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1.0 Introduction

The complexity of studying the spread of fire has made it  the target of several 

studies in the modelling and simulation field.  Mathematical models for this phenomenon 

are  too  complex  to  allow an  analytical  solution;  therefore  researched have  turned  to 

simulation to provide some success in predicting fire behaviour. 

This paper is intended to enhance an existing fire spreading model: the Corsican 

Fire Spreading Cell-DEVS model.  In this model the physical area of interest is divided 

into cells, with each cell exhibiting the same behaviour. The model uses a simple set of 

equations  to  determine  the  temperature  of  each  cell  at  regular  time  intervals.   The 

temperature of a non-burning cell is an averaging function of its own temperature and 

that of its neighbours. Once ignited the temperature of burning cells, on the other hand, is 

also a function of time – the cell's temperature increases to a peak and then falls back 

down, modelling the exhaustion of fuel in the cell.  

The biggest problem with the existing Corsican Fire Spreading Cell-DEVS model 

is that it takes a long time to execute. This is mainly due to the large number of messages 

exchanged amongst all the cells in the simulation every single time step. Our contribution 

is to explore modifications to the existing model to speed up the simulation. The problem 

was attacked in two major ways, using 'dead reckoning' to vary the length of the time 

steps taken by each cell and using Quantized DEVS (Q-DEVS) to quantize the cells' 

output. Using Q-DEVS generally reduces the number of messages exchanged between 

the cells,  as  messages  are  only sent  when the  output  of  a  cell  passes  a  quantization 

threshold. In the other case, we are stepping away from the traditional way of looking at 

the fire equations – deriving an equation that gives you the temperature at each given 



time step.  Instead,  we try to find to do the opposite,  and find an equation (or set  of 

equations) that determine the time the next quanta will be passed as a function of the 

current temperature.  In other words we will only change the temperature of the cells at 

the quantum boundaries,  by using an equation that  determines  at  what time the next 

quantum will be reached.  This paper explores how using one or both of the methods 

together can sometimes decrease the number of messages sent (and hence the execution 

time), but with definite issues with the resulting accuracy. Also, the likely reasons for 

much unexpected poor behaviour of both methods will discussed, and possible solutions 

proposed.

2.0 Background

The spread of fire is a complex phenomenon that many have tried to study over the 

years. As one can imagine, the spread of fire depends on many different variables such as 

the  material  being  burned,  the  geography  of  the  area,  and  the  weather.  It  has  been 

determined that finding an analytical solution for mathematical models of fire spread is 

almost  impossible,  and  therefore  many  have  looked  to  simulation  as  an  attractive 

alternative.  Simulations have been found that represent the way in which fire spreads 

reasonably accurately, and are now generally the preferred solution for predicting the 

behaviour of fire. This goal of predicting fire behaviour is important to firefighters, for 

example, because having a tool that is able to predict where the fire will be and how it 

will move will enable them to better plan strategies to control the fire quickly and safely. 

An aspect of great importance in such a tool is that it has to be able to predict the fire 

behaviour (at the very minimum) faster than the fire itself moves, preferably much faster. 

In a real life situation, if we want to use a tool to help us predict how the fire will spread 



we have to be confident that it will give us a reasonable result on the order of minutes. 

Otherwise valuable time will be lost as the fire spreads further, regardless of the accuracy 

of the results.

The authors of [1] have shown how Cell-DEVS and CD++ can be used to model fire 

spread. In this project we have started with the Cell-DEVS Corsican Fire Spread model 

and have modified it to achieve a faster simulation time (in some cases), with a somewhat 

large loss of accuracy.  First let us quickly go over how the original Corsican Cell-DEVS 

model  worked.   Below is  a  simplified diagram of  the temperature curve used in  the 

Corsican model.  The temperature curve is divided into four stages,  and at  any given 

instant each cell in the model will be in one of these stages. The first is the inactive stage 

in when a cell has no neighbours with a temperature higher than the ambient temperature 

(Ta). The second is the unburned stage in which the temperature of the cell is increasing 

due  to  heat  from  the  neighbouring  cells;  during  this  stage  the  cell’s  temperature  is 

between the ambient temperature and the ignition temperature (300 ºC).  The third is the 

burning stage in which the cell has reached the ignition temperature and fuel in the cell 

starts to burn. During this stage the cell’s temperature increases until it reaches a peak 

Figure 1: Simplified Temperature curve [1]



temperature, and then falls back down to 60 ºC. It has now entered the fourth and final 

stage,  burned.  Because  it  has  exhausted  its  fuel,  it  can  no  longer  reignite  and  is 

considered inactive.

The Cell-DEVS implementation contains two planes to store the state for each cell. 

The first represents the fire spread itself, in which each cell calculates its temperature. 

The  additional  plane  is  used  to  store  the  ignition  times  for  the  cells  (this  can  be 

considered merely a state variable of the true cells of interest). The cells in the ignition 

temperature  plane  have  a  simple rule  –  record  the  current  simulation time when the 

corresponding cell in the fire spread plane reaches the ignition temperature. As can be 

expected, the cells in the fire spread plane have more complex rules.  When a cell is in 

the unburned phase its temperature is calculated as the weighted average of the current 

cell’s temperature with its neighbours' temperatures. When a cell is in the burning phase 

its temperature is again calculated as the weighted average of the temperatures around it, 

but with the addition of the result of a decaying exponential function of time describing 

the temperature  behaviour.   In  the other  two phases  (inactive and burned)  the  cell’s 

temperature does not change and thus these cells should remain in the passive state (the 

inactive cells will of course respond to any temperature changes in their neighbourhood, 

so they may eventually ignite).  One of the advantages of using Cell-DEVS is that if the 

rules are written properly all cells in the inactive or burned phase will remain passive and 

thus the calculations will be confined to the fire front, saving on execution time. Burned 

cells  do this effectively in this  model,  but unburned cells do not. The Corsican Cell-

DEVS model itself is explaneed more thoroughly in [1].  



3.0 Discussion of the Corsican Cell-DEVS Model

Running  the  simulation  of  the  existing  Corsican  Cell-DEVS  led  to  several  important 

observations.  First and the most important deficiency of the current simulation is that it takes far 

too long to run.  In the original examples we ran it took around ten minutes to run 15 seconds of 

simulation time.  The log files produced by the simulation were also very large (around 300 

Megabytes (MB) for the 15 seconds of simulation time).  For the purposes of easy comparison 

with different  techniques  we reduced the size  of  the  cell  space from 60x60 to  10x10 for all 

experiments  described  below.  Secondly,  it  was  observed  that  during  the  burning  phase  the 

temperature curves of all the cells are very similar. This was taken to imply that the effect of the 

neighbouring cells can be ignored when calculating the temperature of a cell during the burning 

phase. Whether or not this was a valid assumption will be explored below.

The reason for the slow execution time of the simulation is mainly due to the high 

number of messages being exchanged between cells.  In the current model each cell in the 

unburned or burning phase will update its temperature once every 1 ms and will as a 

result send messages to its neighbours.  To remedy this problem a solution must be found 

that decreases the number of messages exchanged. The solution we propose is described 

in the following section.

4.0 Proposed Fire Spread Cell-DEVS Model Definition

4.1 The Conceptual Model 
As mentioned  above,  the  problem we  are  trying  to  address  is  the  speed  of  the 

simulation.  To increase the speed we propose two main simplifications.  Firstly, if we are 

able  to  keep  the  unburned cells  completely  in  the  passive  state  until  they  reach  the 



ignition temperature, we would reduce the number of cells that send out messages to their 

neighbours.  The  second  is  to  use  quantization  to  reduce  the  number  of  messages 

exchanged among the cells. This proposal is explaneed in more detail below.

The model  we  constructed  still  has  the  same four  phases  of  inactive,  unburned, 

burning and burned. One main difference however is that in our model, in addition to the 

burned phase, the unburned phase cells also remain passive.  We have found that a cell in 

the  unburned  phase  will  start  to  climb  the  temperature  curve  above  the  ambient 

temperature when: a) one of its neighbours has reached a temperature above 650 °K , or 

b) two of its neighbours have reached a temperature above 474 °K.  As a result we are 

able to keep all cells in the passive state until  they reach the ignition temperature as 

indicated above.  From the provided data from the original model we found that all cells 

more or less exhibit the same temperature curve when they are in the burning phase, 

implying that  the  temperatures  of  neighbouring cells  do not  have  a  big impact  on  a 

Figure 2: Q-DEVS Quantization [3]



burning cell’s temperature.  As a result, when a cell reaches the ignition temperature it 

can calculate its temperature by merely following the temperature curve determined from 

experimentation.  By doing this we have restricted the majority of calculations to the cells 

in the burning phase, and removed the need for messages from the neighbours in many 

cases.

The first idea for reducing the messaging between cells dramatically is quantization 

[2].  There are two quantization ideas that we have implemented in our model.s  The first 

is to use Q-DEVS.  In Q-DEVS all cells in the model have a fixed quantum size and each 

cell has a quantizer (see Figure 2 above [3]). The idea is that each cell will only send 

output to its neighbours if its temperature has passed into the  next quantum threshold. 

The quantizer acts as the detector that decides when a threshold has been crossed, and 

sends  out  the  output  only  if  the  threshold  has  been  crossed.   By  implementing 

quantization as described here the number of messages exchanged between cells will be 

reduced  thus  increasing  the  speed  of  the  simulation,  but  also  the  accuracy  of  the 

simulation will  be reduced.  The key is  to select  a  quantum size that  strikes a good 

balance between speed increase and accuracy reduction.   

The second quantization idea involves looking at the data from another perspective. 

As mentioned above, the Corsican model calculates the temperature curve as a function 

of time.  Using this function we input a value for time and it returns the temperature of 

the burning cell.  However, it was proposed to look at the inverse of the curve – i.e. as a 

function  that  gives  us  the  time to  reach  a  specific  temperature.   If  we  have  such  a 

function, we can specify a quantum value (for the purposes of this paper we will call it 

the hard coded quantum) for temperature and use the function to calculate what the time 



will be when the cell’s temperature crosses the next quantum.  If we do this the cells will 

be  “asleep”  until  they  reach  the  next  quantum  threshold  where  they  will  wake  up, 

calculate the next time at which they will cross the quantum threshold and then go back 

to sleep until that time has been reached.  This will save a lot of execution time since the 

cells will only be waking up on the significant event of crossing a threshold of interest.  

To  get  the  required  function  to  do  our  simulation  we  started  with  a  normal 

temperature curve of a cell in the burning phase (see Figure 3 above).  As can easily be 

seen this function fails the horizontal line test [4], and therefore is not directly invertible. 

First  we  must  divide  it  into  increasing  and  decreasing  components,  giving  us  two 

individually invertible functions (See Figures 4 and 5). A state variable can then be used 

to  choose  between  them  during  execution.  Using  Matlab  we  fit  functions  that 

Figure 3: Temperature Curve of a Single Cell in the Corsican Model



approximate the two data cruves.  Note that for the scope of our project we are not overly 

concerned with how accurate the functions we have are in emulating the real curve.  The 

focus of this  study was to analyze the performance of our proposed model,  which if 

successful could be refined by fire experts to the desired level of accuracy. Collecting 

data for this model would also be more efficient, as instead of sampling every 'cell' of the 

real model every 1 ms, samples would only have to be recorded at threshold crossings. 

This would potentially save much data storage and make better use of network bandwidth 

in the test bed.

                  

Figure 4: Inverted Increasing Temperature Data and Fit



The fit for the increasing temperature portion of the curve is shown above in figure 

4. It uses a sum of two exponential functions:

Where temp is the temperature and t is the time. Similarly, the decreasing portion (figure 

5) is fit with the linear function:

f t =0.052∗temp

There are a few things to notice about these curves. Originally higher order functions 

(quadratic, etc.) were used to fit the functions, and did so with greater accuracy. After 

some thought we realized these functions would not work – as time is of necessity strictly 

Figure 5: Inverted decreasing temperature function

f t =11.56∗e0.0005187∗temp−784.7∗e−0.01423∗temp



increasing, and the fit functions had several local minima and maxima (implying that they 

decreased in  some regions).  As we cannot  advance time in  a negative direction,  any 

function of time must also pass the horizontal line test, and therefore be invertible. As 

this  inverted  function  will  also  necessarily  be  invertible,  this  implies  that  we cannot 

model any up and down fluctuations in temperature within any of our piecewise curves. 

A new state for any change in direction of the temperature. This restriction causes the 

obtained functions to be linear or near-linear in most regions (as shown in Figure 4 the 

exponential curve shown has two nearly linear regions joined by a knee). These functions 

will be used to develop the time advance portion of the model rules.

4.2 The Formal Model Specification

In  our  model  we have added one additional  plane  to  the existing model.   Cell 

temperatures remain on the first plane, and ignition times are moved to the third.  In the 

second plane we store information about each cell that will help us determine which rule 

to apply.  The second plane has a value of 0 by default, and the following values as 

indicated below:

• -100 :  If the temperature of the cell is between 301 and 474, meaning it is 

burning but not hot enough to cause a neighbour to ignite.

• -200:  If  the  temperature  of  the cell  is  between 474 and 650,  meaning it  is 

burning and hot enough to cause a neighbour to ignite if another neighbour is also in 

this state.

• -300: If the temperature of the cell is above 650, meaning it is burning and is by 

itself hot enough to cause a neighbour to ignite.



• -400: If the temperature has reached the peak temperature (992) from our data 

curve and is now starting to burn with a decreasing temperature.

• -500:  When the cell has burned out.

The neighbourhood for the model is as follows: looking at a cell in the first plane 

(the  fire  spread  plane)  each  cell  has  its  corresponding  cell  in  the  second  plane  (the 

supporting  info  plane)  and  the  Von  Neumann  neighbourhood  of  that  cell  as  its 

neighbours. The neighbourhood therefore looks as depicted in the flowing diagram:

  

          Plane 1 (Fire Spread plane)    Plane 2 (Supporting Info plane)

The formal specification <X, Y, I, S,  θ, N, d,  τ, δint, δext, λ, ta> for the atomic 

Cell-DEVS model is defined as follows:

X = { x | x ∈ [R+, -100, -200, -300, -400, -500]  }

Y = { y | y ∈ [R+, -100, -200, -300, -400, -500]  }

I =  <6, 0, {Px1, Px2, .. , Px6}, {}>

S = { s | s ∈ [R+,-100, -200, -300, -400, -500] }  // where:

 R+    = Real number represents Cell Temperature, 

-100 = Cell in other plane between 301 and 474 °K,

-200 = Cell in other plane between 474 and 650 °K,

-300 = Cell in other plane above 650 °K,

(-1, -1, 0) (-1, 0, 0) (-1, 1, 0)

(0, -1, 0) (0, 0, 0) (0, 1, 0)

(1, -1, 0) (1, 0, 0) (1, 1, 0)

(-1, -1, 1) (-1, 0, 1) (-1, 1, 1)

(0, -1, 1) (0, 0, 1) (0, 1, 1)

(1, -1, 1) (1, 0, 1) (1, 1, 1)



-400 = Cell in other plane reached peak temp,

-500 = Cell has burned out

 θ = { (s, phase, f, σ)}

where:

– s∈ [R+,-100, -200, -300, -400, -500],

– phase∈{passive, active},  

– f ∈ T 

– and σ ∈ R0
+ //use inertial delay

N ∈ S6 

d = 1 ms (or  determined by the  inverse temperature functions introduced in 4.1)

δint: internal transition function which is defined by CD++ automatically

δext: external transition function which is defined by CD++ automatically

 λ: output function which is defined by CD++ automatically

ta(passive) = INFINITY

ta(active) = d

τ = The local computing function described below: (See .MA file for details)

A cell whose corresponding neighbor in above plane has values of -100, -200 
or -300:  

These Cells are in the Burning Up phase, meaning that they are burning and 
have not yet reached their peak temperature.  These cells will calculate 
(according to the burning up function) the time delay after which they 
should increment their temperature by the quantum amount and then sleep 
for this time

A cell whose corresponding neighbor in other plane has values of - 400:  
These Cells are in the Burning Down phase, meaning that they are still 
burning but have reached their peak temperature and their temperature is 
falling from here on in.  These cells will calculate (according to the burning 



down function) the time delay after which they should decrement their 
temperature and then sleep for this time

A cell whose value is 0 and its corresponding neighbor in other plane has a 
value between 301 and 474:  

These cells are in the “Supporting Info” plane.  After a short time delay they 
are to get a value of -100 indicating that their corresponding cell has ignited 
but is still below 474 °K. 

A cell whose value is 0 or -100, and its corresponding neighbor in other 
plane has a value > 474:  

These cells are in the “Supporting Info” plane.  After a short time delay they 
are to get a value of -200 indicating that their corresponding cell has ignited 
and has reached 474 °K.  Two of these cells can cause a neighbor to ignite.

A cell whose value is 0 or -200, and its corresponding neighbor in other 
plane has a value > 650:  

These cells are in the “Supporting Info” plane.  After a short time delay they 
are to get a value of -300 indicating that their corresponding cell has ignited 
and has reached 650 °K.  This cell alone can cause a neighbor to ignite.

A cell whose value is -300 and its corresponding neighbor in other plane has 
a value > 992:  

These cells are in the “Supporting Info” plane.  After a short time delay they 
are to get a value of -400 indicating that their corresponding cell has just 
reached the peak temperature and should use the burning down equation.

 
A cell whose value is -400 and its corresponding neighbor in other plane has 

a value < 332:  
These cells are in the “Supporting Info” plane.  After a short time delay they 
are to get a value of -500 indicating that their corresponding cell has Burned 
out.

Ignition Rules: 
A cell in the “fire spread plane” that has not ignited yet (i.e. has a value of 
300 °K) will ignite if at least two of its neighbors have a value of -200 or at 
least  one  neighbor  with  a  value  of  -300.  The  cell  will  ignite  by  being 
assigned a temperate of 301 °K. 

Border Rules:
Because the borders are not wrapped, the borders have special rules that 
force their values to always be constant.



The formal specification <Xlist, Ylist, I, X, Y, η, N {f, c}, C, B, Z, select> for the 

coupled Cell-DEVS model is defined as follows:

Xlist = {Ф} 

Ylist = {Ф}

I = {Ф}

X = {Ф}

Y = {Ф} //no external inputs and outputs

η = 6

N = { (-1,0,1) , (0,-1,1) ,  (1,0,1) , (0,1,1) , (0,0,0) , (0,0,-1), (0,0,1) }   
//neighborhood

{f,c} = {10,10} //10x10 cell space

C = { Cij | i ∈[2,9], j∈[2,9]} 
Where Cij is an atomic component defined in the previous part.

B = {C1j, C10j, Ci1, Ci10} //the border is Not wrapped

Where:  C1j ,C10j , Ci1 , Ci10 are as defined for the Border Rules in the previous 
part.

Select = {(-1,0,1) , (0,-1,1) ,  (1,0,1) , (0,1,1) , (0,0,0) , (0,0,-1), (0,0,1) }

5.0 Simulation Results and Comparisons

We ran the fire spread simulation in CD++ using our proposed model and we also 

ran the original Corsican model (FireCorse.ma) in order to compare the results of the two. 

A smaller cell space was used in order to reduce the simulation times to manageable 

levels (as noted in [5] there is a very long initialization time for large models). The initial 

values  used  were  similar  to  that  in  the  provided  model,  representing  a  line  ignition 

scenario. 

As we had noted earlier the aim of our model is to reduce the execution time of the 

simulation without reducing the accuracy by too much. As the running time of the model 



tends to be affected greatly by initialization delays as mentioned above (and is hard to 

measure directly on Windows) the number of messages are used as our performance 

metric (as measured by the size of the logs). The size of the log file was reduced by more 

than 50%, from 42.1 MB to 19.6 MB even when almost all cells in the model are active. 

Gains were even greater when only a few cells were initially activated.

The following series of diagrams depicts the results we obtained using our model 

and using the Corsican model.  One of the first things we see when we examine the 

results is that the temperatures go much higher (‘white hot’) in the Corsican model than 

possible in the proposed model.  This makes the proposed model not as accurate because 

the  temperatures  in  the  Corsican  model  take  much  longer  to  fall.  The  proposed 

explanation for this is the way the model deals with border cells. Because the fire is in a 

confined space and most of the cells started out burning, there are fewer unburned cells to 

average out the temperature and cool the fire. This is analogous to the diffusion of heat in 

real scenarios.

A further issue with the borders is evident by looking at the shape of the spread. 

Because of the averaging effect, cells in the centre area are higher than on the edges in 

the original model, as they are surrounded by very hot cells. Our curve was sampled from 

the original larger line ignition model near the middle, which behaved much more evenly 

than the distorted edges. This effect can be seen in the orderly advance of our fire front. 

One final thing of note in the comparison of the models is that  at  some points 

during the simulation some cells close to the front are more than 200 degrees off in our 

model for the original model, but the temperature of these cells comes back closer in line 

with the original model’s results.  Some of this is due to the method of selecting initial 



values. These were copied from the original model, and descend by 100 degrees in each 

column, a perhaps somewhat arbitrary choice that is quickly smoothed out to a more 

realistic curve by the averaging functions used there. As our model is following a fixed 

curve, small inconsistencies in the initial state (especially when the temperature is rapidly 

increasing or decreasing) are magnified.

In  general  the  proposed  model  has  performed  with  a  much  better  speed  and 

producing much smaller logs.  Considering the issues mentioned above the accuracy is 

not horrible, but definitely needs some fine tuning. However, it is probably not realistic to 

expect the modeller to know beforehand what sort of shape the average cell is going to 

take, and it is obviously affected by the initial conditions. For instance, if only a few cells 

have a starting temperature just above 301 Kelvin, our model will quickly spread fire 

everywhere, whereas the original model will not even reach a red hot state. Requiring 

knowledge of the shape of the curve beforehand does not seem like a practical solution.

                           At time = 0 At time = 100 ms

Corsican Model

Proposed Model



                                   At time = 300 ms                                At time = 500 ms

     

At time = 700 ms At time = 1000 ms

Corsican Model

Proposed Model

Corsican Model

Proposed Model



6.0 Quantizing the Model – Issues and Experiences

Several other important issues related to quantization made themselves clear during 

the initial model development. On initial launch with a hard coded quanta of 1 ms, many 

of the temperatures were jumping up immediately to 984 degrees.  After some analysis it 

became clear that up until this region on the increasing temperature curve the calculated 

time step per degree was less than 1 ms. CD++ truncates these values to 0, so a great 

many transitions were happening at the initial time of 0:0:0:0 and not being displayed. 

This  not  only  decreased  the  accuracy  greatly,  but  actually  increased  the  number  of 

messages, as a large number would occur per millisecond. 

This was obviously not desirable, and was somewhat mitigated by rounding the 

calculated time before passing it to CD++. Looking at the data, however, it becomes clear 

that temperatures on the decreasing curve tend to drop around 2 degrees per millisecond, 

and rise even faster than that on the increasing curve. As such the original model was 

already in a sense provided a relatively large degree of quantization (any digital model 

must quantize on some level), and when a cell is burning there is a margin of error on 

each calculation on the order of several degrees.

As such the only cases in which a quantization value less than around 2 can actually 

decrease the number of calculations/updates is for the initial and final passive states. This 

decrease will tend to offset the increase in messages (multiple per time step for burning 

cells) for large, sparse models, but in more active models will decrease performance and 

accuracy. Based on this observation (and the loss of accuracy already apparently with a 

small quanta), we speculate that the time step in the original model is actually close to the 



ideal quanta for the performance/accuracy trade-off. Without access to the real data it is 

hard to compare the accuracy to an already somewhat inaccurate model.

To further back up this assertion, we consider the functions used to approximate 

the time advance function. Because the decreasing function in particular is modelled as a 

linear function the time step is in fact fixed (the temperature values cancel out in the time 

calculation,  as  seen  in  the  model).  Worse  than  that,  it  is  fixed  at  a  value  fractional 

compared  to  what  CD++  can  represent,  causing  compounding  error  accumulation 

(whereas temperatures are represented as real numbers). The exponential function is also 

usually close to a fixed value (linear) for several updates at a time. So in the end one may 

as well select a good, fixed time step, for each stage and calculate the temperature value 

properly. 

This actually follows directly from the invertibility constraints referred to above – 

quantization often shows gains because it smoothes out small, unimportant up and down 

fluctuations  in  output,  but  the  constraints  of  our  calculation  method  preclude  any 

fluctuations.  It  can  also  provide  gains  by  skipping  large,  precalculable  changes  in  a 

function from one point to another. Although our model does have these regions, there 

are  regions  near  the  bottom  and  top  of  the  function  that  require  greater  precision. 

Therefore  a  dynamic  quantum size  is  preferable.  This  is  likely  why the  other  group 

working on fire spreading saw little or no change to the results when running with a 

quantum set in Q-Devs. Unfortunately we did not have the opportunity to test with a 

version of CD++ that supported dynamic quanta.



7.0 Combined Model

To deal with the accuracy issues, a model that combined the aspects of both was 

constructed. Essentially the time function of our model was plugged into the Corsican 

model,  with  the  calculating  function  of  the  original  model  maintained.  The  only 

modification was to add the hard coded quanta to the calculated temperature at each time 

step. The idea being to gain the advantage of skipping up the curve quickly, while being 

able to correct any inaccuracies by re-evaluating the correct temperature after the jump.

Several issues were found with this model (FireTest2.ma). One of these is that cells 

tend to flip back and forth between quantum values, as they're required to change a fixed 

amount by the time update function, but may actually want to be somewhere in between. 

Secondly,  the  number  of  messages  is  actually 

much greater than the original model, until both 

the  hard  coded quanta  and  that  specified  to  the 

simulator  is  raised  to  20.  At  this  point,  the 

modified  model  still  generated  45  MB  of 

messages, versus 42 MB from the original. As you 

can see from figure 6 on the right, although the 

shape of the front remains pretty much the same, 

the temperature values of the new model (upper 

graph) off by around 200 degrees. Watching the 

simulation  showed  it  tending  to  lag  behind  the 

original values. This model does not seem to be a 

good trade-off either. The lag may be caused by Figure 6: Modified Corsican 
vs. Original @ 1 ms



being unable to precalculate correctly what your temperature is going to be after the temp 

step, but only what it should be now.

8.0 Proposed Solutions

Although simply using dynamic Q-Devs may likely be the easiest and best trade-

off, we propose another possible solution using the dead reckoning approach. Using the 

observation that the temperature curve is generally close to linear other than in a few 

transition ratios, really what one needs is to track the current slope of the function and 

extrapolate from there to predict the next change. Accurate calculations of the current 

temperature could be made after either every jump, or perhaps a state variable could be 

kept to limit it to every  N jumps. Otherwise it would not be able to detect changes in 

direction without knowing where they were  a priori,  which as discussed above is an 

unrealistic expectation.

This  sort  of  technique  has  already been  applied  to  distributed  simulation  as 

shown in [6] and other references. One of the authors remembers coming across it in 

discussion of the HLA.

9.0 Conclusion

Our study concurred that the original Corsican model was too slow in execution 

time, due to the large number of messages exchanged among the cells in the model. 

However, our techniques to improve the performance came at too much of an accuracy 

penalty. We theorize that the original model actually was quantized about as much as it 



could be to  maintain reasonable accuracy,  so there was little  room for  improvement. 

However, if a more precise model is desired our techniques may come into play.

Out first  proposed model used a form of hard coded quantization to reduce the 

number of messages between the cells  and thus increase the speed of the simulation. 

Quantization  was  implemented  by  calculating  the  time  steps  between  temperatures, 

instead of the temperatures at time steps.  We found equations describing the time when a 

cell reaches a specific temperature during the burning phase. These were used equations 

in our model to find the time it takes for the cell to increase (or decrease) in temperature 

by  a  quantum amount,  thus  achieving  the  goal  of  keeping  all  cells  “asleep”  until  a 

significant  event  takes  place.  The  effect  of  neighbouring  cells  were  ignored,  as  in 

previous test runs all cells were seen to develop similarly. Another modification was to 

keep  cells  in  the  unburned  state  “passive”  until  they  are  seen  to  reach  the  ignition 

temperature. The combination increased performance, but had problems with accuracy 

and requiring  some prior  knowledge of  how the fire  would develop to  obtain good 

equations and initial values. We found that the general direction and speed of fire spread 

was maintained by our model, although some finer details such as peak temperatures and 

temperatures of cells at the fire front were not very accurate. 

To improve the accuracy we attempted to combine our solution more directly with 

the  original  model,  by  using  the  original  equations  involving  the  neighbours. 

Unfortunately the inaccuracies seemed to cause more fluctuations and therefore updates 

than  they  eliminated,  and  the  model  performed  poorly  as  a  result.  A  great  deal  of 

inaccuracy had to be tolerated to even match the performance of the original model.



We conclude that the highly dynamic nature of a fire remains difficult to model 

correctly with approximations. This will be even more evident if slope and weather are 

taken into account.  Our  recommendation is  that  methods of  dynamic quantization be 

explored, rather than further simplification of the model, whether using built-in support in 

future  versions  of  CD++  or  rule  based  dead  reckoning  approximations.  Also,  our 

techniques  should  be  reevaluated  if  a  more  precise  model  is  desired,  as  simpler 

quantization methods may be more useful in that scenario.
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