
[11] and first-person shooter game agents [12].

2For the remainder of this paper we refer to the imitation of DEVS mod-
els, however, the same principles apply to the imitation of human behaviour.
Any parts of the learning system that interact with the DEVS model could
instead connect to an interface controlled by a human.

model acts as a buffer between the DEVS model and the ex-
ternal hardware, recording any events that pass through it.

Figure 3. Using the Observer model to log the behaviour of
a DEVS model

More formally, the Observer can be defined as a DEVS
atomic model:

• X: There is one input port for each input and output
port of the model being observed. The events sent on
these ports are not known in advance and are dependant
on what events can be sent or received by the observed
model.

• Y: Similarly, there will be one output port for each input
and output port of the observed model. Each output port
will be paired with an input port. There will also be one
extra output port, shown as Log in Figure 3, that outputs
the observations.

• S: The model is either in an active or passive state. The
model has a number of state variables. Three variables
to record the last event received from external hardware,
the time the event was received and the port it was re-
ceived on. Three similar variable are used for events
from the observed model as well. Also, a variable is used
to record which port received the last event (can be either
from external hardware or observed model).

• ta: A short time advance is used to simulate the time it
takes to record the observations.

• δext : An external event means that an event was received
from the external hardware or the observed model.

Whichever port received the input will have its associ-
ated state variable updated with the event value and the
time of the event. State variables will also be updated to
identify which port received the last event. The model
will then enter an active state.

• δint : The model will return to a passive state and wait for
further input.

• λ: The last received value will be sent as output on the
appropriate output port. If the last received event from
from the observed model, a message will be sent on the
Log port that contains the information contained in the
state variables.

This model will record all incoming events before transmit-
ting them along. As the model executes, it will create a log of
output events produced by the observed model and the input
event that the were received previously. These logged obser-
vations will be used to create cases that will be used during
imitation.

As was previously discussed, in case-based reasoning a
case, C, contains a problem-solution pair:

C = {P,S} (2)

We will define the problem, P, to represent the input events
received by the model. The problem can then be decomposed
into the port, p, where the input was received and the value,
v, of the event:

P = {p,v} (3)

The solution, S, is then the output events produced by the
observed model. Each solution is a series of output events:

S = {s1,s2, . . . ,sn} (4)

And each individual output event, si, is a triple composed of
the event port, p, event value, v, and amount of time, t, the
event takes.

si = {p,v, t} (5)

There are two possible options for observation and case
generation: passive and active. In passive observation, the
DEVS model receives events during the normal course of
execution. For example, the model could be receiving actual
events while operating in real-time. The other option is active
observation, where the input events are artificially generated.
While a passive approach may result in a more realistic series
of input events, it gives less control over which events are en-
countered. If a model was deployed in a robot, there would
be no guarantee that a representative sample of input events
would be seen. Due to these limitations, we will utilize an
active observation approach (Figure 4).

Figure 4. The process used to observe a model and build a
case base

Input events are automatically created by randomly select-
ing an input port and then randomly generating a value to
send on that port. A series of such events can be generated
and stored in an event file which is then used as input to the
coupled model containing the Observer model and the model
being observed (Figure 3). As input events are processed by
the Observer model, it will log observations which can be
converted to cases. Once a number of cases have been stored
in the case base it then becomes possible to imitate the model.

4. MODEL IMITATION
The cases that were generated by observing a DEVS model

can be used to imitate the model’s behaviour. To accomplish
this another DEVS model, called the imitation model, is used
in place of the model being imitated (Figure 5). When the
imitation model receives inputs, it attempts to behave as the
original model would have.

Figure 5. Using the Imitation model in place of the original
model

The inputs are treated as novel problems without a known
solution. To find the solution, a k-nearest neighbour search
is used. The input problem is compared to the problem por-
tion of each case in the case based and the most similar case
is found. Based on the problem definition from the previous
section, the distance between two problems is:

distance(Pi,Pj) =
{

|vi− v j| , i f pi = p j
∞ , i f pi 6= p j

(6)

Therefore, the k-nearest neighbour search finds the case that
is the minimum distance from the input problem. The solu-
tion portion of that case is then used as the solution to the
input problem, and the events found in that solution are sent
as output.

The DEVS formalism for the imitation model is:

• X: The imitator model has the same input ports as the
model it is imitating and receives similar input events.

• Y: As with the inputs, the output ports are the same as
the model being imitated.

• S: The model can either be passive or active. It keeps a
state variable containing the next event value to send, the
port to send it on, and a list of any other events that need
to be sent.

• ta: The time advance depends on each event. The imita-
tion model attempts to keep event durations the same as
they were in the original model.

• δext : When an input event is received, a k-nearest neigh-
bour search is performed to find the best solution to per-
form. The state variables are then updated to reflect the
solution that will be performed.

• δint : If there are more events to send the next is set to be
sent. Otherwise, the model becomes passive.

• λ: The next event value that is sent on the appropriate
port.

The advantage of this approach to imitation is that no as-
sumptions are made about the model being imitated. It is not
necessary to modify the imitator model or add any domain
knowledge in order to imitate different behaviours. Instead,
only the case base needs to be changed. Several case bases
could be created, one for each DEVS model being imitated,
and simply interchanged depending on the desired behaviour.
This is particularly useful if a novel behaviour is required un-
der tight time constraints. The behaviour could be demon-
strated while being observed by the Observer model (from
the previous section), a case base could be created and used
directly by the imitation model.

5. SIMULATION AND RESULTS
In order to demonstrate the use of our imitation approach

we will perform the following experiments:

• Imitation of an embedded CD++ model of an obstacle
avoidance robot.

• Imitation of an embedded CD++ model of a robotic arm.

• Transferring behaviour from a RoboCup soccer agent to
a DEVS model.

• Transferring learnt behaviour to a RoboCup soccer
agent.

The results from these experiments will show not only that
imitating DEVS models is possible, but that it can be done
with a high degree of accuracy. In fact, we will show that it is
difficult to differentiate the original model from the imitator.

5.1. Obstacle Avoidance Model
In this experiment, we look to imitate the behaviour of an

existing DEVS model that performs obstacle avoidance in a
mobile robot called RoboCart [1]. This model receives input
events from two external hardware sensors, touch and sonar,
and can send events to motors that move the robot. The touch
sensor produces an event when it touches an object, whereas
the sonar sensor periodically produces events containing the
distance to the nearest object. The model produces events that
move the robot forward (the value 1), backward (the value 2),
turn left (the value 3) or turn right (the value 4). The model
causes the robot to move forward until it bumps into an object
(receives input from the touch sensory) or detects an object
nearby (receives input from the sonar sensor).

An event file was generated containing 500 randomly se-
lected input events. The obstacle avoidance model was cou-
pled with the Observer model (as described in Section 3) and
the event file was used as input, which produced 500 cases.
These cases were then used by the imitation model.

In order to test the ability of the imitation model to repro-
duce the behaviour of the original model, a second event file
was randomly generated. This event file was used as input to
both the imitation model and the original, and their outputs
were compared. A smaller example of such an event file is
shown in Figure 6 with the imitation results in Figure 7 and
the original model’s results shown in Figure 8. This event file
represents the following events:

1. The robot touched an object

2. An object was sensed at a distance of 11.72

3. An object was sensed at a distance of 3.81

4. The robot touched an object

5. An object was sensed at a distance of 16.55

The first thing to notice when examining these results is
that they both contain the same number of events and those
events occur at identical times. This shows that not only is the
imitation model able to successfully determine when to send

00:00:00:000 intouch 1000
00:00:10:000 insonar 11.72
00:00:20:000 insonar 3.81
00:00:30:000 intouch 1000
00:00:40:000 insonar 16.55

Figure 6. Sample input to test the imitation of the obstacle
avoidance model

00:00:00:020 out 2
00:00:01:040 out 3
00:00:02:560 out 1
00:00:10:020 out 3
00:00:11:540 out 1
00:00:20:020 out 2
00:00:21:040 out 3
00:00:22:560 out 1
00:00:30:020 out 2
00:00:31:040 out 3
00:00:32:560 out 1
00:00:40:020 out 4
00:00:41:540 out 1

Figure 7. Output events produced by the imitation model

output events but it is also able to determine the duration of
those events. In general, the values of the events are identical
as well. There are several situations where the event values
are not identical and they all relate to the turn direction (value
3 or 4). This is because the original model does not use input
events to determine which direction to turn, it simply toggles
between turning left and right. The output for the imitation
model can be interpreted as follows:

1. In response to touching an object: the robot is moved in
reverse, turns left and then goes forward again

2. In response to sensing an object at medium distance: the
robot is moved left and then forward

3. In response to sensing an object at close distance: the
robot is moved in reverse, left and then forward

4. In response to touching an object: the robot is moved in
reverse, turns left and then goes forward again

5. In response to sensing an object at medium distance: the
robot is moved right and then forward

However, even though it does not always turn in a manner
that is identical to the original model the imitation model is
still able to behave in a very similar way. When the imitation
model is deployed in the robot, in real-time eCD++ simu-
lation mode, it is difficult to tell that the robot is not being

00:00:00:020 out 2
00:00:01:040 out 3
00:00:02:560 out 1
00:00:10:020 out 4
00:00:11:540 out 1
00:00:20:020 out 2
00:00:21:040 out 3
00:00:22:560 out 1
00:00:30:020 out 2
00:00:31:040 out 4
00:00:32:560 out 1
00:00:40:020 out 3
00:00:41:540 out 1

Figure 8. Output events produced by the original model

controlled by the original model3. The only way to notice the
difference is if you are aware that the original model never
causes the robot to turn in the same direction twice in a row.
The imitation model clearly displays the obstacle avoidance
behaviour we would expect from the original model.

5.2. Robotic Arm Model
We now look to further experiment on the imitation model

by learning from the model for a robotic arm. The robotic arm
has three input ports that receive input events from a sound,
touch and light sensor. It can send events on two output ports:
one that controls the arm and one for the gripper claw. When
the model receives an event from the sound sensor (indicating
a significantly loud sound) the arm begins moving. It contin-
ues to move until it receives an input from the touch sensor
indicating it has touched something. The light sensor, which
has a short range and needs to be next to an object to suc-
cessfully determine colour, is then able to produce an event
indicating what colour the object is that was touched. If the
object was red, the gripper claw closes on the object and the
arm moves in reverse. If the object was blue, the arm moves
in reverse without gripping the object.

As with the obstacle avoidance model, a random event file
of 500 events is created. However, this model does not run
continuously. It runs one cycle of its behaviour (move to an
object, examine it and move back) and then terminates. This
means that it is impossible to watch the model grab a red
object and leave a blue object in a single observation session.
To overcome this 10 event files are randomly generated and
used during 10 observation sessions. The cases from each of
these observation sessions are then combined into a single
case base.

We look to test the two primary behaviours of the robotic
arm. Figure 9 shows a sample input event file that represents

3The appendix provides a website where a video of this can be seen.

encountering a red object and Figure 10 for a blue object. The
events in these files represent:

1. The robot heard a sound with volume 35

2. The robot touched an object

3. The robot sensed the object was red (when the value is
5) or blue (when the value is 15)

00:00:03:00 insound 35
00:00:05:00 intouch 1000
00:00:06:00 inlight 5

Figure 9. Sample input to test the imitation of grabbing a
red object

00:00:03:00 insound 35
00:00:05:00 intouch 1000
00:00:06:00 inlight 15

Figure 10. Sample input to test the imitation of not grabbing
a blue object

Unlike with the obstacle avoidance imitation, where there
were minor differences, both the original model and imitating
model produce identical output for the robotic arm4. The out-
put when simulating a red object is shown in Figure 11 and for
a blue object in Figure 12. These outputs can be interpreted
as follows:

1. Sounds heard: The arm begins moving forward (value of
1)

2. Object touched: The arm stops (value of 2)

3. Colour sensed: If the object was red the claw is closed
(value of 3) and then stopped (value of 6). Regardless of
colour, the arm is moved in reverse (value of 5) and then
stopped (value of 2).

These experiments show that this imitation approach can
be used for a variety of models and is not restricted to im-
itating a specific behaviour. The obstacle avoidance model
and the robotic arm model behave in a significantly differ-
ent manner and make use of different external hardware. The
imitation model itself does not have to be changed to imitate
these different behaviours, instead only the case base has to
be changed.

4This model was not tested in the actual robot since that robot was not
available.

00:00:03:020 outarm 1
00:00:05:020 outarm 2
00:00:06:030 outclaw 3
00:00:08:030 outclaw 6
00:00:09:020 outarm 5
00:00:10:040 outarm 2

Figure 11. Output when simulating the robotic arm encoun-
tering a red object

00:00:03:020 outarm 1
00:00:05:020 outarm 2
00:00:06:020 outarm 5
00:00:07:040 outarm 2

Figure 12. Output when simulating the robotic arm encoun-
tering a blue object

5.3. Transferring Behaviour from a Non-
DEVS Simulator

Up to this point the focus has been exclusively on imitat-
ing the behaviour of DEVS models. Another potential use of
imitation learning is to transfer behaviour to different sim-
ulators. This would be useful if the majority of models were
implemented using a specific formalism but some of the mod-
els used a different formalism. The behaviour of these other
models could be learnt and the behaviour could be imitated
by a model implemented in the desired formalism.

In these experiments we look to transfer the behaviour
from a non-DEVS simulator into a DEVS model. We make
use of the RoboCup soccer simulator [16]. RoboCup is a
popular simulation platform that allows software agents to
compete in games of simulated soccer5. Numerous interna-
tional competitions occur each year allowing researchers to
compare various artificial intelligence techniques in a friendly
competition.

Simulated RoboCup soccer operates in a client-server ar-
chitecture. The central server handles simulation, enforces
the rules of soccer and coordinates messages to the various
clients (each of which represents a single soccer player). The
messages sent from the server to the players contain informa-
tion about the objects the player can currently see in its field
of vision and the distance those objects are from the player.
The objects a player can see include soccer balls, boundary
lines, boundary flags, goal nets and other soccer players. In
response the player can send a message to the server indicat-
ing what action they want to perform (like kicking the ball or
moving around the field).

The RoboCup agent we attempt to learn from performs an
object tracking behaviour. If it is unable to see the soccer ball

5Robotic competitions also exist but we will focus exclusively on the
simulated league.

in its field of vision it turns until it can see the ball. When the
ball is visible, it moves toward the ball. In order to observe
this agent and build a case base we use an approach simi-
lar to the observer model (in Section 3) but with a modified
case structure (a detailed description is provided in [13]). The
problem that arises is that the cases in the RoboCup domain
are at a higher level of abstraction and contain information
about objects that are visible to the agent instead of sensor
inputs. This representation is incompatible with both the case
structure we have defined and also the sensory capabilities of
the robot we will deploy the model in.

In order to transfer the RoboCup cases into the cases we
have defined, we need to perform a conversion. We use the
following mapping which converts RoboCup cases to cases
usable by the RoboCart robot:

Problem Mapping:

• The ball is visible and directly infront of the agent in the
RoboCup case → An event on the sonar port with the
distance of the object

• Otherwise → An event on the sonar port that represents
no object is visible

Solution Mapping:

• A RoboCup dash action → A forward event on the mo-
tor control port.

• A RoboCup left turn action → A left turn action on the
motor port.

• A RoboCup right turn action → A right turn action on
the motor port.

Duration Mapping:

• All events are given a similar duration (300 ms).

This mapping helps convert RoboCup cases to RoboCart
cases but there is some information loss. Since the Robo-
Cart does not have the necessary sensors to uniquely iden-
tify objects it does not only track soccer balls but tracks any
objects it senses on its sonar sensor. Even with this limita-
tion, during real-time execution the robot successfully imi-
tates the behaviour that was learnt from the RoboCup agent6.
This experiment helps show that it is possible for behaviour
programmed in non-DEVS modelling formalisms to be suc-
cessfully converted to DEVS models. These models can then
be integrated with DEVS models so that all models use the
same simulation engine.

6A website with a video of this behaviour is shown in the appendix.

5.4. Transferring Behaviour to a Non-DEVS
Simulator

In the previous subsection we looked at transferring the
behaviour of a non-DEVS model to a DEVS model, but now
we will look to do the reverse. We will transfer the behaviour
that was learnt while observing the obstacle avoidance robot
to a RoboCup agent. As was the case previously, a method is
required to map cases:

Problem Mapping:

• Input event on the touch sensor port → A RoboCup ball
object at a small distance from the agent

• Input event on the sonar sensor port → A RoboCup ball
object at a distance equal to the input event value

Solution Mapping:

• Move the robot forward → A RoboCup dash action

• Move the robot backward→A RoboCup backward dash
action

• Move the robot left → A RoboCup left turn action

• Move the robot right → A RoboCup right turn action

In this mapping ball objects were used as obstacles, but this
could be changed to any type of RoboCup object.

Using a case base created with this mapping, obstacle
avoidance behaviour can be successfully transferred to a
RoboCup agent. The agent clearly avoids colliding with other
players and behaves very similarly to the obstacle avoid-
ance robot7. This shows that imitation learning can be used
to transfer behaviour in both directions: to DEVS models
and from DEVS models. This makes models more portable
as they can quickly be transferred to a different modelling
framework without having to reimplement the model. Ad-
ditionally, interoperability is promoted since models can be
converted even if their behaviour is not fully known or if their
source code is unavailable.

6. FUTURE WORK
A method for learning the behaviour of DEVS models has

been presented in this paper. The results of this work open up
several areas of future research:

• Human-in-the-loop: This work has focused exclusively
on learning the behaviour of existing models. Future
studies can look at learning human behaviour. This
would involve giving a human expert control of a robot
and observing how they respond to the environment. Ini-
tially, this could be done by providing an interface that

7A website with a video of this is shown in the appendix.

only shows the sensory inputs received by the robot.
Later, such an interface could be removed although
added challenges would arise. For example, a human
might be able to see upcoming obstacles that are out-
side the range of a robot’s sensors. The ability to learn
models of human behaviour would be useful in allow-
ing people without technical skills to implement DEVS-
based models.

• Model combination: This type of learning could also be
used to combine models together. For example, consider
a model for obstacle avoidance and a model for follow-
ing a coloured ball. Combining these behaviours into a
single model might be a non-trivial task, especially if
the models could not be coupled together. Instead, each
model could be observed separately and the cases could
be combined into a single case base for use during imi-
tation.

7. CONCLUSIONS
In this paper we have demonstrated an approach to devel-

oping DEVS models using imitation learning. Rather than ex-
plicitly implementing a model, the model behaviour is learnt
though observation. While this approach removes the need
for technical skills that are typically required for knowledge
transfer, it is not appropriate for all situations. Firstly, this ap-
proach involves learning so it may not provide an exact imi-
tation of the desired behaviour. This becomes an issue if the
model is to be deployed in a situation that is not tolerant of
error. Secondly, the learning approach assumes that the model
outputs are a function of the inputs. If a model does not use
recent inputs to generate outputs then this approach would be
unable to successfully imitate the model’s behaviour.

Even with the listed limitations, this approach still provides
a novel technique for developing DEVS models. The two pri-
mary contributions of this work are demonstrating the ability
of imitation learning to learn the behaviour of a DEVS model
and showing how behaviours can be transferred to and from
non-DEVS model. In our experiments we show two robotic
control models, one for an obstacle avoidance robot and one
for a robotic arm, can be successfully learn. We also show
that behaviour programmed in a simulator that does not fol-
low a modelling formalism, simulated Robocup soccer, can
be converted to or from a DEVS model.

ACKNOWLEDGEMENTS
I would like to thank Professor Gabriel Wainer for pro-

viding the laboratory resources and robots that were used to
perform this work. I would also like to thank Mohammad
Moallemi for the embedded CD++ models that were imitated
and for providing information about the eCD++ simulator.

REFERENCES
[1] M. Moallemi, J. M. Gutierrez-Alcaraz, and G. A.

Wainer, “ECD++ a DEVS based real-time simulator for
embedded systems,” in Spring Simulation Multiconfer-
ence, p. 12, 2008.

[2] G. A. Wainer, “CD++: A toolkit to define discrete-event
models,” Software, Practice and Experience, vol. 32,
no. 3, pp. 1261–1306, 2002.

[3] B. P. Zeigler, T. G. Kim, and H. Praehofer, Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. Academic
Press, 2000.

[4] A. Aamodt and E. Plaza, “Case-based reasoning: Foun-
dational issues, methodological variations and system
approaches,” AI Communications, vol. 7, no. 1, pp. 39–
59, 1994.

[5] H. Romdhane and L. Lamontagne, “Reinforcement of
local pattern cases for playing Tetris,” in 21st Interna-
tional Florida Artificial Intelligence Research Society
Conference, pp. 263–268, 2008.

[6] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram,
“Case-based planning and execution for real-time strat-
egy games,” in 7th International Conference on Case-
Based Reasoning, pp. 164–178, 2007.

[7] J. Rubin and I. Watson, “SARTRE: System overview.
A case-based agent for two-player texas hold’em,” in
Workshop on CBR for Computer Games at the 8th Inter-
national Conference on Case-Based Reasoning, 2009.

[8] S. Flinter and M. T. Keane, “On the automatic gener-
ation of cases libraries by chunking chess games,” in
1st International Conference on Case-Based Reasoning,
pp. 421–430, 1995.

[9] M. Fagan and P. Cunningham, “Case-based plan recog-
nition in computer games,” in 5th International Confer-
ence on Case-Based Reasoning, pp. 161–170, 2003.

[10] C. G. Atkeson and S. Schaal, “Robot learning from
demonstration,” in Fourteenth International Conference
on Machine Learning, pp. 12–20, 1997.

[11] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for
control from multiple demonstrations,” in 25th Interna-
tional Conference on Machine Learning, pp. 144–151,
2008.

[12] C. Thurau and C. Bauckhage, “Combining self orga-
nizing maps and multilayer perceptrons to learn bot-
behavior for a commercial game,” in GAME-ON Con-
ference, 2003.

[13] M. W. Floyd, B. Esfandiari, and K. Lam, “A case-
based reasoning approach to imitating RoboCup play-
ers,” in 21st International Florida Artificial Intelligence
Research Society Conference, pp. 251–256, 2008.

[14] M. W. Floyd, A. Davoust, and B. Esfandiari, “Consider-
ations for real-time spatially-aware case-based reason-
ing: A case study in robotic soccer imitation,” in 9th Eu-
ropean Conference on Case-Based Reasoning, pp. 195–
209, 2008.

[15] M. W. Floyd and B. Esfandiari, “An active approach to
automatic case generation,” in 8th International Confer-
ence on Case-Based Reasoning, pp. 150–164, 2009.

[16] RoboCup, “Robocup official site.”
http://www.robocup.org, 2009.

APPENDIX
As a supplement to this paper, several videos are avail-

able online that demonstrate the behaviour of our imitation
approach. The videos are available at:

http://sce.carleton.ca/∼mfloyd/DEVS/

• RoboCartImitation.mp4 : This shows the imitation
model deployed in the RoboCart robot performing ob-
stacle avoidance behaviour.

• TransferToRoboCup.mp4 : This shows the obstacle
avoidance behaviour transferred to a RoboCup agent.

• RoboCupAgent.mp4 : This demonstrates the behaviour
of a RoboCup soccer agent that tracks and follows the
soccer ball.

• TransferFromRoboCup.mp4 : This is a video of the
RoboCart robot imitating the behaviour of the RoboCup
agent.

