
Advanced Cell-DEVS Model to Demonstrate Vegetable

Ecosystem

Babak Simaie

The Ottawa-Carleton Institute for
Electrical and Computer engineering

bsimaie@connect.carleon.ca

ABSTRACT

Discrete EVent Systems Specification (DEVS) is an object-

oriented computational environment based on DEVS

formalism and has been used in modeling and simulation of

various real world systems. In this paper report, I

proposed modeling and simulation of the vegetable

ecosystem environment based on the Cell-DEVS

specification using CD++ toolkit. The propose system is

based on coupled Cell-DEVS model described as a

composition of atomic and coupled components. The model

is implemented thoroughly debugged and tested and the

results are presented.

Keywords

DEVS formalism, Atomic and Coupled DEVS, Coupled

Cell-DEVS, CD++

1. INTRODUCTION
Traditionally, the formal modelling, or modeling, of

systems has been via a mathematical model, while computer

simulations might use some algorithms from purely

mathematical models, computers can combine simulations

with reality of actual events, such as generating input

responses, to simulate test subjects who are no longer

present. In other words, a computer modeling and

simulation is a computer program, or network of computers,

that attempts to model and simulate an abstract model of a

particular system. Computer simulations have become a

useful part of mathematical modelling of many natural

systems in physics (computational physics), chemistry and

biology.

In a simulation modeling of a system the events occurrence

(or trigger) and their duration (time) is defines the type of

the system simulation that is either continues or discrete i.e.

this report make use of a discrete event simulation (DES) or

DEVS formalism that manages events in time. Most

computer, logic-test and fault-tree simulations are of this

type. In this type of simulation, the simulator maintains a

queue of events sorted by the simulated time they should

occur. The simulator reads the queue and triggers new

events as each event is processed.

More specifically a special type of DEVS called Cell-

DEVS simulation that is based on the Cellular Automata

used in our system.

The system aim to model and simulate a comprehensive

vegetable ecosystem using Coupled Cell-DEVS simulation.

We begin in Section 1 with a background overview of

DEVS simulation and formalism and CD++ toolkit. In

section 2 the components of the system are described and a

overall conceptual description of the system given. Section

3 is designed to explain simulation scheme details used in

population & growth evolution and Plant shape & growth

models. Section 4 offers a formal Cell-DEVS description

and elaborates on the simulation implementation and the

relations between components and the complete set of rules

used in our model. Section 5 illustrates the results of the

simulation and some test cases and compare the result and

test analysis of the system. Finally in section 6 and 7 the

conclusion and future direction are discussed. Some test

patterns and compare the result

1.1 Background to DEVS M&S
Modeling techniques for discrete-event systems only

appeared recently and simulation of these applications was

related to the creation of the computer and rapid

development in the field of computing. Modeling

techniques with a solid mathematical background are more

recent; where the first Discrete-Event M&S approaches

were tightly coupled to the computer hardware and (formal)

languages.

DEVS Modeling and Simulation [4] theory is one of the

new techniques, which was based on Systems Theory

concepts [1][2][3]. In DEVS theory, a real system is seen as

a source of behavioral data for the study within a given

experimental frame (EF) as depicted in Figure 1. In this

model, experiment frame is a set of components under

observation with a given condition. It contains the source

system under study and its behavior data. The model or

abstract representation of the system is created exploiting

the data from EF. In fact, the model contains a simplified

version of reality and its structure. Then the model is used

to build a simulator, i.e., a device capable of executing the

model’s instructions and generating the model’s behavior.

Eventually, the M&S model can be formalized as a

Mathematical Dynamic System in which the mathematical

entity simulator is able to correctly execute the behavior

described by the mathematical entity model.

1.2 Introduction to DEVS
Modeling techniques are classified according to the system

dynamics based on discreteness and continuousness of the

time and state event. DEVS was created for modeling and

simulating of Discrete-Event Dynamic Systems (DEDS),

thus, it defines a way to specify systems whose states

change either upon the reception of an input event or due to

the expiration of a time delay.

1.2.1 Atomic and Coupled DEVS formalism
Structure of DEVS model can be defined as a set of inputs,

outputs, and internal states expressed in a language, such as

the mathematical DEVS “Formalism”. And “What output is

produced upon a given input?” explains Behavior of Model.

DEVS can be described as a composition of atomic and

coupled components. Atomic model formalism is specified

as:

M = >< taSYX ext ,,,,,, int λδδ

Where:

X: set of input values.

S: set of states.

Y: set of output values.

δint: Internal transition function.

δext : External transition function.

λ: Output Function.

ta : Time advance function

In any given moment, a DEVS model is in a state Ss ∈ . In

the absence of external events, it remains in that state for a

lifetime defined by ta(s). When ta(s) expires, the model

outputs the value λ(s) and then changes to a new state given

by δint(s). A transition that occurs due to the consumption

of time indicated by ta(s) is called an internal transition. On

the other hand, an external transition occurs due to the

reception of an external event. In this case, the external

transition function determines the new state, given by

δext(s, e, x) where s is the current state, e is the time

elapsed since the last transition and Xx ∈ is the external

event that has been received. The time advance function can

take any real value between 0 and infinity. If ta(s) = ∞ then

s is said to be a passive state, in which the system will

remain perpetually unless an external event is received (a

condition that can be used for termination of the

simulation).In Figure 1.2 the DEVS formalism

interpretation is illustrated.

DEVS coupled model compose of number of above atomic

model and its formalism is specified as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij}, select >

Where:

Mi is an atomic or coupled DEVS model as previously described.

Ii is the set of influencers.

Zij is the i to j translation function.

D is the index for the components

1.2.2 Cell DEVS formalism
If the system under study organized as a grid of cells that

geometrically distributed a well-known formalism named

Figure 1. M&S System Structure

Simulator Model

Source

system

Experimental Frame

Behavior

Database

X

S’ = δext(s,e,x)

Y

S’= δint S
ta(s)

Figure 2. DEVS Model

cellular automata (CA) [5] can be used to describe it. It

consists of a regular n-dimensional lattice grid of cells, each

in one of a finite number of states. It is a discrete model and

Time is also discrete, and the state of a cell at time t is a

function of the states of a finite number of cells (called its

neighborhood) at time t − 1. Every cell has the same rule

for updating, based on the values in this neighborhood.

Each time the rules are applied to the whole grid a new

generation is created. A formal definition of CA called

Cell-DEVS formalism [6] was considered to allow the

defining the cell spaces based on DEVS and CA models.

Cell-DEVS can also be described as a composition of

atomic and coupled components. Cell-DEVS atomic

models can be described as in Figure 3. Each cell uses N

inputs (from its neighborhood) to compute its next state.

These inputs, which are received through the model's

interface, activate a local computing function (τ). A delay

(d) can be associated with each cell. The state (s) changes

can be transmitted to other models, but only after the

consumption of this delay.

Two kinds of delays can be defined: transport delays model

a variable commuting time, and inertial delays, which have

preemptive semantics (scheduled events can be discarded if

the computed value is different than the future state).

The formal description of the Cell DEVS is as follows:

Cell-DEVS Atomic Model:

TDC= < X,Y,I, S,θ, N, d,τ,δint,δext,λ, D>

Where:

RX ⊂ is the set of input external events;

RY ⊂ is the set of output external events;

I :is the model’s modular interface;

S :is the set of possible states for a given cell;

θ :is the definition of the cell’s state variables;

N :is the set of the input events;

d :is the delay of the cells;

τ :local computing function;

δint :is the internal transition function;

δext :is the external transition function;

λ :is the output function;

D :is the duration function;

Cell-DEVS Coupled Model:

GCC = < Xlist, Ylist, I, X, Y, η, {t1,...,tn}, N, C, B, Z, select >

Where:

Xlist, Ylist : are the list of input, output coupling

η :is the neighborhood size;

N :is the neighborhood ;

C :is the cell space set;

B :is the boarder cells set;

Z :is the transition function;

Select :is the tie-breaking selector function;

There are several tools that are implemented based on the

DEVS M&S theory. The CD++ tool [7] is one of them. The

simulation engine tool is built as a class hierarchy of

models in C++. Coupled and Cell-DEVS models are

created using the language built in the engine.

In CD++, Cell DEVS models are a special case of coupled

models. Therefore, when defining a cellular model, all the

coupled model parameters are available in addition to

parameters used for cellular models.

In this section a three-dimension structure of the heat

diffusion model including the three components: a 3D space

reproducing the behaviour of a room, and two generators

(one source of heat and one source of cold) is described. A

cell can be connected to heat generator, a cold generator or

none. A cell's temperature is measured as the average of its

neighborhood. It's possible to see the cell's temperature in

each step.

The temperature is calculated as the average of the

temperature in the cell and its eight next near neighbors that

is shown in Figure 4(a). Also, two generators (one source of

heat and one source of cold) generates a flow of

temperatures with uniform distribution are connected to two

cells in the model as depicted in Figure 4(b).

Room Cell-DEVS model is defined as 3D dimensional

model including the grid size, kind of delay and border. It is

composed by a 4X4X4. The heat-rule local computing

function calculates the present value as an average between

Figure 3. DEVS Informal Description of Cell-DEVS (transport)

all the neighbouring cells. Two temperature value in the

ranges of [24, 80] and [-45, 10] are set respectively, using a

uniform probabilistic distribution (setHeat, setCold) and

received through the In port of the cells (3,3,0), (2,2,1),

(3,3,2) and (1,3,3).

The model of heat diffusion is a Cell-DEVS Coupled model

that has other DEVS Coupled model and atomic Cell-

DEVS model as its components. For the heat diffusion a

implementation in CD++ is presented in Figure 5. The first

part of the code represents the top level model that lists the

components of the coupled model and also the internal links

and external ‘in’ , ‘out’ ports (if any). The Heater and

Cooler are two Coupled DEVS where the heater and cooler

are connected via out@Heater and Out@Cooler

respectively to the inputHeat and inputCold of the cell

space external port. Then the in ports are connected to a

specific port through portInTransition. The [room] symbol

introduces the room sub-model that is a Cell-DEVS

component of 4X4X4 dimension. For each of its cells we

have a specific number of neighbour cells that are defined

in the specification of the neighbours. A local computing

function (τ) and a delay (d) can be associated with each

cell and express in the [heat-rule].

Upon start of the simulation, the heater/cold sources

produce changes in the cells in each time step (or delay=d)

define by 1000msec where they are connected.

Consequently, the state of the neighbours of these cells will

change in time as it shown in Figure 6.

As one can see it contains 4 of 4X4 tables in a row that

represent the heat 4X4X4 heat Cell-DEVS simulation

results. It is primarily a draw file that is produced from

LOG file in CD++. Each row shows the result of the local

computing function after the delay time. Consequently the

number of rows depends on the delay time and the duration

of the simulation.

[top]

components:room Heater@Generator
Cooler@Generator
link : out@Heater inputHeat@room
link : out@Cooler inputCold@room

[room]
type : cell
dim : (4, 4, 4)
delay : transport
defaultDelayTime: 100
border:wrapped
neighbors : room(-1,0,-1) room(0,-1,-1)
room(0,0,-1) room(0,1,-1)
...
in : HeatInput ColdInput
link : HeatInput in@room(3,3,0)
link : HeatInput in@room(2,2,1)
link : ColdInput in@room(3,3,2)
link : ColdInput in@room(1,3,3)

localtransition : heat-rule

portInTransition : in@room(3,3,0)
in@room(2,2,1) setHeat
portInTransition : in@room(3,3,2)
in@room(1,3,3) setCold

[heat-rule]
Rule: { ((-1,0,-1)+(0,-1,-1)+(0,0,-
1)+(0,1,-1)+(1,0,-1)+(-1,-1,0)+(-
1,0,0)+(-1,1,0)+(0,-
1,0)+(0,0,0)+(0,1,0)+(1,-
1,0)+(1,0,0)+(1,1,0)+(-1,0,1)+(0,-
1,1)+(0,0,1)+(0,1,1)+(1,0,1)+(0,0,-2)+
(0,0,2)+(0,2,0)+(0,-2,0)+(2,0,0)+(-
2,0,0)) / 25 } 1000 { t }

[setHeat]
rule: { uniform(24,80) } 1000 { t }

[setCold]
rule: { uniform(-45,10) } 1000 { t }

[Heater]
distribution: exponential
mean : 10
initial : 1

[Cooler]
distribution : exponential
mean : 10
initial : 1

Figure 4. (a) Neighborhood shape (b) Coupling scheme

Figure 5. Model of heat diffusion

2. Conceptual Model
Modelling the dynamics of vegetable ecosystem is an

extremely challenging problem in which we have very

complex system behaviour. It is an interdisciplinary

research that involves computer science, biology, and

ecosystem management.

Traditional models for the vegetable ecosystem study are

continuous and based on differential equations and usually

model the evolution of the system with global parameters

such as the total number of trees and their overall biomass

[10][11]. In addition, most of the data needed to provide

reliable parameters for these models are usually scarce and

difficult to obtain.

More recently, the cellular automata has been used in [8][9]

to model and simulate the vegetable ecosystem, however

just the evolution of a single species is studied in these

models. Moreover some key parameters are missing in the

study such as shape evolution in the growth process of the

vegetable.

In this report I proposed a comprehensive ecosystem

analyses primarily inspired by the Bandini and Pavesi Work

[12] and modified in [13]. Different rules of L-system

apply to construct various types of vegetables (Patterns)

and their growth model [14]. The model aims to evaluate

the influences of the ecosystem on the vegetable existence,

population, growth and shape in a single and consolidated

model and simulator.

Proposed comprehensive vegetable ecosystem modelling

and simulation can be comprised of the following models as

it shown in Figure 7; Model of the variety of vegetable

shapes and patterns that is, of all the weeds, plants and trees

in a given area, model of the horizontal and vertical growth

as well as shape evolution of the vegetables, model of the

vegetable existence and population and model of Growth,

shape and population influenced by the resources available

on the ecosystem of the vegetable (i.e. sunlight, water,

weather and substances present in the soil) and the

interactions among single individuals and their competition

for the resources available on the ecosystem.

In the proposed structure, a discrete model based on 3–

dimensional Cellular Automata has been used with different

layers that allow to model and simulate the evolution of

heterogeneous vegetable populations composed by different

perennial species as in real woods and forests. Also a 2-

dimensional Cellular-DEVS model simulates the growth

processes of tree development using in tree morphology.

The resource block produce seeds and plant them in N-

dimensional Population & Growth evolution (Cell-DEVS)

part. The sells containing the seed and ready to grow are

mapped to the Plant shape &Growth (Cell-DEVS) part in

order to demonstrate different shapes of the vegetables used

in the ecosystem.

3. Simulation Scheme Details

3.1 Population & Growth evolution
As indicated in the pervious section a Cell-DEVS model is

used for representing the model. In this section the model

used in the implementation details of each section are

discussed and its implication on the model will be studied.

Each cell in the cellular automata representing vegetable

population dynamic simulation shows a square portion of

model that contains some resources (i.e. water, light,

nitrogen, and potassium) and can host a tree.

The finite set of cell states values can be defined by Q as:

Figure 6. Some of Simulation Execution Results

Resources

N-dimensional

Population &

Growth evolution

(Cell-DEVS)

Plant shape &

Growth

(Cell-DEVS)

Figure 7. Conceptual Model Structural model

in

},,,,,,,,,,,,{ TTTT

S

T

G

TTT ASGMRUUNZTPMRQ =

Where:

R :the vector referring to the amount of resources in the cell

M :maximum amount of each resource

P :amount of each resource produced by the cell at each

update step

T :flag indicating whether a tree is present in the cell

TZ : vector defining the size of the different parts of the tree

TN :amount of each resource the tree takes from the cell

G

TU :amount of each resource needed at each update step by

tree to grow

S

TU :amount of each resource needed at each update step by

tree to survive

TR
:amount of each resource stored by the tree at previous

update steps

 TM
:vector of threshold values for different parameters

defining the tree, such as maximum size, maximum age,

minimum age for reproduction, maximum number of seeds

produced for each mass unity of fruits, and so on

 TG
:vector defining the growth rate of each of the parts of

the tree when enough resources are available.

S :vector defining the number of seeds present in the cell for

each of the species growing in the territory

TA : vector defining the age of the tree in the cell

The Cellular Automata for vegetable Ecosystems model is

based on two–dimensional Cellular Automata, whose cells,

arranged on a square grid, represent portions of a given

area. Some resources are present on the area, divided

among the cells. A cell can host a tree, represented in the

model by a set of parameters defining its species, its size,

and the amount of each resource it needs to survive, grow,

and/or reproduce itself. Some of the parameters of Q can be

future define as:

 }1,1),({ MjNijiR ≤≤≤≤= is a two-dimensional

NXM lattice that defines the dimension of the area under

study.

IF we define H as the Moore neighborhood,

f : QQQ
H

→× is the state transition function and

I : QR → is the initialization function

Now based on the [13] we define update rules as follow:

The initial configuration of the CA can be defined by

setting some trees or seeds of a specific type in several cells

and appropriate resource parameters (or resources) for each

cell.

At the initial step three cases might happen first we have

seeds, second already planed trees and third combination of

both in the cells.

In the least former case, at each update step the seed(s)

present(s) in the cell start to grow if enough resources are

available, otherwise the tree dies and seed disposed. In the

second case the already grown trees are planted in each cell

(if any) takes the resources it needs from the cell itself and

uses them to survive, grow (if enough resources are

available), and produce seeds(if it has reached minimum

age for reproduction and enough resources are available). A

cell can host more than one type of the seed and several

seeds that define with the S vector in the model. However

the seed do not sprout in a cell unless the cell is free

without a tree then the seed with more number of seed

defines the type of tree to grow. If a tree is present in cell C

(i, j) [C (i, j) is the cell located at position (i, j) in the model

lattice], TA vector defining the age of the tree in the cell

indicating the already grown tree age.

It is worth noticing that there is a limit for the resources

allowed to be in each individual cell. Also the trees can

reach a certain age and height and can not over grow.

To implement the initiation part we consider an

8X8X space in which the model under study is presented

by 8X8 plate and represent various parameters layers

used in the simulation. The Figure 8(a) indicates the cell

space used for the model, and 8(b) plate parameters.

in

in

8

8

(a)

The initial value for the whole model space cells is “0” that

means the presences of the seed in the initial stage. In the

other words, it implies the zero in the age matrix whose age

is zero. It is worth noticing that unless the type of the

vegetable assigns in the correspondent cell in other plate,

the zero has no meaning the program logic.

As indicated above a specific plate is designated to assign

the type of vegetable for the model at is input to the

simulation at the beginning. Basically these two plates are

responsible for the initial stage of the program.

The initial values for the model can be apply at the

beginning and further values can be apply during simulation

by the “generateSource@Generator” using

“link : out@generateSource inputSource@plant”.

Upon start of the simulation at each update step of the

simulation, the tree present in each cell (If a tree is present

in cell),(jiC) starts the growth evolution and takes the

resources (defined by),(jiNT of each available

resource),(jiR) it needs from the cell that already assign

in the initial stage and consumes them to survive, grow (if

enough resources are available), and produce seeds. The

amount of resources taken depends on the size of the

tree),(jiZT . If enough resources (those taken at this step,

plus the resources stored at previous steps), are available, as

defined by vector
G

TU , the tree grows. Otherwise, the

resources might be just sufficient for the tree to survive (as

defined by vector
S

TU).In both cases, the tree “burns” an

amount of each resource, as defined by vector

),(jiU G

T or),(jiU S

T .If none of above cases occurs, the

overall amount (stored plus collected) of at least one

resource is under the “survival threshold” of the tree, the

plant dies. The tree also dies when it reaches its maximum

age defined in vector),(jiMT .

In this model, the resources are balanced among

neighboring cells in each step. It means the remaining

resources re-distributed among the cell and its neighbours.

The 9 neighbours (Moore model) are listed below:

1. Pij

Y
1 � Pij-1

X
1 Pij+1

Y
1  Pij+1

X
1

2. Pij
Y

2 � Pi+1j
X

2 Pij
Y

2  Pi-1j
X

2

3. Pij
Y

3 � Pij+1
X

3 Pij
Y

3  Pij-1
X

3

4. Pij
Y

4 � Pi-1j
X

4 Pij
Y

4  Pi+1j
X

4

5. Pij
Y

5 � Pij
X

5 Pij
Y

5  Pij
X

5

6. Pij
Y

6 � Pi-1j-1
X

6 Pij
Y

6  Pi-1j-1
X

6

7. Pij
Y

7 � Pi-1j+1
X

7 Pij
Y

7  Pi-1j+1
X

7

8. Pij
Y

8 � Pi+1j-1
X

8 Pij
Y

8  Pi+1j-1
X

8

9. Pij
Y

9 � Pi+1j+1
X

9 Pij
Y

9  Pi+1j+1
X

9

Now if we consider),(jiR′ the amount of each cell after

the simulation step and),(jiR before that we have:

2

8

)1,1()1,1()1,1()1,1()1,(),1()1,(),1(
),(

),(

+−+−−+−+++++−+−++++
+

=′

jirjirjirjirjirjirjirjir
jir

jir

In other words, we can see each cell as divided in eight

parts, each one containing the amount
8/),(jir

 of

resource h , and corresponding to one of the neighbours.

The amount of resource h contained in each part is balanced

with the corresponding part of the neighbours.

We have to consider in above equation),(jir′ cannot

exceed the corresponding maximum value defined for the

cell (),(jiM).In this case, we set),(),(jirjiM ′= .

We have two cases to consider: a tree is present in the cell,

or the cell is empty. In the former case,

The reproduction of a tree may happen (production of some

seeds) if it is old enough. Then the model updates the

corresponding variable in the seed vector),(jiS .The new

trees cannot sprout from the seeds contained in the cell if a

tree is already present. Instead, when the cell is vacant and

TA
]}8,0[],8,0[)0,,({ ∈∈ lklk

Age Matrix
1st plate

2nd plate

Plant Type Matrix

]}8,0[],8,0[)2,,({ ∈∈ lklk

]}8,0[],8,0[)3,,({ ∈∈ lklk

]}8,0[],8,0[)8,,({ ∈∈ lklk

]}8,0[],8,0[)4,,({ ∈∈ lklk

]}8,0[],8,0[)5,,({ ∈∈ lklk

]}8,0[],8,0[)6,,({ ∈∈ lklk

]}8,0[],8,0[)7,,({ ∈∈ lklk

Seed# Type 1 Matrix

Seed# Type 2 Matrix

Seed# Type 3 Matrix

Resource Type 1 Matrix

Resource Type 2 Matrix

Resource Type 3 Matrix

]}8,0[],8,0[)1,,({ ∈∈ lklk
Height Matrix

9th plate

3rd plate

4th plate

5th plate

6th plate

7th plate

8th plate

Figure 8. (a)Cell-DEVS Model Shape (b) Parameters

in ni layer

in

(b)

contains some seeds. If the resources present in the cell are

sufficient a new tree is born.

If seeds from different species are present in the cell, the

seed type with higher number has more probability number

and can be chosen.

3.2 Plant shape & Growth
Another component of the system is Plant shape simulation.

I proposed to use a Cellular-DEVS model to implement a

model and simulate the growth processes of tree

development using in tree morphology. The aim of this

simulation is to demonstrate the growth toward sunlight and

also using Cell DEVS simulation.

In my proposed model as soon as the seed will be planted

into a cell the tree starts seedling and the trunk comes out of

the earth and growth towards the light that is above the

seed.To simulate the tree growth I exploit Lindenmayer

system that is a formal grammar (a set of rules and symbols)

most famously used to model the growth processes of plant

development.

Lindenmayer systems, or L-systems for short, are a

particular type of symbolic dynamical system with the

added feature of a geometrical interpretation of the

evolution of the system. They were invented in 1968 by

Aristid Lindenmayer to model biological growth.

Formal description of L-System is a tuple G = < V, w, P >

consisting of:

V : an alphabet is a set of symbols containing elements that

can be replaced (variables)

w : a non-empty starting word (or axiom) defining the

initial state of the system

P : is a set of production rules or productions defining the

way variables can be replaced with combinations of

constants and other variables.

Depending on the context, letters of the alphabet could

represent cells or modules, e.g., V= {Seed, Trunk, Branch}

w = Seed

P = rules of tree growth

Now we exploit the L-system for modeling and

visualization of the growth of a tree as below in the Cell

DEVS model:

Variables: X F

Constants: + −

Start: X

Rules: (X → F[+F]F[-F]F) , (F → FF)

Angle: 45°

Here, F means "draw forward", - means "turn left 45º", and

+ means "turn right 45º". X does not correspond to any

drawing action and is used to control the evolution of the

curve. [Corresponds to saving the current values for

position and angle, which are restored when the

corresponding] is executed. In fact, Square brackets, are

defined that mark the beginning and end of a branch.

4. Implementation Details
This part aims to explain thoroughly the details of the

implementation of our Coupled Cell-DEVS system based

on the scheme described in the pervious section.

First we introduce the formal Couple Cell-DEVS model of

our implementation, then the top level of the system and the

relations between components. At the end each individual

block of the system is discussed.

4.1 Formal Description
This section presents the formal specification of each of the

Cell-DEVS models:

For the shape, Cell-DEVS model the formal description is

as follow:

GCTD = < X, Y, Xlist, Ylist, I, η, N, {i, j, k}, C, B, Z, select >

where for #Τ < ∞ ∧ T ∈{N, Z, R, {0,1} } ∪ {φ}

� X ⊆ T is the set of external input events; T = {seed}

� Y ⊆ T is the set of external output events; T = {growth}

� Ylist = { (i, j, k,) / i ∈ [0,m], j ∈ [0,n], k ∈ [0,o]} is the list of

output coupling. Where the i, j, k represent the index values

of the cells (that couple with its neighbors) which are bound

by m, n, o dimension.

� Xlist = { (i, j, k,) / i ∈ [0,m], j ∈ [0,n], k ∈ [0,o]} is the list

of input coupling. Where the i, j, k represent the index values

of the cells (that couple with its neighbors) which are bound

by m, n, o dimension.

� I = < Px, Py, Pz > represents the definition of the modular

model interface. Here,

� for i = X | Y|Z, Pi is a port definition (input or output

respectively). For example, the resource exchanges and the

confirmation of rules will be established by communication

through these ports (which enable identification of the values

of resources in the cell).

� η = 9 and the neighbor list set is given as follows:

N = {(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1)}

These illustrated scenarios show the neighborhood list for the

immediate neighbors in the same plane (nine of them) and their

inverse list. The same applies for the other neighbors.

� C = {Cijk / i ∈ [0,19], j ∈ [0,30]}

� B = {∅} if the cell space is wrapped; or

� Z is the translation function, which determines the dynamics

of the vegetable population (refer to the rules section).

And for the Population model the Coupled Cell-DEVS can

be defined as the following

GCTD = < X, Y, Xlist, Ylist, I, η, N, {i, j, k}, C, B, Z, select >

where for #Τ < ∞ ∧ T ∈{N, Z, R, {0,1} } ∪ {φ}

� X ⊆ T is the set of external input events; T = {water,

minerals, sunlight}

� Y ⊆ T is the set of external output events; T = {growth}

� Ylist = { (i, j, k,) / i ∈ [0,m], j ∈ [0,n], k ∈ [0,o]} is the list of

output coupling. Where the i, j, k represent the index values

of the cells (that couple with its neighbors) which are bound

by m, n, o dimension.

� Xlist = { (i, j, k,) / i ∈ [0,m], j ∈ [0,n], k ∈ [0,o]} is the list

of input coupling. Where the i, j, k represent the index values

of the cells (that couple with its neighbors) which are bound

by m, n, o dimension.

� I = < Px, Py, Pz > represents the definition of the modular

model interface. Here,

� for i = X | Y|Z, Pi is a port definition (input or output

respectively). For example, the resource exchanges and the

confirmation of rules will be established by communication

through these ports (which enable identification of the values

of resources in the cell).

� η = 61 and the neighbor list set is given as follows:

N = {(-1,-1,0) , (-1,0,0), (-1,1,0), (0,-1,0), (0,0,0), (0,1,0) , (1,-

1,0), (1,0,0), (1,1,0), (-1,-1,1) , (-1,0,1), (-1,1,1), (0,-1,1), (0,0,1),

(0,1,1) , (1,-1,1), (1,0,1), (1,1,1), (-1,-1,2) , (-1,0,2), (-1,1,2), (0,-

1,2), (0,0,2), (0,1,2) , (1,-1,2), (1,0,2), (1,1,2),(-1,-1,3) , (-1,0,3),

(-1,1,3),(0,-1,3), (0,0,3), (0,1,3), (1,-1,3),(1,0,3), (1,1,3), (-1,-1,-2)

(-1,0,-2), (-1,1,-2), (0,-1,-2), (0,0,-2), (0,1,-2) , (1,-1,-2), (1,0,-2),

(1,1,-2), (0,0,-1), (0,0,-2), (0,0,-3), (0,0,-4), (0,0,-5), (0,0,-6),(0,0,-

7),(0,0,-8),(0,0,1),(0,0,2),(0,0,3),(0,0,4),(0,0,5), (0,0,6), (0,0,7),

(0,0,8)}

Now, The corresponding inverse neighborhood would be,

1. Pij
Y

1 � Pij-1
X

1 Pij+1
Y

1  Pij+1
X

1

2. Pij
Y

2 � Pi+1j
X

2 Pij
Y

2  Pi-1j
X

2

3. Pij
Y

3 � Pij+1
X

3 Pij
Y

3  Pij-1
X

3

4. Pij
Y

4 � Pi-1j
X

4 Pij
Y

4  Pi+1j
X

4

5. Pij
Y

5 � Pij
X

5 Pij
Y

5  Pij
X

5

6. Pij
Y

6 � Pi-1j-1
X

6 Pij
Y

6  Pi-1j-1
X

6

7. Pij
Y

7 � Pi-1j+1
X

7 Pij
Y

7  Pi-1j+1
X

7

8. Pij
Y

8 � Pi+1j-1
X

8 Pij
Y

8  Pi+1j-1
X

8

9. Pij
Y

9 � Pi+1j+1
X

9 Pij
Y

9  Pi+1j+1
X

9

These illustrated scenarios show the neighborhood list for the

immediate neighbors in the same plane (nine of them) and their

inverse list. The same applies for the other neighbors.

� C = {Cijk / i ∈ [0,7], j ∈ [0,7], k ∈ [0,8]}

� B = {∅} if the cell space is wrapped; or

� Z is the translation function, which determines the dynamics

of the vegetable population (refer to the rules section).

4.2 Coupled Cell-DEVS implementation
Figure 9 demonstrate the behaviour of the proposed Cell-

DEVS Coupled model:

The file “ecosystem.ma” defines our Coupled Cell-DEVS

model that includes the components and the relationship

between them.

As you may notice in Figure 9 and code description below

the ‘[top]’describes the components and the relations among

them. In total there are 6 components that 2 of them defines

the population evolution and plants tree named ‘[plant]’ and

‘[shape]’ respectively. These model are Cell-DEVS that

connected to sources output ports:

out@generateReSource1, out@generateReSource2,

out@generateReSource3 and out@generateSeed via

input ports: inputReSource1, inputReSource2,

inputReSource3 and inputSeed

[top]
components : shape plant
generateSeed@Generator
components : generateReSource1@Generator
generateReSource2@Generator
generateReSource3@Generator
link : out@generateSeed inputSeed@shape
link : out@generateReSource1
inputReSource1@plant
link : out@generateReSource2
inputReSource2@plant
link : out@generateReSource3
inputReSource3@plant

generateReSource3

generateReSource2

generateSeed

generateReSource1

Plant

(Cell-DEVS)

8X8X9

Shape
(Cell-DEVS)

20X30

Out

Out

Out

Out

inputSeed

inputReSource1

inputReSource2

inputReSource3

in@shape(18,14)

in@shape(18,14)

in@plant(2,7,6)

in@plant(6,7,7)

in@plant(4,7,8)

top

Figure 9. Coupled Cell-DEVS Behavioral model

After definition of the top model we define our components

as describe and implemented in “ecosystem.ma”.

In this section the details of each model is describe and the

rules and parameters that are used in the model to produce

the simulation results are discussed. Also Comments are

provided throughout of the source code to describe various

parts functionality.

4.2.1 Population & Growth model Implementation
As described in pervious section we use an 8X8X9 space

dimension to represent the population model ([plant]). the

population component of the model comprised of 9 plane

presenting different parameters as shown in Figure 10

To make use of this planes I defined 12 different zones and

61 neighbours as shown in the code below in which the

zone name represent the rule for that particular parameter;

zone : sunamount { (0,0,6)..(7,6,6) }
zone : mineralamount {(0,0,7)..(7,6,7) }
zone : wateramount { (0,0,8)..(7,6,8) }

zone : addsun { (0,7,6)..(7,7,6) }
zone : addmineral { (0,7,7)..(7,7,7) }
zone : addwater { (0,7,8)..(7,7,8) }

zone : plantage { (0,0,0)..(7,7,0) }
zone : plantheight { (0,0,1)..(7,7,1) }
zone : planttypeproduce{(0,0,2)..(7,7,2)
}
zone : graseed { (0,0,3)..(7,7,3) }
zone : oakseed { (0,0,4)..(7,7,4) }
zone : mapleseed { (0,0,5)..(7,7,5) }

The planes dynamically interact with each other and pass

the values and compare their parameters and conditions to

output results of the simulation. In this part of the report,

the set of rules and parameters used in the model population

simulation are introduced as follows:

4.2.1.1 [Planttypeproduce]
The Third plate((0,0,2) to (7,7,2)) is designed to represent

the vegetable type, I assign three different values for three

different type of vegetable as grass=1, Oak=2 and Maple=3.

When the enough resources are available in a cell, The

plants start to reproduce seed and spread them to adjunct

cells when they reach certain age to produce the fruit. The

age for grass is 2 for oak it is 5 and for maple 7.The enough

resources

It is important to notice that this plate simulates the

reproduction of the seeds and the type seed with the higher

value (number of seed) in a cell defines the type of the plant

in that cell ready to grow in case of tree absence in that cell.

It shows the competition among the seeds to grow in a cell.

In the case that we get equal number of seeds, a priority

scheme are implemented in the model that gives grass

higher priority than oak and maple and superior priority to

oak over maple.

4.2.1.2 [Plantage]
This occupies the cells from (0,0,0) to (7,7,0) and

responsible for determining the age of the plant. Each

simulation step increases the plants age equally by one unit.

The aging process does not affected by the resources

however the plant will die if they reach their maximum age

and the resources are not adequate to survive. The

maximum age is defined as one of the parameters of

TM discussed in section 3.1;

Maximum age = {Grass=4, Oak=55, Maple=60}

This rule also presents dying process which reflected in

Planttypeproduce, Plantheight and itself with presenting

zero value when the plant dies.

4.2.1.3 [Plantheight]
Unlike the age, the speed of plant height growth is different

with respect to the plant type. Plant height is model in the

system where different values are given to different plants

to show the different rate of tree height growth. We assume

for each year 1cm is added to the grass height, 20 cm to oak

and 25cm to maple height. The height growth is not infinite

and when the plant reaches certain height stop and dies.

This parameter is also defines in TM Where

Maximum height = {Grass=5cm, Oak=20m, Maple=25m}

Age

Plant Type

(1=Grass,

 2=Oak,

3=Maple)

Grass Seed Number

Oak Seed Number

Maple Seed Number

Resource Sunlight

Resource Minerals Resource Water

Height (CM)

9th plate

8th plate

7th plate

6th plate

TA

1st plate

2nd plate

3rd plate

4th plate

5th plate S {

TZ

T

R}

Figure 10. Planes for the Parameters of the

population model

The height of the tree is affected by environment

(resources) where the resource shortage slows the height

grows in my propose model.

4.2.1.4 [graseed] [oakseed] [mapleseed]
Three unique plates are assigning to present the number of

the seed (S vector in the 3.1 section) in for our plants. This

plate’s parameters are used for the reproduction process

explained in planttypeproduce reproduction process. The

rule starts to add the value for incrementally for each year

after the plant reaches productivity age as defines in 4.2.1.1

4.2.1.5 [sunamount][mineralamount]

[wateramount]
Each plant requires resources such as sunlight, minerals and

water to grow or survive or reproduce. The initial resources

values are applied as an input file (plant.val) to the system

through the
th7 ,

th8 and
th9 plates. Also a zone describe

later to constantly supply resources to our model to carry on

the simulation execution.

Based on the distribution formula discussed in section 3.1

the amount of resources is calculated by subtraction of the

resource of the current cell and the plant use to grow. Then

the new remaining resource redistribute to the cell and

adjacent cells.

As an example, The rules to subtract the resources from

current cell resource value and the way the sun light

resource value redistribution for the plant type grass is

shown in this part of the code as below:

%sun amount is calculated by subtraction
of sun light resource of the current
cell and the grass use to grow (2
calories)
%new sun light resource (remaining)
redistribution to the cell and adjacent
cells
rule : { ((0,0,0) - 2) + ((-
1,1,0)+(0,1,0)+(1,1,0)+(-
1,0,0)+(0,0,0)+(1,0,0)+(-1,-1,0)+(0,-
1,0)+(1,-1,0))/9 } 1000 { (0,0,0) >= 2
and (0,0,-4) = 1 and (0,0,1) >= 7 and
(0,0,2) >= 4 }

%sun amount is calculated by subtraction
of sun light resource of the current
cell and the grass use to survive(1
calories)
%new sun light resource(remaining)
redistribution to the cell and adjacent
cells
rule : { ((0,0,0) - 1) + ((-
1,1,0)+(0,1,0)+(1,1,0)+(-
1,0,0)+(0,0,0)+(1,0,0)+(-1,-1,0)+(0,-
1,0)+(1,-1,0))/9 } 1000 { (0,0,0) >= 1

and (0,0,0) < 2 and (0,0,-4) = 1 and
(0,0,1) >= 6 and (0,0,1) < 7 and (0,0,2)
>= 2 and (0,0,2) < 4 }

As one may notice there are two separate set of rules for a

particular plant type that determined by the vectors
S

TU

and
G

TU .These two vectors define amount of each resource

needed at each update step by tree to survive and grow

respectively. The values for this vector for different

resources (Sunlight, Minerals, and Water) for the plant

types in our model are given in table below:

 Sunlight

(Calorie)

Minerals

(Gram)

Water

(Liter)

grass

S

TU 1 6 2

grass

G

TU 2 7 4

oak

S

TU 2 8 6

oak

G

TU 3 10 7

maple

S

TU 2 8 5

maple

G

TU 3 10 6

According to the values above, in the first rule if the

available sun light resource (plate
th7) within the cell is

equal or greater than 2 calories and mineral amount

(plate
th8) is equal or more than 7 grams and also water

amount (plate
th9) is equal or greater than 4 then grass will

be able to grow where subtract the sun light amount

required for grow (2 calories) from its current value and

add it to neighbours average. In fact by doing this for every

cell we redistribute it to the cells and adjacent cells in our

model.

In case that the resource amounts are less than threshold to

grow the second rule will be applied. If the sun light

amount value is equal or greater than 1 calories (sun light

threshold required for the grass to survive) but less than 2

calories (sun light threshold required for the grass to grow)

will be able to grow then grass will be able to survive and

not to die where subtract the sun light amount required to

survive (1 calories) from its current value and add it to

neighbours average. In fact by doing this for every cell we

redistribute it to the cells and adjacent cells in our model.

Also this condition must be true for mineral and water.

Resource

Vector

4.2.1.6 [addsun][addmineral] [addwater]
In real situation in a vegetable ecosystem the resources are

supplied to the environment from outside in order for the

vegetable to survive, grow and produce.

Likewise the real world our simulation also needs the

continuous supply of the resources from outside to carry on

the simulation and produce the results.

To model this system behaviour I defined three separate

add resource zone and their correspondent rules named

[addsun], [addmineral], and [addwater] in which constant

value is added to the current value of the cells and subtract

the value for grow and redistribute among the neighbours

again. In addition some values are added to some specific

cells (not region) via:

portInTransition : in@plant(2,7,6)
setReSource1
portInTransition : in@plant(6,7,7)
setReSource2
portInTransition : in@plant(4,7,8)
setReSource3

This rule allows supplying values to some desirable cells

anywhere in the source plate in more manageable fashion.

Finally if no tree exists or not enough resource available the

extra resources add to the addsun zone or add via the input

port to a cell. Then the resources simply redistribute into

adjacent cells.

4.2.2 Shape model Implementation
The propose model has cell-space size of 20X30 consist of

two Zone:

1) zone : trunk-rule { (15,14)..(18,14) }

2) zone : branch-rule { (1,2)..(14,27) }

The Seed represented by "1" state that is located in the

trunk-rule zone by using the following code that insert a “1”

value as a seed into cell shape (18, 14)

portInTransition : in@shape(18,14)

setseed

[setseed]
rule : { 1 } 100 {portValue(thisPort)=2}
rule : {(0,0)} 100 {t}

Upon start of the simulation the trunk start to grow “2" with

applied trunk-rules within truck-rules zone as below:

rule : { 2 } 100 { (0,0)=0 and (1,0)=1 }

rule : { 2 } 100 { (0,0)=0 and (1,0)=2 }

rule : {(0,0)} 100 {t}

The trunk growth and reaches the border of branch-rules

zone then the model start executing the branch rules within

branch-rules zone. The model makes use of macros located

in tree1.inc to define the location of the seed and also the

location of the branches by using macros. By inputting the

location of the inserted seed (18, 14) we can calculate the

branch1 and branch2 sprout location using the propose

formula for the simulation as below:

#macro(XseedPos) = 18

#macro(YseedPos) = 14

#macro(branch1) = [#macro(YseedPos)-
β

]-

[#macro(XseedPos)- α]

Where
βα ,

 is the distance for first branch division with

respect to seed

 #macro(branch1) = [14-1]- [18- 8] = 3

&

#macro(branch2) = [#macro(YseedPos)+δ]- [20-

(#macro(XseedPos)- λ)]

Where δλ, is the distance from second branch division with

respect to seed

#macro(branch2) = [14+1]- [20-(18- 12)]=1

And replace them in the shape.inc file and run the

simulation. From the above we can see that by applying my

proposed rules the simulator draw the same pattern for tree

type growth independent from seed location (shape2.ma).

We also demonstrate the evolution of plant branch from

bud to branch and branch to old branch by different values

in different parts (shape3.ma)

5. Test and Model behavioral analysis
The purpose of this section is to define several test case

scenarios in order to first verify the simulation behaviour as

it expected and secondly observe and analyze different

results obtain from simulation outcome.

Initially the “plant.val”or “plant2.val” is applied to the

Coupled Cell-DEVS model applied where it supplies the

plant Cell-DEVS component. It includes input data to initial

the 3
rd

 plane (plant type) and the three resource plates.

To demonstrate the model behaviour, I drew log different

plates of the plant Cell-DEVS separately to study individual

parameter behaviour or in groups to observe the parameters

interaction and their relationship with respect to each other.

The “.drw” files then apply to the CD++ modeller to

animate the Cell-DEVS simulation with the appropriate

plate file. Since my model is a 3-D having 9 different slice

or plate I created one drw file for each parameter with the

parameter name as a suffix append to “drw” file name. In

addition, a palette file is created for the better value

visualization.

Some case instances are introduced in this section as

follows:

Figure 11 shows the third plate in our Cell-DEVS model

that defines the plant seed type. The top part of the figure

shows the initial type of plant that are assume in plant.val.

In Figure 11 we can see the age and height evolution of

In this plate the number represent the seed type that wins

competition from other type of the seed since there might

be more than one seed from each type, present in a given

cell at any time. Therefore the seed with higher number

survives and stays in that cell till the cell become empty (or

if it is empty) then it starts to grow.

As one can observe the top section of the picture presents

the second simulation step in which the grass is ready (>2

years old) to reproduce new seeds and spread to adjacent

cells as it is the case in the lower part of the picture.

The seed type=3 will be discarded (3 inside the red circle in

the time = 2:000) and replace by one since it will lose the

competition to the seed type=1 where type one has grater

priority in equal number of seed situation.

Another observation is the seed type 2 at time=2:000,

below one in red circle that is disappear in the time=3:000

that causes by the shortage of resources for seed

survivability (the cell available water resource =5.63

threshold =6 that is less than the survive amount for the

seed in this case).Also this figure shows that the seed of the

grass is spread fast and cover the whole area since the grass

reaches productivity age faster than oak or maple and has

priority advantage when it comes to the choice for the plant

in a cell to grow with multiple seeds type and equal seed

number.

The other validate observation is shown in Figure 12

These two columns demonstrate the tree age and height

evolution throughout the growth time.

Here, the second columns represent the height grow that is

0.01 meter for each year for the plant type=1. Having said

that, inside the red circle at the second column of the figure

inconsistency in the plant height grows exists where the

height shows growth from 05.005.004.0 →→ instead

of expected 06.005.004.0 →→ .

The reason for that is the shortage of resources that affects

the growth of the height in the grass.

Yet another event to watch is the dying processes of the

plant that when reaches either its maximum ages or height

grow it will dies. As shown with green circles in figure 12.

Furthermore in this section some shape examples is

presented to show the dependence of the tree shape from its

seed location in the shape Cell-DEVS in shape1.drw and

shape2.drw that is the feathers of the L_system in drawing

various shapes of the plants. I also represent the different

tree parts in shape3.draw to represent various parts of the

tree and its evolution from bud to branch and branch to old

branch respectively.

The Figure 13 demonstrates the 3 different shapes for the

shape Cell-DEVS model that is use for this model. The two

top figures shows different position for the seed insertion in

soil and the below one is for showing different part of a tree

(trunks-old branch-branch).

Figure 12. The age and height grow in the first 3 steps

Figure 11. The Plant seed type plate

Line : 10349 - Time: 00:00:03:000

Line : 7229 - Time: 00:00:02:000

6. Conclusion
In This project I demonstrate a complete ecosystem

environment in which the components interact with each

other in a Coupled Cell-DEVS specification to model and

simulate the vegetable population and shape with respect to

the resources available and the competition for the

resources in the environment.

I Presented ‘Introduction to modelling a simulation’ in

chapter one and a background to DEVS models including

atomic, coupled and Coupled Cell-DEVS in the next

chapter along with the example of DEVS model

implementation in CD++. Next chapter I described the

conceptual model of my proposed system and explanation

of the system logic and rules base on the papers that define

the vegetable ecosystem environment. Then, I introduced

the formal Cell-DEVS description of the population model

and shape in chapter 4 and explained the implementation of

my project.

The core of my project implementation exploits different

slices or plates for the model parameters that interact with

each other to simulate the dynamics of the system.

The model tested and debugged successfully in CD++ and

some test verifications are presented to demonstrate the

system functionality and the simulation result we expected

based on the vegetable ecosystem behaviour in real world.

7. Future Direction
This model can be further improved by inclusion of more

complicated ecosystem parameters and advance plants

shapes.

Moreover the system can introduce animal species and their

interactivity with the system in a global aspect.

Some of the algorithms and rules primarily introduced in

the main paper by Bandini at el can be redefine and

improve to draw more realistic picture of reality for the

ecosystem environment.

8. REFERENCES

[1] Zeigler, B. P. "DEVS Theory of Quantization". DARPA

Contract N6133997K-0007: ECE Dept., UA, Tucson, AZ.

1998.

[2] L. A. Zadeh and C. A. Desoer, “Linear System Theory, The

State Space Approach,” New York, McGraw-Hill, 1963.

[3] Zeigler, B.P.. Belogus, D., and Belshoi, “A. ESP: An

interactive tool for system structuring.” In Proceedings

European Meeting Cybernetics and Systems Research,

(Vienna), Hemisphere, New York, 1980.

[4] Zeigler, B.; PRAEHOFER, H.; KIM, T. “Theory of

Modeling and Simulation: Integrating Discrete Event and

Continuous Complex Dynamic Systems,” Academic Press.

2000.

[5] S. Wolfram, Theory and Applications of Cellular

Automata, (World Scientific, 1986); Cellular Automata

and Complexity (Addison-Wesley, 1994).

[6] Neumann, J. V. 1966 Theory of Self-Reproducing

Automata. University of Illinois Press.

[7] WAINER. 2002 CD++: a toolkit to develop DEVS models.

Software Practice and Experience.

[8] H. Baltzer, W.P. Braun, W. K¨ohler. Cellular Automata

Models for Vegetation Dynamics. Ecological Modelling,

107(1998), pp. 113–125.

[9] 6. R.L. Colasanti, J.P. Grime. Resource dynamics and

vegetation processes: a deterministic model using two–

dimensional cellular automata. Functional Ecology,

7(1993), pp. 169–176.

[10] H. Baltzer, W.P. Braun, W. K¨ohler. Cellular Automata

Models for Vegetation Dynamics. Ecological Modelling,

107(1998), pp. 113–125.

Figure 13. The tree shapes

[11] 6. R.L. Colasanti, J.P. Grime. Resource dynamics and

vegetation processes: a deterministic model using two–

dimensional cellular automata. Functional Ecology,

7(1993), pp. 169–176.

[12] D.G.Green, “Modelling plants in landscape”, in Plants to

Ecosystem – Harek T. Michalewicz, ed. CSIRO,

Lollingwood Ans., 1997.

[13] J.L. Uso–Domenech, Y. Villacampa–Esteve, G. St¨ubing–

Martinez, T. Karjalainen, M.P. Ramo. MARIOLA: A

Model for Calculating the Response of Mediterranean

Bush Ecosystem to Climatic Variations. Ecological

Modeling, 80(1995), pp. 113–129.

[14] Bandini, S., Pavesi, G.: “Simulation of vegetable

populations dynamics based on cellular automata” In

Bandini, S., Chopard, B., Tomassini, M., eds.: Cellular

Automata, Volume 2493 of LNCS, Berlin, Springer-Verlag

(2002)

[15] S Bandini, S Manzoni, S Redaelli, L Vanneschi,

“Emergent Spatial Patterns in Vegetable Population

Dynamics: Towards Pattern Detection and Interpretation”

LECTURE NOTES IN COMPUTER SCIENCE, 2006 -

Springe

[16] Prusinkiewicz P., Hammel M., Hanan J., Mech R.,

Lsystem: from the theory to visual models of plants, in:

Michalewicz M.T. (Ed.) Plants to Ecosystems. Advances in

Computational Life Sciences, I, CSIRO publishing,

Melbourne, 1997, pp. 1-27.

