
 1

SYSC5807 Term Project Report
DEVS Library for

Layered Queueing Networks

by Dorin Petriu (217774)

Overview

This report covers the implementation of a DEVS library for the simulation of Layered

Queueing Networks. Section 1. provides an overview of Layered Queueing Networks. Section 2.

describes the design, implementation and testing of the DEVS library. Finally, Section 3. con-

cludes the report.

Appendix A also provides a guide to installing a version of the Cygwin environment that is

compatible with the DEVS source code distribution.

1. Layered Queueing Networks

1.1. Background

Queueing Networks are based on a customer-server paradigm. Customers make service

requests of the servers and these request are queued at the server until they can be serviced. Tradi-

tional Queueing Networks model only a single layer of customer-server relationships. Layered

Queueing Networks (LQN) allow for of an arbitrary number of client-server levels [5][6]. LQNs

can thus model intermediate software servers and be used to detect software deadlocks and soft-

ware as well as hardware performance bottlenecks [4]. The layered aspect of LQNs makes them

very suitable for evaluating the performance of distributed systems [7][8].

1.2. Notation

LQNs model both software and hardware resources. The basic software resource is a task. A

task is any software object that has its own thread of execution. Tasks have entries which act as

service access points. The basic hardware resource is a device. Typical devices are CPUs and

 2

disks. Figure 1 shows the visual notation for tasks and devices.

Service calls are shown by messaging arrows. The LQN notation supports three types of

calls: asynchronous, synchronous, and forwarded calls. An asynchronous call does not involve

any kind of blocking on the part of the sending task. A synchronous call means that the sending

client task blocks until it receives a reply. In a forwarding call, the sending client task makes a

synchronous call and blocks waiting for a reply, the receiving intermediate server task partially

processes the call and then forwards it to another server which becomes responsible for sending a

reply to the blocked client task. The intermediate server task can continue operation after forward-

ing the call and there can be any number of forwarding levels. Calls are made from a task’s entries

and they can also be made in sequence. Figure 2 shows the LQN notation for these types of calls.

Figure 3 shows the time semantics of these different types of calls.

Tasks receive service requests at designated interface points called entries. Entries correspond

to service access point for a task. There is a different entry for every kind of service that a task

provides. An entry may be defined atomically, with its own hardware service demands and calls

to other tasks. Alternately, an entry may be defined by blocks of smaller computational blocks

called activities. Atomic entries can also have phases that divide the workload into a first phase

that is executed prior to sending a reply and a second phase that is executed after sending a reply.

An entry receiving a synchronous service call is responsible for sending a reply after the

request has been completed. Reply are implicit at the end of the first phase for entries that are

defined atomically but must be explicitly specified for entries defined by activities. An entry

Figure 1: LQN task, entry, CPU and disk devices.

entry

task

CPU disk

 3

receiving a synchronous service request may also forward it to entries in other tasks which then

become responsible for sending the reply to the original caller. In the case of a forwarded call, the

original calling task remains blocked until it finally receives the reply at the end of the forwarding

chain.

Figure 2: LQN messaging.

ea1

taskA

Asynchronous call

eb1

taskB

ea1

taskA

Synchronous call

eb1

taskB

ea1

taskA

Sequence of synchronous calls

eb1

taskB

ec1

taskC

ea1

taskA

Synchronous call
with forwarding

eb1

taskB

ec1

taskC

eb2

 4

1.3. Solving

LQNs can be solved either using either the Layered Queueing Network Solver (LQNS) or the

Layered Queueing Simulator (LQSim).

LQNS is an analytic solver developed at Carleton University by Greg Franks as part of his

Ph.D. research [1]. LQNS breaks the LQN layers down into separate queueing network sub-mod-

Client

Forwarding
Call

Asynchronous
Call

Server

Client

Server

Client

Server1

Server2

t

t

t

t

t

t

t

Synchronous
Call

Synchronous
Call

Reply

Reply

t = x

t = y

t = z

t = x

t = x

t = z

Figure 3: Time semantics of LQN asynchronous, synchronous, and forwarded
calls.

 5

els. The individual queueing networks can be solved analytically using mean value analysis

(MVA). The MVA results for each sub-model are then used to the parameters for the other sub-

models it is connected to and the MVA is performed anew. This process is repeated either for a

maximum number of iterations or until the results converge on a convergence value specified by

the user.

LQSim uses the ParaSol simulation environment. ParaSol can simulate multithreaded systems

that support transactions and provides built-in statistics for monitoring simulation objects [2][3].

LQNs are simulated by creating tokens for each call and following those tokens through the sys-

tem. The performance metrics are arrived at by recording the wait times and other statistics for

each token. LQSim requires large number of runs in order to gather statistically meaningful data.

This makes LQSim appreciably slower than LQNS and requires long simulations in order to gen-

erate accurate results.

Both LQNS and LQSim generate results that show entry average service times, average wait-

ing time, throughput, and utilization, as well as processor throughput and utilization.

2. LQN Simulation Library for DEVS

2.1. Requirements

The LQN simulation library must support the LQN notation as well as provide as much of the

functionality of the LQSim simulator.

From a notation standpoint, the minimum the DEVS LQN library must represent are:

• tasks

• entries

• phases

• processors

Additionally, the library might also represent:

• disks

• activities

From a simulation standpoint, the DEVS LQN library should provide:

 6

• entry average service time, throughput, utilization

• phase average service time

• processor throughput, utilization

• queue average waiting time, average queue length (this is not provided in the existing LQN

solver and simulator and although it can be calculated, it would be desirable to provide it

outright)

2.2. Design

The main design issues for the DEVS LQN simulation library involved deciding which LQN

elements to include and which elements or artifacts to model as DEVS atomic models and which

ones to model as DEVS coupled models.

It was decided that processors, tasks, entries and phases needed to be included in the library.

Activities were left out of the initial version of the library since they are optional in the LQN nota-

tion and including them right away raised too many integration issues with respect to entries and

phases.

LQN elements have queues that are implicitly supported by LQNS and LQSim. Unfortunately

no implicit support for queueing was found in the DEVS environment so queues had to be incor-

porated explicitly into the LQN library. Since queues behave the same way for software or hard-

ware elements, a decision was made to implement the queue as a separate atomic model.

LQN calls are made using entry names to identify the call target. Unfortunately no port

addressing mechanism was found for DEVS so a mechanism was needed to deal with the direct-

ing the calls. The solution was to implement a DEVS version of a multiplexer and demultiplexer

to either aggregate calls into a given queue (either for an entry or a processor) or to distribute calls

from an entry to other entries.

 7

The resulting model design for the LQN library is given in Table 1 below.

LQN aspect or
element

DEVS atomic
model

DEVS coupled
model Functionality

Processor Processor • receives call
• executes it for the specified amount of

time
• replies when done
• calculates utilization and throughput

Processor • combines multiplexer, queue, and atomic
processor for full LQN processor func-
tionality

Entry Entry • receives call
• executes the associated workloads (phase

1 and phase 2 processing, server calls)
• replies when done
• phase 1 and phase 2 processor demands

must be initialized through the initproc
port prior to executing the entry

• phase 1 and phase 2 server calls must be
initialized through the initserv port prior
to executing the entry

Entry • combines multiplexer, queue, atomic
entry, and demultiplexer for full LQN
entry functionality

implied queue Queue • adds call to queue
• sends first element in queue to attached

processor or entry if it becomes idle
• sends reply back up to the call source

aggregating
calls from mul-
tiple sources

Multiplexer • aggregates calls from multiple input ports
and sends them out the single output port

• adds a message with the input port index
• sends reply from the reply port at the “out-

put end” to the appropriate response port
at the “input end”

distributing
calls to differ-
ent entries

Demultiplexer • distributes calls from the single input port
and sends them out the appropriate output
port

• sends reply from the reply port at the “out-
put end” to the single response port at the
“input end”

task Task • composed of multiple entries

Table 1: DEVS models for the LQN simulation library.

 8

2.2.1. Messaging

LQN messages can be thought of as having a source field denoting the entity making the call,

a destination or target field denoting the entry for which the call is destined, and a demand field

denoting the workload associated with the call, although any of these fields can be optional.

DEVS messaging only provides one variable field per message, therefore it was necessary to

sometimes send and receive multiple messages in order to have the same functionality as LQN

messages. Table 2 shows the messages sent between atomic models in the DEVS LQN simula-

tion library, how they are ordered and how they should be interpreted.

disk Processor • approximates disk using the same func-
tionality as a processor

activity not represented not represented

Sender (port) Receiver (port) LQN Equivalent
Message

DEVS Messages
(in order) Interpretation

Processor
(reply)

Queue
(response)

done • reply • notify the source
entry that the process-
ing is done, the mes-
sage value represents
the actual processing
time in ms

Processor
(ready)

Queue (ready) done • ready • ready for another job,
the message value is
irrelevant

Processor
(throughput)

throughput • throughput • the message value
represents the proces-
sor throughput in
number of jobs per ms

Processor
(utilization)

utilization • utilization • the message value
represents the frac-
tion/percentage of
time that the proces-
sor has been busy

Table 2: DEVS LQN simulation library messages.

LQN aspect or
element

DEVS atomic
model

DEVS coupled
model Functionality

Table 1: DEVS models for the LQN simulation library.

 9

Entry (proccall) Multiplexer
(in[0...9])

processor call • processor service
demand

• the message value
represents the proces-
sor demand in ms

Entry (servcall) Demultiplexer
(in)

service call • service call • the message value
represents the index
of the target server

Entry
(avservtime)

average entry ser-
vice time

• average entry ser-
vice time

• the message value
represents the average
entry service time in
ms

Entry
(avph1time)

average phase1
service time

• average phase 1
service time

• the message value
represents the average
phase 1 service time
in ms

Entry
(avph2time)

average phase2
service time

• average phase 2
service time

• the message value
represents the average
phase 2 service time
in ms

Entry
(throughput)

throughput • throughput • the message value
represents the entry
throughput in number
of jobs per ms

Entry
(utilization)

utilization • utilization • the message value
represents the frac-
tion/percentage of
time that the entry has
been busy

Queue (out) Processor (in) processor call • processor service
demand

• the message value
represents the service
demand in ms

Queue (out) Entry (in) service call • service call • service call, the mes-
sage value is irrele-
vant

Queue (reply) Multiplexer
(response)

reply • reply • the message value
represents the index
of the source that
must be replied to

Sender (port) Receiver (port) LQN Equivalent
Message

DEVS Messages
(in order) Interpretation

Table 2: DEVS LQN simulation library messages.

 10

Queue
(averagesize)

• average queue
size

• the message value
represents the average
number of elements in
the queue at the time
the message was sent

Queue
(averagewait)

• average queueing
wait

• the message value
represents the average
number of millisec-
onds a message spent
in the queue at the
time the message was
sent

Multiplexer
(out)

Queue (in) service call • source of service
call

• service call
demand

• the message value
represents the index
of the call source

• if attached to a pro-
cessor then the mes-
sage value represents
the processor service
demand in ms, other-
wise the message is
irrelevant

Multiplexer
(reply[0...9])

Demultiplexer
(resp[0...9])

reply • reply • reply, the message
value is irrelevant

Demultiplexer
(out[0...9])

Multiplexer
(in[0...9])

service call • service call • service call, if
attached to a proces-
sor then the message
value represents the
processor service
demand in ms, other-
wise the message
value is irrelevant

Demultiplexer
(reply)

Entry
(response)

reply • reply • reply, the message
value represents the
index of the call target
returning the reply

Sender (port) Receiver (port) LQN Equivalent
Message

DEVS Messages
(in order) Interpretation

Table 2: DEVS LQN simulation library messages.

 11

2.2.2. Messaging Alternative Design

An alternative approach to allow DEVS messages with three variable fields was attempted at

an earlier stage of the project. The event.h, message.h, model.h, process.h, and root.h DEVS files

were modified to add the additional message fields. The lqn*.h and lqn*.cpp files made use of the

additional messaging fields.

It was possible to compile all these files individually without a problem, but this approach

broke down when it came to linking. Unfortunately the DEVS distribution does not include all

the code necessary to recompile every all the object files and the libsimu.a library and some of

those legacy objects were found not to be compatible with the expanded message format. The

files for this alternative approach can be found in the devslqn-altmsg.zip file.

2.3. DEVS Atomic Model Behaviour

Figure 4 through Figure 8 show the FSM for the DEVS atomic models listed in Table 1.

Entry (initproc) • phase number

• processor demand

• the message value
represents the phase
number to initialize

• the message value
represents the proces-
sor demand in ms

Entry (initserv) • phase number

• calls

• call target

• the message value
represents the phase
number to initialize

• the message value
represents the num-
ber of calls to make to
the target server

• the message value
represents the index
of the target server

Sender (port) Receiver (port) LQN Equivalent
Message

DEVS Messages
(in order) Interpretation

Table 2: DEVS LQN simulation library messages.

 12

in[0...9] /
send on out port

response /
send on specified reply port

gather
messages

Figure 4: FSM for the message multiplexer atomic model.

Figure 5: FSM for the message demultiplexer atomic model.

in /
send on specified out port

response[0...9] /
send on reply port

distribute
messages

 13

true /
send first element on out port,

send average size,
send average w ait

false /

ready /

in /
add to end of queue

in /
add to end of queue

in /
send first element on out port,

send average size,
send average w ait

response /
send on reply port

ready to
process

wait for
response

wait for
ready

c check i f
queue has elements

Figure 6: FSM for the queue atomic model.

 14

in / set hold time

hold timeout /
send reply, send done,

send utilization,
send throughput

idle busy

Figure 7: FSM for the processor atomic model.

 15

2.4. DEVS Atomic Model Structure

Figure 9 through Figure 13 show the structure of the DEVS atomic models listed in Table 1

using a ROOM actor notation.

servrtn /

procrtn /

true /
send on proccall port

servrtn /

false /
send ready,

send average entry service time,
send average phase 1 service time,
send average phase 2 service time,

send throughput,
send utilization

true /
send on servcall port

false /

false /
send reply

true /
send on

servcall port

procrtn /

false /

true /
send on proccall port

in /

initserv /
add call statement

initproc /
assign w orkload to phase

ready to
process

wait for
phase 2

processing

wait for
phase 1

processing

wait for
phase 1

service calls

wait for
phase 2

service calls

check for
phase 1

processing

check for
phase 1

calls

check for
phase 2

processing

check for
phase 2

calls

Figure 8: FSM for the entry atomic model.

 16

Figure 9: ROOM structure for the message multiplexer atomic model.

gather

response

in0

reply0

reply1

reply2

reply3

reply4

reply5

reply6

reply7

reply8

reply9

out

in1

in2

in3

in4

in5

in6

in7

in8

in9

distribute

in

response0

out0

out1

out2

out3

out4

out5

out6

out7

out8

out9

reply

response1

response2

response3

response4

response5

response6

response7

response8

response9

Figure 10: ROOM structure for the message demultiplexer atomic model.

 17

Figure 11: ROOM structure for the queue atomic model.

queue

in

response

ready

out

reply

averagesize

averagew ait

Figure 12: ROOM structure for the processor atomic model.

processor

in reply

ready

throughput

utilization

Figure 13: ROOM structure for the entry atomic model.

entry

in

initproc

initserv

procrtn

servrtn

proccall

servcall

reply

ready

avservtime

avph1time

avph2time

throughput

utilization

 18

2.5. DEVS Atomic Model Structure

Figure 14 and Figure 15 show the structure, using ROOM actor notation, of the DEVS cou-

pled models for LQN processors and entries incorporating queues and message routing multiplex-

ers/demultiplexers. It is these coupled models that fully represent LQN processors and entries.

processor

in ready throughput

utilization

queue

in

readyout

reply averagesize

averagew ait

reply

response

gather

response

reply0
in0 in1 in2

out

in3 in4 in5 in6 in7 in8 in9 reply1
reply2

reply3
reply4

reply5
reply6

reply7
reply8

reply9

in0 in1 in2 in3 in4 in5 in6 in7 in8 in9
reply0

reply1
reply2

reply3
reply4

reply5
reply6

reply7
reply8

reply9

Figure 14: ROOM structure for the LQN processor coupled model.

 19

entry

ininitproc
initserv

procrtn servrtn
proccall servcall

ready avservtime

avph1time

avph2time

throughput

utilization

queue

in

readyout

reply averagesize

averagew ait

reply

response

distribute

in

resp0
out0 out1 out2

reply

out3 out4 out5 out6 out7 out8 out9 resp1
resp2

resp3
resp4

resp5
resp6

resp7
resp8

resp9

gather

response

reply0
in0 in1 in2

out

in3 in4 in5 in6 in7 in8 in9 reply1
reply2

reply3
reply4

reply5
reply6

reply7
reply8

reply9

out0 out1 out2 out3 out4 out5 out6 out7 out8 out9
resp0

resp1
resp2

resp3
resp4

resp5
resp6

resp7
resp8

resp9

in0 in1 in2 in3 in4 in5 in6 in7 in8 in9
reply0

reply1
reply2

reply3
reply4

reply5
reply6

reply7
reply8

reply9

proccall
procrtn

initserv
initproc

Figure 15: ROOM structure for the
LQN entry coupled model.

 20

2.6. Implementation

Table 3 lists the new files that were created for the implementation of the DEVS LQN simula-

tion library.

File Contents

lqndefs.h • common definitions for all the LQN files
• defines constants and types used by the other files

lqndistribute.h • header file for the message demultiplexer atomic model
• declaration of class LqnDistribute

lqndistribute.cpp • implementation file for the message demultiplexer atomic model
• implementation of class LqnDistribute

lqnentry.h • header file for the entry atomic model
• declaration of class LqnEntry

lqnentry.cpp • implementation file for the entry atomic model
• implementation of class LqnEntry

lqngather.h • header file for the message multiplexer atomic model
• declaration of class LqnGather

lqngather.cpp • implementation file for the message multiplexer atomic model
• implementation of class LqnGather

lqnmath.h • header file for the mathematical methods used by the LqnEntry and Lqn-
Processor classes

• based on randlib.h with the addition of the roundlqn method to round a
double value to the nearest whole number

• required for linking with the C++ compiled LQN object files as the
linker does not recognize the C compiled methods from randlib.o

lqnmath.cpp • implementation file for the mathematical methods used by the LqnEntry
and LqnProcessor classes

• based on randlib.c with the addition of the roundlqn method to round a
double value to the nearest whole number

• removed sources of warnings when using the C++ compiler rather than
the C compiler used for randlib.c

• required for linking with the C++ compiled LQN object files as the
linker does not recognize the C compiled methods from randlib.o

lqnprocessor.h • header file for the processor atomic model
• declaration of class LqnProcessor

lqnprocessor.cpp • implementation file for the processor atomic model
• implementation of class LqnProcessor

lqnqueue.h • header file for the queue atomic model
• declaration of class LqnQueue

 21

The file time.h was also modified with the addition of:

• a Time constructor that uses a double milliseconds argument

• a fromMsec method that creates a Time value from a double milliseconds argument

• an overloaded = operator that assigns a Time value from a float milliseconds value

• an overloaded = operator that assigns a Time value from a double milliseconds value

Additionally, register.cpp was modified to register atomic models for the LqnDistribute,

LqnEntry, LqnGather, LqnProcessor and LqnQueue classes.

2.7. Test Cases

The DEVS LQN library was tested using the tests listed in Table 4 below.

lqnqueue.cpp • implementation file for the queue atomic model
• implementation of class LqnQueue

Test Purpose Observations Files

lqndistribute unit test of the
LqnDistribute atomic
model

• model performed as expected
• in messages distributed to the

correct out ports
• error messages generated when

using index outside the allowed
0 to 9 range

• all replies received and sent up

• lqndistribute.bat
• lqndistribute.ev
• lqndistribute.ma
• lqndistribute.log

lqnentry unit test of the LqnEntry
atomic model

• model performed as expected
• correct number of calls gener-

ated
• inputs when busy ignored
• performance results make sense

• lqnentry.bat
• lqnentry.ev
• lqnentry.ma
• lqnentry.log

Table 4: DEVS LQN library tests.

File Contents

Table 3: New files created for the DEVS LQN simulation library.

 22

lqngather unit test of the
LqnGather atomic model

• model performed as expected
• in messages gathered and sent to

the out port
• response received and sent to the

correct reply ports
• error messages generated when

using index outside the allowed
0 to 9 range

• lqngather.bat
• lqngather.ev
• lqngather.ma
• lqngather.log

lqnprocessor unit test of the
LqnProcessor atomic
model

• model performed as expected
• processor was busy for the cor-

rect amount of time
• arrivals when busy were ignored
• throughput and utilization results

make sense

• lqnprocessor.bat
• lqnprocessor.ev
• lqnprocessor.ma
• lqnprocessor.

lqnqueue unit test of the
LqnQueue atomic model

• model performed as expected
• elements queued and dequeued

properly
• size and wait results make sense

• lqnqueue.bat
• lqnqueue.ev
• lqnqueue.ma
• lqnqueue.log

lqn1 test of processor coupled
model

• model performed as expected
• handled extremely small and

extremely large numbers
• performance results make sense

• lqn1.bat
• lqn1.ev
• lqn1.ma
• lqn1.log

lqn2 test of atomic LqnEntry
running on processor
coupled model

• model performed as expected
• performance results make sense

• lqn2.bat
• lqn2.ev
• lqn2.ma
• lqn2.log

lqn3 test of entry coupled
model and processor
couple model

• model performed as expected
• performance results make sense

• lqn3.bat
• lqn3.ev
• lqn3.ma
• lqn3.log

lqn4 test of two layer model
with two entries, top
layer entry makes 100
calls to the lower layer
entry

• model performed as expected
• performance results make sense

• lqn4.bat
• lqn4.ev
• lqn4.ma
• lqn4.log

Test Purpose Observations Files

Table 4: DEVS LQN library tests.

 23

In order to test that the equations used to calculate the average performance metrics are cor-

rect, a copy of the library was put in the norandom directory and was modified not to use random

numbers for processor or service calls. Inspecting the log files resulting from running the tests in

Table 4 showed that the service time averages remained constant through the length of a run,

thereby showing that the calculations are indeed correct.

2.8. Observations

The following observations were made while working on this project:

• the DEVS distribution does not contain enough source code to customize the environment

(there the attempt to add more fields to DEVS messages ultimately did not link and thus did

not work)

• there are errors and inconsistencies in the DEVS parser for .ma files, all comments had to be

removed from the .ma files since their presence caused simulation errors in some instances

• there did not seem to be any kind of recognizable pattern of when or why these errors

occurred

• there is an error in the fmod function supplied with the Cygwin include libraries, in some cases

fmod 1 returns a remainder of 1 instead of when applied to an integer number

• this can be tested by running the fmodtest(.exe) program that was created for this project

• this error was compensated for in the roundlqn method implemented in lqnmath.cpp

lqn5 test of three layer model
with three entries, top
layer entry makes 10
calls to middle layer
entry which makes 10
calls to the lower level
entry

• model performed as expected
• performance results make sense

• lqn5.bat
• lqn5.ev
• lqn5.ma
• lqn5.log

lqn6 test of two layer model
with three entries, top
layer entry makes a call
to the first lower layer
entry and then to the
other lower layer entry

• model performed as expected
• performance results make sense

• lqn6.bat
• lqn6.ev
• lqn6.ma
• lqn6.log

Test Purpose Observations Files

Table 4: DEVS LQN library tests.

 24

• the random number generating routines in randlib.c, and by extension in lqnmath.cpp, do not

truly generate random numbers since the random numbers generate are the same during every

run of a particular test

• furthermore, the genexp and genexplqn methods generate exponentially distributed numbers

with an ever increasing mean, this was observable in the performance metrics over long runs

• the makeFrom(float milliseconds) method in time.h actually generates time values in seconds

not milliseconds

• the fromMsec(double msec) method was added to remedy this failing

• there is a danger in overwriting or losing incoming messages during a DEVS simulation when

using active state hold times of zero

• this can create a conflict in the LQN model when multiple messages arrive at the same

time and one of them is overwritten

3. Conclusions

The DEVS LQN simulation library provides a reasonable starting point for simulating simple

LQN performance models in the DEVS environment. The weaknesses in the random number

generation, as well as the inability to deal at a smaller level of time granularity than milliseconds

make this library unsuitable for extensive performance modeling.

Additional work should also be undertaken to add support for asynchronous and forwarding

calls to the library - the current version uses only synchronous calls. As well, it is necessary to

protect the library classes from the potential for message loss if multiple messages arrive at the

same time. Eventually the LQN library should also include support for activities, although this

will probably necessitate a redesign of the whole library.

Finally, this project proved to be an extremely interesting capstone to the advance simulation

course, although it may have been too ambitious for a single person.

References

[1] Greg Franks, “Performance Analysis of Distributed Server Systems”, Report OCIEE-00-01,

Ph.D. thesis, Carleton University, Ottawa, Jan. 2000

 25

[2] E. Mascarenhas, “A System for Multithreaded Parallel Simulation and Computation with

Migrant Threads and Objects”, Ph.D. Thesis, Department of Computer Sciences, Purdue

University, West Lafayette, USA, 1996

[3] E. Mascarenhas, F. Knop, and V. Rego, “ParaSol: A Multithreaded System for Parallel

Simulation Based on Mobile Threads”, Winter Simulation Conference, 1995

[4] J.E. Neilson, C.M. Woodside, D.C. Petriu and S. Majumdar, “Software Bottlenecking in

Client-Server Systems and Rendez-vous Networks”, IEEE Trans. On Software Engineer-

ing, Vol. 21, No. 9, pp. 776-782, September 1995

[5] J. A. Rolia, K. C. Sevcik, “The Method of Layers”, IEEE Transactions on Software Engi-

neering, Vol. 21, No. 8, 1995, pp. 682-688

[6] C. M. Woodside, “Throughput Calculation for Basic Stochastic Rendezvous Networks”,

Performance Evaluation, Vol. 9, No. 2, Apr 1988, pp. 143-160

[7] C. M. Woodside, J. E. Neilson, D. C. Petriu and S. Majumdar, “The Stochastic Rendezvous

Network Model for Performance of Synchronous Client-Server-Like Distributed Software”,

IEEE Transactions on Computers, Vol. 44, No. 1, Jan 1995, pp. 20-34

[8] C. M. Woodside, S. Majumdar, J. E. Neilson, D. C. Petriu, J. A. Rolia, A. Hubbard and R.

B. Franks, “A Guide to Performance Modeling of Distributed Client-Server Software Sys-

tems with Layered Queueing Networks”, Department of Systems and Computer Engineer-

ing, Carleton University, Ottawa, Canada, Nov 1995

 26

APPENDIX A - Cygwin Installation for DEVS

This appendix describes the steps required to install the Cygwin environment in such a way as

to be able to compile the DEVS package.

The current distribution version of Cygwin comes with the gcc 3.2 compiler and libraries.

This version of gcc is not compatible with the DEVS code and/or makefile which is meant to

work with gcc 2.95. Although the Cygwin distribution can be donwloaded with the gcc 2.95 com-

piler (accessed as gcc2 or g++2) and also includes the gcc 2.95 libraries, but apparently not a gcc

2.95 linker and loader, the installation scripts do not set gcc 2.95 up in such a way that it can be

used as the default compilation environment out of the box.

One solution would be to modify the DEVS makefile to make use of the gcc 2.95 compiler

and libraries that come with the Cygwin distribution. Another possibility would be to migrate the

DEVS code to gcc 3.2. Unfortunately both of these solutions require more in-depth compilation

and configuration knowledge than the average student possesses.

The compilation solution used for this project makes use of both the current Cygwin distribu-

tion for its installation scripts and the Cygwin version available on the SCE network for its gcc

2.95 compiler, linker, loader and libraries. Please note that all of the following steps should be

followed. Simply copying the Cygwin version from the SCE network does not work because it

will not set up all the necessary paths and system variables in Windows. The installation scripts

that come with the Cygwin distribution from the Cygwin site do set up those paths and variables.

The installation steps used were the following:

• download the Cygwin distribution from www.cygwin.com

• select whatever options you wish, but make sure that gcc, bison, tar and post-installation

scripts are selected

• install the Cygwin distribution

• tar and gzip the Cygwin environment from the SCE network (DO NOT use any Windows zip

programs to do this, they do not preserve Cygwin/UNIX symbolic links)

• tar -cvf cygwin.tar /*

• gzip cygwin.tar

 27

• copy the resulting cygwin.tar.gz file into the Cygwin root directory

• unzip and untar the cygwin.tar.gz file

• gunzip cygwin.tar.gz

• tar -xvf cygwin.tar

This process will overwrite some of the Cygwin files and directories installed by the Cygwin

distribution installation program with their older counterparts from the SCE network. The result-

ing Cygwin hybrid installation should now work with the DEVS code. (N.B.: The cygwin1.dll

file should be deleted from whatever directory DEVS is installed in before attempting to com-

pile.)

