
METHODOLOGIES FOR DISCRETE EVENT

MODELLING AND SIMULATION

SYSC 5104

Project Report:

Improving the Corsican Fire Spreading Cell-DEVS
Model

Matthew MacLeod (100265888)
Rachid Chreyh (100350664)

12/5/2005

1.0 Introduction

The complexity of studying the spread of fire has made it the target of several

studies in the modelling and simulation field. Mathematical models for this phenomenon

are too complex to allow an analytical solution; therefore researched have turned to

simulation to provide some success in predicting fire behaviour.

This paper is intended to enhance an existing fire spreading model: the Corsican

Fire Spreading Cell-DEVS model. In this model the physical area of interest is divided

into cells, with each cell exhibiting the same behaviour. The model uses a simple set of

equations to determine the temperature of each cell at regular time intervals. The

temperature of a non-burning cell is an averaging function of its own temperature and

that of its neighbours. Once ignited the temperature of burning cells, on the other hand, is

also a function of time – the cell's temperature increases to a peak and then falls back

down, modelling the exhaustion of fuel in the cell.

The biggest problem with the existing Corsican Fire Spreading Cell-DEVS model

is that it takes a long time to execute. This is mainly due to the large number of messages

exchanged amongst all the cells in the simulation every single time step. Our contribution

is to explore modifications to the existing model to speed up the simulation. The problem

was attacked in two major ways, using 'dead reckoning' to vary the length of the time

steps taken by each cell and using Quantized DEVS (Q-DEVS) to quantize the cells'

output. Using Q-DEVS generally reduces the number of messages exchanged between

the cells, as messages are only sent when the output of a cell passes a quantization

threshold. In the other case, we are stepping away from the traditional way of looking at

the fire equations – deriving an equation that gives you the temperature at each given

time step. Instead, we try to find to do the opposite, and find an equation (or set of

equations) that determine the time the next quanta will be passed as a function of the

current temperature. In other words we will only change the temperature of the cells at

the quantum boundaries, by using an equation that determines at what time the next

quantum will be reached. This paper explores how using one or both of the methods

together can sometimes decrease the number of messages sent (and hence the execution

time), but with definite issues with the resulting accuracy. Also, the likely reasons for

much unexpected poor behaviour of both methods will discussed, and possible solutions

proposed.

2.0 Background

The spread of fire is a complex phenomenon that many have tried to study over the

years. As one can imagine, the spread of fire depends on many different variables such as

the material being burned, the geography of the area, and the weather. It has been

determined that finding an analytical solution for mathematical models of fire spread is

almost impossible, and therefore many have looked to simulation as an attractive

alternative. Simulations have been found that represent the way in which fire spreads

reasonably accurately, and are now generally the preferred solution for predicting the

behaviour of fire. This goal of predicting fire behaviour is important to firefighters, for

example, because having a tool that is able to predict where the fire will be and how it

will move will enable them to better plan strategies to control the fire quickly and safely.

An aspect of great importance in such a tool is that it has to be able to predict the fire

behaviour (at the very minimum) faster than the fire itself moves, preferably much faster.

In a real life situation, if we want to use a tool to help us predict how the fire will spread

we have to be confident that it will give us a reasonable result on the order of minutes.

Otherwise valuable time will be lost as the fire spreads further, regardless of the accuracy

of the results.

The authors of [1] have shown how Cell-DEVS and CD++ can be used to model fire

spread. In this project we have started with the Cell-DEVS Corsican Fire Spread model

and have modified it to achieve a faster simulation time (in some cases), with a somewhat

large loss of accuracy. First let us quickly go over how the original Corsican Cell-DEVS

model worked. Below is a simplified diagram of the temperature curve used in the

Corsican model. The temperature curve is divided into four stages, and at any given

instant each cell in the model will be in one of these stages. The first is the inactive stage

in when a cell has no neighbours with a temperature higher than the ambient temperature

(Ta). The second is the unburned stage in which the temperature of the cell is increasing

due to heat from the neighbouring cells; during this stage the cell’s temperature is

between the ambient temperature and the ignition temperature (300 ºC). The third is the

burning stage in which the cell has reached the ignition temperature and fuel in the cell

starts to burn. During this stage the cell’s temperature increases until it reaches a peak

Figure 1: Simplified Temperature curve [1]

temperature, and then falls back down to 60 ºC. It has now entered the fourth and final

stage, burned. Because it has exhausted its fuel, it can no longer reignite and is

considered inactive.

The Cell-DEVS implementation contains two planes to store the state for each cell.

The first represents the fire spread itself, in which each cell calculates its temperature.

The additional plane is used to store the ignition times for the cells (this can be

considered merely a state variable of the true cells of interest). The cells in the ignition

temperature plane have a simple rule – record the current simulation time when the

corresponding cell in the fire spread plane reaches the ignition temperature. As can be

expected, the cells in the fire spread plane have more complex rules. When a cell is in

the unburned phase its temperature is calculated as the weighted average of the current

cell’s temperature with its neighbours' temperatures. When a cell is in the burning phase

its temperature is again calculated as the weighted average of the temperatures around it,

but with the addition of the result of a decaying exponential function of time describing

the temperature behaviour. In the other two phases (inactive and burned) the cell’s

temperature does not change and thus these cells should remain in the passive state (the

inactive cells will of course respond to any temperature changes in their neighbourhood,

so they may eventually ignite). One of the advantages of using Cell-DEVS is that if the

rules are written properly all cells in the inactive or burned phase will remain passive and

thus the calculations will be confined to the fire front, saving on execution time. Burned

cells do this effectively in this model, but unburned cells do not. The Corsican Cell-

DEVS model itself is explaneed more thoroughly in [1].

3.0 Discussion of the Corsican Cell-DEVS Model

Running the simulation of the existing Corsican Cell-DEVS led to several important

observations. First and the most important deficiency of the current simulation is that it takes far

too long to run. In the original examples we ran it took around ten minutes to run 15 seconds of

simulation time. The log files produced by the simulation were also very large (around 300

Megabytes (MB) for the 15 seconds of simulation time). For the purposes of easy comparison

with different techniques we reduced the size of the cell space from 60x60 to 10x10 for all

experiments described below. Secondly, it was observed that during the burning phase the

temperature curves of all the cells are very similar. This was taken to imply that the effect of the

neighbouring cells can be ignored when calculating the temperature of a cell during the burning

phase. Whether or not this was a valid assumption will be explored below.

The reason for the slow execution time of the simulation is mainly due to the high

number of messages being exchanged between cells. In the current model each cell in the

unburned or burning phase will update its temperature once every 1 ms and will as a

result send messages to its neighbours. To remedy this problem a solution must be found

that decreases the number of messages exchanged. The solution we propose is described

in the following section.

4.0 Proposed Fire Spread Cell-DEVS Model Definition

4.1 The Conceptual Model
As mentioned above, the problem we are trying to address is the speed of the

simulation. To increase the speed we propose two main simplifications. Firstly, if we are

able to keep the unburned cells completely in the passive state until they reach the

ignition temperature, we would reduce the number of cells that send out messages to their

neighbours. The second is to use quantization to reduce the number of messages

exchanged among the cells. This proposal is explaneed in more detail below.

The model we constructed still has the same four phases of inactive, unburned,

burning and burned. One main difference however is that in our model, in addition to the

burned phase, the unburned phase cells also remain passive. We have found that a cell in

the unburned phase will start to climb the temperature curve above the ambient

temperature when: a) one of its neighbours has reached a temperature above 650 °K , or

b) two of its neighbours have reached a temperature above 474 °K. As a result we are

able to keep all cells in the passive state until they reach the ignition temperature as

indicated above. From the provided data from the original model we found that all cells

more or less exhibit the same temperature curve when they are in the burning phase,

implying that the temperatures of neighbouring cells do not have a big impact on a

Figure 2: Q-DEVS Quantization [3]

burning cell’s temperature. As a result, when a cell reaches the ignition temperature it

can calculate its temperature by merely following the temperature curve determined from

experimentation. By doing this we have restricted the majority of calculations to the cells

in the burning phase, and removed the need for messages from the neighbours in many

cases.

The first idea for reducing the messaging between cells dramatically is quantization

[2]. There are two quantization ideas that we have implemented in our model.s The first

is to use Q-DEVS. In Q-DEVS all cells in the model have a fixed quantum size and each

cell has a quantizer (see Figure 2 above [3]). The idea is that each cell will only send

output to its neighbours if its temperature has passed into the next quantum threshold.

The quantizer acts as the detector that decides when a threshold has been crossed, and

sends out the output only if the threshold has been crossed. By implementing

quantization as described here the number of messages exchanged between cells will be

reduced thus increasing the speed of the simulation, but also the accuracy of the

simulation will be reduced. The key is to select a quantum size that strikes a good

balance between speed increase and accuracy reduction.

The second quantization idea involves looking at the data from another perspective.

As mentioned above, the Corsican model calculates the temperature curve as a function

of time. Using this function we input a value for time and it returns the temperature of

the burning cell. However, it was proposed to look at the inverse of the curve – i.e. as a

function that gives us the time to reach a specific temperature. If we have such a

function, we can specify a quantum value (for the purposes of this paper we will call it

the hard coded quantum) for temperature and use the function to calculate what the time

will be when the cell’s temperature crosses the next quantum. If we do this the cells will

be “asleep” until they reach the next quantum threshold where they will wake up,

calculate the next time at which they will cross the quantum threshold and then go back

to sleep until that time has been reached. This will save a lot of execution time since the

cells will only be waking up on the significant event of crossing a threshold of interest.

To get the required function to do our simulation we started with a normal

temperature curve of a cell in the burning phase (see Figure 3 above). As can easily be

seen this function fails the horizontal line test [4], and therefore is not directly invertible.

First we must divide it into increasing and decreasing components, giving us two

individually invertible functions (See Figures 4 and 5). A state variable can then be used

to choose between them during execution. Using Matlab we fit functions that

Figure 3: Temperature Curve of a Single Cell in the Corsican Model

approximate the two data cruves. Note that for the scope of our project we are not overly

concerned with how accurate the functions we have are in emulating the real curve. The

focus of this study was to analyze the performance of our proposed model, which if

successful could be refined by fire experts to the desired level of accuracy. Collecting

data for this model would also be more efficient, as instead of sampling every 'cell' of the

real model every 1 ms, samples would only have to be recorded at threshold crossings.

This would potentially save much data storage and make better use of network bandwidth

in the test bed.

Figure 4: Inverted Increasing Temperature Data and Fit

The fit for the increasing temperature portion of the curve is shown above in figure

4. It uses a sum of two exponential functions:

Where temp is the temperature and t is the time. Similarly, the decreasing portion (figure

5) is fit with the linear function:

f t =0.052∗temp

There are a few things to notice about these curves. Originally higher order functions

(quadratic, etc.) were used to fit the functions, and did so with greater accuracy. After

some thought we realized these functions would not work – as time is of necessity strictly

Figure 5: Inverted decreasing temperature function

f t =11.56∗e0.0005187∗temp−784.7∗e−0.01423∗temp

increasing, and the fit functions had several local minima and maxima (implying that they

decreased in some regions). As we cannot advance time in a negative direction, any

function of time must also pass the horizontal line test, and therefore be invertible. As

this inverted function will also necessarily be invertible, this implies that we cannot

model any up and down fluctuations in temperature within any of our piecewise curves.

A new state for any change in direction of the temperature. This restriction causes the

obtained functions to be linear or near-linear in most regions (as shown in Figure 4 the

exponential curve shown has two nearly linear regions joined by a knee). These functions

will be used to develop the time advance portion of the model rules.

4.2 The Formal Model Specification

In our model we have added one additional plane to the existing model. Cell

temperatures remain on the first plane, and ignition times are moved to the third. In the

second plane we store information about each cell that will help us determine which rule

to apply. The second plane has a value of 0 by default, and the following values as

indicated below:

• -100 : If the temperature of the cell is between 301 and 474, meaning it is

burning but not hot enough to cause a neighbour to ignite.

• -200: If the temperature of the cell is between 474 and 650, meaning it is

burning and hot enough to cause a neighbour to ignite if another neighbour is also in

this state.

• -300: If the temperature of the cell is above 650, meaning it is burning and is by

itself hot enough to cause a neighbour to ignite.

• -400: If the temperature has reached the peak temperature (992) from our data

curve and is now starting to burn with a decreasing temperature.

• -500: When the cell has burned out.

The neighbourhood for the model is as follows: looking at a cell in the first plane

(the fire spread plane) each cell has its corresponding cell in the second plane (the

supporting info plane) and the Von Neumann neighbourhood of that cell as its

neighbours. The neighbourhood therefore looks as depicted in the flowing diagram:

 Plane 1 (Fire Spread plane) Plane 2 (Supporting Info plane)

The formal specification <X, Y, I, S, θ, N, d, τ, δint, δext, λ, ta> for the atomic

Cell-DEVS model is defined as follows:

X = { x | x ∈ [R+, -100, -200, -300, -400, -500] }

Y = { y | y ∈ [R+, -100, -200, -300, -400, -500] }

I = <6, 0, {Px1, Px2, .. , Px6}, {}>

S = { s | s ∈ [R+,-100, -200, -300, -400, -500] } // where:

 R+ = Real number represents Cell Temperature,

-100 = Cell in other plane between 301 and 474 °K,

-200 = Cell in other plane between 474 and 650 °K,

-300 = Cell in other plane above 650 °K,

(-1, -1, 0) (-1, 0, 0) (-1, 1, 0)

(0, -1, 0) (0, 0, 0) (0, 1, 0)

(1, -1, 0) (1, 0, 0) (1, 1, 0)

(-1, -1, 1) (-1, 0, 1) (-1, 1, 1)

(0, -1, 1) (0, 0, 1) (0, 1, 1)

(1, -1, 1) (1, 0, 1) (1, 1, 1)

-400 = Cell in other plane reached peak temp,

-500 = Cell has burned out

 θ = { (s, phase, f, σ)}

where:

– s∈ [R+,-100, -200, -300, -400, -500],

– phase∈{passive, active},

– f ∈ T

– and σ ∈ R0
+ //use inertial delay

N ∈ S6

d = 1 ms (or determined by the inverse temperature functions introduced in 4.1)

δint: internal transition function which is defined by CD++ automatically

δext: external transition function which is defined by CD++ automatically

 λ: output function which is defined by CD++ automatically

ta(passive) = INFINITY

ta(active) = d

τ = The local computing function described below: (See .MA file for details)

A cell whose corresponding neighbor in above plane has values of -100, -200
or -300:

These Cells are in the Burning Up phase, meaning that they are burning and
have not yet reached their peak temperature. These cells will calculate
(according to the burning up function) the time delay after which they
should increment their temperature by the quantum amount and then sleep
for this time

A cell whose corresponding neighbor in other plane has values of - 400:
These Cells are in the Burning Down phase, meaning that they are still
burning but have reached their peak temperature and their temperature is
falling from here on in. These cells will calculate (according to the burning

down function) the time delay after which they should decrement their
temperature and then sleep for this time

A cell whose value is 0 and its corresponding neighbor in other plane has a
value between 301 and 474:

These cells are in the “Supporting Info” plane. After a short time delay they
are to get a value of -100 indicating that their corresponding cell has ignited
but is still below 474 °K.

A cell whose value is 0 or -100, and its corresponding neighbor in other
plane has a value > 474:

These cells are in the “Supporting Info” plane. After a short time delay they
are to get a value of -200 indicating that their corresponding cell has ignited
and has reached 474 °K. Two of these cells can cause a neighbor to ignite.

A cell whose value is 0 or -200, and its corresponding neighbor in other
plane has a value > 650:

These cells are in the “Supporting Info” plane. After a short time delay they
are to get a value of -300 indicating that their corresponding cell has ignited
and has reached 650 °K. This cell alone can cause a neighbor to ignite.

A cell whose value is -300 and its corresponding neighbor in other plane has
a value > 992:

These cells are in the “Supporting Info” plane. After a short time delay they
are to get a value of -400 indicating that their corresponding cell has just
reached the peak temperature and should use the burning down equation.

A cell whose value is -400 and its corresponding neighbor in other plane has

a value < 332:
These cells are in the “Supporting Info” plane. After a short time delay they
are to get a value of -500 indicating that their corresponding cell has Burned
out.

Ignition Rules:
A cell in the “fire spread plane” that has not ignited yet (i.e. has a value of
300 °K) will ignite if at least two of its neighbors have a value of -200 or at
least one neighbor with a value of -300. The cell will ignite by being
assigned a temperate of 301 °K.

Border Rules:
Because the borders are not wrapped, the borders have special rules that
force their values to always be constant.

The formal specification <Xlist, Ylist, I, X, Y, η, N {f, c}, C, B, Z, select> for the

coupled Cell-DEVS model is defined as follows:

Xlist = {Ф}

Ylist = {Ф}

I = {Ф}

X = {Ф}

Y = {Ф} //no external inputs and outputs

η = 6

N = { (-1,0,1) , (0,-1,1) , (1,0,1) , (0,1,1) , (0,0,0) , (0,0,-1), (0,0,1) }
//neighborhood

{f,c} = {10,10} //10x10 cell space

C = { Cij | i ∈[2,9], j∈[2,9]}
Where Cij is an atomic component defined in the previous part.

B = {C1j, C10j, Ci1, Ci10} //the border is Not wrapped

Where: C1j ,C10j , Ci1 , Ci10 are as defined for the Border Rules in the previous
part.

Select = {(-1,0,1) , (0,-1,1) , (1,0,1) , (0,1,1) , (0,0,0) , (0,0,-1), (0,0,1) }

5.0 Simulation Results and Comparisons

We ran the fire spread simulation in CD++ using our proposed model and we also

ran the original Corsican model (FireCorse.ma) in order to compare the results of the two.

A smaller cell space was used in order to reduce the simulation times to manageable

levels (as noted in [5] there is a very long initialization time for large models). The initial

values used were similar to that in the provided model, representing a line ignition

scenario.

As we had noted earlier the aim of our model is to reduce the execution time of the

simulation without reducing the accuracy by too much. As the running time of the model

tends to be affected greatly by initialization delays as mentioned above (and is hard to

measure directly on Windows) the number of messages are used as our performance

metric (as measured by the size of the logs). The size of the log file was reduced by more

than 50%, from 42.1 MB to 19.6 MB even when almost all cells in the model are active.

Gains were even greater when only a few cells were initially activated.

The following series of diagrams depicts the results we obtained using our model

and using the Corsican model. One of the first things we see when we examine the

results is that the temperatures go much higher (‘white hot’) in the Corsican model than

possible in the proposed model. This makes the proposed model not as accurate because

the temperatures in the Corsican model take much longer to fall. The proposed

explanation for this is the way the model deals with border cells. Because the fire is in a

confined space and most of the cells started out burning, there are fewer unburned cells to

average out the temperature and cool the fire. This is analogous to the diffusion of heat in

real scenarios.

A further issue with the borders is evident by looking at the shape of the spread.

Because of the averaging effect, cells in the centre area are higher than on the edges in

the original model, as they are surrounded by very hot cells. Our curve was sampled from

the original larger line ignition model near the middle, which behaved much more evenly

than the distorted edges. This effect can be seen in the orderly advance of our fire front.

One final thing of note in the comparison of the models is that at some points

during the simulation some cells close to the front are more than 200 degrees off in our

model for the original model, but the temperature of these cells comes back closer in line

with the original model’s results. Some of this is due to the method of selecting initial

values. These were copied from the original model, and descend by 100 degrees in each

column, a perhaps somewhat arbitrary choice that is quickly smoothed out to a more

realistic curve by the averaging functions used there. As our model is following a fixed

curve, small inconsistencies in the initial state (especially when the temperature is rapidly

increasing or decreasing) are magnified.

In general the proposed model has performed with a much better speed and

producing much smaller logs. Considering the issues mentioned above the accuracy is

not horrible, but definitely needs some fine tuning. However, it is probably not realistic to

expect the modeller to know beforehand what sort of shape the average cell is going to

take, and it is obviously affected by the initial conditions. For instance, if only a few cells

have a starting temperature just above 301 Kelvin, our model will quickly spread fire

everywhere, whereas the original model will not even reach a red hot state. Requiring

knowledge of the shape of the curve beforehand does not seem like a practical solution.

 At time = 0 At time = 100 ms

Corsican Model

Proposed Model

 At time = 300 ms At time = 500 ms

At time = 700 ms At time = 1000 ms

Corsican Model

Proposed Model

Corsican Model

Proposed Model

6.0 Quantizing the Model – Issues and Experiences

Several other important issues related to quantization made themselves clear during

the initial model development. On initial launch with a hard coded quanta of 1 ms, many

of the temperatures were jumping up immediately to 984 degrees. After some analysis it

became clear that up until this region on the increasing temperature curve the calculated

time step per degree was less than 1 ms. CD++ truncates these values to 0, so a great

many transitions were happening at the initial time of 0:0:0:0 and not being displayed.

This not only decreased the accuracy greatly, but actually increased the number of

messages, as a large number would occur per millisecond.

This was obviously not desirable, and was somewhat mitigated by rounding the

calculated time before passing it to CD++. Looking at the data, however, it becomes clear

that temperatures on the decreasing curve tend to drop around 2 degrees per millisecond,

and rise even faster than that on the increasing curve. As such the original model was

already in a sense provided a relatively large degree of quantization (any digital model

must quantize on some level), and when a cell is burning there is a margin of error on

each calculation on the order of several degrees.

As such the only cases in which a quantization value less than around 2 can actually

decrease the number of calculations/updates is for the initial and final passive states. This

decrease will tend to offset the increase in messages (multiple per time step for burning

cells) for large, sparse models, but in more active models will decrease performance and

accuracy. Based on this observation (and the loss of accuracy already apparently with a

small quanta), we speculate that the time step in the original model is actually close to the

ideal quanta for the performance/accuracy trade-off. Without access to the real data it is

hard to compare the accuracy to an already somewhat inaccurate model.

To further back up this assertion, we consider the functions used to approximate

the time advance function. Because the decreasing function in particular is modelled as a

linear function the time step is in fact fixed (the temperature values cancel out in the time

calculation, as seen in the model). Worse than that, it is fixed at a value fractional

compared to what CD++ can represent, causing compounding error accumulation

(whereas temperatures are represented as real numbers). The exponential function is also

usually close to a fixed value (linear) for several updates at a time. So in the end one may

as well select a good, fixed time step, for each stage and calculate the temperature value

properly.

This actually follows directly from the invertibility constraints referred to above –

quantization often shows gains because it smoothes out small, unimportant up and down

fluctuations in output, but the constraints of our calculation method preclude any

fluctuations. It can also provide gains by skipping large, precalculable changes in a

function from one point to another. Although our model does have these regions, there

are regions near the bottom and top of the function that require greater precision.

Therefore a dynamic quantum size is preferable. This is likely why the other group

working on fire spreading saw little or no change to the results when running with a

quantum set in Q-Devs. Unfortunately we did not have the opportunity to test with a

version of CD++ that supported dynamic quanta.

7.0 Combined Model

To deal with the accuracy issues, a model that combined the aspects of both was

constructed. Essentially the time function of our model was plugged into the Corsican

model, with the calculating function of the original model maintained. The only

modification was to add the hard coded quanta to the calculated temperature at each time

step. The idea being to gain the advantage of skipping up the curve quickly, while being

able to correct any inaccuracies by re-evaluating the correct temperature after the jump.

Several issues were found with this model (FireTest2.ma). One of these is that cells

tend to flip back and forth between quantum values, as they're required to change a fixed

amount by the time update function, but may actually want to be somewhere in between.

Secondly, the number of messages is actually

much greater than the original model, until both

the hard coded quanta and that specified to the

simulator is raised to 20. At this point, the

modified model still generated 45 MB of

messages, versus 42 MB from the original. As you

can see from figure 6 on the right, although the

shape of the front remains pretty much the same,

the temperature values of the new model (upper

graph) off by around 200 degrees. Watching the

simulation showed it tending to lag behind the

original values. This model does not seem to be a

good trade-off either. The lag may be caused by Figure 6: Modified Corsican
vs. Original @ 1 ms

being unable to precalculate correctly what your temperature is going to be after the temp

step, but only what it should be now.

8.0 Proposed Solutions

Although simply using dynamic Q-Devs may likely be the easiest and best trade-

off, we propose another possible solution using the dead reckoning approach. Using the

observation that the temperature curve is generally close to linear other than in a few

transition ratios, really what one needs is to track the current slope of the function and

extrapolate from there to predict the next change. Accurate calculations of the current

temperature could be made after either every jump, or perhaps a state variable could be

kept to limit it to every N jumps. Otherwise it would not be able to detect changes in

direction without knowing where they were a priori, which as discussed above is an

unrealistic expectation.

This sort of technique has already been applied to distributed simulation as

shown in [6] and other references. One of the authors remembers coming across it in

discussion of the HLA.

9.0 Conclusion

Our study concurred that the original Corsican model was too slow in execution

time, due to the large number of messages exchanged among the cells in the model.

However, our techniques to improve the performance came at too much of an accuracy

penalty. We theorize that the original model actually was quantized about as much as it

could be to maintain reasonable accuracy, so there was little room for improvement.

However, if a more precise model is desired our techniques may come into play.

Out first proposed model used a form of hard coded quantization to reduce the

number of messages between the cells and thus increase the speed of the simulation.

Quantization was implemented by calculating the time steps between temperatures,

instead of the temperatures at time steps. We found equations describing the time when a

cell reaches a specific temperature during the burning phase. These were used equations

in our model to find the time it takes for the cell to increase (or decrease) in temperature

by a quantum amount, thus achieving the goal of keeping all cells “asleep” until a

significant event takes place. The effect of neighbouring cells were ignored, as in

previous test runs all cells were seen to develop similarly. Another modification was to

keep cells in the unburned state “passive” until they are seen to reach the ignition

temperature. The combination increased performance, but had problems with accuracy

and requiring some prior knowledge of how the fire would develop to obtain good

equations and initial values. We found that the general direction and speed of fire spread

was maintained by our model, although some finer details such as peak temperatures and

temperatures of cells at the fire front were not very accurate.

To improve the accuracy we attempted to combine our solution more directly with

the original model, by using the original equations involving the neighbours.

Unfortunately the inaccuracies seemed to cause more fluctuations and therefore updates

than they eliminated, and the model performed poorly as a result. A great deal of

inaccuracy had to be tolerated to even match the performance of the original model.

We conclude that the highly dynamic nature of a fire remains difficult to model

correctly with approximations. This will be even more evident if slope and weather are

taken into account. Our recommendation is that methods of dynamic quantization be

explored, rather than further simplification of the model, whether using built-in support in

future versions of CD++ or rule based dead reckoning approximations. Also, our

techniques should be reevaluated if a more precise model is desired, as simpler

quantization methods may be more useful in that scenario.

10.0 References

[1] A. Muzy, E. Innocenti, A. Aiello, J. Santucci, and G. Wainer, “Specification of

Discrete Event Models for Fire Spreading,” The Society for Modeling and Simulation

International, vol.81, issue 2, February 2005.

[2] G. Wainer and B. Zeigler, “Experimental Results of Timed Cell-DEVS

Quantization,” in Proceedings of AIS'2000. Tucson, Arizona, USA, 2000.

[3] G. Wainer and A. Muzy, “Cell-DEVS Quantization Techniques in a Fire Spreading

Application,” in Proceedings of the 2002 Winter Simulation Conference.

[4] Wikipedia, Wikimedia Foundation, Inc., “Horizontal Line Test,” December 2005,

http://en.wikipedia.org/wiki/Horizontal_line_test.

[5] A. Muzy, G. Wainer, E. Innocenti, A. Aiello, J.-F. Santucci, “Comparing Simulation

Methods for Fire Spreading Across a Fuel Bed,” Computer Modeling, University of

Corsica, Corti, France, Tech. Rep. SPE - UMR CNRS 6134.

[6] K.-C. Lin, “Dead reckoning and distributed interactive simulation,” in Distributed

interactive simulation systems for simulation and training in the aerospace environment;

Proceedings of the Conference. Orlando, FL, USA, April 1995, pp. 16-36.

http://en.wikipedia.org/wiki/Horizontal_line_test

	1.0Introduction
	2.0Background
	3.0Discussion of the Corsican Cell-DEVS Model
	4.0Proposed Fire Spread Cell-DEVS Model Definition
	4.1The Conceptual Model 		
	4.2The Formal Model Specification

	5.0Simulation Results and Comparisons
	6.0Quantizing the Model – Issues and Experiences
	7.0Combined Model
	8.0Proposed Solutions
	9.0Conclusion
	10.0References

