

SYSC 5104- Methodologies for Discrete-Event Modeling and
Simulation - Fall 2004

Modeling Battlefield Using Cell-DEVS

Rami T. M. Madhoun (100667489)

Introduction

The objective of this work is to model the behavior and interaction between fighters in a land
battlefield. The basic ideas of the model are based on the work of Lim Yew Kia, Jeffrey
(http://staff.science.nus.edu/~parwani/project1/jeff.html) where they described different factors
that affect the fighter behavior in a battlefield. However, some assumptions and simplifications
were made to limit this model within the required scope. The following points elaborate on the
assumptions made about the battlefield:

• The fighter can be in any of the following states: Alive, Injured, Dead.
• The battlefield is two dimensional, i.e. we are only concerned with the land part of the

fight excluding any missile or airplane engagement.
• The situation awareness of the fighter is limited to his immediate neighborhood excluding

any advanced telecommunication equipment used.
• The battlefield contains two armies; each is trying to attack the other’s flag.

Figure 1: A red fighter surrounded by blue fighters (Van Neumann neighborhood)

State-Change Rules:

• If a fighter is in state Alive, and is attacked by one enemy, its state changes to Injured.
• If the fighter is in state Alive, and is attacked by two or more enemies, its state changes to

Dead.
• If a fighter in state Injured, and is attacked by one or more enemies, its state changes to

Dead.
• If a fighter in a state Injured is not attacked for a time T, its state changes to Alive.
• When the fighter becomes Dead, its cell becomes free and can be occupied by any other

fighter.

Rules of Engagement:

• In general, the fighter tends to move towards the enemy’s flag. His movement is directed
by the coordinates of the enemy’s flag position which is assumed to be provided to him.

• If the fighter is neighbored by one enemy, it engages in a fight. The result of this fight has
a probabilistic nature since either one can be injured/ killed.

• If an enemy fighter became the neighbor of the flag and there is no friend fighter close
by, the flag is taken.

 2

http://staff.science.nus.edu/~parwani/project1/jeff.html

Formal Specification of the Coupled Model

(-1,0)

(0,-1) (0,0) (0, 1)

 (1,0)

Figure 2: Neighborhood definition

M = < Xlist, Ylist, I, X, Y, η, N, {r, c}, C, B, Z, select >

Xlist = {Ф}
Ylist = {Ф}
I = <Px, Py> Px={Ф} , Py ={Ф}
X = Ф
Y = Ф
η = 5
N = {(0,-1), (0,0), (0,1),(-1,0),(1,0)}
r= 10
c = 10

S= {-2.-1.0,1, 2}
B = Ф (wrapped)
C = {Cij / i ε [0,9], j ε [0,9] }
Pij

Y1 Pi,j+1
X1 Pi,j

X1 Pi,j-1
Y1

Pij
Y2 Pi+1,j

X2 Pi-1,j
X2 Pi-1,j

Y2
Pij

Y3 Pi,j-1
X3 Pi,j+1

X3 Pi,j+1
Y3

PijY4 Pi-1,j
X4 Pi+1,j

X4 Pi+1,j
Y4

PijY5 Pi,j
X5 Pi,j

X5 Pij
Y5

SELECT = {(0,-1),(-1,0),(0,0), (0,1), (1,0)}

 3

Rule Implementation Details

In order to implement the previous model, different information need to be stored. This
information can be described as follows:

• Fighter State

The state of the fighter whether he is dead, injured, or alive is stored in layer 0 as follows:

State Description
2 Fighter of army A alive
1 Fighter of army A injured
0 Fighter is dead and cell is empty
-1 Fighter of army B injured
-2 Fighter of army B alive

Table 1: Layer 0 Information

• Fighting ability

When two or more fighters engage in a fight, the factor determining the outcome of this fight
is the fighting ability factor for each one which is represented as a number ranging from 0.0
to 1.0 with 0.0 means that the soldier is dead and 1.0 full fighting ability. In addition, the
fighter will be have some effect on the enemy only if his fighting ability is greater than 0.5.

The following table shows how the fighting ability is assigned to each fighter:

State Fighting Ability
2 Uniformly distributed number between 0.45 1.0
1 Uniformly distributed number between 0.0 0.55
0 Fighter is dead and cell is empty 0.0
-1 Uniformly distributed number between 0.0 0.55
-2 Uniformly distributed number between 0.45 1.0

Table 2: Layer 1 Information

• Flag Position

In order to direct each fighter towards the enemy’s flag, he needs to know the coordinates of
the enemy’s flag position. This information is stored in two layers (layer 2 storing B’s flag
position, and layer 3 storing A’s flag position).

The following format is used to store both the row and column values in one number:

Row + Column/100 (ex. (row=2, column=4) 2.04)

 4

• Moving Direction

The moving direction layer contains the direction for each fighter in order to reach the
enemy’s flag. A unique number is assigned for each direction as follows:

10

40 20

Figure 3: Direction codes

30

Direction Value
North 10
East 20
South 30
West 40

Table 3: Layer 4 Information

• Moving Factor

This factor represents the fighter ability for the soldier in order to successfully move to a free
cell. The values use the same format as the fighting ability factor in layer 1.

• Fighting Rule Implementation

The fighter will engage in a fight if he is surrounded by one or more enemy fighter. The
following diagram explains this behavior:

Layer 0: Fighter Position Layer 1: Fighting Ability

Figure 4: Fighting rule implementation

 2 0.88

 -2 0.74 -1 2 0.4 0.6

 2 0.95

 5

In the previous diagram, the following points are noted:

• Fighter -2 is surrounded by three enemy fighters and one friend fighter
• Two of the enemy fighters have more fighting ability than (-2), these are the ones which

will be successful in attacking -2.
• The fighter -1 was injured and not attacked by anyone for a while, so he goes to state

alive again -2.
• One of the enemy fighters has a lower fighting ability than -2, this one will be attacked by

-2.

The outcome of the previous alignment is as follows

 2 0.98

 0 0.0 -2 1 0.87 0.32

 2 0.85

Figure 5: Fighting rule result

Movement Rule Implementation

This rule is implemented through layers 4 and 5. Layer 4 will have the directions for each
fighter to get closer to the enemy’s flag and layer 5 will have the moving factor for each
empty cell.

• Direction calculation

The direction layer (layer 4) is generated as follows:

• The current cell coordinates are compared with the enemy’s flag position (from layer 2 or

3).
• If the cell is in the same row as the enemy’s flag, the direction will be to the right or left

depending on the flag position
• If the cell in the same column as the enemy’s flag, the direction will be up or downs

depending on the flag position.
• If the cell is not in the same row or column as the enemy’s flag, a random selection

between up/down or right/left will be performed.

 6

• Moving factor calculation

When a fighter is not surrounded by any enemy fighter, he tends to move towards the
enemy’s flag. However, to avoid any conflicts when more than one fighter wants to move to
the same free cell, each free cell will have a moving factor associated with it. The moving
factor is the largest fighting ability of the four surrounding fighters. The following figure
explains this idea:

 2 0.98

 0 0.0 -2 1 0.87 0.32

 0.98

 2 0.85

Layer 0: Fighter positions Layer 1: Fighting ability Layer 5: Moving factor

Figure 6: Calculating the moving factor of a free cell

So, if the fighting ability of the fighter wishing to move to the free cell is larger than or equal
to the movement factor of that cell, he will be allowed to move and the value of his original
cell becomes zero.

Testing strategy

The testing strategy followed, is testing each of the previous rules alone by injecting an input
situation that will only trigger that particular rule. After that, testing the model with a
scenario that triggers all the rules to check the correctness of the model.

• Testing the Fighting Rule

 To test the fighting rule, the following arrangement was used.

 7

Figure 7: Fighting rule scenario

After executing the file battle1.bat and observing the engagement of the fighters, the correct
behavior of the rule was verified.

Figure 8: Fighting rule outcome

 8

• Testing the Movement Rules

The following arrangement was used to test the movement of fighters towards the enemy’s
flag.

Figure 9: Movement rule scenario

After executing the file battle2.bat, and observing the movement of different fighters, the
correct behavior of the rule was proved as shown in the following figure.

Figure 10: Movement scenario outcome

 9

• Testing the behavior of injured soldiers
The initial allocation of injured soldiers was as follows:

Figure 11: Injured soldier scenario

After executing the battle3.bat file, the following allocation was generated, which proves the
correct behavior of the injured soldiers rule.

Figure 12: Injured soldiers scenario outcome

 10

• Testing the Overall Behavior of the Model

To test the overall behavior of the model, a scenario involving all the rules was used. But the
result seemed to be incorrect when the rules are activated together. After testing different
scenarios, I came to a conclusion that the reason for this inconsistency is that the fighting
ability rule is evaluated and delayed (for the value of transport delay). And because the
fighting ability factor is a key in evaluating most of the other rules, this created an
inconsistent behavior of the model. So, the following steps were performed:

• Evaluating the fighting ability rule with zero delay but this created some instability in the

model and generated “Unknown Exception” error.
• Decreasing the delay for the fighting ability rule to a very small value. But this made the

execution of the model extremely slow.
• The last step was to use 50 time units delay for the fighting rule and 100 for the other

rules. In addition, the delay type was changed from transport to inertial. More correct
behavior was detected after performing this step.

The following scenario was used to test the overall behavior of the model.

Figure 13: General fighting scenario

 11

After executing the file battle4.bat, the result was as follows:

Figure 14: General fighting scenario outcome

3D Visualization of the Model Execution

The results of the model execution were visualized using the VRML 3D visualization tool.
The following figures show the result for different scenarios.

 12

Figure 15: Visualizing the movement rule behavior

Figure 16: Visualizing the general fighting scenario

 13

