
Modelling Complex Warfare: Cell-DEVS Battlefield Simulation 2 (CBS2)

Erik Esselaar

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive
Ottawa, ON, K1S 5B6, Canada

esselaar@sce.carleton.ca

ABSTRACT: The Discrete Event Systems Formalism (DEVS) has been used for a myriad of different applications,
ranging from prediction of natural biological and physical phenomenon to modelling complex systems such as
power plants. In this paper, we describe how past efforts in modelling land warfare have been extended to include
complex warfare, where battle between multiple opponents has been modelled. The approach uses Cellular Auto-
mata (CA) to model a two-dimensional battlefield, with up to four “Sides” that could be in conflict. The implementa-
tion of this model took advantage of the extensions offered in the Parallel Cell-DEVS Toolkit (PCD++), including
multiple state variables for each Cell, as well as multiple input and output ports for each Cell. Simulation results
and recommendations for future development are given to highlight the potential future benefit that CA offer to war-
fare modelling.

Keywords: DEVS, Cell-DEVS, CD++, PCD++, Cellular Automata, CA, Battle, Warfare, Defence

1. Introduction

Land warfare modelling has been an area of interest of
armed forces, businesses and academia worldwide,
whether for training, future capabilities development,
or a myriad of other applications.

Cellular Automata (CA) have a number of
characteristics that lend well to the modelling of
combat. Most notably, the ability to deconstruct a
complex problem into manageable cells that have a
limited area of influence (and hence neighbourhood of
influence). The scalability of CA, and the ability to
parallelize CA across multiple processors are other
features that have immense potential benefit to military
applications.

This work focuses on modelling land warfare with the
Cell-DEVS Formalism, most notably taking advantage
of the latest extensions offered in the Parallel Cell-
DEVS Toolkit (PCD++, Version 3).

This paper focuses on the extensions done to R.
Madhoun’s work, summarized in [5], and does not
evaluate other modelling methods for land warfare
modelling. Since this study is interested in entity
relationships, it assumes a relatively simplified
battlefield, without the need to model environmental or
detailed physical effects.

This work culminated in a comparison between
execution of Madhoun’s model, and a similar scenario
in this new implementation. As expected, the new
implementation performed slightly slower than the
previous one. However this slight loss in speed came
with greatly increased flexibility in the ability to model
more complex warfare situations. The power of this

model was shown in a 4-Side combat scenario, with all
Sides battling for the same objective.

This paper takes a Practitioner’s perspective, as in it
describes in detail lessons learned in the construct of
the models herein, as well as the testing, execution and
analysis of them thereafter.

2. Background

2.1. Previous Work

Using Cellular Automata (CA) for modelling land
warfare increased only relatively recently, most
notably with the work documented by Ilachinski [1]
whose CA model, ISAAC, can be said to have paved
the way for future land warfare models using CA.
Other nations took note of Ilachinski’s work, and
evaluated CA for their own applications as well [2].

Layer 0: Fighter Status (FS)

Layer 1: Fighting Ability (FA)

Layer 2: Army B Flag Position

Layer 3: Army A Flag Position

Layer 4: Moving Directions (A & B)

Layer 5: Free-cell Move-in Factor (FMF)

Figure 1 - Previous Implementation
(adapted from [5])

Using work done to detail land warfare models in [3],
Madhoun modelled land warfare using the Cell-DEVS

1/12

mailto:esselaar@sce.carleton.ca
mailto:esselaar@sce.carleton.ca

Toolkit (CD++) [5]. This was done with a 6-layer, 3-
dimensional Cell-DEVS model, illustrated in Figure 1.

Madhoun took this work, and optimized it using the
extensions offered by the new Parallel Cell-DEVS
toolkit (PCD++, Version 3) [5]. Of note, he leveraged
multiple state variables (denoted in Figure 2 within
each cell, preceded by the ‘$’ sign) and multiple ports
for each cell (denoted below by the italicized arrows).

 battle

 $cf =
 $A_flag =
 $B_flag =

FS

target_flag

direction

FA

 battle

 $cf =
 $A_flag =
 $B_flag =

Figure 2 - Previous “Advanced” Implementation
(adapted from [5])

He was able to reduce the problem in complexity
significantly, optimizing a 6-layer/zone, 3-D Cell-
DEVS model into a 1-layer/zone, 2-D Cell-DEVS
model, capitalizing on the power of multiple ports and
state variables.

His performance comparison between the “new” and
“old” implementations showed that in this case, the
Cell-DEVS extensions significantly reduced simulation
execution time.

Madhoun’s new work also offered improvements to the
model, including an expanded battlefield
neighbourhood into a full 9-cell Moore’s
Neighbourhood. This meant that movement could be
beyond simple North-South-East-West movement into
four adjacent cells, but rather movement into all
surrounding 8 cells. Additionally, Madhoun
implemented an obstacle avoidance algorithm for
movement of entities.

These algorithms were retained in this implementation,
with some modification to incorporate the
improvements done herein. More details on this
implementation are discussed in Section 3.7 below.

2.2. Motivation

This work was motivated by modern warfare concepts,
whereby there are not traditionally only two enemies in
combat with one-another - there are multiple “Sides” in
a given conflict.

Inspiration was drawn from actual operations, and the
nature of modern warfare whereby there is rarely a
case of just one Side versus another, both outright
“enemies”. The notion of having multiple “Sides” in
operations exists, where some Sides will either be
Friendly, Hostile or Neutral towards another Side.

Additionally, while one side might feel one way to
another, the “feeling may not be mutual”.

Furthermore, this project sought out to generalize some
of concepts including seeking out multiple objective
types (not just a single Flag), the notion of health, and
healing.

Having the ability to represent these dynamics are well
within the capabilities of the Cell-DEVS formalism,
and were the focus of this work.

3. Models Defined

3.1. Model Overview

The model was named “Cell-DEVS Battlefield
Simulation 2” or CBS2. This is a tribute to the
pervasive Virtual Battle Space system in use by the
Canadian Forces, US DoD, and elsewhere worldwide,
named “VBS2”, for training, concept development and
many other military applications. The ‘2’ also signifies
that the model is a two-dimensional Cell-DEVS model.

The model consists of a two-dimensional 10 x 10 Cell-
DEVS space. Of note, the model was implemented
with PCD++, using multiple ports and multiple state
variables per cell.

This model can simulate anywhere from 0 to 4 Sides
who may (or may not) be hostile with one another.
There are four types of entities: Combatants, Bases,
Objectives and Obstacles. Combatants are given a
mission or orders to pursue either a Base or an
Objective, which may be the same as another Side.
Bases can be defendable, with their own “fighting
ability” or health, whereas Objectives can be taken
without challenge (similar to Flags in previous
implementations).

The sections below will give details on how this was
implemented with PCD++. The next section will guide
you through the general approach used in
implementing this system.

3.2. Implementation Approach

Much focus was put onto not having to modify the
model description file (.ma file), where changes to
various scenarios could be fed via the separate initial
cell value and state variable files (.val and .var
respectively). As such, the design of this model
imposed a slightly higher degree of attention required
to the format of the .val and .var files, in order for the
simulation to execute correctly.

In general, this development effort attempts to
generalize the work in [5], so that much more complex

2/12

conflicts can be simulated, generating more interesting
results.

As such, there is no longer a notion of Flags or Army A
and Army B, but rather Objectives and Bases, as well as
Sides.

Entities in the simulation are now given initial
missions / orders through the separate initial values and
state variables files (.val and .var respectively).

The final implementation resulted after some
significant trials that were later abandoned. The next
section quickly describes these trials, which may be a
source of future work and development.

3.2.1. Implementation Trials

Initially it was conceived that an entire relationships
table could be fed into the model dynamically (ie. a
different one, if desired) at the beginning of simulation
execution each time, and stored within a special layer/
zone.

The following Table 1, derived from [6] illustrates four
different Sides, each having a relationship with another
Side, either Friendly, Hostile or Neutral. The
relationship with one’s own Side will always be
Friendly. Of note, the complexity of having one side
being hostile to another, where this is not reciprocated
has been seen in operations, but has been inadequately
modelled in other simulations. In the table below, Side
2 is Neutral towards Side 3, however Side 3 is Hostile
towards Side 2, giving them to opportunity to “catch”
Side 2 unaware.

Side 1 Side 2 Side 3 Side 4

Side 1 1 Friendly 1 Friendly -1 Hostile 1 Friendly

Side 2 1 Friendly 1 Friendly 0 Neutral 1 Friendly

Side 3 -1 Hostile -1 Hostile 1 Friendly 0 Neutral

Side 4 1 Friendly -1 Hostile -1 Hostile 1 Friendly

Table 1 - Side-Side Relationships - adapted from [6]
(trial approach not fully implemented)

To represent these relationships, the above coding
schema was developed (ie. 1 = Friendly, -1 = Hostile
and 0 = Neutral), and values were to be stored in a
separate layer/zone in the model, within a third
dimension, and layer in Cell-DEVS.

This entire schema was abandoned in favour of a more
simplistic approach, due to the requirement to
significantly expand each cell’s neighbourhood in
order to connect a cell with the relationships data.

Since the rudimentary movement rules for this model
took into account only enemy entities, and not
collaboration with friendlies, or interaction with
neutral forces, a method for tracking relationships in
each cell was devised, as discussed below.

Before the rules and PCD++ code is described in
detail, a formal model specification is given.

3.3. Model Formal Specification

This model is formally specified using the Cell-DEVS
formalism, as described in [4] and [7].

3.3.1. Atomic Model Specification

López describes the expanded Cell-DEVS Formalism
in his thesis [4], showing how an atomic cell is
constructed with multiple ports and multiple state
variables. The multiple external input and output ports
(listed 1..k and 1..m in Figure 3, below) as well as
neighbourhood input and output ports with the n
neighbours is graphically depicted in Figure 3 as well.

Figure 3 - Structure of an Atomic Cell
(from [4])

As will be shown, there are no external input or output
ports, just neighbourhood ports which are used in this
model.

Formally, our atomic cells are described as follows
Mcbs =

<X, Y, I, S, θ, E, delay, d, δint, δext, τ, λ, D>, where

X = {∅};

Y = {∅};

I = <px, py>, where

 px = {plXk | l ∈ {fs, fa, cf, obj, direction, enA,
enB, enC ∧ k ∈ [1..9]};

 py = {plYk | l ∈ {fs, fa, cf, obj, direction, enA,
enB, enC ∧ k ∈ [1..9]};

3/12

S = {0, 1, 2, 3, 4, 10, 20, 30, 40, 50, 69, 70,
71};

θ = {s, phase, σqueue,σ, init, initObj, initBase,
initEnA, initEnB, initEnC}, where

s ∈ S (as above)

phase ∈ {active, passive}

σqueue = {(v1, σ1), ... , (vm, σm) | m ∈ N, m < ∞
∧ ∀ (i ∈ N, i ∈ [1,m]), vi ∈ S ∧ σi ∈
R0+ ∪ ∞

σ ∈ R0+ ∪ ∞

init ∈ {0,1}

initObj ∈ C (described below)

initBase ∈ C (described below)

initEnA ∈ {0..4}

initEnB ∈ {0..4}

initEnC ∈ {0..4}

E = {∅};

delay = transport;

d = 100 (milliseconds);

D = θ x N x d → R0+ ∪ ∞;

The various functions (δint, δext, τ, λ) are described in
the sections below, as well as the model definition files
(*.ma and rules.inc). Please see below and in those
files for more details.

3.3.2. Coupled Model Specification

The coupled Cell-DEVS Model is described as Mcbs2 =

<Xlist, Ylist, I, X, Y, n, {t1..tn}, N, C, B, Z, select>,

where

Xlist = {∅};

Ylist = {∅};

I = <η, µx, µy, px, py>, where

 η = 9

 µx = external input ports = {∅}

 µy = external output ports = {∅}

 px = µx + neighbour ports = {pi,jXk | i ∈ {0..9},
j ∈ {0..9}, k ∈ {1..9}};

 py = µy + neighbour ports = {pi,jYk | i ∈ {0..9},
j ∈ {0..9}, k ∈ {1..9}};

X = {∅};

Y = {∅};

n = 2;

t1 = 10;

t2 = 10;

N = {(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1),
(1,-1), (1,0), (1,1)};

C = {Cij | i ∈ {0..9}, j ∈ {0..9}};

B = {∅}; (wrapped)

Z = pi,jY1 → pi-1,j-1X1 pi,jX1 ← pi+1,j+1Y1

 pi,jY2 → pi-1,jX2 pi,jX2 ← pi+1,jY2

 pi,jY3 → pi-1,j+1X3 pi,jX3 ← pi+1,j-1Y3

 pi,jY4 → pi,j-1X4 pi,jX4 ← pi,j+1Y4

 pi,jY5 → pi,jX5 pi,jX5 ← pi,jY5

 pi,jY6 → pi,j+1X6 pi,jX6 ← pi,j-1Y6

 pi,jY7 → pi+1,j-1X7 pi,jX7 ← pi-1,j+1Y7

 pi,jY8 → pi+1,jX8 pi,jX8 ← pi-1,jY8

 pi,jY9 → pi+1,j+1X9 pi,jX9 ← pi-1,j-1Y9

select = {(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1),
(1,-1), (1,0), (1,1)}.

3.4. Development Environment

The simulation was executed on a desktop standalone
workstation, using Linux Fedora Core 8. The
simulation engine was the Parallel Cell-DEVS Toolkit
(PCD++ Version 3.0, March 2003).

4/12

3.5. System Model Sketch

The following is a sketch of how each cell has been
constructed:

 cbs2

 $init =
 $initBase =
 $initObj =

 $initEnA =
 $initEnB =

 $initEnC =

FS

obj

FA

 cbs2

 $init =
 $initBase =
 $initObj =

 $initEnA =
 $initEnB =

 $initEnC =

CF

enC

direction

enB

enA

Figure 4 - Implemented Cell Architecture

As before, the cell state variables are preceded by a
dollar sign ($) within each box, and the inter-cell
neighbourhood ports are depicted with arrows.

3.6. Implementation Details

The following section describes in detail how each
aspect has been implemented.

3.6.1. Status and Health

Health converted into a whole-number representing a
percentage, ie. ~fa = 100 means 100% health or
fighting ability.

A combatant regains health slower than they are
damaged. They lose 10 health / fighting ability (~fa)
points per superior enemy per time interval, whereas
they only heal 5 health points per 100 millisecond
interval.

As will be shown later, if their ~fa drops below 0.5,
they are considered “combat ineffective” and will not
be considered as capable to injure an opponent in their
neighbourhood, until their ~fa increases above that
value.

Bases also have a notion of health; They are not mere
“undefended flags”. They all start with a health or
fighting ability (~fa) of 100. However Objectives can
be taken without challenge.

The Fighter Status (FS) is communicated through a
NeighborPort (~fs). There are four types of entities:
they are Combatants, Bases, Obstacles, and Objectives.

Their values are read into the cells, along with any
value of health / fighting ability, and then
communicated through their NeighborPorts

accordingly (as shown in the initialization section,
below).

Table 2 gives details on how various values can
represent various entities, and their health.

Value Meaning

0 Empty Cell (or dead combatant)

1.99 Combatant, Side 1, 100% Health

2.99 Combatant, Side 2, 100% Health

3.99 Combatant, Side 3, 100% Health

4.99 Combatant, Side 4, 100% Health

1.85 Combatant, Side 1, 86% Health

10.99 Side 1 Base, 100% Fighting Ability

20.99 Side 2 Base, 100% Fighting Ability

30.99 Side 3 Base, 100% Fighting Ability

40.99 Side 4 Base, 100% Fighting Ability

50 Obstacle

69 Objective, Utility

70 Objective, High Feature

71 Objective, Mobility (ex. bridge)

Table 2 - Sample initial status and health values read
in as initial cell values

3.6.2. Sides and Enemies

There are up to four possible Sides that could be in
conflict with one-another. It is impossible to be in
conflict / combat one’s own Side (however accidental
fratricide is a large area of interest in the military
domain, but is not modelled here).

All cells have their values set to 0 initially, while
entities, including Bases, have initial fighter status
(~fs, akin to which Side / Entity they are) as well as
health or fighting ability (~fa) loaded through an
initial values file (*.val). This is shown in Figure 5,
below.

Since there are at most four sides, there could be at
most three enemies that an entity could be in conflict
with. Their enemies are inputted into a .var file, and
loaded firstly into the initial enemy variables
($initEnA, $initEnB and $initEnC), and then

5/12

transferred to their ports, so they could be “carried”
with them through movement in the battlefield (~enA,
~enB and ~enC respectively).

Figure 5 - PCD++ Model Description

For example, in Figure 6, we can see that there is a
Side 3 Base, with 100% fighting ability / health in cell
(1,1). Similarly, in cell (8,8) there is an Objective, in
this case a High Feature.

Of note, the different types of high features were not
given any specifically different characteristics in this
implementation.

Figure 6 - Sample .val InitialCellsValue file

Figure 7 demonstrates on how this would look in a
grid-type layout, based on a drawlog output.

[top]
components : cbs2_2

[cbs2_2]
type : cell
dim : (10,10)
delay : transport
defaultDelayTime : 100
border : wrapped

neighbors : cbs(-1,-1) cbs(-1,0) cbs(-1,1)
neighbors : cbs(0,-1) cbs(0,0) cbs(0,1)
neighbors : cbs(1,-1) cbs(1,0) cbs(1,1)

InitialValue : 0
InitialCellsValue : cbs2_2.val
LocalTransition : battlefield

neighborports : fs fa cf obj direction enA enB
enC

StateVariables : init initBase initObj initEnA
initEnB initEnC
StateValues : 0 0.00 0.00 0 0 0
InitialVariablesValue : cbs2_2.var

(1,1) = 30.99
(3,3) = 3.99
(6,6) = 1.99
(6,8) = 10.99
(8,8) = 70

Figure 7 - Tactical Layout of Entities

Mission parameters, including which entities are
hostile or “enemy” to a given Side, as well as their own
base location and their assigned mission objective, are
loaded from a InitialVariablesValue file. (*.var). Figure
5 above details how this was done.

For example, in Figure 8, we see that the Side 3 base at
cell (1,1) has no need to note its own objective nor
base location, but it must be aware of which enemies
could hurt it. The $init variable is set to 1, to run
through the initialization, and it has its $initEnA
variable set to Side 1, and $initEnB variable set to Side
2.

This process is done for all cells/entities with a non-
zero initial value.

Figure 8 - Sample .var InitialVariablesValue file

3.6.3. Objectives

Instead of Flag locations (which are effectively
Objectives for the given sides) the new model stores
Objectives. This distinction is important in that now,
more than one side can be striving for the same
Objective.

These are stored using the same “trick” of storing the
row as the integer, and the column as a decimal value,
(column divided by 100). That is, in Figure 8 above,
cell (3,3)’s assigned objective is in row 8, column 8 -
cell (8,8). Objectives (and bases) are not assigned their
own $initObj or $initBase values, and they do not
move. Of note, Objectives are not given enemy values,
since anyone can take them without challenge.

Line : 1 - Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +--------------------+
 0| |
 1| 30 |
 2| |
 3| 3 |
 4| |
 5| |
 6| 1 10 |
 7| |
 8| 70 |
 9| |
 +--------------------+

(1,1) = 1 0.00 0.00 1 2 0
(3,3) = 1 8.08 1.01 1 2 0
(6,6) = 1 6.08 8.08 3 0 0
(6,8) = 1 0.00 0.00 3 0 0
(8,8) = 1 0.00 0.00 0 0 0

6/12

Additionally, Objectives do not have any health /
fighting ability value (see Figure 6, cell (8,8)).

Of note, combatants can be given their own “mission”
or objective to attack, a capability that should not be
understated.

3.6.4. Bases

Combatants and Bases have similar rules for battle;
except Bases typically have more defensibility (half
the damage incurred by combat-ready / superior
enemies).

Bases also track whom their enemy is, so that they can
calculate damage when enemy forces are in their
midst. Bases, of course, cannot move.

3.6.5. Courage Factor

In the previous implementation, Courage Factor (CF)
was a cell state variable, and was re-calculated every
time. When “movement” occurred, all that was
transferred was fighting ability and fighter status (~fa
and ~fs respectively), and the calculated courage value
was discarded and re-calculated at each move.

However, in this implementation it was calculated once
in the initialization phase, and then “carried” within it
through movement. As such, in this implementation, it
is represented as a port, ~cf.

This accurately shows that courage is not a random
factor that gets set in each engagement, but is rather a
function of an individual.

Of note, Bases are assigned a ~cf of 1.

3.6.6. Initialization

There were a number of initialization steps that had to
be executed (as with any simulation or program). So as
to prevent unnecessary re-calculation of these rules, an
initialization state variable (‘$init’ in Figure 10 below)
was deemed necessary to track cell’s progress in their
initialization. Once initialization steps were complete,
this variable was set to 0.

Figure 10 - Initialization Rules for all potential entities

For example, after executing these initialization rules,
the combatant at cell (3,3) from Figure 7 has a health
factor / fighting ability of 100 sent out over its ~fa port,
a fighter status of 3 sent out over its ~fs port, and a
normally distributed courage factor, sent out over its
~cf port.

3.6.7. The Rule of Combat

The way to determine who wins, who loses in battle
has changed to a degree. Instead of it being solely
dependent on a random assignment of health at the
beginning, depending on the status (ie. whether injured
or not), each entity will have a health/fighting ability
assigned to it through the InitialVariablesValue file,
which will decrease with each “superior” enemy that it
encounters (however, fighting ability can increase in
time, if it is allowed to “heal”).

An enemy is “superior” if its fighting ability (~fa)
meets or exceeds it’s opponent’s. Additionally, if an
entity’s ~fa is below 0.5, then it is rendered “combat
ineffective” in that it will not be counted as capable of
injuring an opponent in its neighbourhood.

The following code excerpt shows how winners /
losers were determined for combatants (example here
just for Side 1 - other Sides have similar code):

% read in fs and fa from values assigned from
InitialCellValues file; for combatants, set ~cf
to normalized value;
rule : { ~fs := trunc((0,0)~fs) ; ~direction :=
0 ; ~fa := (round(fractional((0,0)~fa) * 100)
+1) ; ~cf := normal(0.5,0.15) ; ~obj := 0 ;
~enA := 0 ; ~enB := 0 ; ~enC := 0 ; } 0 { frac-
tional((0,0)~fs) != 0 and trunc((0,0)~fs) <= 4
and $init = 1 }

% read in fs and fa from values assigned from
InitialCellValues file; for obstacles / objec-
tives
rule : { ~fs := trunc((0,0)~fs) ; ~direction :=
0 ; ~fa := (round(fractional((0,0)~fa) * 100)
+1) ; ~cf := 1 ; ~obj := 0 ; ~enA := 0 ; ~enB
:= 0 ; ~enC := 0 ; } 0 { trunc((0,0)~fs) <= 71
and trunc((0,0)~fs) >= 50 and $init = 1 }

% read in fs and fa from values assigned from
InitialCellValues file; for bases
rule : { ~fs := trunc((0,0)~fs) ; ~direction :=
0 ; ~fa := (round(fractional((0,0)~fa) * 100)
+1) ; ~cf := 1 ; ~obj := 0 ; ~enA := 0 ; ~enB
:= 0 ; ~enC := 0 ; } 0 { trunc((0,0)~fs) <= 40
and trunc((0,0)~fs) >= 10 and $init = 1 }

7/12

Figure 11 - Combat Rule

There were complex concatenated macros, as seen
above to calculate whom within a neighbourhood were
an enemy. For this reason, the value was calculated and
stored once in the $initEnA variable, so as to prevent
unnecessary calculation of it repeatedly.

Macros were used to count the number of entities of a
given enemy side are in a given cell’s neighbourhood.
Of note, only enemies, with a fighting ability (health)
above 0.5 are considered as “effective”.

Figure 12 - Combat Rule Macro looking for Side 1 as
an Enemy

3.7. Re-used Code

The following implementation details were retained
from Madhoun’s previous work [5], with some slight
alteration to allow for the modifications discussed
above.

rule : { (0,0) } { $initEnA := (((#macro(com-
bat_rule_2)) + (#macro(combat_rule_3)) + (#mac-
ro(combat_rule_4))) * 10) ; } 0 { (0,0)~fs = 1
and $initEnA = 0 }

rule : { ~fs := (0,0)~fs ; ~fa :=
(trunc((0,0)~fa) - $initEnA) ; ~direction := 0
; } 100 { (0,0)~fs = 1 and (0,0)~fa > $initEnA}

rule : { ~fs := 0 ; ~fa := 0 ; ~direction := 0
;} 100 { (0,0)~fs = 1 and (0,0)~fa <= $initEnA}

#BeginMacro(combat_rule_1)
(
if (((0,0)~enA = 1 or (0,0)~enB = 1 or (0,0)~enC =
1), (
 if (((-1,-1)~fs = 1 and (-1,-1)~fa > 0.5 and
(-1,-1)~fa >= (0,0)~fa), 1, 0) +
 if (((-1,0)~fs = 1 and (-1,0)~fa > 0.5 and
(-1,0)~fa >= (0,0)~fa), 1, 0) +
 if (((-1,1)~fs = 1 and (-1,1)~fa > 0.5 and
(-1,1)~fa >= (0,0)~fa), 1, 0) +
 if (((0,-1)~fs = 1 and (0,-1)~fa > 0.5 and (0,-
1)~fa >= (0,0)~fa), 1, 0) +
 if (((0,1)~fs = 1 and (0,1)~fa > 0.5 and (0,1)~fa
>= (0,0)~fa), 1, 0) +
 if (((1,-1)~fs = 1 and (1,-1)~fa > 0.5 and (1,-
1)~fa >= (0,0)~fa), 1, 0) +
 if (((1,0)~fs = 1 and (1,0)~fa > 0.5 and (1,0)~fa
>= (0,0)~fa), 1, 0) +
 if (((1,1)~fs = 1 and (1,1)~fa > 0.5 and (1,1)~fa
>= (0,0)~fa), 1, 0)), 0)
)
#EndMacro

3.7.1. Neighbourhood

A “Moore’s Neighbourhood”, of size 9 cells, was used,
as shown in Figure 13 below. Relative cell references
are shown as well.

(-1, -1) (-1,0) (-1,1)

(0, -1) (0,0) (0,1)

(1, -1) (1,0) (1,1)

Figure 13 - Moore’s Neighbourhood and
Relative Cell References

3.7.2. Directions and Movement

The Moore’s neighbourhood was translated into an
arbitrary numbering scheme as denoted below. In the
rules for movement, these numbers are mapped to
cardinal directions (North, East, South, West, etc.).

Madhoun’s previous work [5] gives explicit detail on
how this movement scheme works.

45 North-West 10 North 15 North-East

40 West (0,0) 20 East

35 South-West 30 South 25 South-East

Figure 14 - Movement Directions Numbering

Of note, the physical movement of an entity from one
cell to another was adjudicated by assigning free-cell
move-in factors to moving and receiving cells, and
then, if a move is permitted, by assigning the port
values of ~direction accordingly with +/- values
depending on if the cell is receiving movement (free)
or is moving.

Obstacles, and the ability to avoid them, was a key
feature that was retained from Madhoun’s
implementation.

The following section will now discuss the testing
strategy for simulation execution, as well as simulation
scenarios conducted.

4. Simulation Results

4.1. Testing Approach

This project used an incremental, and sequential testing
approach. Firstly, the initialization rules and inputting
of initial cell and variable values were tested. Within
this, Objective assignment and movement of a single
entity to a single objective, unopposed was tested.

8/12

Confirmation of movement and obstacle avoidance
rules that were ported from the previous
implementation were also tested.

Testing then focused on the Combat Rule. This began
with the simple scenario of an entity surrounded by 8
enemies, with 100% health. The expected results that
the enemy would be killed in two iterations, did occur.

The ability for bases to resist battle, and re-generate
was then tested. Fighting Ability regeneration / healing
for combatants and bases was also tested.

It was confirmed that if a combatant’s Courage Factor
was low, that it would be drawn to its own base.
Furthermore, when an entity’s health was low, it was
confirmed that it would not move and would be static.

Lastly, the experimental scenarios described below
were tested.

4.2. Simulation Run Script

In order to execute the simulation, a Linux script was
adapted from [5]. The script is detailed in Figure 15.

Of note, the DEBUG options of -p parser and -v rule
evaluation were powerful simulation options that
enabled detailed dissection of problems.

The GNU plugin ‘time’ was not used for this
implementation, however it is an area for future work
to determine the computational resources consumed by
the simulation, and compare to other implementations.

Figure 15 - Simulation Run Script

4.3. Scenario 1 - Compete for Same Objective

The first Scenario used to demonstrate the power of
this model is one where two opposing entities fight for
the same objective. In this case, the Side 1 combatant
is stronger (~fa at full 100) than the Side 2 combatant,
who starts with only 60 health.

As expected, they first “battle it out” and after Side 1
wins, they move in to take the objective.

#!/bin/sh
#
SIM=cbs2_3

SIMU_DIR=/home/erik/cd++

SIMU=$SIMU_DIR/cd++
DRAWLOG=$SIMU_DIR/drawlog
#LOGBUFFER=$SIMU_DIR/logbuffer

MA=$SIM.ma
#EV=$SIM.ev
LOG=./logs1/$SIM.log
DRW=$SIM.drw
#OUT=$SIM.out
#LOG_FULL=$LOG.full
TIME=00:00:05:000
STEP=00:00:00:100

#DEBUG="-p$SIM.parser -v$SIM.eval"

rm -f $LOG* $DRW $OUT

SIMU_ARGS="-m$MA"
[-n "$TIME"] && SIMU_ARGS="$SIMU_ARGS -t$TIME"
[-n "$EV"] && SIMU_ARGS="$SIMU_ARGS -e$EV"
[-n "$LOG"] && SIMU_ARGS="$SIMU_ARGS -l$LOG"
[-n "$OUT"] && SIMU_ARGS="$SIMU_ARGS -o$OUT"
[-n "$DEBUG"] && SIMU_ARGS="$SIMU_ARGS $DEBUG"

if [-z "$DEBUGGER"]; then

 time $SIMU $SIMU_ARGS

else
 $DEBUGGER $SIMU --pargs $SIMU_ARGS
fi

echo Running drawlog
$DRAWLOG -m$MA -c$SIM -l$LOG -i$STEP -0 -w2 -p0
-nfs > $DRW

vi $DRW
#echo Collapsing log files
#cat $LOG?* | $LOGBUFFER > $LOG_FULL

9/12

Figure 16 - Scenario 1 Start and End States

4.4. Scenario 2 - “Ganging up on the Little
Guy”

The scenario was tested where a single entity would be
surrounded by different enemies. In this case, a Side 3
combatant is surrounded by its enemies from Side 2
and Side 1. As expected, in three turns, the Side 3
entity is eliminated.

Figure 17 - Scenario 2 Start and End States

4.5. Scenario 3 - Battle Royale

A full-up multi-sided conflict, competing for two
different objectives was set up. As expected, Sides 1
and 4 won out over Sides 2 and 3 in pursuit of their
assigned objectives.

We see that right off, the objectives 69 and 71 at (3,3)
and (6,6) respectively are “taken” by the neighbouring
combatants.

This magnificent battle shows examples of courage
failing certain combatants. We see certain combatants
from Sides 1, 2, 4 retreating to their designated “bases”
or rendez-vous points at (0,0), (5,5) and (9,9)
respectively.

As expected, once combatants are wounded to ~fa <
0.5, they are not “combat effective” and they cannot
move.

Line : 1 - Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +--------------------+
 0| |
 1| |
 2| |
 3| |
 4| 1 2 |
 5| 69 |
 6| |
 7| |
 8| |
 9| |
 +--------------------+

Line : 1 - Time: 00:00:00:700
 0 1 2 3 4 5 6 7 8 9
 +--------------------+
 0| |
 1| |
 2| |
 3| |
 4| |
 5| 1 |
 6| |
 7| |
 8| |
 9| |
 +--------------------+

Line : 1 - Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +--------------------+
 0| |
 1| |
 2| |
 3| |
 4| 1 1 1 |
 5| 1 3 2 |
 6| 2 2 2 |
 7| |
 8| |
 9| |
 +--------------------+

Line : 1 - Time: 00:00:00:300
 0 1 2 3 4 5 6 7 8 9
 +--------------------+
 0| |
 1| |
 2| |
 3| |
 4| 1 1 1 |
 5| 1 2 |
 6| 2 2 2 |
 7| |
 8| |
 9| |
 +--------------------+

Figure 18 - Scenario 3 Start and End States

4.6. Cross-Implementation Performance
Comparison

Performance comparison between old model and
newly implemented one with two Sides, both enemies
to one-another, both going for opposite objectives.
Figure 19 shows the Start and End states for
Madhoun’s battle model, while Figure 20 shows the
Start and End states for the cbs2 model.

Figure 19 - Start and End States for battle model

Figure 20 - Start and End States for cbs2 model

When compared to execution run times using
Madhoun’s original model, it was found that it
performed slightly slower than Madhoun’s model. This
was expected due to the number of additional ports

Line : 1 - Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +--------------------+
 0| 1 1 1 |
 1| |
 2| |
 3| 69 |
 4| 2 2 2 |
 5| 3 3 3|
 6| 71 |
 7| |
 8| 4 4 4 |
 9| |
 +--------------------+

Line : 1 - Time: 00:00:01:300
 0 1 2 3 4 5 6 7 8 9
 +--------------------+
 0| |
 1| |
 2| |
 3| 1 |
 4| 2 2 |
 5| 2 3|
 6| 4 3 3 |
 7| 4 |
 8| |
 9| 4|
 +--------------------+

Line : 1 - Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +--------------------+
 0| |
 1| 30 |
 2| |
 3| 3 |
 4| |
 5| |
 6| 1 10 |
 7| |
 8| 70 |
 9| |
 +--------------------+

Line : 1 - Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +--------------------+
 0| |
 1| 30 |
 2| |
 3| 3 |
 4| |
 5| |
 6| 1 10 |
 7| |
 8| 70 |
 9| |
 +--------------------+

Line : 1 - Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +--------------------+
 0| |
 1| 30 |
 2| |
 3| 3 |
 4| |
 5| |
 6| 1 10 |
 7| |
 8| 70 |
 9| |
 +--------------------+

Line : 1 - Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +--------------------+
 0| |
 1| 30 |
 2| |
 3| 3 |
 4| |
 5| |
 6| 1 10 |
 7| |
 8| 70 |
 9| |
 +--------------------+

10/12

(and messages) as well as state variables that were
used.

The following chart shows a performance comparison
in runtime execution between Madhoun’s original
model, and the newly expanded model.

Figure 21 - Performance Comparison between
Madhoun’s battle and cbs2

5. Conclusion

The Cell-DEVS Formalism has immense potential in
modelling modern warfare. This body of work focused
on the modelling of complex land warfare, where up to
four different Sides could be in combat with one-
another.

This “more complex” warfare is more representative of
actual operations, where various factions can be in
combat or collaboration or mere tolerance of one
another, depending on their pre-existing relationships.

Additionally, this model architecture has the potential
to be simplified back down to the last implementation
done by Madhoun.

6. Recommendations

6.1. Toolkit Improvement

While there the PCD++ toolset is incredibly flexible
and powerful, there are some improvements which
could be of great benefit.

The toolkit PCD++ offers many great benefits that
promise to (potentially) significantly reduce simulation
execution time. However, this toolkit should be
distributed for use by more platform users. It would be
worthwhile to compile the toolkit into executables that
will run on more modern OS such as Mac OS X,
Windows 7 and Fedora 12.

Further expand “new” CD++ tool with multiple ports
and state variables into Windows environment, with
the Eclipse plugin.

INSERT

GRAPH

HERE

Develop ability to more easily extract data from
variables.. implementation of movement painful

Develop ability to read in / compare with static data in
external files. For example, if a relationships table
were to exist, have it stored externally as an input file
to the simulation, from which to base the simulation
relationships.

Develop ability to dynamically set port values through
an external file. This was also noted in López’ thesis
[4].

6.2. Model Development

Additionally, the cbs2 model could be further
developed to increase its utility. For example, the
movement rules could be adapted to take into account
collaboration with Friendly forces, avoidance of
Neutral forces, and combat with Hostile forces.

Of interest to military forces worldwide is the case of
accidental fratricide (accidentally injuring / killing an
entity from one’s own side). Modelling this with an
evolved cbs2 model is entirely possible.

Lastly, it seems that the multi-dimensional nature of
the Cell-DEVS formalism lends itself well to
modelling a third spacial dimension. Implement a third
dimension, taking into account a rudimentary “air
picture” and air elements (UAVs, helicopters, jets).
Having these air entities interact with the ground
entities (this work could be entitled “cbs3”.

7. References

(1) Ilanchinski, A. 2000. Irreducible Semi-
Autonomous Adaptive Combat (ISAAC): An
Artificial-Life Approach to Land Combat.
Military Operation Research, 5 (3), 29-46.
http://citeseerx.ist.psu.edu/viewdoc/
download?
doi=10.1.1.75.6947&rep=rep1&type=pdf
Accessed: November 9, 2009.

(2) Lauren, M.K. 2002. Firepower concentration
in cellular automaton combat models-an
alternative to Lanchester. The Journal of the
Operational Research Society, 53(6), 672-679.
http://www.jstor.org/stable/823011 Accessed:
November 9, 2009.

(3) Lim Kew Kia, J. 2002. Land warfare
modelling. USSC 3001 Complexity Term
Paper. National University of Singapore.
http://staff.science.nus.edu/~parwani/project1/
jeff.html [Accessed December 7, 2009]

11/12

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.6947&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.6947&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.6947&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.6947&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.6947&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.6947&rep=rep1&type=pdf
http://www.jstor.org/stable/823011
http://www.jstor.org/stable/823011
http://staff.science.nus.edu/~parwani/project1/jeff.html
http://staff.science.nus.edu/~parwani/project1/jeff.html
http://staff.science.nus.edu/~parwani/project1/jeff.html
http://staff.science.nus.edu/~parwani/project1/jeff.html

(4) López, A. 2003. Extending CD++
Specification Language for Cell-DEVS Model
Definition. Thesis. University of Buenos
Aires: Argentina.

(5) Madhoun, R, and Wainer, G.A. 2005.
Modelling space-shaped defense applications
with Cell-DEVS. Proceedings of SISO Fall
Interoperability Workshop, San Diego. http://
cell-devs.sce.carleton.ca/publications/2005/
MW05b/SIW-05s-Battle.pdf Accessed:
November 9, 2009.

(6) Surdu, J.R., Parsons, D., Tran, O. 2005. The
Three-Block War in OneSAF. In Proceedings
of I/ITSEC 2005. Orlando, FL. Website:
http://www.onesaf.net/community/documents/
Papers_Presentations/Published/
IITSEC05_1977_ThreeBlockWar.pdf
[Accessed December 7, 2009]

(7) Wainer, G.A. 2009. Discrete-Event Modeling
and Simulation: A Practitioner’s Approach.
Boca Raton: CRC Press.

12/12

http://cell-devs.sce.carleton.ca/publications/2005/MW05b/SIW-05s-Battle.pdf
http://cell-devs.sce.carleton.ca/publications/2005/MW05b/SIW-05s-Battle.pdf
http://cell-devs.sce.carleton.ca/publications/2005/MW05b/SIW-05s-Battle.pdf
http://cell-devs.sce.carleton.ca/publications/2005/MW05b/SIW-05s-Battle.pdf
http://cell-devs.sce.carleton.ca/publications/2005/MW05b/SIW-05s-Battle.pdf
http://cell-devs.sce.carleton.ca/publications/2005/MW05b/SIW-05s-Battle.pdf
http://www.onesaf.net/community/documents/Papers_Presentations/Published/IITSEC05_1977_ThreeBlockWar.pdf
http://www.onesaf.net/community/documents/Papers_Presentations/Published/IITSEC05_1977_ThreeBlockWar.pdf
http://www.onesaf.net/community/documents/Papers_Presentations/Published/IITSEC05_1977_ThreeBlockWar.pdf
http://www.onesaf.net/community/documents/Papers_Presentations/Published/IITSEC05_1977_ThreeBlockWar.pdf
http://www.onesaf.net/community/documents/Papers_Presentations/Published/IITSEC05_1977_ThreeBlockWar.pdf
http://www.onesaf.net/community/documents/Papers_Presentations/Published/IITSEC05_1977_ThreeBlockWar.pdf

