
Tools for DEVS Modeling, Simulation and 3D Visualization

[Poster Abstract]

Patrick Castonguay Tania Pendergast Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive
Ottawa, ON K1S 5B6

{pcaston3, tpenderg}@connect.carleton.ca; gwainer@sce.carleton.ca

Descriptors
I.6.8 [Types of Simulation]: Discrete event, Visual.

Keywords
Cell-DEVS, CD++, Blender, Visualization

ABSTRACT
 Cell-DEVS is an extension of the DEVS formalism which
combines DEVS with Cellular Automata. It is particularly useful
for defining spaces by decomposing them into individual cells.
The CD++ Toolkit enables one to model and simulate a real or
artificial system using either DEVS or Cell-DEVS. Although it
is provided with a Modeler tool, this permits only 2D
visualization of the simulation. This paper focuses upon two
efforts to produce integrate DEVS simulations developed with
the CD++ tool with 3D visualizations using Blender, an open-
source 3D visualization software.

1. INTRODUCTION
Cell-DEVS [1,2] provides a mechanism for modeling and
simulation of cell spaces that has been applied to multiple
projects in different fields. The CD++ Toolkit provides
DEVSView as well as the CD++ Modeler add-on [3]. These
tools provide a quick representation of the model and simulation
behaviour in the 2D space. Nevertheless, in order to represent
the simulation results more accurately, while providing
mechanism for interaction with users, 3D visualization of CD++
results has previously been done using VRML, Atlas, Maya and
Blender [4].
 Blender [5] is a free open source 3D content creation suite.
It can be used to create 2D or 3D graphics as well as movie
quality animations. Blender supports Python scripting, is free to
use, open-sourced, and provides powerful 3D animation
capability. Python provides a high-level dynamic object-oriented
programming language. For these projects no modifications
were made to Blender itself but rather its native support for
Python scripting was used in order to read and animate the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTOOLS ’09, Rome, Italy
Copyright 2009 ICST, ISBN 978-963-9799-45-5.

results from CD++. On [6] and [4], we showed how to integrate
basic DEVS simulation models written in CD++ with the
Blender suite, showing the integration and interoperability of
both CD++ and Blender.

 In this paper we will show the application of these methods
and the use of the tool chain to an aircraft emergency evacuation
simulation. Then we focus on implementing a minefield
mapping simulation using semi-autonomous robots. These
applications will show how to provide advanced visualization
models using this tools, providing insight on how to create
advanced 3D visualization projects based on basic simulation
results.

2. MODEL DEFINITION
 We first introduced a model used for aircraft emergency
evacuation simulation based on the work presented in [8], which
is concentrated on analyzing the effect of passenger delays at the
exit doors of a very large aircraft. A dual-layered cellular grid
representing the floor plan was defined, based on [6]. On the
first layer, a single cell can represent a wall, a passenger, an exit
or an empty space. A second layer was used to store information
on distances to the nearest functioning emergency exit. Figure 1
shows a snapshot of the 2D visual representation of both layers
during the execution run, as presented by the CD++Modeler
toolkit. The variable under study was the hesitation at the door,
thus, no other factors like panic behaviour or secondary routing
seeking behavior were implemented.

Figure 1: Aircraft Evacuation Simulation

Our second model aims to model the behaviour of one or
many robots mapping a minefield. It was designed such that

robots moved about the minefield randomly and avoided
occupying the same cell. The individual robots are constrained
to move within the minefield and scan the ground in each cell in
order to detect the presence or absence of mines. It was assumed
that the robots are in contact and update a common map of the
minefield. Each cell represent a realistic area of ground that a
robot could be expected to scan for a mine. The minefield cell
space had two layers. The first layer contained the actual
disposition of the mines. The state values for this layer do not
change during the simulation. The second layer contains the map
of the minefield that was generated by the robots moving about
the minefield. The state values for this layer changed as the
robots moved about the minefield and scanned the ground for
mines. Figure 2 depicts a snapshot of these two layers during the
simulation execution.

Figure 2: Minefield Mapping simulation

Figure 3: Visualization Architecture

3. VISUALIZATION
 The CD++ Toolkit uses a model (.MA) file to define the
behavior of a model. A .VAL file can be used to set the initial
values of each cell of the model in the simulation. These two
files are used at run-time to define the behaviour of the
simulation and a .LOG file is generated which contains the state
of each cell for each time-advance of the simulation. In order to
increase the script’s flexibility, it was extended to both
recognize the existence of a .VAL file and to carry out the
logging of the script's behaviour. The cell space is represented in
Blender by a direct coordinate transformation of the cell position
to coordinates within Blender. Once loaded, the script reads and
parses the .MA file and looks for a .VAL file if needed. The
.VAL file is processed before the .LOG file in order to
adequately initialize the simulation behaviour. See Figure 3 for a
visual representation of the CD++ Python-Blender script
architecture. As the .LOG file is parsed, objects will be
displayed at the appropriate coordinates within Blender. Objects

will appear and disappear in sequence, thereby representing their
movement.

4. CONCLUSION
 We learned how one can adapt a generic script to support
the visualization of results from a specific DEVS simulation.
The actual 3D representations of our simulation results can be
found in Figures 4a and 4b. Future work will focus on extending
the script to enable automatic mapping of 3D model behaviours.
As well, the automatic generation of a rendered animation will
be explored, rather than having to view the raw animation within
Blender. The inclusion of the Blender visual engine directly in
the CD++ Toolkit is currently being investigated.

Figure 4a: Aircraft Evacuation 3D Visualization

Figure 4b: Minefield Mapping 3D Visualization

5. REFERENCES
[1] Wainer, G. and Giambiasi, N. "Application of the Cell-
DEVS Paradigm for Cell Spaces Modeling and Simulation".
Simulation, vol. 71, No. 1, pp. 22-39, January 2001.

[2] Wainer, G. “Discrete-Event Modeling and Simulation: a
Practitioner’s approach”. Taylor and Francis. 2009.

[3] Wainer, G. "CD++: a toolkit to define discrete-event
models". Software, Practice and Experience. 32(3), 1261-1306.
November 2002.

[4] Wainer, G. and Liu, Q. "Tools for Graphical Specification
and Visualization of DEVS Models". Accepted for publication
in Simulation, Transactions of the SCS. 2009.

[5] Blender Foundation, http://www.blender.org/

[6] Wainer, G., Poliakov, E., Hayes, J. and Jemtrud, M. "A Busy
Day at the SAT Building". Proceedings of the International
Modeling and Simulation Multiconference, Buenos Aires. 2007.

[8] Amos, M. & Woods, A. "Effect of Door Delay on Aircraft
Evacuation time". http://arxiv.org/abs/cs/0509050. 2005.

CD++
Toolkit

.ma

.val

.log

Py Script Blender

.blend

.py
log.txt

