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Modeling Routing in Wireless Ad Hoc Networks 
using Cell-DEVS 

 
 
1. INTRODUCTION 
 
1.1 Brief Description 
The system chosen to be modeled with Cell-DEVS involves routing in wireless ad-hoc 
networks. The system models a wireless ad hoc network consisting of a number of nodes 
spread randomly on a plane. A node wants to send message to a particular node whose 
location is unknown, using the shortest path available. Cell-DEVS modeling would be 
used to find out the shortest path between two nodes in the ad hoc network plane. This 
would make use of the Lee Algorithm discussed in [1]. 
 
Each node can communicate to all the nodes on its top, down, left and right. However, 
each neighbor of the node may not be another node. It may be a dead cell through which 
communication cannot take place. This dead cell represents a physical obstacle (such as a 
high rise building) or simply the absence of node. Thus the communicating nodes will 
have to find their way around that obstacle (dead cell). 
 
Figure 1 shows the brief sketch of system (taken from [1]). 

 
Figure 1.1: Brief Sketch of the System 

 
Here node S represents the sender node that wants to communicate with node E but does 
not know its location or shortest path to it. The black nodes represent dead cell through 
which communication is not possible. Note that there may be more than one path from S 
to E but the goal of the Cell-DEVS models is to come up with the shortest path. 
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1.2 Lee’s Algorithm 
Lee’s Algorithm involves 14 possible states of each of the node. The algorithm is given 
as follows [taken from 1]. 
 

 
 

Figure 1.2: Lee’s Algorithm 
 
The algorithm shows that during the first phase of the algorithm, all the nodes broadcast 
wave messages to their neighbors forming a reverse path to the starting node. When the 
message reaches the destination node, the wave node nearest to the destination becomes 
the path node. All the wave nodes that see a path node in their neighbor and pointing 
towards them also become the path node. All other wave nodes are cleared. Further 
details of the algorithm are available in [1] and will not be presented here to save space.  
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2. PROBLEM STATEMENT 
 
The system discussed in Section 1 was successfully modeled with Cell-DEVS in an 
earlier work [2] (Assignment 2) using 15 states for each node to find out the shortest path 
between the two communicating nodes. The original algorithm by Lee involves 14 states 
but during experimentation it was found that it is necessary to have another state in order 
to make sure that each node that is not going to become the path from S to E discards the 
routing message that it received. A number of examples have been successfully run 
involving as many as 1000 nodes.  
 
The earlier work (Assignment 2) shows that the work can be extended in a number of 
ways to enhance the capabilities of the model. This project extends this work in the 
following 3 ways. 
 
2.1 Part 1: Intra-Network and Inter-Network Routing in 3 
Dimensions 
In the first part, the project extends the routing algorithm to 3 dimensions i.e. it would 
find the shortest path between two nodes in 3 dimensional space. Here the 3rd dimension 
may represent different networks (such as the Internet) to which the given ad hoc 
networks connects. Thus the intra-network routing in Assignment 2 is extended to inter-
network routing in the project. This required an addition of 4 more states of the node to 
the 15 states defined in Assignment 2.   
 
2.2 Part 2: Construction of Optimal Multicast Trees 
As a second part, the project studies the construction of an optimal multicast tree where a 
single node sends a message to more than one node. Construction of a multicast tree for 
more than one receiving nodes is not a trivial task. Hochberger [1] work shows that for 8 
receiver nodes, we may require as many as 768 states for each cell. Obviously these 
many numbers of states are beyond practical limits, especially if the number of receiver 
nodes is increased further. So the project modifies the original algorithm and introduces 
the notion of trees to make multicast trees possible with much lesser number of required 
states. Another aspect that has been taken into account during the construction of 
multicast trees is its optimality i.e. it should duplicate the same message as less as 
possible. Consider for example the distribution of nodes shown in Figure 3. 
 
Here S represents the sender that wants to multicast a data to two nodes R1 and R2. For 
the sake of simplicity dead links (cells) are not shown in this example and hence a simple 
shortest path between S and R1 exists marked by 1 in each cell. Note that for R2, there 
exist two paths both of which involve least number of hops i.e. 8 hops from S to R2. Path 
1 takes the data first to the left of S and then up to R2 while Path 2 takes that data first to 
the top of S and then left to R2. Note that if the same data is being multicast by S to the 
two nodes R1 and R2, it would make much more sense to send the date to R2 through 
path 2. This is because in this way the data would be duplicated only for the last 4 hops 
from S to R2. On the other hand if the data is sent to R2 through path 1 it is duplicated 
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right in the beginning (i.e. 8 hops). If there are multiple nodes, least duplicating the data 
would save huge bandwidth. The construction of multicast trees in this project hence 
takes this feature into account and tries to optimize the trees for minimum bandwidth 
usage as much as possible. 
 
 

       1 1 R1    
       1      
       1      
       1      
       1      
       1      
   R2 2 2 2 1,2      
   2    1,2      
   2    1,2      
   2    1,2      
   2 2 2 2 S      
             

 
Figure 2.1: Optimal Multicast Trees Concept 

 
2.3 Part 3: Routing Among Multiple Pairs of Senders and 
Receivers 
The work in Assignment 2 shows that the Lee’s Algorithm fails if there are multiple pairs 
of senders and receivers. Hochberger [1] has shown that if there are multiple pairs of 
senders and receivers, the algorithm may generate deadlocks and may prevent the 
generation of routing path between pairs of nodes that can communicate. He has given an 
example of 2 pairs of nodes and has shown how to work around such problems. 
However, if there are a large number of pairs of senders and receivers, it becomes 
virtually impossible to work around that problem. As a 3rd part, the project studies this 
problem in greater depth. The project employs multiple planes where each plane 
corresponds to one state variable. The state variable in each plane is assigned to each pair 
of communicating nodes such that each of the possible 15 states of that variable 
corresponds to only a particular pair. This way multiple pairs of senders and receivers are 
handled without generating deadlocks or requiring to define more states.  
 
3. IMPLEMENTATION AND ANALYSIS 
 
3.1 Part 1: Intra-Network and Inter-Network Routing in 3 
Dimensions 

3.1.1 Conceptual Model Description 
The conceptual model for this part has been described in Section 1.1 and Section 2.1. It 
will not be repeated here to save space. 
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3.1.2 Formal Specifications for the Cell-DEVS Model 
In order to compute the shortest path between two nodes in a 3 dimensional space, a Cell-
DEVS model named path is defined.  Its formal specifications are given below. 
 
CD    =         < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 
 
X = S 
Y = S 
 
I = <η,µ,  Px, Py > 
Where 
 η = 7 
 µ = 0 
    Pji         =            { (Nji, Tji) /  ∀ j ∈ [1, 7],  Nji ∈ [i1, i7] and Tji ∈ Ιi         
             }, Ιi = { x / x ∈ X if i = X } or Ιi = { x / x ∈ Y if i = Y } ; 
 
S = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18} 
 
θ    =         {  (s, phase, σqueue, σ) / 
   s ∈ S is the state value for a cell (S has already been defined),  
   phase ∈ {active, passive}, 
   σqueue = { ((v1,σ1),...,(vm,σm)) / m ∈ N ∧ m <∞) ∧ ∀ (i ∈ N, i  

   ∈ [1,m]), vi ∈ S ∧ σi ∈ R0+∪ ∞}; and 

   σ ∈ R0+ ∪ ∞ 
           } (As Transport delay is used) 
   
N = {(0,0,1), (-1,0,0), (0,-1,0), (0,0,0), (0,1,0), (1,0,0),(0,0,-1)} 
 
d = 100 
 
D    =        θ x N x d → R0+ ∪ ∞, 
 
For δint, δext, λ and τ see Figure 1.2 and path.ma (These functions actually constitute the 
whole algorithm that has been given in Figure 2 and implemented in path.ma. These 
functions are hence not written here to save space). 
 
GCC    =        < Xlist, Ylist, I, X, Y, η, N, {f, c, b}, C, B, Z, select > 
 
Xlist = { Ø } 
Ylist = { Ø } 
 
I = < Px, Py > 
Where 
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 Px = { Ø } 
 Py = { Ø } 
 
X = S (Defined Above) 
Y = S (Defined Above) 
 
η = 7 
 
N = {(0,0,1), (-1,0,0), (0,-1,0), (0,0,0), (0,1,0), (1,0,0),(0,0,-1)} 
 
f = Different values are used for different tests e.g. 5, 25, 30 etc. 
c = Different values are used for different tests e.g. 5, 25, 30 etc. 
b = Different values are used for different tests e.g. 5, 25, 30 etc. 
 
C     =        {Cijk / i ∈ [1,f] ∧ j ∈ [1,c] ∧ k ∈ [1,b]} 
B    =        No-wrapped 
 
Z    = 
Pijk Y1 → Pi,j-1,k X1            Pi,j+1,k Y1 →  Pijk X1 

Pijk Y2 → Pi+1,j,k X2                   Pi-1,j,k Y2 →   Pijk X2 

Pijk Y3 → Pi,j+1,k X3          Pi,j-1,k Y3  →  Pijk X3 

Pijk Y4 → Pi-1,j,k X4          Pi+1,j,k Y4 →  Pijk X4 
Pijk Y5 → Pi,j,k X5   Pi,j,k Y5 →  Pijk X5  

Pijk Y6 → Pi,j,k+1 X6          Pi+1,j,k+1 Y6 →  Pijk X6 
Pijk Y7 → Pi,j,k-1 X7   Pi,j,k-1 Y7 → Pijk X7  
 
Select      =         { (-1,0,0), (1,0,0), (0,0,0), (0,1,0), (0,-1,0), (0,0,1), (0,0,-1) } 
 
3.1.3 Test Strategy 
The model will be tested by having different initial distributions of the node and checking 
whether the algorithm successfully determines the shortest path between two nodes (if 
one exists). The initial distribution of the nodes would be provided as an input to the 
model in terms of .map files.  The .map file provided as an input to the model should 
have the following characteristics. 
 

 There is only one start point. 
 There is only one end point. 
 There is at least one start point. 
 There is at least one end point. 

 
The first two conditions are necessary because the Lee’s algorithm in its current form fail 
if there are multiple senders or receivers. The last two points are the requirements of the 
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problem statement. Note that there may no path exists between the starting and the end 
point. In such a situation, the system would end up with some nodes in the wave 
conditions and the other nodes in initial state. If more than one path exists, the system 
would locate the shortest path. 
 

3.1.4 Implementation in CD++ 
For implementation of the algorithm in CD++, the 15 states defined in Assignment 2 
were designated the following state values. Moreover, for the third dimension another 4 
states were added. These 19 states along with their state values are given as follows. 
 
State 0  Dead Cell (Broken Communication Link) 

State 1  Initial State of the Nodes 

State 2  Initial State of the Destination Node 

State 3  Destination Ready (State of the Destination Node after it has received a  
  send request from the sender) 

State 4  Initial State of the Sender Node 

State 5  Wave Up  

State 6  Wave Down 

State 7          Wave Right  

State 8          Wave Left 

State 9          Wave in positive 3rd dimension  

State 10          Wave in negative 3rd dimension 

State 11           Path Up 

State 12           Path Down  

State 13          Path Right 

State 14           Path Left 

State 15          Path in positive 3rd dimension 

State 16           Path in negative 3rd dimension  

State 17           Clear State (Final state of the nodes that received a wave message but are           
           not going to become the path)  
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State 18          Destination Found (Final State of the Sender Node). 

Using these state values the model was implemented in CD++. The path.ma file is 
presented next. Note here that in [path-rule] many Boolean statements could have been 
combined together. However, for the sake of clarity each statement is written in a 
separate line. The initialMapValue has been defined as path.map. This is the name of the 
file that the model takes as an input. Transport delay is used and a no-wrapped border is 
used. The dimensions of the model given here are for a particular example. Different tests 
were run with different dimensions. 

[top] 
components : path 
 
[path] 
type : cell 
dim : (5,5,5) 
delay : transport 
defaultDelayTime : 100 
border : nowrapped  
neighbors :   path(0,0,1) 
neighbors :             path(-1,0,0)   
neighbors : path(0,-1,0)  path(0,0,0)  path(0,1,0) 
neighbors :             path(1,0,0) 
neighbors :   path(0,0,-1)   
initialvalue : 1 
initialMapValue : path.map 
localtransition : path-rule 
 
[path-rule] 
rule : 3 100 { (0,0,0) = 2 and (stateCount(15) > 0 or stateCount(16)> 0 
 or stateCount(11) > 0 or stateCount(12) > 0 or stateCount(13) > 0 
 or stateCount(14) > 0)} 
 
rule : 5 100 { (0,0,0) = 1 and (-1,0,0) > 3 and (-1,0,0) < 11} 
rule : 6 100 { (0,0,0) = 1 and (1,0,0) > 3 and (1,0,0) < 11} 
rule : 7 100 { (0,0,0) = 1 and (0,1,0) > 3 and (0,1,0) < 11} 
rule : 8 100 { (0,0,0) = 1 and (0,-1,0) > 3 and (0,-1,0) < 11} 
rule : 9 100 { (0,0,0) = 1 and (0,0,1) > 3 and (0,0,1) < 11} 
rule : 10 100 { (0,0,0) = 1 and (0,0,-1) > 3 and (0,0,-1) < 11} 
 
rule : 11 100 { (0,0,0) = 5 and stateCount(2) = 1} 
rule : 12 100 { (0,0,0) = 6 and stateCount(2) = 1} 
rule : 13 100 { (0,0,0) = 7 and stateCount(2) = 1} 
rule : 14 100 { (0,0,0) = 8 and stateCount(2) = 1} 
rule : 15 100 { (0,0,0) = 9 and stateCount(2) = 1} 
rule : 16 100 { (0,0,0) = 10 and stateCount(2) = 1} 
 
rule : 11 100 { (0,0,0) = 5 and (0,-1,0) = 13} 
rule : 11 100 { (0,0,0) = 5 and (0,1,0) = 14} 
rule : 11 100 { (0,0,0) = 5 and (1,0,0) = 11} 
rule : 11 100 { (0,0,0) = 5 and (0,0,1) = 16} 
rule : 11 100 { (0,0,0) = 5 and (0,0,-1) = 15} 
 
rule : 12 100 { (0,0,0) = 6 and (0,-1,0) = 13} 
rule : 12 100 { (0,0,0) = 6 and (0,1,0) = 14} 
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rule : 12 100 { (0,0,0) = 6 and (-1,0,0) = 12} 
rule : 12 100 { (0,0,0) = 6 and (0,0,1) = 16} 
rule : 12 100 { (0,0,0) = 6 and (0,0,-1) = 15} 
 
rule : 13 100 { (0,0,0) = 7 and (0,-1,0) = 13} 
rule : 13 100 { (0,0,0) = 7 and (1,0,0) = 11} 
rule : 13 100 { (0,0,0) = 7 and (-1,0,0) = 12} 
rule : 13 100 { (0,0,0) = 7 and (0,0,1) = 16} 
rule : 13 100 { (0,0,0) = 7 and (0,0,-1) = 15} 
 
rule : 14 100 { (0,0,0) = 8 and (0,1,0) = 14} 
rule : 14 100 { (0,0,0) = 8 and (1,0,0) = 11} 
rule : 14 100 { (0,0,0) = 8 and (-1,0,0) = 12} 
rule : 14 100 { (0,0,0) = 8 and (0,0,1) = 16} 
rule : 14 100 { (0,0,0) = 8 and (0,0,-1) = 15} 
 
rule : 15 100 { (0,0,0) = 9 and (0,-1,0) = 13} 
rule : 15 100 { (0,0,0) = 9 and (0,1,0) = 14} 
rule : 15 100 { (0,0,0) = 9 and (-1,0,0) = 12} 
rule : 15 100 { (0,0,0) = 9 and (1,0,0) = 11} 
rule : 15 100 { (0,0,0) = 9 and (0,0,-1) = 15} 
 
rule : 16 100 { (0,0,0) = 10 and (0,-1,0) = 13} 
rule : 16 100 { (0,0,0) = 10 and (0,1,0) = 14} 
rule : 16 100 { (0,0,0) = 10 and (-1,0,0) = 12} 
rule : 16 100 { (0,0,0) = 10 and (1,0,0) = 11} 
rule : 16 100 { (0,0,0) = 10 and (0,0,1) = 16} 
 
rule : 17 100 { (0,0,0) = 1 and stateCount(17) > 0} 
rule : 17 100 { (0,0,0) > 4 and (0,0,0) < 11 and stateCount(17) > 0} 
rule : 17 100 { (0,0,0) > 4 and (0,0,0) < 11 and stateCount(3) > 0} 
rule : 17 100 { (0,0,0) > 4 and (0,0,0) < 11 and stateCount(18) > 0} 
 
rule : 17 100 { (0,0,0) > 4 and (0,0,0) < 11 and (-1,0,0) > 10 and  
 (-1,0,0) < 17 and (-1,0,0) != 12} 
rule : 17 100 { (0,0,0) > 4 and (0,0,0) < 11 and (1,0,0) > 10 and 
 (1,0,0) < 17 and (1,0,0) != 11} 
rule : 17 100 { (0,0,0) > 4 and (0,0,0) < 11 and (0,1,0) > 10 and 
 (0,1,0) < 17 and (0,1,0) != 14} 
rule : 17 100 { (0,0,0) > 4 and (0,0,0) < 11 and (0,-1,0) > 10 and  
 (0,-1,0) < 17 and (0,-1,0) != 13} 
rule : 17 100 { (0,0,0) > 4 and (0,0,0) < 11 and (0,0,1) > 10 and 
 (0,0,1) < 17 and (0,0,1) != 16} 
rule : 17 100 { (0,0,0) > 4 and (0,0,0) < 11 and (0,0,-1) > 10 and 
 (0,0,-1) < 17 and (0,0,-1) != 15} 
 
rule : 18 100 { (0,0,0) = 4 and stateCount(11) > 0} 
rule : 18 100 { (0,0,0) = 4 and stateCount(12) > 0} 
rule : 18 100 { (0,0,0) = 4 and stateCount(13) > 0} 
rule : 18 100 { (0,0,0) = 4 and stateCount(14) > 0} 
rule : 18 100 { (0,0,0) = 4 and stateCount(15) > 0} 
rule : 18 100 { (0,0,0) = 4 and stateCount(16) > 0} 
 
rule : {(0,0,0)} 100 {t} 
 



 13

In order to for the results to be viewed in VRML GUI a color palette is defined.  
This palette is presented next as it is necessary to explain the results presented in the next 
section. Note here that in the palette all the wave states of the nodes (state 5 to state 10) 
are represented with the same color. Similarly, all the path states of the node (state 11 to 
state 16) are being represented by the same color. 

 

Figure 3.1: Color Palette for Viewing Results of Part 1 in VRML GUI 

Thus all the dead cells are represented as black cells and all the cells that have not 
received any message yet represented as white. The destination is represented as light 
green but after receiving the send request from the sender it changes its color to dark 
green. Sender is red. All the wave messages are light blue and the path nodes dark blue. 
Those wave nodes that are not going to become the path gets to clear state which is 
represented as grey. The sender after successful discovery of the path to the destination 
changes its color to maroon. 

 
3.1.5 Testing 
A number of tests were conducted on the model. A subset of these tests is presented in 
this section. Note that these tests are given in the attached diskette. As the input of each 
test is a map file which is very long, it is not included in the report. Similarly, .drw files 
are very long, so they are not included in the report either. The screen shots taken from 
execution of the model on the VRML GUI at different intervals during the test are given 
in this report. 
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a) Test 1 

This is a test consisting of 5x5x5 Cell space. The initial distribution of the nodes is given 
as follows: 

 

 

The state of the model after 10 steps of execution is given as follows: 

 
 

 



 15

The final state of the model after 18 steps is as follows: 

 
 
Note that the model has successfully established the shortest path between the sender and 
the receiver and all wave nodes end up in clear state. 
 
b) Test 2 

This is a test consisting of 10x10x10 Cell space. The initial distribution of the nodes is 
given as follows: 
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The state of the model after 15 steps of execution is given as follows: 

 
 
The state of the model after 25 steps of execution is given as follows: 

 
 
 

The final state of the model after 33 steps is as follows: 
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Note that the model has successfully established the shortest path between the sender and 
the receiver and all wave nodes end up in clear state. Note that near the receiver, there are 
two possible paths shown in dark blue: one from above of the receiver and the other from 
just front of the receiver. Both of these paths represent the shortest path between the 
sender and the receiver. 
 
c) Test 3 

This is a test consisting of 15x15x15 Cell space. The initial distribution of the nodes is 
given as follows: 
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The final state of the model after 62 steps is as follows: 

 

 

From another angle: 

 
 
Note that the model has successfully established the shortest path between the sender and 
the receiver and all wave nodes end up in clear state. As can be seen from the above tests 
as the number of nodes increases, it becomes increasingly difficult to view the results in 
the VRML GUI. Thus, tests having more nodes than in Test 3 are not presented here.  
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3.1.6 Reaction of the Model to Different Inputs than Those 
Defined in the Specifications 

The requirement of the model is that it has one and only one sender and one and only one 
receiver. Now let us consider one by one all the options that violate this condition. 
 

a) No Sender Node 

If there is no sender node, then the final state of the model would be the same as its initial 
state. This is because it is the sender node that initiates the request for the path. If none of 
the nodes in the model see a sender node they would not change their state. Hence the 
final state of the model would be the same as its initial state.  

 

b) No Receiver Node 

If there is no receiver node, then all the nodes that can receive wave messages would 
receive that message and the system would end up with nodes in the wave state. This is 
because unless any of the nodes see a receiver, they don’t form a path and until the path 
is formed none of the nodes in wave state go into clear state. For the sake of simplicity 
and greater visualization let us take an example of a plane (instead of 3-dimensional 
space) of nodes in which there is no receiver node. The final state of the model after 57 
steps would be like the one shown as follows.  

 

 
 

The test with 3 dimensions would have shown a similar behavior. 
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c) Multiple Sender Nodes 

If there are multiple sender nodes then the model can behave in an unexpected manner. 
This is because the wave states for one of the sender nodes may interfere with the path 
for other sender node or else prevent the formation of the wave and path. For the sake of 
simplicity and greater visualization let us take an example of a plane (instead of 3-
dimensional space) in which there are two sender nodes, the final state of the model after 
106 steps would be like the one shown below. 

 

 

Here the path has been successfully established for one of the sender nodes while there is 
no path for the other sender node. However, if we change the position of the sender node 
the model behaves as follows. 
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Note that in this test, the model formed a path for one of the sender nodes. This clearly 
shows that the wave states for the lower receiver interfered with the wave states for the 
upper receiver. The test in 3 dimensions shows a similar behavior. 

 

The conclusion is thus that the model behaves in an unexpected manner with multiple 
senders and hence should be run with one and only one sender.  

 

d) Multiple Receiver Nodes 

If there are multiple receiver nodes then the model can behave in an unexpected manner. 
This is because once the model has reached the first receiver it starts sending the clear 
state message. Nodes that become clear cannot become a path for the second receiver. So 
the model usually ends up with a successful shortest path between the sender and the 
receiver that is nearest to sender and unsuccessful path attempt between the sender and 
the other receiver. For the sake of simplicity and greater visualization let us take an 
example of a plane (instead of 3-dimensional space) in which there are two receiver 
nodes. The above mentioned behavior has been observed in the following example.  

 

 
 

The test in 3 dimensions shows a similar behavior. 

 

The conclusion is thus that the model may behave in an unexpected manner with multiple 
receivers and hence should be run with one and only one receiver.  
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3.2 Part 2: Construction of Optimal Multicast Trees 

3.2.1 Conceptual Model Description 
The conceptual model for this part has been described in Section 1.1 and Section 2.2. It 
will not be repeated here to save space. 

 

3.2.2 Algorithm Design for Optimal Multicast Trees 
Construction 
As discussed in Section 2.2, the original Lee’s algorithm breaks for multiple receiver and 
sender nodes. So a new algorithm was designed to make the construction of optimal 
multicast trees possible. This is explained stepwise in this section. 

 

 During the first step of the algorithm, just like the Lee’s algorithm, the nodes that 
see a sender node in their neighborhood start pointing towards it. All other nodes 
that see a wave node in their neighborhood start pointing towards them. The 
process continues till one of the wave nodes sees a receiver in its neighborhood. 
That node becomes the path node. All other wave nodes that see a path node in 
their neighborhood pointing towards them also becomes a path. The wave nodes 
that either do not have a path node in their neighborhood or have a path node in 
their neighborhood but not pointing towards them, gets to clear state. Thus, after 
the successful completion of the first step, a path is established between the 
sender and the receiver node (if one exists) and all the wave messages are purged. 

 

 During the second step of the algorithm all the path nodes become the tree nodes 
and hence a tree is formed between the sender and the receiver. Moreover, during 
this phase, all clear state nodes are re-initialized to their initial value. 

 

 During the third step, an input is given to the model. This input tells the model 
that another node in the model wants to join the multicast tree. Note here that this 
input should be given to the model only after the successful completion of step 2. 
Otherwise, the messages for the next steps may interact with the messages from 
first and second step and hence produce an undesirable behavior.  

 

  During the fourth step a path is established between the new node and the nearest 
tree node. This is done by following the exact procedure in step 1. The only 
difference is that instead of a particular receiver node, the path is formed between 
the new node and the nearest tree node. 

 

 Since the wave messages are broadcasted in fourth step and there are more than 
one tree nodes in the model, the fourth step may generate more than one path 
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between the tree and the new node. During the fifth step all such undesirable 
paths are purged by sending out a clear state message and also by adding logic to 
the model to detect and purge non-optimal paths.  

 

 The successful completion of the fifth step generates a shortest, optimal path from 
the new node to the tree. This path becomes the tree during this step. Moreover, 
during this phase, all clear state nodes are re-initialized to their initial value. 

 

 After the successful completion of the sixth step, all steps from 3 to 6 are repeated 
for each additional node. Thus, the algorithm can add as many nodes to the 
multicast trees as desired, by repeating the procedure from step 3 to 6.     

 

3.2.3 Formal Specifications for the Cell-DEVS Model 
In order to make optimal multicast trees, a Cell-DEVS model named path is defined.  Its 
formal specifications are given below. 
 
CD    =         < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 
 
X = S 
Y = S 
 
I = <η,µ,  Px, Py > 
Where 
 η = 5 
 µ = 0 
    Pji         =            { (Nji, Tji) /  ∀ j ∈ [1, 5],  Nji ∈ [i1, i5] and Tji ∈ Ιi         
             }, Ιi = { x / x ∈ X if i = X } or Ιi = { x / x ∈ Y if i = Y } ; 
 
S = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17} 
 
θ    =         {  (s, phase, σqueue, σ) / 
   s ∈ S is the state value for a cell (S has already been defined),  
   phase ∈ {active, passive}, 
   σqueue = { ((v1,σ1),...,(vm,σm)) / m ∈ N ∧ m <∞) ∧ ∀ (i ∈ N, i  

   ∈ [1,m]), vi ∈ S ∧ σi ∈ R0+∪ ∞}; and 

   σ ∈ R0+ ∪ ∞ 
           } (As Transport delay is used) 
   
N = {(-1,0), (0,-1), (0,0), (0,1), (1,0)} 
 
d = 100 



 24

 
D    =        θ x N x d → R0+ ∪ ∞, 
 
For δint, δext, λ and τ see path.ma (These functions actually constitute the whole algorithm 
that has been discussed in Section 3.2.2 and implemented in path.ma. These functions are 
hence not written here to save space). 
 
GCC    =        < Xlist, Ylist, I, X, Y, η, N, {f, c}, C, B, Z, select > 
 
Xlist = {(9,3), (16,19), (23,19) } //Different cells were given inputs in    
                               different tests. The numbers given here are shown only as an example   
  (Test 2). 
Ylist = { Ø } 
 
I = < Px, Py > 
Where 
 Px = { <X(9,3), 4>, <X(16,19), 4>, >, <X(23,19), 4>  } (For Test   
   2) 
 Py = { Ø } 
 
X = S (Defined Above) 
Y = S (Defined Above) 
 
η = 5 
 
N = {({(-1,0), (0,-1), (0,0), (0,1), (1,0)} 
 
f = Different values are used for different tests e.g. 5, 25, 30 etc. 
c = Different values are used for different tests e.g. 5, 25, 30 etc. 
 
C     =        {Cij / i ∈ [1,f] ∧ j ∈ [1,c] } 
B    =        No-wrapped 
 
Z    = 
Pij Y1 → Pi,j-1 X1            Pi,j+1 Y1 →  Pij X1 

Pij Y2 → Pi+1,j X2                   Pi-1,j Y2 →   Pij X2 

Pij Y3 → Pi,j+1 X3          Pi,j-1 Y3  →  Pij X3 

Pij Y4 → Pi-1,j X4          Pi+1,j Y4 →  Pij X4 
Pij Y5 → Pij X5   Pij Y5 →  Pij X5  
 
Select      =         { (-1,0), (1,0), (0,0), (0,1), (0,-1) } 
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3.2.4 Test Strategy 
The model will be tested by having different initial distributions of the node and checking 
whether the algorithm successfully determines the shortest path between two nodes (if 
one exists). The initial distribution of the nodes would be provided as an input to the 
model in terms of .map files.  The .map file provided as an input to the model should 
have the following characteristics. 
 

 There is only one start point. 
 There is only one end point. 
 There is at least one start point. 
 There is at least one end point. 

 
The first two conditions are necessary because the Lee’s algorithm in its current form fail 
if there are multiple senders or receivers. The last two points are the requirements of the 
problem statement. Note that there may no path exists between the starting and the end 
point. In such a situation, the system would end up with some nodes in the wave 
conditions and the other nodes in initial state. If more than one path exists, the system 
would locate the shortest path. 
 
After the algorithm has found the shortest path between the two nodes in the .map file 
and hence an initial tree has been setup, additional nodes will be added to the multicast 
trees. These nodes would be provided as an input to the model through the use events file. 
Hence the model also takes path.ev file as an input. The requirement for such a file is that 
it should add only one sender/receiver node to the model at one time. Before adding the 
next sender/receiver node to the model, enough time should be given for the first node to 
become the part of the multicast tree and all wave messages to be purged i.e. the wave 
nodes to reach the clear and than initial state.  
 
3.2.5 Implementation in CD++ 
For implementation of the algorithm in CD++, a total of 18 states has been defined. 
These 18 states along with their state values are given as follows. 
 
State 0  Dead Cell (Broken Communication Link) 

State 1  Initial State of the Nodes 

State 2  Initial State of the Destination Node 

State 3  Destination Ready (State of the Destination Node after it has received a  
  send request from the sender) 

State 4  Initial State of the Sender Node 

State 5  Wave Up  

State 6  Wave Down 
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State 7          Wave Right  

State 8          Wave Left 

State 9           Path Up 

State 10           Path Down  

State 11          Path Right 

State 12           Path Left 

State 13           Clear State (Intermediate State of the nodes that received a wave message   
           but are not going to become the path).  

State 14          Destination Found (Final State of the Sender Node before the construction 
          of the tree). 

State 15           Tree State (State of the nodes that belong to the multicast tree)  

State 16          Sender Tree State (Final State of the Sender Node after the construction 
           of the tree) 

State 17          Receiver Tree State (Final State of the Receiver Node after the    
                        construction of the tree) 
 
Using these state values the model was implemented in CD++. The path.ma file is 
presented next. Note here that in [path-rule] many Boolean statements could have been 
combined together. However, for the sake of clarity each statement is written in a 
separate line. The initialMapValue has been defined as path.map. This is the name of the 
file that the model takes as an input. Transport delay is used and a no-wrapped border is 
used. The width and height of the model given here are for a particular example. 
Different tests were run with different values of width and height. Moreover, the events 
receiving nodes here are for a particular test. For different tests, different nodes receive 
the input events (a request to become the part of the multicast tree).  

[top] 
components : path 
in : in1 in2 in3 
link : in1 in1@path 
link : in2 in2@path 
link : in3 in3@path 
 
[path] 
type : cell 
width : 20 
height : 28 
delay : transport 
defaultDelayTime : 100 
in : in1 in2 in3 
border : nowrapped  



 27

link : in1 inp@path(9,3)  
link : in2 inp@path(16,19) 
link : in3 inp@path(23,19) 
neighbors :             path(-1,0)   
neighbors : path(0,-1)  path(0,0)  path(0,1) 
neighbors :             path(1,0)   
initialvalue : 1 
initialMapValue : path.map 
localtransition : path-rule 
portInTransition : inp@path(9,3) special-rule 
portInTransition : inp@path(16,19) special-rule 
portInTransition : inp@path(23,19) special-rule 
 
[path-rule] 
rule : 3 100 { (0,0) = 2 and stateCount(9) > 0} 
rule : 3 100 { (0,0) = 2 and stateCount(10) > 0} 
rule : 3 100 { (0,0) = 2 and stateCount(11) > 0} 
rule : 3 100 { (0,0) = 2 and stateCount(12) > 0} 
 
rule : 5 100 { (0,0) = 1 and (-1,0) > 3 and (-1,0) < 9} 
rule : 6 100 { (0,0) = 1 and (1,0) > 3 and (1,0) < 9} 
rule : 7 100 { (0,0) = 1 and (0,1) > 3 and (0,1) < 9} 
rule : 8 100 { (0,0) = 1 and (0,-1) > 3 and (0,-1) < 9} 
 
rule : 9 100 { (0,0) = 5 and (stateCount(2) = 1 or stateCount(15) = 1) 
 and (stateCount(9) + stateCount(10) + stateCount(11)+ 
 stateCount(12) = 0)} 
rule : 10 100 { (0,0) = 6 and (stateCount(2) = 1 or stateCount(15) = 1) 
 and (stateCount(9) + stateCount(10) + stateCount(11)+ 
 stateCount(12) = 0)} 
rule : 11 100 { (0,0) = 7 and (stateCount(2) = 1 or stateCount(15) = 1) 
 and (stateCount(9) + stateCount(10) + stateCount(11)+ 
 stateCount(12) = 0)} 
rule : 12 100 { (0,0) = 8 and (stateCount(2) = 1 or stateCount(15) = 1) 
 and (stateCount(9) + stateCount(10) + stateCount(11)+ 
 stateCount(12) = 0)} 
rule : 9 100 { (0,0) = 5 and (0,-1) = 11} 
rule : 9 100 { (0,0) = 5 and (0,1) = 12} 
rule : 9 100 { (0,0) = 5 and (1,0) = 9} 
rule : 10 100 { (0,0) = 6 and (0,-1) = 11} 
rule : 10 100 { (0,0) = 6 and (0,1) = 12} 
rule : 10 100 { (0,0) = 6 and (-1,0) = 10} 
rule : 11 100 { (0,0) = 7 and (0,-1) = 11} 
rule : 11 100 { (0,0) = 7 and (-1,0) = 10} 
rule : 11 100 { (0,0) = 7 and (1,0) = 9} 
rule : 12 100 { (0,0) = 8 and (0,1) = 12} 
rule : 12 100 { (0,0) = 8 and (-1,0) = 10} 
rule : 12 100 { (0,0) = 8 and (1,0) = 9} 
 
rule : 13 100 { (0,0) > 4 and (0,0) < 9 and stateCount(13) > 0} 
rule : 13 100 { (0,0) > 4 and (0,0) < 9 and stateCount(3) > 0} 
rule : 13 100 { (0,0) > 4 and (0,0) < 9 and stateCount(14) > 0} 
rule : 13 100 { (0,0) > 4 and (0,0) < 9 and (-1,0) > 8 and (-1,0) < 13 
 and (-1,0) != 10} 
rule : 13 100 { (0,0) > 4 and (0,0) < 9 and (1,0) > 8 and (1,0) < 13 
 and (1,0) != 9} 
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rule : 13 100 { (0,0) > 4 and (0,0) < 9 and (0,-1) > 8 and (0,-1) < 13 
 and (0,-1) != 11} 
rule : 13 100 { (0,0) > 4 and (0,0) < 9 and (0,1) > 8 and (0,1) < 13 
 and (0,1) != 12} 
rule : 13 100 { (0,0) > 8 and (0,0) < 13 and (stateCount(2) + 
 stateCount(3) + stateCount(4) + stateCount(5) + stateCount(6) + 
 stateCount(7) + stateCount(8) + stateCount(9)+ stateCount(10)+ 
 stateCount(11)+ stateCount(12)+ stateCount(14) + stateCount(15)+ 
 stateCount(16) < 3)} 
rule : 13 100 { (0,0) > 8 and (0,0) < 13 and (-1,0) > 8 and (-1,0) < 13 
 and (0,0) != 9 and (-1,0) !=10} 
rule : 13 100 { (0,0) > 8 and (0,0) < 13 and (0,-1) > 8 and (0,-1) < 13 
 and (0,0) != 12 and (0,-1) !=11} 
rule : 13 100 { (0,0) = 9 and (-1,0) = 13 } 
rule : 13 100 { (0,0) = 10 and (1,0) = 13 } 
rule : 13 100 { (0,0) = 11 and (0,1) = 13 } 
rule : 13 100 { (0,0) = 12 and (0,-1) = 13 } 
 
rule : 14 100 { (0,0) = 4 and stateCount(9) > 0} 
rule : 14 100 { (0,0) = 4 and stateCount(10) > 0} 
rule : 14 100 { (0,0) = 4 and stateCount(11) > 0} 
rule : 14 100 { (0,0) = 4 and stateCount(12) > 0} 
 
rule : 1 100 { (0,0) = 13 and (stateCount(4) + stateCount(5)+ 
 stateCount(6) + stateCount(7) + stateCount(8) = 0) } 
 
rule : 15 100 { (0,0) > 8 and (0,0) < 13 and stateCount(14) > 0 } 
rule : 15 100 { (0,0) > 8 and (0,0) < 13 and stateCount(15) > 0 and 
 ((0,1) = 12 or (0,-1) = 11 or (-1,0) = 10 or (1,0) = 9)} 
rule : 15 100 { (0,0) > 8 and (0,0) < 13 and (stateCount(3) + 
 stateCount(15) > 1)} 
 
rule : 16 100 { (0,0) = 14 } 
rule : 17 100 { (0,0) = 3 and stateCount(15) > 0 } 
 
rule : {(0,0)} 100 {t} 
 
[special-rule] 
rule : {portValue(thisPort)} 100 {t} 
 
In order to for the results to be viewed in CD++ Modeler a color palette (Figure 3.2) is 
defined. This palette is presented next as it is necessary to explain the results presented in 
the next section. Note here that in the palette all the wave states of the nodes (state 5 to 
state 8) are represented with the same color. Similarly, all the path states of the node 
(state 9 to state 12) are being represented by the same color. 

Here all the dead cells are represented as black cells and all the cells that have not 
received any message yet represented as white. As in a multicast tree any node can send 
or receive a message from the multicast group, from multicast tree’s point of view there 
is no difference between the sender and the receiver. Hence all the states of the sender 
and the receiver are represented with the same color maroon. All the wave messages are 
light blue and the path nodes dark blue. Those wave nodes that are not going to become 
the path gets to an intermediate clear state which is represented as grey. The tree is 
represented in a violet color.  
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Figure 3.2: Color Palette for Viewing Results of Part 2 in CD++ Modeler 
 
3.2.6 Testing 
A number of tests were conducted on the model. A subset of these tests is presented in 
this section. Note that these tests are given in the attached diskette. As the input of each 
test is a map file which is very long, it is not included in the report. Similarly, .drw files 
are very long, so they are not included in the report either. The screen shots taken from 
execution of the model on the CD++ Modeler at different intervals during the test are 
given in this report. 
 
a) Test 1 

This is a test consisting of 25x25 Cell plane. Initially there are two nodes. Subsequent 
nodes are added after tree for each of the nodes is completed. The initial distribution of 
the nodes is given as follows: 
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The state of the model after 50 steps of execution is as follows. Here the path between the 
two nodes is being formed. Also note that all the wave nodes are being set to clear state 
and the clear state nodes are being re-initialized.  
 

 
 
The state of the model after 80 steps of execution is as follows. Here the path between the 
two nodes has been completed and that path is becoming the tree. All clear state nodes 
have been re-initialized. 
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The state of the model after 93 steps of execution is as follows. Here the tree between the 
two nodes has been completed and a new node has been just added to the system.  
 

 
 

The state of the model after 125 steps of execution is as follows. Here the new node has 
generated the wave messages and multiple (non-optimal) paths from the trees are being 
formed.  

 
 
The state of the model after 150 steps of execution is as follows. Here the new node has 
found the shortest optimal path and that path is becoming the tree. All other non-optimal 
paths have been purged and all the clear state nodes have been re-initialized.  
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The final state of the model after 217 steps of execution is as follows. Here 3 new nodes 
have been successfully added to the multicast tree formed between the first two nodes. 
Note that it is an optimal tree. 
 

 
 

The above test shows that the model has successfully built an optimal multicast tree. Note 
that during the intermediate steps, many non-optimal paths are generated after the 
addition of every new node but the model successfully detects and builds the shortest 
path and purges all other non-optimal paths.   
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b) Test 2 

This is a test consisting of 20x28 Cell plane. Initially there are two nodes. Subsequent 
nodes are added after tree for each of the nodes is completed. The initial distribution of 
the nodes is given as follows: 

 
 

The state of the model after 150 steps of execution is as follows. Here the tree has been 
established for the first two nodes and an additional node is just added to the system. 

 
 

The state of the model after 175 steps of execution is as follows. Here the new node has 
generated the wave messages and multiple paths from the trees are being formed.  
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The state of the model after 200 steps of execution is as follows. Here the third node has 
found the shortest optimal path and that path has become the tree. All other non-optimal 
paths have been purged and all the clear state nodes have been re-initialized. A fourth 
node is added to the system which is in the process of finding the optimal path. 

 
 
The final state of the model after 237 steps of execution is as follows. Here 3 new nodes 
have been successfully added to the multicast tree formed between the first two nodes. 
Note that it is an optimal tree. 
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The above test shows that the model has successfully built an optimal multicast tree. Note 
that during the intermediate steps, many non-optimal paths are generated after the 
addition of every new node but the model successfully detects and builds the shortest 
path and purges all other non-optimal paths.   
 
c) Test 3 

This is a test consisting of 31x31 Cell plane. Initially there are two nodes. Subsequent 
nodes are added after tree for each of the nodes is completed. The initial distribution of 
the nodes is given as follows: 
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The state of the model after 120 steps of execution is as follows. Here the tree has been 
established for the first two nodes and an additional node is just added to the system. 

 
 

The state of the model after 169 steps of execution is as follows. The third node is 
successfully and optimally has been added to the multicast tree and the fourth node is just 
added to the system. 
 

 
 
The state of the model after 170 steps of execution is as follows. Note that the fourth 
node added to the system could not join the multicast tree. The reason is that that there 
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does not exist any path from the fourth node to the multicast tree. The fifth node is just 
added to the system. 
 

 
 

The final state of the model after 217 steps of execution is as follows. Here 2 new nodes 
have been successfully added to the multicast tree formed between the first two nodes. 
Note that it is an optimal tree. The fourth node could not be added to the tree because 
there exists no path from the fourth node to the multicast tree. 
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The above test shows that the model has successfully built an optimal multicast tree. Note 
that during the intermediate steps, many non-optimal paths are generated after the 
addition of every new node but the model successfully detects and builds the shortest 
path and purges all other non-optimal paths.   
 
3.2.7 Reaction of the Model to Different Inputs than Those 
Defined in the Specifications 

The requirement of the model is that it has one and only one sender and one and only one 
receiver node in the .map file. The cases that violate this condition have been discussed in 
detail in Section 3.1.6 and will not be repeated here.  

The other requirement of the model is that the new node should not be added to the 
system until the tree for the previous node has been completed and all wave and clear 
state nodes have been re-initialized. If this condition is violated, the wave messages for 
the previous node interfere with the wave messages for the new node. This results in an 
unexpected and undesired behavior and mostly a successful shortest optimal path to the 
tree is not made. So the conclusion is that the new node should be added to the system 
only when the tree for the previous node has been completed and all wave and clear states 
nodes have been re-initialized.  
 
3.3 Part 3: Routing Among Multiple Pairs of Senders and 
Receivers 

3.3.1 Conceptual Model Description 
The conceptual model for this part has been described in Section 1.1 and Section 2.3. It 
will not be repeated here to save space. 

 

3.3.2 Algorithm Design for Routing Among Multiple Pairs of 
Senders and Receivers 
As discussed in Section 2.3 that the original Lee’s Algorithm breaks for multiple pairs of 
senders and receivers, a new algorithm needs to be devised. The approach taken during 
this project is that each pair of sender and receiver is allocated one plane in the Cell-
DEVS model. The total number of planes in the resulting 3 dimensional model thus 
depends on the total pair of receivers and senders to be routed. In each plane the original 
Lee’s algorithm is implemented with a total of 15 states for each of the cell. Thus, 
multiple pairs of senders and receivers and routed, without having to define more states. 
Moreover, this approach exploits the inherent parallelism in the Cell-DEVS model as 
many pairs are routed simultaneously without interfering with each other.  

3.3.3 Formal Specifications for the Cell-DEVS Model 
In order to compute the shortest path between multiple pairs of senders and receivers, a 
Cell-DEVS model named path is defined.  Its formal specifications are given below. 
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CD    =         < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 
 
X = S 
Y = S 
 
I = <η,µ,  Px, Py > 
Where 
 η = 5 
 µ = 0 
    Pji         =            { (Nji, Tji) /  ∀ j ∈ [1, 5],  Nji ∈ [i1, i5] and Tji ∈ Ιi         
             }, Ιi = { x / x ∈ X if i = X } or Ιi = { x / x ∈ Y if i = Y } ; 
 
S = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14} 
 
θ    =         {  (s, phase, σqueue, σ) / 
   s ∈ S is the state value for a cell (S has already been defined),  
   phase ∈ {active, passive}, 
   σqueue = { ((v1,σ1),...,(vm,σm)) / m ∈ N ∧ m <∞) ∧ ∀ (i ∈ N, i  

   ∈ [1,m]), vi ∈ S ∧ σi ∈ R0+∪ ∞}; and 

   σ ∈ R0+ ∪ ∞ 
           } (As Transport delay is used) 
   
N = {(-1,0,0), (0,-1,0), (0,0,0), (0,1,0), (1,0,0)} 
 
d = 100 
 
D    =        θ x N x d → R0+ ∪ ∞, 
 
For δint, δext, λ and τ see path.ma (These functions actually constitute the whole algorithm 
that has been given in Section 3.3.2 and implemented in path.ma. These functions are 
hence not written here to save space). 
 
GCC    =        < Xlist, Ylist, I, X, Y, η, N, {f, c, b}, C, B, Z, select > 
 
Xlist = { Ø } 
Ylist = { Ø } 
 
I = < Px, Py > 
Where 
 Px = { Ø } 
 Py = { Ø } 
 
X = S (Defined Above) 
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Y = S (Defined Above) 
 
η = 5 
 
N = {(-1,0,0), (0,-1,0), (0,0,0), (0,1,0), (1,0,0)} 
 
f = Different values are used for different tests e.g. 5, 25, 30 etc. 
c = Different values are used for different tests e.g. 5, 25, 30 etc. 
b = 2 
 
C     =        {Cijk / i ∈ [1,f] ∧ j ∈ [1,c] ∧ k ∈ [1,b]} 
B    =        No-wrapped 
 

Z    = 
Pij Y1 → Pi,j-1 X1            Pi,j+1 Y1 →  Pij X1 

Pij Y2 → Pi+1,j X2                   Pi-1,j Y2 →   Pij X2 

Pij Y3 → Pi,j+1 X3          Pi,j-1 Y3  →  Pij X3 

Pij Y4 → Pi-1,j X4          Pi+1,j Y4 →  Pij X4 
Pij Y5 → Pij X5   Pij Y5 →  Pij X5  
 

Select      =         { (-1,0,0), (1,0,0), (0,0,0), (0,1,0), (0,-1,0)} 
 
3.3.4 Test Strategy 
The model will be tested by having different initial distributions of the node in each plane 
and checking whether the algorithm successfully determines the shortest path between 
two nodes in each plane (if one exists). The initial distribution of the nodes would be 
provided as an input to the model in terms of .map files.  The .map file provided as an 
input to the model should have the following characteristics. 
 

 There is only one start point in each plane. 
 There is only one end point in each plane. 
 There is at least one start point in each plane. 
 There is at least one end point in each plane. 

 
The first two conditions are necessary because the Lee’s algorithm fails if there are 
multiple senders or receivers in the same plane. The last two points are the requirements 
of the problem statement. Note that there may no path exists between the starting and the 
end point. In such a situation, the system would end up with some nodes in the wave 
conditions and the other nodes in initial state. If more than one path exists, the system 
would locate the shortest path. 
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3.3.5 Implementation in CD++ 
For implementation of the algorithm in CD++, a total of 15 states have been defined. 
These 15 states along with their state values are given as follows. 
 
State 0  Dead Cell (Broken Communication Link) 

State 1  Initial State of the Nodes 

State 2  Initial State of the Destination Node 

State 3  Destination Ready (State of the Destination Node after it has received a  
  send request from the sender) 

State 4  Initial State of the Sender Node 

State 5  Wave Up  

State 6  Wave Down 

State 7          Wave Right  

State 8          Wave Left 

State 9           Path Up 

State 10           Path Down  

State 11          Path Right 

State 12           Path Left 

State 13           Clear State (Intermediate State of the nodes that received a wave message   
           but are not going to become the path)  

State 14          Destination Found (Final State of the Sender Node) 

Using these state values the model was implemented in CD++. The path.ma file is 
presented next. Note here that in [path-rule] many Boolean statements could have been 
combined together. However, for the sake of clarity each statement is written in a 
separate line. The initialMapValue has been defined as path.map. This is the name of the 
file that the model takes as an input. Transport delay is used and a no-wrapped border is 
used. The dimensions of the model given here are for a particular example. Different tests 
were run with different values of width and height. 
[top] 
components : path 
 
[path] 
type : cell 
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dim : (2,5,5) 
delay : transport 
defaultDelayTime : 100 
border : nowrapped  
neighbors :             path(0,-1,0)   
neighbors : path(0,0,-1)  path(0,0,0)  path(0,0,1) 
neighbors :             path(0,1,0)   
initialvalue : 1 
initialMapValue : path.map 
localtransition : path-rule 
 
[path-rule] 
rule : 3 100 { (0,0,0) = 2 and stateCount(9) > 0} 
rule : 3 100 { (0,0,0) = 2 and stateCount(10) > 0} 
rule : 3 100 { (0,0,0) = 2 and stateCount(11) > 0} 
rule : 3 100 { (0,0,0) = 2 and stateCount(12) > 0} 
 
rule : 5 100 { (0,0,0) = 1 and (0,-1,0) > 3 and (0,-1,0) < 9} 
rule : 6 100 { (0,0,0) = 1 and (0,1,0) > 3 and (0,1,0) < 9} 
rule : 7 100 { (0,0,0) = 1 and (0,0,1) > 3 and (0,0,1) < 9} 
rule : 8 100 { (0,0,0) = 1 and (0,0,-1) > 3 and (0,0,-1) < 9} 
 
rule : 9 100 { (0,0,0) = 5 and stateCount(2) = 1} 
rule : 10 100 { (0,0,0) = 6 and stateCount(2) = 1} 
rule : 11 100 { (0,0,0) = 7 and stateCount(2) = 1} 
rule : 12 100 { (0,0,0) = 8 and stateCount(2) = 1} 
rule : 9 100 { (0,0,0) = 5 and (0,0,-1) = 11} 
rule : 9 100 { (0,0,0) = 5 and (0,0,1) = 12} 
rule : 9 100 { (0,0,0) = 5 and (0,1,0) = 9} 
rule : 10 100 { (0,0,0) = 6 and (0,0,-1) = 11} 
rule : 10 100 { (0,0,0) = 6 and (0,0,1) = 12} 
rule : 10 100 { (0,0,0) = 6 and (0,-1,0) = 10} 
rule : 11 100 { (0,0,0) = 7 and (0,0,-1) = 11} 
rule : 11 100 { (0,0,0) = 7 and (0,-1,0) = 10} 
rule : 11 100 { (0,0,0) = 7 and (0,1,0) = 9} 
rule : 12 100 { (0,0,0) = 8 and (0,0,1) = 12} 
rule : 12 100 { (0,0,0) = 8 and (0,-1,0) = 10} 
rule : 12 100 { (0,0,0) = 8 and (0,1,0) = 9} 
 
rule : 13 100 { (0,0,0) = 1 and stateCount(13) > 0} 
rule : 13 100 { (0,0,0) > 4 and (0,0,0) < 9 and stateCount(13) > 0} 
rule : 13 100 { (0,0,0) > 4 and (0,0,0) < 9 and stateCount(3) > 0} 
rule : 13 100 { (0,0,0) > 4 and (0,0,0) < 9 and stateCount(14) > 0} 
rule : 13 100 { (0,0,0) > 4 and (0,0,0) < 9 and (0,-1,0) > 8 and  
 (0,-1,0) < 13 and (0,-1,0) != 10} 
rule : 13 100 { (0,0,0) > 4 and (0,0,0) < 9 and (0,1,0) > 8 and (0,1,0) 
 < 13 and (0,1,0) != 9} 
rule : 13 100 { (0,0,0) > 4 and (0,0,0) < 9 and (0,0,-1) > 8 and  
 (0,0,-1) < 13 and (0,0,-1) != 11} 
rule : 13 100 { (0,0,0) > 4 and (0,0,0) < 9 and (0,0,1) > 8 and (0,0,1) 
 < 13 and (0,0,1) != 12} 
 
rule : 14 100 { (0,0,0) = 4 and stateCount(9) > 0} 
rule : 14 100 { (0,0,0) = 4 and stateCount(10) > 0} 
rule : 14 100 { (0,0,0) = 4 and stateCount(11) > 0} 
rule : 14 100 { (0,0,0) = 4 and stateCount(12) > 0} 
rule : {(0,0,0)} 100 {t} 
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In order to for the results to be viewed in VRML GUI a color palette is defined.  
This palette is presented next as it is necessary to explain the results presented in the next 
section. Note here that in the palette all the wave states of the nodes (state 5 to state 8) are 
represented with the same color. Similarly, all the path states of the node (state 9 to state 
12) are being represented by the same color. 

 

Figure 3.3: Color Palette for Viewing Results of Part 3 in VRML GUI 

Thus all the dead cells are represented as black cells and all the cells that have not 
received any message yet represented as white. The destination is represented as light 
green but after receiving the send request from the sender it changes its color to dark 
green. Sender is red. All the wave messages are light blue and the path nodes dark blue. 
Those wave nodes that are not going to become the path gets to clear state which is 
represented as grey. The sender after successful discovery of the path to the destination 
changes its color to maroon. 

 

3.3.6 Testing 
A number of tests were conducted on the model. A subset of these tests is presented in 
this section. Note that these tests are given in the attached diskette. As the input of each 
test is a map file which is very long, it is not included in the report. Similarly, .drw files 
are very long, so they are not included in the report either. The screen shots taken from 
execution of the model on the Modeler at different intervals during the test are given in 
this report. 
 
Due to the visualization difficulties of 3 dimensional models, the tests given below have 
2 planes only and thus they route two pairs of senders and receivers, one in each plane. 
However, the algorithm and model discussed above is equally valid for higher number of 
planes. It has been tested but the results are not given here because of visual limitations 
of such tests. 
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a) Test 1 

This is a simple test consisting of 5x5 cells space having 2 planes and thus route two 
pairs of senders and receivers, one in each plane. The initial distribution of nodes in plane 
1 is as follows: 

 
 

The initial distribution of nodes in plane 2 is as follows: 
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The state of the nodes in plane 1 after 10 steps of execution is as follows: 
 

 
 
The state of the nodes in plane 2 after 10 steps of execution is as follows: 
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The final state of the nodes in plane 1 after 25 steps of execution is as follows: 
 

 
 
The final state of the nodes in plane 2 after 25 steps of execution is as follows: 
 

 
 
The results thus show that the model has successfully established the shortest path 
between the sender and the receiver in each of the planes. The algorithm thus is capable 
of routing among multiple pairs of senders and receivers simultaneously without having 
to define more states. 
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b) Test 2 

This is a simple test consisting of 15x15 cells space having 2 planes and thus route two 
pairs of senders and receivers, one in each plane. The initial distribution of nodes in plane 
1 is as follows: 

 
 

The initial distribution of nodes in plane 2 is as follows: 
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The state of the nodes in plane 1 after 25 steps of execution is as follows: 
 

 
 
The state of the nodes in plane 2 after 25 steps of execution is as follows: 
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The final state of the nodes in plane 1 after 46 steps of execution is as follows: 
 

 
 
The final state of the nodes in plane 2 after 46 steps of execution is as follows: 
 

 
 

The results thus show that the model has successfully established the shortest path 
between the sender and the receiver in each of the planes. The algorithm thus is capable 
of routing among multiple pairs of senders and receivers simultaneously without having 
to define more states. 
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c) Test 3 

This is a simple test consisting of 25x25 cells space having 2 planes and thus route two 
pairs of senders and receivers, one in each plane. The initial distribution of nodes in plane 
1 is as follows: 

 
 

The initial distribution of nodes in plane 2 is as follows: 
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The state of the nodes in plane 1 after 50 steps of execution is as follows: 
 

 
 
The state of the nodes in plane 2 after 50 steps of execution is as follows: 
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The final state of the nodes in plane 1 after 78 steps of execution is as follows: 
 

 
 
The final state of the nodes in plane 2 after 78 steps of execution is as follows: 
 

 
 

The results thus show that the model has successfully established the shortest path 
between the sender and the receiver in each of the planes. The algorithm thus is capable 
of routing among multiple pairs of senders and receivers simultaneously without having 
to define more states. 
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3.3.7 Reaction of the Model to Different Inputs than Those 
Defined in the Specifications 

The requirement of the model is that it has one and only one sender and one and only one 
receiver node in each plane of the model. The cases that violate this condition have been 
discussed in detail in Section 3.1.6 and will not be repeated here.  

 

4. CONCLUSIONS 
The following conclusions can be drawn from this project: 

 

 If traditional routing algorithms are mapped onto Cell-DEVS, more efficient and 
more parallel routing algorithms can be found. This project maps the Adaptive On 
Demand Distance Vector (AODV) protocol for routing in ad hoc networks onto 
Cell-DEVS. This not only provided insights into the dynamics of the system and 
its reaction to different input stimuli but also gave an in depth analysis of the 
protocol for different testing conditions such as the number and location of nodes, 
connectivity conditions etc. Moreover, this mapping of the algorithm onto Cell-
DEVS resulted in the extension of the algorithm in three different directions 
covered comprehensively in the project. This shows that, generally speaking, 
mapping of traditional algorithms onto Cell-DEVS can lead into new ideas in 
theory and implementation of algorithms. 

 

  As a first part of the project, the project extended the original Lee’s algorithm to 
work in 3 dimensions. This extension is straight forward and produces shortest 
path between two nodes (if one exists) in 3 dimensional space by just using 19 
states for each cell. The inherent parallelism in Cell-DEVS is exploited and wave 
messages and clear state messages are processed concurrently by several nodes. 
The project only shows how the original algorithm can be extended to the third 
dimension but the approach taken can be easily extended to any general ‘n’ 
number of dimensions. 

 

 The original Lee’s algorithm fails for multiple receivers. During the second part 
the project not only handles multiple receivers but also produces optimal 
multicast trees. A whole new algorithm has been devised and analyzed. The 
algorithm is working pretty nicely and many complex scenarios can be solved 
using this algorithm, producing optimal multicast trees that duplicate the traffic as 
less as possible and hence save enormous amount of bandwidth. This clearly 
shows how mapping of routing algorithms onto Cell-DEVS can lead to new ideas 
and algorithms.  The only downside of the algorithm is that it requires that the 
new nodes be added one by one. They cannot be added simultaneously. However, 
this problem can easily be handled by having multiple state variables for each 
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cell. This way several nodes can join the multicast tree simultaneously and the 
parallel computing power of Cell-DEVS would be exploited to its fullest. 

 

 The third part of the project extends the original algorithm to deal with multiple 
pairs of senders and receivers. The approach taken exploits the parallelism in 
Cell-DEVS to its fullest and multiple pairs are routed simultaneously. This is 
done by having multiple planes and assigning one state variable to each of the 
planes. The approach taken is able to deal with a large number of senders and 
receivers concurrently. 
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