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DEVS Library for Layered Queueing Networks
by Dorin Petriu (dorin@sce.carleton.ca)

Overview
This report covers the implementation of a DEVS library for the simulation of Layered

Queueing Networks. Section 1. provides an overview of Layered Queueing Networks. Section 2.
describes the design, implementation and testing of the DEVS library. Finally, Section 3. con-
cludes the report.

1. Layered Queueing Networks

1.1. Background
Queueing Networks are based on a customer-server paradigm. Customers make service

requests of the servers and these request are queued at the server until they can be serviced. Tradi-
tional Queueing Networks model only a single layer of customer-server relationships. Layered
Queueing Networks (LQN) allow for of an arbitrary number of client-server levels [5][7]. LQNs
can thus model intermediate software servers and be used to detect software deadlocks and soft-
ware as well as hardware performance bottlenecks [4]. The layered aspect of LQNs makes them
very suitable for evaluating the performance of distributed systems [8][9]. For a tutorial on LQN
please refer to [10].

LQNs model both software and hardware resources. The basic software resource is a task
which runs in the context of a hardware processor. A task is any software object that has its own
thread of execution. Tasks have entries which act as service access points. Entries can also be
decomposed into phases that divide the workload into a first phase that is executed prior to send-
ing a reply and a second phase that is executed after sending a reply or activities which are opera-
tions connected in sequence or in parallel.

Service calls can be made from entries in one task to entries in other tasks. LQNs support
three types of calls: asynchronous (non-blocking), synchronous (blocking), and forwarding (a
chain of calls where only the original caller blocks). Figure 1 shows the time semantics of these
different types of calls.    

1.2. Solving
LQNs can be solved either using either the Layered Queueing Network Solver (LQNS) or the

Layered Queueing Simulator (LQSim).

LQNS is an analytic solver developed at Carleton University by Greg Franks as part of his
Ph.D. research [1]. LQNS breaks the LQN layers down into separate queueing network sub-mod-
els. The individual queueing networks can be solved analytically using mean value analysis
(MVA). The MVA results for each sub-model are then used to the parameters for the other sub-
models it is connected to and the MVA is performed anew. This process is repeated either for a
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maximum number of iterations or until the results converge on a convergence value specified by
the user.

LQSim uses the ParaSol simulation environment. ParaSol can simulate multithreaded systems
that support transactions and provides built-in statistics for monitoring simulation objects [2][3].
LQNs are simulated by creating tokens for each call and following those tokens through the sys-
tem. The performance metrics are arrived at by recording the wait times and other statistics for
each token. LQSim requires large number of runs in order to gather statistically meaningful data.
This makes LQSim appreciably slower than LQNS and requires long simulations in order to gen-
erate accurate results.

Both LQNS and LQSim generate results that show entry average service times, average wait-
ing time, throughput, and utilization, as well as processor throughput and utilization. 

LQN aspect or 
element

DEVS atomic 
model

DEVS coupled 
model Functionality

Processor Processor • receives call, executes it for the specified time
• replies when done
• calculates utilization and throughput

Processor • combines gather, queue, and atomic processor for full LQN pro-
cessor functionality

Table 1: DEVS models for the LQN simulation library.

Figure 1: Time semantics of LQN asynchronous, synchronous, and forwarding calls.
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2. LQN Simulation Library for DEVS

2.1. Design
The DEVS LQN library must represent processors, tasks, and entries with phases. Addition-

ally, the library might also represent disks and activities. The DEVS simulation should provide
results for:
• entry average service time, throughput, and utilization
• phase average service time
• processor throughput and utilization
• queue average waiting time, average queue length (this is not provided in the existing LQN 

solver and simulator and although it can be calculated, it would be desirable to provide it 
outright)

The main design issue for the DEVS LQN simulation library was to decide which LQN ele-
ments or artifacts to model as DEVS atomic models and which ones to model as DEVS coupled
models. Processors, tasks, and entries with phases definitely needed to be included in the library.
Activities were initially left out since they are optional in the LQN notation.

LQN elements have queues that are implicitly supported by LQNS and LQSim. FIFO queues
were incorporated explicitly into the DEVS LQN library. Since queues behave the same way for

Entry with phases Entry • receives call, executes the associated workloads (phase 1 and 
phase 2 processing, makes calls), and replies when done

• processor demands for phase 1 and phase 2 must first be initial-
ized through the initproc port

• server calls for phase 1 and phase 2 must first be initialized 
through the initserv port

Entry • combines gather, queue, atomic entry, and distribute for full LQN 
entry functionality

implied queue Queue • adds call to queue
• sends first element in queue to attached idle Processor or Entry
• passes reply back up to the call source

aggregating calls 
from multiple 
sources

Gather • aggregates calls from multiple input ports and sends them out the 
single output port

• adds a message with the input port index
• passes reply from the reply port at the “output end” through to the 

appropriate response port at the “input end”

distributing calls to 
different entries

Distribute • receives calls on the single input port and distributes them to the 
appropriate output port

• sends reply from the reply port at the “output end” to the single 
response port at the “input end”

Task Task • coupled model composed of multiple entries

Disk Processor • reuses the functionality of a processor

Activity not represented not represented

LQN aspect or 
element

DEVS atomic 
model

DEVS coupled 
model Functionality

Table 1: DEVS models for the LQN simulation library.
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software or hardware elements, a decision was made to implement a universal queue as a separate
atomic model to be coupled with the processor or entry atomic models.

LQN calls are made using entry names to identify the call target. Therefore a mechanism was
needed to deal with addressing the calls in DEVS. The solution was to implement a DEVS version
of a multiplexer and demultiplexer to either gather calls into a given queue (either for an entry or
a processor) or to distribute calls from an entry to other entries.    

Table 1 lists the different DEVS models for LQN elements, while Figure 2 and Figure 3 show
FSMs for the behaviour of the Queue, Processor, and Entry atomic models. The Gather and Dis-
tribute models have non-blocking, single-state FSMs that instantly pass messages through and
route them to the correct ports. 

2.2. DEVS Coupled Model Structure
Figure 4 shows the structure, using ROOM [6] actor notation, of the DEVS coupled models

for LQN Processors and Entries incorporating queues and message routing multiplexers/demulti-
plexers. The in  ports of the Processor and Entry atomic models are connected to the out ports of
their dedicated Queue atomic models. The in port of the Queue is connected to the output port of
the Gather multiplexer model. For entries, the servcall output port is connected to the in port of
the Distribute demultiplexer which sends it on the appropriate out port for the intended call target.
The same sort of connections are repeated for the reply ports but with the reply messages going in
the opposite direction. It is these coupled models that fully represent the LQN processors and
entries.

true /
send f irs t element  on out port ,

send aver age s ize,
send aver age wait

false /

ready  /

in /
add to end of  queue

in /
add to end of  queue

in /
send f irs t element  on out port ,

send aver age s ize,
send aver age wait

response /
send on reply  port

ready to
process

wait for
response

wait for
ready

c check if
queue has  element s

Figure 2: FSMs for the DEVS queue and processor atomic models.
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hold timeout /
s end rep ly , s end done,
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send throughput

idle busy

(a) queue atomic model FSM

(b) processor atomic model FSM
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2.2.1. Structural Limitations

The coupled Entry and Processor models are the building blocks that can be composed into
layered models. The only limit on the LQN models that can be built is the limit of ten input ports
into the Gather multiplexers and ten output ports out of the Distribute demultiplexers. Therefore,
coupled Processor models can have a maximum of ten different entries running on them and cou-
pled Entry models are limited to a maximum of ten different clients and can only call a maximum
of ten other servers. This physical limitation can easily be overcome by implementing Gather and
Distribute models with more ports if that becomes desirable.

2.3. Messaging
LQN messages can be thought of as having a source field denoting the entity making the call,

a destination or target field denoting the entry for which the call is destined, and a demand field
denoting the workload associated with the call. Simple DEVS messages have only a single vari-
able field per message, therefore making it necessary to send and receive sets of two or three mes-
sages in order to transmit all of the required fields. Table 2 lists the messages sent between atomic
models in the DEVS LQN simulation library, how they are ordered, and how they should be inter-
preted.    

serv rtn /

pro crtn /

t rue  /
se nd on procca ll p ort

s ervrtn /

false /
se nd ready,

se nd averag e e ntry  se rvice t ime,
s end avera ge phase  1 serv ice time,
s end avera ge phase  2 serv ice time,

send  throug hput ,
send ut ilizat ion

true /
sen d o n s ervcal l po rt

false  /

fals e /
se nd reply

tr ue /
sen d o n

servc all port

pr ocrtn /
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t rue /
send  on  pr occall por t

in  /

initserv  /
add call statement

initp roc /
as sign w orkloa d to phase

read y to
p rocess

w ait for
phase 2

processing

w ait fo r
ph ase 1

processin g

w ait for
phase 1

service cal ls

w ait fo r
ph ase 2

service calls

check  for
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proc essi ng

chec k for
p hase 1

c all s

chec k for
p hase 2

proc essi ng
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Figure 3: FSM for the DEVS 
entry atomic model.
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Sender (port) Receiver 
(port)

LQN Equivalent 
Message

DEVS Messages 
(in order) Interpretation

Processor (reply) Queue (response) done • reply • notify the source entry that the processing 
is done, the message value represents the 
actual processing time in ms

Processor (ready) Queue (ready) done • ready • ready for another job, the message value is 
irrelevant

Processor 
(throughput)

throughput • throughput • the message value represents the processor 
throughput in number of jobs per ms

Processor 
(utilization)

utilization • utilization • the message value represents the fraction/
percentage of time that the processor has 
been busy

Entry (proccall) Distribute 
(in[0.. .9])

processor call • processor service 
demand

• the message value represents the processor 
demand in ms

Entry (servcall) Gather (in) service call • service call • the message value represents the index of 
the target server

Table 2: DEVS LQN simulation library messages.

processor
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reply av eragesiz e

averagewait
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Figure 4: ROOM structure for the LQN processor and LQN entry DEVS coupled models.
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Entry (avservtime) average entry service 
time

• average entry ser-
vice time

• the message value represents the average 
entry service time in ms

Entry (avph1time) average phase1 
service time

• average phase 1 ser-
vice time

• the message value represents the average 
phase 1 service time in ms

Entry (avph2time) average phase2 
service time

• average phase 2 ser-
vice time

• the message value represents the average 
phase 2 service time in ms

Entry (throughput) throughput • throughput • the message value represents the entry 
throughput in number of jobs per ms

Entry (utilization) utilization • utilization • the message value represents the fraction/
percentage of time that the entry has been 
busy

Queue (out) Processor (in) processor call • processor service 
demand

• the message value represents the service 
demand in ms

Queue (out) Entry (in) service call • service call • service call, the message value is irrele-
vant

Queue (reply) Gather (response) reply • reply • the message value represents the index of 
the source that must be replied to

Queue 
(averagesize)

• average queue size • the message value represents the average 
number of elements in the queue at the 
time the message was sent

Queue 
(averagewait)

• average queueing 
wait

• the message value represents the average 
number of milliseconds a message spent in 
the queue at the time the message was sent

Gather (out) Queue (in) service call • source of service 
call

• service call demand

• the message value represents the index of 
the call source

• if attached to a processor then the message 
value represents the processor service 
demand in ms, otherwise the message is 
irrelevant

Gather 
(reply[0...9])

Distribute 
(resp[0.. .9])

reply • reply • reply, the message value is irrelevant

Distribute 
(out[0...9])

Gather (in[0...9]) service call • service call • service call, if attached to a processor then 
the message value represents the processor 
service demand in ms, otherwise the mes-
sage value is irrelevant

Distribute (reply) Entry (response) reply • reply • reply, the message value represents the 
index of the call target returning the reply

Entry (initproc) • phase number

• processor demand

• the message value represents the phase 
number to initialize

• the message value represents the processor 
demand in ms

Entry (initserv) • phase number

• calls

• call target

• the message value represents the phase 
number to initialize

• the message value represents the number 
of calls to make to the target server

• the message value represents the index of 
the target server

Sender (port) Receiver 
(port)

LQN Equivalent 
Message

DEVS Messages 
(in order) Interpretation

Table 2: DEVS LQN simulation library messages.
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2.4. DEVS LQN Limitations
DEVS LQN Tasks are formed by aggregating, but not interconnecting, coupled Entry models.

Using the current implementation, the resulting tasks end up having individual queues for each
entry. This differs from the queueing model in single-threaded LQN tasks where the tasks has a
single queue shared by all its entries. However, this is not an issue for single-entry tasks or for
tasks with the same number of threads as entries. The solution to this potential problem is to add a
Distribute layer between the atomic Queue and atomic Entry models such that a single queue is
shared among the multiple entries in a task. Implementing this also requires refining the messages
to have two target fields - one for the target task and another one for the target entry in that task.

The DEVS environment does not provide any finer time granularity than milliseconds. This is
a limitation for evaluating systems that require more precise time scales. A possible solution
would be to reconfigure the DEVS environment so that time is counted in unitless “ticks” that can
be interpreted to have whatever precision a user desires. This is the approach currently used in the
LQSim simulator.

Another limitation of the current implementation of DEVS LQN is that the random number
generating routines in randlib.c (Cygwinl) do not generate truly random numbers since the gener-
ator is seeded with the same number and the random numbers generated are the same from run to
run. As well, the genexp method provided with the DEVS package generates exponentially dis-
tributed numbers with an ever increasing mean, as was observed over long runs. Both of these
issues should be easy to address by incorporating better mathematical libraries in the code.

3. Conclusions
The DEVS LQN simulation library provides a starting point for creating simple LQN perfor-

mance models in the DEVS environment. It makes a contribution to the LQN modeling paradigm
by extending it to a simulation platform that supports interactions between different models and
different simulation platforms, something that the existing LQNS and LQSim solvers cannot do.

The current implementation exhibits some weaknesses in the generation of random numbers,
the fixed simulation timescale, and by allowing entries to have individual queues. Additional
work should also be undertaken to add support for asynchronous and forwarding calls to the
library - the current version only uses synchronous calls. Eventually the library should also
include support for LQN activities.
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