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ABSTRACT 

Discrete EVent Systems Specification (DEVS) is an object-

oriented computational environment based on DEVS 

formalism and has been used in modeling and simulation of 

various real world systems.  In this paper report, I 

proposed modeling and simulation of the vegetable 

ecosystem environment based on the Cell-DEVS 

specification using CD++ toolkit. The propose system is 

based on coupled Cell-DEVS model described as a 

composition of atomic and coupled components. The model 

is implemented thoroughly debugged and tested and the 

results are presented. 

Keywords 
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Cell-DEVS, CD++  

1. INTRODUCTION 
Traditionally, the formal modelling, or modeling, of 

systems has been via a mathematical model, while computer 

simulations might use some algorithms from purely 

mathematical models, computers can combine simulations 

with reality of actual events, such as generating input 

responses, to simulate test subjects who are no longer 

present. In other words, a computer modeling and 

simulation is a computer program, or network of computers, 

that attempts to model and simulate an abstract model of a 

particular system. Computer simulations have become a 

useful part of mathematical modelling of many natural 

systems in physics (computational physics), chemistry and 

biology.  

In a simulation modeling of a system the events occurrence 

(or trigger) and their duration (time) is defines the type of 

the system simulation that is either continues or discrete i.e. 

this report make use of a discrete event simulation (DES) or 

DEVS formalism that manages events in time. Most 

computer, logic-test and fault-tree simulations are of this 

type. In this type of simulation, the simulator maintains a 

queue of events sorted by the simulated time they should 

occur. The simulator reads the queue and triggers new 

events as each event is processed. 

More specifically a special type of DEVS called Cell-

DEVS simulation that is based on the Cellular Automata 

used in our system. 

The system aim to model and simulate a comprehensive 

vegetable ecosystem using Coupled Cell-DEVS simulation. 

We begin in Section 1 with a background overview of 

DEVS simulation and formalism and CD++ toolkit. In 

section 2 the components of the system are described and a 

overall conceptual description of the system given. Section 

3 is designed to explain simulation scheme details used in 

population & growth evolution and Plant shape & growth 

models. Section 4 offers a formal Cell-DEVS description 

and elaborates on the simulation implementation and the 

relations between components and the complete set of rules 

used in our model. Section 5 illustrates the results of the 

simulation and some test cases and compare the result and  

test analysis of the system. Finally in section 6 and 7 the 

conclusion and future direction are discussed. Some test 

patterns and compare the result 

1.1 Background to DEVS M&S 
Modeling techniques for discrete-event systems only 

appeared recently and simulation of these applications was 

related to the creation of the computer and rapid 

development in the field of computing. Modeling 

techniques with a solid mathematical background are more 

recent; where the first Discrete-Event M&S approaches 

were tightly coupled to the computer hardware and (formal) 

languages.  

DEVS Modeling and Simulation [4] theory is one of the 

new techniques, which was based on Systems Theory 

concepts [1][2][3]. In DEVS theory, a real system is seen as 

a source of behavioral data for the study within a given 

experimental frame (EF) as depicted in Figure 1. In this 

model, experiment frame is a set of components under 



observation with a given condition. It contains the source 

system under study and its behavior data. The model or 

abstract representation of the system is created exploiting 

the data from EF. In fact, the model contains a simplified 

version of reality and its structure. Then the model is used 

to build a simulator, i.e., a device capable of executing the 

model’s instructions and generating the model’s behavior. 

Eventually, the M&S model can be formalized as a 

Mathematical Dynamic System in which the mathematical 

entity simulator is able to correctly execute the behavior 

described by the mathematical entity model.  

 

 

 

 

 

 

 

 

 

 

 

 

1.2 Introduction to DEVS  
Modeling techniques are classified according to the system 

dynamics based on discreteness and continuousness of the 

time and state event. DEVS was created for modeling and 

simulating of Discrete-Event Dynamic Systems (DEDS), 

thus, it defines a way to specify systems whose states 

change either upon the reception of an input event or due to 

the expiration of a time delay. 

1.2.1 Atomic and Coupled DEVS formalism 
Structure of DEVS model can be defined as a set of inputs, 

outputs, and internal states expressed in a language, such as 

the mathematical DEVS “Formalism”. And “What output is 

produced upon a given input?” explains Behavior of Model. 

DEVS can be described as a composition of atomic and 

coupled components. Atomic model formalism is specified 

as: 

M = >< taSYX ext ,,,,,, int λδδ  

Where: 

X: set of input values. 

S: set of states. 

Y: set of output values. 

δint: Internal transition function.  

δext : External transition function. 

λ: Output Function. 

ta : Time advance function 

In any given moment, a DEVS model is in a state Ss ∈ . In 

the absence of external events, it remains in that state for a 

lifetime defined by ta(s). When ta(s) expires, the model 

outputs the value λ(s) and then changes to a new state given 

by δint(s). A transition that occurs due to the consumption 

of time indicated by ta(s) is called an internal transition. On 

the other hand, an external transition occurs due to the 

reception of an external event. In this case, the external 

transition function determines the new state, given by 

δext(s, e, x) where s is the current state, e is the time 

elapsed since the last transition and Xx ∈  is the external 

event that has been received. The time advance function can 

take any real value between 0 and infinity. If ta(s) = ∞ then 

s is said to be a passive state, in which the system will 

remain perpetually unless an external event is received (a 

condition that can be used for termination of the 

simulation).In Figure 1.2 the DEVS formalism 

interpretation is illustrated. 

 

 

 

 

 

 

 

 
 

 

DEVS coupled model compose of number of above atomic 

model and its formalism is specified as:  

CM = < X, Y, D, {Mi}, {Ii}, {Zij}, select > 

Where: 

Mi is an atomic or coupled DEVS model as previously described. 

Ii is the set of influencers. 

Zij is the i to j translation function. 

D is the index for the components 

1.2.2 Cell DEVS formalism 
If the system under study organized as a grid of cells that 

geometrically distributed a well-known formalism named 

Figure 1. M&S System Structure 
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Figure 2. DEVS Model 



cellular automata (CA) [5] can be used to describe it. It 

consists of a regular n-dimensional lattice grid of cells, each 

in one of a finite number of states. It is a discrete model and 

Time is also discrete, and the state of a cell at time t is a 

function of the states of a finite number of cells (called its 

neighborhood) at time t − 1. Every cell has the same rule 

for updating, based on the values in this neighborhood. 

Each time the rules are applied to the whole grid a new 

generation is created. A formal definition of CA called 

Cell-DEVS formalism [6] was considered to allow the 

defining the cell spaces based on DEVS and CA models. 

Cell-DEVS can also be described as a composition of 

atomic and coupled components. Cell-DEVS atomic 

models can be described as in Figure 3. Each cell uses N 

inputs (from its neighborhood) to compute its next state. 

These inputs, which are received through the model's 

interface, activate a local computing function (τ ). A delay 

(d) can be associated with each cell. The state (s) changes 

can be transmitted to other models, but only after the 

consumption of this delay. 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
 

Two kinds of delays can be defined: transport delays model 

a variable commuting time, and inertial delays, which have 

preemptive semantics (scheduled events can be discarded if 

the computed value is different than the future state). 

 

The formal description of the Cell DEVS is as follows: 

Cell-DEVS Atomic Model: 
 

TDC= < X,Y,I, S,θ, N, d,τ,δint,δext,λ, D> 

Where: 

RX ⊂ is the set of input external events; 

RY ⊂ is the set of output external events; 

I  :is the model’s modular interface; 

S :is the set of possible states for a given cell; 

θ :is the definition of the cell’s state variables; 

N  :is the set of the input events; 

d  :is the delay of the cells; 

τ  :local computing function; 

δint  :is the internal transition function; 

δext  :is the external transition function; 

λ  :is the output function; 

D  :is the duration function; 

Cell-DEVS Coupled Model: 

GCC = < Xlist, Ylist, I, X, Y, η, {t1,...,tn}, N, C, B, Z, select > 

Where: 

Xlist, Ylist : are the list of input, output coupling 

η  :is the neighborhood size; 

N  :is the neighborhood ; 

C  :is the cell space set; 

B  :is the boarder cells set; 

Z  :is the transition function; 

Select  :is the tie-breaking selector function; 

There are several tools that are implemented based on the 

DEVS M&S theory. The CD++ tool [7] is one of them. The 

simulation engine tool is built as a class hierarchy of 

models in C++. Coupled and Cell-DEVS models are 

created using the language built in the engine. 

In CD++, Cell DEVS models are a special case of coupled 

models. Therefore, when defining a cellular model, all the 

coupled model parameters are available in addition to 

parameters used for cellular models. 

In this section a three-dimension structure of the heat 

diffusion model including the three components: a 3D space 

reproducing the behaviour of a room, and two generators 

(one source of heat and one source of cold) is described. A 

cell can be connected to heat generator, a cold generator or 

none. A cell's temperature is measured as the average of its 

neighborhood. It's possible to see the cell's temperature in 

each step. 

The temperature is calculated as the average of the 

temperature in the cell and its eight next near neighbors that 

is shown in Figure 4(a). Also, two generators (one source of 

heat and one source of cold) generates a flow of 

temperatures with uniform distribution are connected to two 

cells in the model as depicted in Figure 4(b). 

Room Cell-DEVS model is defined as 3D dimensional 

model including the grid size, kind of delay and border. It is 

composed by a 4X4X4. The heat-rule local computing 

function calculates the present value as an average between 

Figure 3. DEVS Informal Description of Cell-DEVS (transport) 



all the neighbouring cells. Two temperature value in the 

ranges of [24, 80] and [-45, 10] are set respectively, using a 

uniform probabilistic distribution (setHeat, setCold) and 

received through the In port of the cells (3,3,0), (2,2,1), 

(3,3,2) and (1,3,3).  
 

 

 

 

 

 

 

 

 

 

The model of heat diffusion is a Cell-DEVS Coupled model 

that has other DEVS Coupled model and atomic Cell-

DEVS model as its components. For the heat diffusion a 

implementation in CD++ is presented in Figure 5. The first 

part of the code represents the top level model that lists the 

components of the coupled model and also the internal links 

and external ‘in’ , ‘out’ ports (if any). The Heater and 

Cooler are two Coupled DEVS where the heater and cooler 

are connected via out@Heater and Out@Cooler 

respectively to the inputHeat and inputCold of the cell 

space external port. Then the in ports are connected to a 

specific port through portInTransition. The [room] symbol 

introduces the room sub-model that is a Cell-DEVS 

component of 4X4X4 dimension. For each of its cells we 

have a specific number of neighbour cells that are defined 

in the specification of the neighbours. A local computing 

function (τ ) and a delay (d) can be associated with each 

cell and express in the [heat-rule]. 

Upon start of the simulation, the heater/cold sources 

produce changes in the cells in each time step (or delay=d) 

define by 1000msec where they are connected. 

Consequently, the state of the neighbours of these cells will 

change in time as it shown in Figure 6. 

As one can see it contains 4 of 4X4 tables in a row that 

represent the heat 4X4X4 heat Cell-DEVS simulation 

results. It is primarily a draw file that is produced from 

LOG file in CD++. Each row shows the result of the local 

computing function after the delay time. Consequently the 

number of rows depends on the delay time and the duration 

of the simulation. 

[top] 

components:room Heater@Generator 
Cooler@Generator 
link : out@Heater inputHeat@room       
link : out@Cooler  inputCold@room 
 
[room] 
type : cell  
dim : (4, 4, 4) 
delay : transport         
defaultDelayTime: 100   
border:wrapped  
neighbors : room(-1,0,-1) room(0,-1,-1) 
room(0,0,-1) room(0,1,-1) 
... 
in : HeatInput ColdInput 
link : HeatInput in@room(3,3,0) 
link : HeatInput in@room(2,2,1) 
link : ColdInput in@room(3,3,2) 
link : ColdInput in@room(1,3,3) 
 
localtransition : heat-rule 
 
portInTransition : in@room(3,3,0) 
in@room(2,2,1) setHeat 
portInTransition : in@room(3,3,2) 
in@room(1,3,3) setCold 
 
[heat-rule] 
Rule: { ( (-1,0,-1)+(0,-1,-1)+(0,0,-
1)+(0,1,-1)+(1,0,-1)+(-1,-1,0)+(-
1,0,0)+(-1,1,0)+(0,-
1,0)+(0,0,0)+(0,1,0)+(1,-
1,0)+(1,0,0)+(1,1,0)+(-1,0,1)+(0,-
1,1)+(0,0,1)+(0,1,1)+(1,0,1)+(0,0,-2)+ 
(0,0,2)+(0,2,0)+(0,-2,0)+(2,0,0)+(-
2,0,0) ) / 25 } 1000 { t } 
 
[setHeat] 
rule: { uniform(24,80) } 1000 { t } 
 
[setCold] 
rule: { uniform(-45,10) } 1000 { t } 
 
[Heater] 
distribution: exponential     
mean : 10 
initial : 1 

 

[Cooler] 
distribution : exponential 
mean : 10 
initial : 1 
 

 

 

Figure 4. (a) Neighborhood shape (b) Coupling scheme 

Figure 5. Model of heat diffusion 



 

 

2. Conceptual Model 
Modelling the dynamics of vegetable ecosystem is an 

extremely challenging problem in which we have very 

complex system behaviour. It is an interdisciplinary 

research that involves computer science, biology, and 

ecosystem management.  

Traditional models for the vegetable ecosystem study are 

continuous and based on differential equations and usually 

model the evolution of the system with global parameters 

such as the total number of trees and their overall biomass 

[10][11]. In addition, most of the data needed to provide 

reliable parameters for these models are usually scarce and 

difficult to obtain. 

More recently, the cellular automata has been used in [8][9] 

to model and simulate the vegetable ecosystem, however 

just the evolution of a single species is studied in these 

models. Moreover some key parameters are missing in the 

study such as shape evolution in the growth process of the 

vegetable.  

In this report I proposed a comprehensive ecosystem 

analyses primarily inspired by the Bandini and Pavesi Work 

[12] and modified in [13]. Different rules of L-system 

apply to construct various types of vegetables (Patterns) 

and their growth model [14]. The model aims to evaluate 

the influences of the ecosystem on the vegetable existence, 

population, growth and shape in a single and consolidated 

model and simulator. 

Proposed comprehensive vegetable ecosystem modelling 

and simulation can be comprised of the following models as 

it shown in Figure 7; Model of the variety of vegetable 

shapes and patterns that is, of all the weeds, plants and trees 

in a given area, model of the horizontal and vertical growth 

as well as shape evolution of the vegetables, model of the 

vegetable existence and population and model of Growth, 

shape and population influenced by the resources available 

on the ecosystem of the vegetable (i.e. sunlight, water, 

weather and substances present in the soil) and the 

interactions among single individuals and their competition 

for the resources available on the ecosystem. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

In the proposed structure, a discrete model based on 3–

dimensional Cellular Automata has been used with different 

layers that allow to model and simulate the evolution of 

heterogeneous vegetable populations composed by different 

perennial species as in real woods and forests. Also a 2-

dimensional Cellular-DEVS model simulates the growth 

processes of tree development using in tree morphology. 

The resource block produce seeds and plant them in N-

dimensional Population & Growth evolution (Cell-DEVS) 

part. The sells containing the seed and ready to grow are 

mapped to the Plant shape &Growth (Cell-DEVS) part in 

order to demonstrate different shapes of the vegetables used 

in the ecosystem. 

3. Simulation Scheme Details 

3.1 Population & Growth evolution 
As indicated in the pervious section a Cell-DEVS model is 

used for representing the model. In this section the model 

used in the implementation details of each section are 

discussed and its implication on the model will be studied. 

Each cell in the cellular automata representing vegetable 

population dynamic simulation shows a square portion of 

model that contains some resources (i.e. water, light, 

nitrogen, and potassium) and can host a tree. 

The finite set of cell states values can be defined by Q as: 

Figure 6. Some of Simulation Execution Results 
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Figure 7. Conceptual Model Structural model 
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Where: 

R :the vector referring to the amount of resources in the cell 

M :maximum amount of each resource 

P :amount of each resource produced by the cell at each 

update step 

T :flag indicating whether a tree is present in the cell 

TZ : vector defining the size of the different parts of the tree 

TN :amount of each resource the tree takes from the cell 

G

TU :amount of each resource needed at each update step by 

tree to grow 

S

TU :amount of each resource needed at each update step by 

tree to survive 

TR
:amount of each resource stored by the tree at previous 

update steps 

 TM
:vector of threshold values for different parameters 

defining the tree, such as maximum size, maximum age, 

minimum age for reproduction, maximum number of seeds 

produced for each mass unity of fruits, and so on 

 TG
:vector defining the growth rate of each of the parts of 

the tree when enough resources are available. 

S :vector defining the number of seeds present in the cell for 

each of the species growing in the territory 

TA : vector defining the age of the tree in the cell 

The Cellular Automata for vegetable Ecosystems model is 

based on two–dimensional Cellular Automata, whose cells, 

arranged on a square grid, represent portions of a given 

area. Some resources are present on the area, divided 

among the cells. A cell can host a tree, represented in the 

model by a set of parameters defining its species, its size, 

and the amount of each resource it needs to survive, grow, 

and/or reproduce itself. Some of the parameters of Q can be 

future define as: 

 }1,1),({ MjNijiR ≤≤≤≤=  is a two-dimensional 

NXM lattice that defines the dimension of the area under 

study. 

IF we define H as the Moore neighborhood, 

f : QQQ
H

→×  is the state transition function and 

I : QR →  is the initialization function 

 

Now based on the [13] we define update rules as follow: 

The initial configuration of the CA can be defined by 

setting some trees or seeds of a specific type in several cells 

and appropriate resource parameters (or resources) for each 

cell. 

At the initial step three cases might happen first we have 

seeds, second already planed trees and third combination of 

both in the cells. 

In the least former case, at each update step the seed(s) 

present(s) in the cell start to grow if enough resources are 

available, otherwise the tree dies and seed disposed. In the 

second case the already grown trees are planted in each cell 

(if any) takes the resources it needs from the cell itself and 

uses them to survive, grow (if enough resources are 

available), and produce seeds(if it has reached minimum 

age for reproduction and enough resources are available). A 

cell can host more than one type of the seed and several 

seeds that define with the S vector in the model. However 

the seed do not sprout in a cell unless the cell is free 

without a tree then the seed with more number of seed 

defines the type of tree to grow. If a tree is present in cell C 

(i, j) [C (i, j) is the cell located at position (i, j) in the model 

lattice], TA vector defining the age of the tree in the cell 

indicating the already grown tree age. 

It is worth noticing that there is a limit for the resources 

allowed to be in each individual cell. Also the trees can 

reach a certain age and height and can not over grow. 

To implement the initiation part we consider an             

8X8X   space in which the model under study is presented 

by 8X8 plate and     represent various parameters layers 

used in the simulation. The Figure 8(a) indicates the cell 

space used for the model, and 8(b) plate parameters. 
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The initial value for the whole model space cells is “0” that 

means the presences of the seed in the initial stage. In the 

other words, it implies the zero in the age matrix whose age 

is zero. It is worth noticing that unless the type of the 

vegetable assigns in the correspondent cell in other plate, 

the zero has no meaning the program logic. 

As indicated above a specific plate is designated to assign 

the type of vegetable for the model at is input to the 

simulation at the beginning. Basically these two plates are 

responsible for the initial stage of the program. 

The initial values for the model can be apply at the 

beginning and further values can be apply during simulation 

by the “generateSource@Generator” using  

“link : out@generateSource inputSource@plant”. 

Upon start of the simulation at each update step of the 

simulation, the tree present in each cell (If a tree is present 

in cell ),( jiC ) starts the growth evolution and takes the 

resources (defined by ),( jiNT  of each available 

resource ),( jiR ) it needs from the cell that already assign 

in the initial stage and consumes them to survive, grow (if 

enough resources are available), and produce seeds. The 

amount of resources taken depends on the size of the 

tree ),( jiZT  . If enough resources (those taken at this step, 

plus the resources stored at previous steps), are available, as 

defined by vector
G

TU , the tree grows. Otherwise, the 

resources might be just sufficient for the tree to survive (as 

defined by vector
S

TU ).In both cases, the tree “burns” an 

amount of each resource, as defined by vector 

),( jiU G

T or ),( jiU S

T .If none of above cases occurs, the 

overall amount (stored plus collected) of at least one 

resource is under the “survival threshold” of the tree, the 

plant dies. The tree also dies when it reaches its maximum 

age defined in vector ),( jiMT . 

In this model, the resources are balanced among 

neighboring cells in each step. It means the remaining 

resources re-distributed among the cell and its neighbours. 

The 9 neighbours (Moore model) are listed below: 
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Now if we consider ),( jiR′ the amount of each cell after 

the simulation step and ),( jiR before that we have: 

2

8

)1,1()1,1()1,1()1,1()1,(),1()1,(),1(
),(

),(

+−+−−+−+++++−+−++++
+

=′

jirjirjirjirjirjirjirjir
jir

jir

 

In other words, we can see each cell as divided in eight 

parts, each one containing the amount 
8/),( jir

 of 

resource h , and corresponding to one of the neighbours. 

The amount of resource h contained in each part is balanced 

with the corresponding part of the neighbours.  

We have to consider in above equation ),( jir′  cannot 

exceed the corresponding maximum value defined for the 

cell ( ),( jiM ).In this case, we set ),(),( jirjiM ′= . 

We have two cases to consider: a tree is present in the cell, 

or the cell is empty. In the former case, 

The reproduction of a tree may happen (production of some 

seeds) if it is old enough. Then the model updates the 

corresponding variable in the seed vector ),( jiS .The new 

trees cannot sprout from the seeds contained in the cell if a 

tree is already present. Instead, when the cell is vacant and 

 

TA
]}8,0[],8,0[)0,,({ ∈∈ lklk

Age Matrix 
1st plate 

2nd plate 

Plant Type Matrix 

]}8,0[],8,0[)2,,({ ∈∈ lklk

]}8,0[],8,0[)3,,({ ∈∈ lklk

]}8,0[],8,0[)8,,({ ∈∈ lklk

]}8,0[],8,0[)4,,({ ∈∈ lklk

]}8,0[],8,0[)5,,({ ∈∈ lklk

]}8,0[],8,0[)6,,({ ∈∈ lklk

]}8,0[],8,0[)7,,({ ∈∈ lklk

Seed# Type 1 Matrix 

Seed# Type 2 Matrix 

Seed# Type 3 Matrix 

Resource Type 1 Matrix 

Resource Type 2 Matrix 

Resource Type 3 Matrix 

]}8,0[],8,0[)1,,({ ∈∈ lklk
Height Matrix 

9th plate 

3rd plate 

4th plate 

5th plate 

6th plate 

7th plate 

8th plate 

Figure 8. (a)Cell-DEVS Model Shape (b) Parameters 

in ni layer 

in

(b) 



contains some seeds. If the resources present in the cell are 

sufficient a new tree is born. 

If seeds from different species are present in the cell, the 

seed type with higher number has more probability number 

and can be chosen. 

3.2 Plant shape & Growth 
Another component of the system is Plant shape simulation. 

I proposed to use a Cellular-DEVS model to implement a 

model and simulate the growth processes of tree 

development using in tree morphology. The aim of this 

simulation is to demonstrate the growth toward sunlight and 

also using Cell DEVS simulation. 

In my proposed model as soon as the seed will be planted 

into a cell the tree starts seedling and the trunk comes out of 

the earth and growth towards the light that is above the 

seed.To simulate the tree growth I exploit Lindenmayer 

system that is a formal grammar (a set of rules and symbols) 

most famously used to model the growth processes of plant 

development. 

Lindenmayer systems, or L-systems for short, are a 

particular type of symbolic dynamical system with the 

added feature of a geometrical interpretation of the 

evolution of the system. They were invented in 1968 by 

Aristid Lindenmayer to model biological growth. 

Formal description of L-System is a tuple G = < V, w, P > 

consisting of: 

V : an alphabet is a set of symbols containing elements that 

can be replaced (variables) 

w : a non-empty starting word (or axiom) defining the 

initial state of the system 

P : is a set of production rules or productions defining the 

way variables can be replaced with combinations of 

constants and other variables.  

Depending on the context, letters of the alphabet could 

represent cells or modules, e.g., V= {Seed, Trunk, Branch} 

w = Seed 

P = rules of tree growth 

Now we exploit the L-system for modeling and 

visualization of the growth of a tree as below in the Cell 

DEVS model: 

Variables: X F 

Constants: + − 

Start: X 

Rules: (X → F[+F]F[-F]F) , (F → FF) 

Angle: 45° 

Here, F means "draw forward", - means "turn left 45º", and 

+ means "turn right 45º". X does not correspond to any 

drawing action and is used to control the evolution of the 

curve. [Corresponds to saving the current values for 

position and angle, which are restored when the 

corresponding ] is executed. In fact, Square brackets, are 

defined that mark the beginning and end of a branch. 

4. Implementation Details 
This part aims to explain thoroughly the details of the 

implementation of our Coupled Cell-DEVS system based 

on the scheme described in the pervious section. 

First we introduce the formal Couple Cell-DEVS model of 

our implementation, then the top level of the system and the 

relations between components. At the end each individual 

block of the system is discussed. 

4.1 Formal Description 
This section presents the formal specification of each of the 

Cell-DEVS models: 

For the shape, Cell-DEVS model the formal description is 

as follow: 

GCTD = < X, Y, Xlist, Ylist, I, η, N, {i, j, k}, C, B, Z, select >  

where for #Τ < ∞  ∧  T ∈{N, Z, R, {0,1}  } ∪ {φ} 

� X ⊆ T is the set of external input events; T = {seed} 

� Y ⊆ T is the set of external output events; T = {growth} 

� Ylist = { (i, j, k,) / i ∈ [0,m], j ∈ [0,n], k ∈ [0,o]} is the list of 

output coupling. Where the i, j, k represent the index values 

of the cells (that couple with its neighbors) which are bound 

by m, n, o dimension. 

� Xlist = { (i, j, k,) / i ∈ [0,m], j ∈ [0,n], k ∈ [0,o]} is the list 

of input coupling. Where the i, j, k represent the index values 

of the cells (that couple with its neighbors) which are bound 

by m, n, o dimension. 

� I = < Px, Py, Pz > represents the definition of the modular 

model interface. Here, 

� for i = X | Y|Z, Pi is a port definition (input or output 

respectively). For example, the resource exchanges and the 

confirmation of rules will be established by communication 

through these ports (which enable identification of the values 

of resources in the cell). 

� η = 9 and the neighbor list set is given as follows:  

N = {(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1)} 

 

These illustrated scenarios show the neighborhood list for the 

immediate neighbors in the same plane (nine of them) and their 

inverse list. The same applies for the other neighbors. 

� C = {Cijk / i ∈ [0,19], j ∈ [0,30]} 

� B = {∅} if the cell space is wrapped; or 

� Z is the translation function, which determines the dynamics 

of the vegetable population (refer to the rules section). 

 



And for the Population model the Coupled Cell-DEVS can 

be defined as the following 

GCTD = < X, Y, Xlist, Ylist, I, η, N, {i, j, k}, C, B, Z, select >  

where for #Τ < ∞  ∧  T ∈{N, Z, R, {0,1}  } ∪ {φ} 

 

� X ⊆ T is the set of external input events; T = {water, 

minerals, sunlight} 

� Y ⊆ T is the set of external output events; T = {growth} 

� Ylist = { (i, j, k,) / i ∈ [0,m], j ∈ [0,n], k ∈ [0,o]} is the list of 

output coupling. Where the i, j, k represent the index values 

of the cells (that couple with its neighbors) which are bound 

by m, n, o dimension. 

� Xlist = { (i, j, k,) / i ∈ [0,m], j ∈ [0,n], k ∈ [0,o]} is the list 

of input coupling. Where the i, j, k represent the index values 

of the cells (that couple with its neighbors) which are bound 

by m, n, o dimension. 

� I = < Px, Py, Pz > represents the definition of the modular 

model interface. Here, 

� for i = X | Y|Z, Pi is a port definition (input or output 

respectively). For example, the resource exchanges and the 

confirmation of rules will be established by communication 

through these ports (which enable identification of the values 

of resources in the cell). 

� η = 61 and the neighbor list set is given as follows:  

N = {(-1,-1,0) , (-1,0,0), (-1,1,0), (0,-1,0), (0,0,0), (0,1,0) , (1,-

1,0), (1,0,0), (1,1,0), (-1,-1,1) , (-1,0,1), (-1,1,1), (0,-1,1), (0,0,1), 

(0,1,1) , (1,-1,1), (1,0,1), (1,1,1), (-1,-1,2) , (-1,0,2), (-1,1,2), (0,-

1,2), (0,0,2), (0,1,2) , (1,-1,2), (1,0,2), (1,1,2),(-1,-1,3) , (-1,0,3), 

(-1,1,3),(0,-1,3), (0,0,3), (0,1,3), (1,-1,3),(1,0,3), (1,1,3), (-1,-1,-2) 

(-1,0,-2), (-1,1,-2), (0,-1,-2), (0,0,-2), (0,1,-2) , (1,-1,-2), (1,0,-2), 

(1,1,-2), (0,0,-1), (0,0,-2), (0,0,-3), (0,0,-4), (0,0,-5), (0,0,-6),(0,0,-

7),(0,0,-8),(0,0,1),(0,0,2),(0,0,3),(0,0,4),(0,0,5), (0,0,6), (0,0,7), 

(0,0,8)} 

 

Now,   The corresponding inverse neighborhood would be, 
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These illustrated scenarios show the neighborhood list for the 

immediate neighbors in the same plane (nine of them) and their 

inverse list. The same applies for the other neighbors. 

 

� C = {Cijk / i ∈ [0,7], j ∈ [0,7], k ∈ [0,8]} 

� B = {∅} if the cell space is wrapped; or 

� Z is the translation function, which determines the dynamics 

of the vegetable population (refer to the rules section). 

4.2 Coupled Cell-DEVS implementation 
Figure  9 demonstrate the behaviour of the proposed Cell-

DEVS Coupled model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The file “ecosystem.ma” defines our Coupled Cell-DEVS 

model that includes the components and the relationship 

between them. 

As you may notice in Figure 9 and code description below 

the ‘[top]’describes the components and the relations among 

them. In total there are 6 components that 2 of them defines 

the population evolution and plants tree named ‘[plant]’ and 

‘[shape]’ respectively. These model are Cell-DEVS that 

connected to sources output ports: 

out@generateReSource1, out@generateReSource2, 

out@generateReSource3 and out@generateSeed via 

input ports: inputReSource1, inputReSource2, 

inputReSource3 and  inputSeed 

 

[top] 
components : shape plant 
generateSeed@Generator  
components : generateReSource1@Generator 
generateReSource2@Generator 
generateReSource3@Generator 
link : out@generateSeed inputSeed@shape 
link : out@generateReSource1 
inputReSource1@plant 
link : out@generateReSource2 
inputReSource2@plant 
link : out@generateReSource3 
inputReSource3@plant 

 

 

generateReSource3 

generateReSource2 

generateSeed 

generateReSource1 

Plant 

(Cell-DEVS) 

8X8X9 

Shape 
(Cell-DEVS) 

20X30 

Out 

Out 

Out 

Out 

inputSeed 

inputReSource1 

inputReSource2 

inputReSource3 

in@shape(18,14) 

in@shape(18,14) 

in@plant(2,7,6) 

in@plant(6,7,7) 

in@plant(4,7,8) 

top 

Figure 9. Coupled Cell-DEVS Behavioral model 



After definition of the top model we define our components 

as describe and implemented in “ecosystem.ma”.  

In this section the details of each model is describe and the 

rules and parameters that are used in the model to produce 

the simulation results are discussed. Also Comments are 

provided throughout of the source code to describe various 

parts functionality. 

4.2.1 Population & Growth model Implementation 
As described in pervious section we use an 8X8X9 space 

dimension to represent the population model ([plant]). the 

population component of the model comprised of 9 plane 

presenting different parameters as shown in Figure 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To make use of this planes I defined 12 different zones and 

61 neighbours as shown in the code below in which the 

zone name represent the rule for that particular parameter; 

 

zone : sunamount { (0,0,6)..(7,6,6) } 
zone : mineralamount {(0,0,7)..(7,6,7) } 
zone : wateramount { (0,0,8)..(7,6,8) } 
 
zone : addsun { (0,7,6)..(7,7,6) } 
zone : addmineral { (0,7,7)..(7,7,7) } 
zone : addwater { (0,7,8)..(7,7,8) } 
 
zone : plantage { (0,0,0)..(7,7,0) } 
zone : plantheight { (0,0,1)..(7,7,1) } 
zone : planttypeproduce{(0,0,2)..(7,7,2) 
} 
zone : graseed { (0,0,3)..(7,7,3) } 
zone : oakseed { (0,0,4)..(7,7,4) } 
zone : mapleseed { (0,0,5)..(7,7,5) } 

The planes dynamically interact with each other and pass 

the values and compare their parameters and conditions to 

output results of the simulation. In this part of the report, 

the set of rules and parameters used in the model population 

simulation are introduced as follows: 

4.2.1.1 [Planttypeproduce] 
The Third plate((0,0,2) to (7,7,2)) is designed to represent 

the vegetable type, I assign three different values for three 

different type of vegetable as grass=1, Oak=2 and Maple=3. 

When the enough resources are available in a cell, The 

plants start to reproduce seed and spread them to adjunct 

cells when they reach certain age to produce the fruit. The 

age for grass is 2 for oak it is 5 and for maple 7.The enough 

resources 

It is important to notice that this plate simulates the 

reproduction of the seeds and the type seed with the higher 

value (number of seed) in a cell defines the type of the plant 

in that cell ready to grow in case of tree absence in that cell. 

It shows the competition among the seeds to grow in a cell. 

In the case that we get equal number of seeds, a priority 

scheme are implemented in the model that gives grass 

higher priority than oak and maple and superior priority to 

oak over maple. 

4.2.1.2 [Plantage] 
This occupies the cells from (0,0,0) to (7,7,0) and 

responsible for determining the age of the plant. Each 

simulation step increases the plants age equally by one unit. 

The aging process does not affected by the resources 

however the plant will die if they reach their maximum age 

and the resources are not adequate to survive. The 

maximum age is defined as one of the parameters of 

TM discussed in section 3.1; 

Maximum age = {Grass=4, Oak=55, Maple=60} 

This rule also presents dying process which reflected in 

Planttypeproduce, Plantheight and itself with presenting 

zero value when the plant dies. 

4.2.1.3 [Plantheight] 
Unlike the age, the speed of plant height growth is different 

with respect to the plant type. Plant height is model in the 

system where different values are given to different plants 

to show the different rate of tree height growth. We assume 

for each year 1cm is added to the grass height, 20 cm to oak 

and 25cm to maple height. The height growth is not infinite 

and when the plant reaches certain height stop and dies. 

This parameter is also defines in TM Where 

Maximum height = {Grass=5cm, Oak=20m, Maple=25m} 

Age 

Plant Type 

(1=Grass, 

 2=Oak, 

3=Maple) 

Grass Seed Number 

Oak Seed Number 

Maple Seed Number 

Resource Sunlight 

Resource Minerals Resource Water 

Height (CM) 

9th plate 

8th plate 

7th plate 

6th plate 

TA

1st plate 

2nd plate 

3rd plate 

4th plate 

5th plate S {

TZ

T

R}

Figure 10. Planes for the Parameters of the 

population model 



The height of the tree is affected by environment 

(resources) where the resource shortage slows the height 

grows in my propose model. 

4.2.1.4 [graseed] [oakseed] [mapleseed] 
Three unique plates are assigning to present the number of 

the seed ( S  vector in the 3.1 section) in for our plants. This 

plate’s parameters are used for the reproduction process 

explained in planttypeproduce reproduction process. The 

rule starts to add the value for incrementally for each year 

after the plant reaches productivity age as defines in 4.2.1.1  

4.2.1.5 [sunamount][ mineralamount] 

[wateramount] 
Each plant requires resources such as sunlight, minerals and 

water to grow or survive or reproduce. The initial resources 

values are applied as an input file (plant.val) to the system 

through the
th7 ,

th8 and 
th9 plates. Also a zone describe 

later to constantly supply resources to our model to carry on 

the simulation execution. 

Based on the distribution formula discussed in section 3.1 

the amount of resources is calculated by subtraction of the 

resource of the current cell and the plant use to grow. Then 

the new remaining resource redistribute to the cell and 

adjacent cells. 

As an example, The rules to subtract the resources from 

current cell resource value and the way the sun light 

resource value redistribution for the plant type grass is 

shown in this part of the code as below: 

%sun amount is calculated by subtraction 
of sun light resource of the current 
cell and the grass use to grow (2 
calories) 
%new sun light resource (remaining) 
redistribution to the cell and adjacent 
cells 
rule : { ((0,0,0) - 2) + ((-
1,1,0)+(0,1,0)+(1,1,0)+(-
1,0,0)+(0,0,0)+(1,0,0)+(-1,-1,0)+(0,-
1,0)+(1,-1,0))/9 } 1000 { (0,0,0) >= 2 
and (0,0,-4) = 1 and (0,0,1) >= 7 and 
(0,0,2) >= 4 } 
 
%sun amount is calculated by subtraction 
of sun light resource of the current 
cell and the grass use to survive(1 
calories) 
%new sun light resource(remaining) 
redistribution to the cell and adjacent 
cells 
rule : { ((0,0,0) - 1) + ((-
1,1,0)+(0,1,0)+(1,1,0)+(-
1,0,0)+(0,0,0)+(1,0,0)+(-1,-1,0)+(0,-
1,0)+(1,-1,0))/9 } 1000 { (0,0,0) >= 1 

and (0,0,0) < 2 and (0,0,-4) = 1 and 
(0,0,1) >= 6 and (0,0,1) < 7 and (0,0,2) 
>= 2 and (0,0,2) < 4 } 
 

As one may notice there are two separate set of rules for a 

particular plant type that determined by the vectors 
S

TU  

and 
G

TU .These two vectors define amount of each resource 

needed at each update step by tree to survive and grow 

respectively. The values for this vector for different 

resources (Sunlight, Minerals, and Water) for the plant 

types in our model are given in table below: 
  

 Sunlight 

(Calorie) 

Minerals 

(Gram) 

Water 

(Liter) 

grass

S

TU  1 6 2 

grass

G

TU  2 7 4 

oak

S

TU  2 8 6 

oak

G

TU  3 10 7 

maple

S

TU  2 8 5 

maple

G

TU  3 10 6 

 

According to the values above, in the first rule if the 

available sun light resource (plate
th7 ) within the cell is 

equal or greater than 2 calories and mineral amount 

(plate
th8 ) is equal or more than 7 grams and also water 

amount (plate
th9 ) is equal or greater than 4 then grass will 

be able to grow where subtract the sun light amount 

required for grow (2 calories) from its current value and 

add it to neighbours average. In fact by doing this for every 

cell we redistribute it to the cells and adjacent cells in our 

model. 

In case that the resource amounts are less than threshold to 

grow the second rule will be applied. If the sun light 

amount value is equal or greater than 1 calories (sun light 

threshold required for the grass to survive) but less than 2 

calories (sun light threshold required for the grass to grow) 

will be able to grow then grass will be able to survive and 

not to die where subtract the sun light amount required to 

survive (1 calories) from its current value and add it to 

neighbours average. In fact by doing this for every cell we 

redistribute it to the cells and adjacent cells in our model. 

Also this condition must be true for mineral and water. 

Resource 

Vector 



4.2.1.6 [addsun][addmineral] [addwater] 
In real situation in a vegetable ecosystem the resources are 

supplied to the environment from outside in order for the 

vegetable to survive, grow and produce. 

Likewise the real world our simulation also needs the 

continuous supply of the resources from outside to carry on 

the simulation and produce the results. 

To model this system behaviour I defined three separate 

add resource zone and their correspondent rules named 

[addsun], [addmineral], and [addwater] in which constant 

value is added to the current value of the cells and subtract 

the value for grow and redistribute among the neighbours 

again. In addition some values are added to some specific 

cells (not region) via: 

portInTransition : in@plant(2,7,6)  
setReSource1 
portInTransition : in@plant(6,7,7)  
setReSource2 
portInTransition : in@plant(4,7,8)  
setReSource3 

This rule allows supplying values to some desirable cells 

anywhere in the source plate in more manageable fashion. 

Finally if no tree exists or not enough resource available the 

extra resources add to the addsun zone or add via the input 

port to a cell. Then the resources simply redistribute into 

adjacent cells. 

 

4.2.2 Shape  model Implementation 
The propose model has cell-space size of 20X30 consist of 

two Zone:  

1) zone : trunk-rule { (15,14)..(18,14) } 

2) zone : branch-rule { (1,2)..(14,27) } 

The Seed represented by "1" state that is located in the 

trunk-rule zone by using the following code that insert a “1” 

value as a seed into cell shape (18, 14) 

 

portInTransition : in@shape(18,14)  

setseed 

[setseed] 
rule : { 1 } 100 {portValue(thisPort)=2} 
rule : {(0,0)} 100 {t} 

 

Upon start of the simulation the trunk start to grow “2" with 

applied trunk-rules within truck-rules zone as below: 

rule : { 2 } 100 { (0,0)=0 and (1,0)=1 } 

rule : { 2 } 100 { (0,0)=0 and (1,0)=2 } 

rule : {(0,0)} 100 {t} 

The trunk growth and reaches the border of branch-rules 

zone then the model start executing the branch rules within 

branch-rules zone. The model makes use of macros located 

in tree1.inc to define the location of the seed and also the 

location of the branches by using macros. By inputting the 

location of the inserted seed (18, 14) we can calculate the 

branch1 and branch2 sprout location using the propose 

formula for the simulation as below: 

 

#macro(XseedPos) =  18 

#macro(YseedPos) =  14 

#macro(branch1) = [#macro(YseedPos)-
β

]- 

[#macro(XseedPos)- α ] 

Where  
βα ,

 is the distance for first branch division with 

respect to seed 

 #macro(branch1) = [14-1]- [18- 8] = 3 

& 

#macro(branch2) = [#macro(YseedPos)+δ ]- [20-

(#macro(XseedPos)- λ )] 

Where  δλ,  is the distance from second branch division with 

respect to seed 

#macro(branch2) = [14+1]- [20-(18- 12)]=1 

 

And replace them in the shape.inc file and run the 

simulation. From the above we can see that by applying my 

proposed rules the simulator draw the same pattern for tree 

type growth independent from seed location (shape2.ma). 

We also demonstrate the evolution of plant branch from 

bud to branch and branch to old branch by different values 

in different parts (shape3.ma) 

 

5. Test and Model behavioral analysis 
The purpose of this section is to define several test case 

scenarios in order to first verify the simulation behaviour as 

it expected and secondly observe and analyze different  

results obtain from simulation outcome. 

Initially the “plant.val”or “plant2.val” is applied to the 

Coupled Cell-DEVS model applied where it supplies the 

plant Cell-DEVS component. It includes input data to initial 

the 3
rd

 plane (plant type) and the three resource plates. 

To demonstrate the model behaviour, I drew log different 

plates of the plant Cell-DEVS separately to study individual 

parameter behaviour or in groups to observe the parameters 

interaction and their relationship with respect to each other. 

The “.drw” files then apply to the CD++ modeller to 

animate the Cell-DEVS simulation with the appropriate 

plate file. Since my model is a 3-D having 9 different slice 

or plate I created one drw file for each parameter with the 

parameter name as a suffix append to “drw” file name. In 

addition, a palette file is created for the better value 

visualization. 

Some case instances are introduced in this section as 

follows: 



Figure 11 shows the third plate in our Cell-DEVS model 

that defines the plant seed type. The top part of the figure 

shows the initial type of plant that are assume in plant.val.  

  

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 11 we can see the age and height evolution of  

 

 

 

 

 

 

 

In this plate the number represent the seed type that wins 

competition from other type of the seed since there might 

be more than one seed from each type, present in a given 

cell at any time. Therefore the seed with higher number 

survives and stays in that cell till the cell become empty (or 

if it is empty) then it starts to grow. 

As one can observe the top section of the picture presents 

the second simulation step in which the grass is ready (>2 

years old) to reproduce new seeds and spread to adjacent 

cells as it is the case in the lower part of the picture. 

The seed type=3 will be discarded (3 inside the red circle in 

the time = 2:000) and replace by one since it will lose the 

competition to the seed type=1 where type one has grater 

priority in equal number of seed situation. 

Another observation is the seed type 2 at time=2:000, 

below one in red circle that is disappear in the time=3:000 

that causes by the shortage of resources for seed 

survivability (the cell available water resource =5.63 

threshold =6 that is less than the survive amount for the 

seed in this case).Also this figure shows that the seed of the 

grass is spread fast and cover the whole area since the grass 

reaches productivity age faster than oak or maple and has 

priority advantage when it comes to the choice for the plant 

in a cell to grow with multiple seeds type and equal seed 

number.  

   

The other validate observation is shown in Figure 12 

 

 
 

 

These two columns demonstrate the tree age and height 

evolution throughout the growth time.  

Here, the second columns represent the height grow that is 

0.01 meter for each year for the plant type=1. Having said 

that, inside the red circle at the second column of the figure 

inconsistency in the plant height grows exists where the 

height shows growth from 05.005.004.0 →→ instead 

of expected 06.005.004.0 →→ . 

The reason for that is the shortage of resources that affects 

the growth of the height in the grass. 

Yet another event to watch is the dying processes of the 

plant that when reaches either its maximum ages or height 

grow it will dies. As shown with green circles in figure 12. 

Furthermore in this section some shape examples is 

presented to show the dependence of the tree shape from its 

seed location in the shape Cell-DEVS in shape1.drw and 

shape2.drw that is the feathers of the L_system in drawing 

various shapes of the plants. I also represent the different 

tree parts in shape3.draw to represent various parts of the 

tree and its evolution from bud to branch and branch to old 

branch respectively. 

The Figure 13 demonstrates the 3 different shapes for the 

shape Cell-DEVS model that is use for this model. The two 

top figures shows different position for the seed insertion in 

soil and the below one is for showing different part of a tree 

(trunks-old branch-branch). 

 

Figure 12. The age and height grow in the first 3 steps 

Figure 11. The Plant seed type plate 

Line : 10349 - Time: 00:00:03:000 

Line : 7229 - Time: 00:00:02:000 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion  
In This project I demonstrate a complete ecosystem 

environment in which the components interact with each 

other in a Coupled Cell-DEVS specification to model and 

simulate the vegetable population and shape with respect to 

the resources available and the competition for the 

resources in the environment.  

I Presented ‘Introduction to modelling a simulation’ in 

chapter one and a background to DEVS models  including 

atomic, coupled and Coupled Cell-DEVS in the next 

chapter along with the example of DEVS model 

implementation in CD++. Next chapter I described the 

conceptual model of my proposed system and explanation 

of the system logic and rules base on the papers that define 

the vegetable ecosystem environment. Then, I introduced 

the formal Cell-DEVS description of the population model 

and shape in chapter 4 and explained the implementation of 

my project. 

The core of my project implementation exploits different 

slices or plates for the model parameters that interact with 

each other to simulate the dynamics of the system.  

 

The model tested and debugged successfully in CD++ and 

some test verifications are presented to demonstrate the 

system functionality and the simulation result we expected 

based on the vegetable ecosystem behaviour in real world.  

 

7. Future Direction 
This model can be further improved by inclusion of more 

complicated ecosystem parameters and advance plants 

shapes.  

Moreover the system can introduce animal species and their 

interactivity with the system in a global aspect. 

Some of the algorithms and rules primarily introduced in 

the main paper by Bandini at el can be redefine and 

improve to draw more realistic picture of reality for the 

ecosystem environment. 
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