
Assignment 1 SYSC5104
Gutierrez Alcaraz, J. Marcelo

MODEL OF A FREIGHT ELEVATOR SYSTEM

The proposed system to be modeled is the behavior of a freight elevator system that can be found in many
different industry applications other than the transportation of people (mining, warehouses, cargo companies,
etc.).

Description of the System

The system (elevator) is in idle state until it receives a call from any of the floors, once it has acknowledge the
call (and it’s a valid call), the elevator system changes its state to traveling, after reaching the floor where the call
originate it changes its state to loading. After this state and after pressing the desired floor button the elevator
goes to the traveling state once more (cannot go to travel state if in the same floor as desired level), if before it
goes to the traveling state, there is another call in the same direction of the travel (upward – downward) from one
floor that is in the path of the elevator (for example the elevator is loading cargo in the 1 level that’s going to level
3 but there is a call from level 2) the elevator should make a stop in the middle level to load more cargo and then
go to the desired level. But if the second call is in the opposite direction, the elevator system should attend that
call after delivering the cargo in the desired level.

A schematic diagram is presented.

The state variables for the system are: idle, loading-delivering, traveling; the internal states would be (there
would be an increase of two more states in the actual implementation): X level call buffering, desired level
selection, traveling direction (up – down) and middle stop generation. An approximate model of the system is:

This model is a general approximate model of the system to be modeled and to be simulated; there will be some
variations in the implementation of the proposed model. The labels inside each box tried to be self explanatory,
almost every sub model can be constructed as a coupled model from atomic entities, and the higher levels are
themselves part of highest levels.

Level 3

Level 2

Level 1

External Call
and Direction
Generation
(from each
level)

Buffer Elevator

Level and direction
selector

Intermediate level
selector

Traveling

Upwards

Downwards

Intermediate stop

Idle

Freight Elevator Model – DEVS Implementation

The model given can be very simplified and arranged in such a form that it will be easy to extract atomic and
coupled models, this arrangement will use FSM and graphical DEVS specification. Once the model is extracted it
will be easier to add a lot more real details to the model.

Stated that way it is easy to obtain the atomic and couples models of each component, which will be:

Elevator Vehicle

Elevator_v = <X,Y,S,δint,δext,λ,ta>

X={call}
Y={floor}
S={loading/delivering, traveling}
δint=loading/delivering
δext=call
λ=floor
ta= ta* |desired_floor-floor_level|

Elevator Control

Elevator_Control = <X,Y,S,δint,δext,λ,ta>

X={des_floor, floor}
Y={call(difference)}
S={wait/store, calculate/send}
δint=calc time
δext=des_floor & floor_level
λ=call(ldiff)
ta= ta

Call

Ta=fixed trav. time

L/D T

Elevator vehicle

Des_floor & floor_level

Ta=calc time

W/S C/S

Control

Elevator

Call (ldiff)

floor
Call Generation

Des_floor

Outside call

Inside call

W/S -> Wait and Store calls
C/S -> Calculate and Send time multiplier [call(des_floor-floorlevel)]
L/D -> Loading-Delivering State (idle state)
T -> Traveling state [call(ta*call(des_floor-floorlevel))]

1,2,3

Elevator Coupled Model

Elevator = <X,Y,D,{Mi},{Ii},{Zij},select>

X={des_floor}
Y={floor}
D=
{Mi}={Elevator_control,Elevator_vehicle}
{Ii}: I(Elevator_control)=Elevator_vehicle
 I(Elevator_vehicle)={Elevator_control, self}
{Zij}: Z(elevator_control)=Elevador_vehicle
 Z(Elevator_vehicle)=Elevator_control
 Z(Elevator_vehicle)=self
select=({elevator_control,elevator_vehicle})=elevator_control

Call Generador

CGEN = <X,Y,S,δint,δext,λ,ta>

X={insidecall, outsidecall}
Y={des_floor}
S={wait, senddesfloor}
δint=wait
δext={insidecall, outsidecall}
λ=des_floor
ta= 0

Freight Elevator Coupled Model

Elevator = <X,Y,D,{Mi},{Ii},{Zij},select>

X={insidecall, outsidecall}
Y={floor}
{Mi}={CGEN,Elevator}
{Ii}: I(CGEN)=Elevator
 I(Elevator)={self}
{Zij}: Z(CGEN)=Elevator
 Z(Elevator)=self
select= ({CGEN,elevator_control,elevator_vehicle})=elevator_control

({elevator_control,elevator_vehicle})=elevator_control

Test Strategies

Basically the Freight Elevator system can be represented as a processor performing one task at any given time
(carry cargo between floors), the principal different characteristics are: the travel time between floors is the
same, the number of floors is fixed but can be chosen arbitrarily, the call can be generated outside (door) or
inside the vehicle (desired floor).

Then the call generation block should behave as an OR operand to the system, meaning that the system is not
aware of from where the call has been generated, so feeding the block with different floor calls from inside or
outside the vehicle, the output for this should be the floor that generated the call (outside 2 or inside 2 will have
the same output).

The elevator control block once feed with the desired floor should perform the distance calculation based in the
modulus of the difference of the actual floor and the desired floor (output, call(ldiff)) IF the elevator is in the idle
state (loading/delivering), if not the block should store the desired floor information until the elevator vehicle is
ready for another trip.

For the elevator vehicle the testing strategy is straight forward, since it should be in traveling state (busy) once it
gets a call from one floor, and it should leave this state once a fixed time multiplied by the difference of floors
has elapsed (ta*call(diff)).

The test of the Elevator system is basically is slightly different than that of the control block as there is only one
input to the system, once a desired floor is introduced and the elevator is free, it should output the desired floor
after a certain time (we’ll assume that the traveling time between floors is 1 min), that will become the level floor
for the next trip. If it gets a call in between trips the elevator block should be capable of store the desired floor
and start the trip by itself once free, after finishing all the trips it should remain in the last desired floor for
indefinite time.

The test of the Freight Elevator system is similar to the Elevator with the difference that there will be two inputs
and the call generated inside the elevator will have preeminence over the call generated outside of it. So the
output in the case of two almost simultaneous calls should be to attend first the call generated inside the vehicle
and then initiate the trip to the desired floor generated by the outside call.

Freight Elevator – Results of the Simulation on CD++ Implementation

Elevator Vehicle

Due to the simplified model given the results can be easily analyzed from the output files of the simulation as
well as the log files generated by the simulator engine.

For the Elevator Vehicle we have (assuming that the travel time between floors is 1 min):

Evehicle.ma - Evehicletest.ev Evehicle.out
00:10:00:000 cdiff 3
00:21:00:000 cdiff 2
00:24:30:000 cdiff 1
00:28:00:000 cdiff 1
00:29:00:001 cdiff 3
00:32:10:000 cdiff 2

00:13:00:000 diff 3
00:23:00:000 diff 2
00:25:30:000 diff 1
00:29:00:000 diff 1
00:32:00:001 diff 3
00:34:10:000 diff 2

According to our testing assumption the value that enters the block is the difference between the desired level
and the actual level times the fixed travel time, thus the elevator will be ready once it has finished the current trip,
this is clearly seen comparing the initial time, the input value and the time of the output (the output value is just
for testing purposes, also for this purposes there are input values greater than 2, which is the maximum value
that the difference can have in a 3 level freight elevator).

Call Generation

The generator can receive calls from the inside or the outside of the vehicle, and feed this data to the controller,
but is capable of distinguish which call has priority over the other (the calls generated inside have priority over
the calls generated outside), the results for the model:

Ecall.ma - Ecall.ev Ecall.out
00:05:00:000 outside_call 2
00:11:00:000 inside_call 3
00:11:00:000 outside_call 1
00:15:00:000 outside_call 2
00:18:00:000 inside_call 2
00:20:00:000 inside_call 3
00:25:00:000 outside_call 1
00:45:00:000 outside_call 2
00:45:00:000 inside_call 3

00:05:00:000 call_gen 2
00:11:00:000 call_gen 3

00:15:00:000 call_gen 2
00:18:00:000 call_gen 2
00:20:00:000 call_gen 3
00:25:00:000 call_gen 1
00:45:00:000 call_gen 3

The calculation time is instantaneous (in fact it takes a very small time, but compared with the speed of the
elevator is almost zero), in the result file it can be seen that the logic of this controller assigns priority to the calls
generated inside the vehicle if for some reason two events (inside and outside calls) occur at the same time.

Elevator Control

For the test of this atomic model there are some assumptions:

a) the value associated with “acall” is the desired floor level
b) the fback value is the multiplier value (the basic time travel unit is 1 min, between two consecutive floors)

that is returned by the elevator vehicle once it has finished the travel.
c) In the output file the timem value is the multiplier value that will be send to the elevator vehicle, after the

this value times 1 min, the Econtrol block should display the actual floor, this can be seen in the value
associated to the floor port.

d) The elevator always starts idle at level 1.

Econtrol.ma - Econtrol.ev Econtrol.out
00:11:00:000 acall 2
00:12:00:000 fback 1
00:15:00:000 acall 6
00:20:00:000 fback 4
00:27:00:000 acall 1
00:28:00:000 acall 2
00:30:00:000 fback 5
00:32:00:000 fback 1
00:31:00:000 acall 6
00:36:00:000 acall 3
00:40:00:000 acall 2
00:35:10:000 fback 5
00:38:00:000 fback 3
00:41:00:000 fback 1

00:11:00:000 timem 1
00:12:00:000 floor 2
00:15:00:000 timem 4
00:20:00:000 floor 6
00:27:00:000 timem 5
00:30:00:000 floor 1
00:31:00:000 timem 1
00:32:00:000 floor 2
00:33:00:000 timem 1
00:35:10:000 floor 6
00:36:00:000 timem 4
00:38:00:000 floor 3
00:40:00:000 timem 3
00:41:00:000 floor 2

Elevator Coupled Model

The test of this model, based on the results of the vehicle and control results, shows the behavior of the vehicle
when the Econtrol block takes control of the travel times of the vehicle. The destination floor should be reached
after the travel time set by the Econtrol DEVS atomic model, as before the same assumptions are considered for
this case.

Elevator.ma - Elevatortest.ev Elevator.out
00:05:00:000 acall 2
00:10:00:000 acall 3
00:15:30:000 acall 1
00:20:00:000 acall 1
00:23:00:000 acall 2
00:25:00:000 acall 3
00:27:01:000 acall 1
00:29:30:000 acall 2
00:34:00:000 acall 1
00:36:00:000 acall 3

00:06:00:000 floor 2
00:11:00:000 floor 3
00:17:30:000 floor 1
00:20:00:000 floor 1
00:24:00:000 floor 2
00:26:00:000 floor 3
00:29:01:000 floor 1
00:30:30:000 floor 2
00:35:00:000 floor 1
00:38:00:000 floor 3

Freight Elevator Complete Coupled Model

The model behaves as expected, introducing values that represent calls generated from inside and outside the
vehicle, for example a cargo that needs to use the elevator, have to wait the time that the elevator vehicle takes
to go from one level to the originating level plus the time that it takes to go from the originating level to the
desired level.

The chart can be read as follows: at 00:12:00:00 the first event is generated by a level call at level 3 (elevator in
level 1), travel time to attend the event (2 units, 1 unit = 1 min, thus 2 min), cargo load at level 3, second event at
00:15:00:000, desired level generated by a call inside the vehicle (level 1), as a result the vehicle delivers the
cargo after completing 2 travels (4 min), assuming that the cargo was loaded in a 1 min time window. After that
the same assumptions can be made for every pair of data.

At time stamp 21:00:000 there are two simultaneous calls generated inside and outside the vehicle, as in real
situation the elevator goes for the inside call, choosing the inside call over the outside call.

FElevator.ma - FE_test.ev Ecall.out
00:12:00:000 outside_call 3
00:15:00:000 inside_call 1
00:18:00:000 outside_call 2
00:21:00:000 inside_call 3
00:21:00:000 outside_call 2
00:25:00:000 inside_call 1
00:28:00:000 outside_call 3
00:30:00:000 inside_call 1
00:35:00:000 outside_call 2
00:39:00:000 inside_call 1
00:44:00:000 outside_call 3
00:54:00:000 inside_call 2
00:57:00:000 outside_call 1

00:14:00:000 floor 3
00:17:00:000 floor 1
00:19:00:000 floor 2
00:22:00:000 floor 3
00:27:00:000 floor 1
00:30:00:000 floor 3
00:37:00:000 floor 1
00:40:00:000 floor 2
00:45:00:000 floor 1
00:56:00:000 floor 3
00:58:00:000 floor 2

Conclusion

One of the main advantages of the DEVS modeling tool is that it allows the modeling of very complicated real
systems using a deterministic approach, this modeling scheme can be used to model a lot of process that would
take too much time and effort using differential equations or other discrete or continuous methods.

We have constructed a fairly simple system, but knowing the possible advantages of the DEVS formalism and
the modeling tool, there is possible to make the system as real as we would like, including all types of discrete
sensors and basing the behavior in a discrete event system.

