CD++

A tool for and DEVS and Cell-DEVS

Modelling and Simulation

User’s Guide

DRAFT - AUGUST 2004

Gabriel A. Wainer

Wenhong Chen, Juan Ignacio Cidre, Ezequiel Glinsky, Steve Leon, Ali Monadi, Alejandro Troccoli

Department of Systems and Computer Engineering
Carleton University
1125 Colonel By Dr. Ottawa, ON. Canada

http://www.sce.carleton.ca/faculty/wainer

gwainer @sce.carleton.ca

Table of Contents

CD++

CD++ is a tool for Discrete-Event modeling and simulation, based on the DEVS formalism. It runs either in
standalone (single CPU) or parallel mode (over a network of machines). This document is a user's guide to
CD++, and we will only focus on tool-related aspects. If needed, the reader can refer to the following
references for better understanding of DEVS and Cell-DEVS related topics (available at
http://www.sce.carleton.ca/faculty/wainer):

"A framework for remote execution and visualization of Cell-DEVS models". G. Wainer, W. Chen. In
Simulation: Transactions of the Society for Modeling and Simulation International. November 2003. pp. 626-
647.

"CD++: a toolkit to define discrete-event models". G. Wainer. In Software, Practice and Experience. Wiley.
Vol. 32, No.3. November 2002. pp. 1261-1306

"N-Dimensional Cell-DEVS". G. Wainer, N. Giambiasi. In Discrete Events Systems: Theory and Applications,
Kluwer. Vol. 12, No. 1. January 2002. pp. 135-157.

"Timed Cell-DEVS: modeling and simulation of cell spaces”. G. Wainer, N. Giambiasi. In Discrete Event
Modeling & Simulation: Enabling Future Technologies. Springer-Verlag. 2001.

DEVS is a discrete event paradigm that allows a hierarchical and modular description of the models. Each
DEVS model can be behavioral (atomic) or structural (coupled), consisting of inputs, outputs, state variables,
and functions to compute the next states and outputs. Cell-DEVS modeling systems that can be represented as
executable cell spaces. The DEVS formalism is used to provide enhanced execution speed.. For more
information about DEVS and Cell-DEVS models please refer to:
http://www.sce.carleton.ca/faculty/wainer/celldevs/introduction.html. From now on, a complete understanding
of DEVS and Cell-DEVS models is assumed. Details about the DEVS formalism can be found in:

“Theory of Modeling and Simulation”. B. Zeigler, H. Prachofer, T. G. Kim. 2" Edition. Academic Press. 2000.

1.1 CD++Builder — Quick Reference Guide

This section is a quick reference for CD++Builder. It will explain how to run a number of simple examples
without providing detailed information about the tools. The goal is to allow users to develop a basic familiarity
with the tool and it's functionality. The details of the tool be presented in the coming sections.

Most of the functions of CD++ can also be accessed through line commands but in this section we assume you
will use CD++Builder, an Eclipse-based GUI for CD++. Eclipse is a workbench that can be used for any form
of software development. It is an open-source integrated development environment (IDE) that can be extended
through the definition of plugins. The desired functionality can be programmed as plugins by combining them
with existing features of the platform. Task menus, notes, error logs, multiple project operations and even drag
and drop tools/functionalities are included. For a more detailed description of Eclipse, visit
http://www.eclipse.org/eclipse/fag/eclipse-fag.html.

CD++Builder is a plugin for Eclipse that provides the users with a CD++ development environment to create,
edit or view CD++ simulation projects. The tool, implemented with the Eclipse workbench, provide an IDE
where one can create, open and save projects. It enables editing CD++ related files and support for developing
multiple projects.

CD++Builder is essentially a front-end to CD++, a toolkit for DEVS and Cell DEVS modeling and simulation

(http://www.sce.carleton.ca/faculty/wainer/celldevs/). CD++Builder uses Eclipse and its platform plugin
development to provide an easy and simple environment to use CD++. Features such as a coupling syntax
editor, C++ editing support, importing and exporting data, and a graphical user interface for the CD++ tools are
featured in the plugin. However, Eclipse has many of it's own tools to make any user comfortable to
developing anything on it's workbench.

A key aspect in CD++Builder is the Coupling Editor, which provides a user means to manipulate DEVS
coupled models files. The editor provides a syntax coloring scheme which colors keywords, variables and
comments. Basic editor functions are provided as well such as CUA compliant keyboard commands or copy
and pasting functionality. This Editor also supports XML files for coupled model definition. XML coupled
model files can be converted into CD++ coupled model files for use in a project.

C++ support is featured to allow users to edit C++ related files involved with a CD++ project. Creating,
viewing and editing any sort of C++ files is done within a syntax editor with a coloring scheme. (C++ editing
support is featured from the CDT project, http://www.eclipse.org/cdt/)

The CD++Builder packages all the potential tools that can be used in a CD++ project from the existing CD++
toolbox and the Eclipse workbench and its own tool set. A perspective in eclipse defines a set of editors and
views arranged in an initial layout for a particular role or task. A default perspective for CD++Builder is given
to support the CD++ environment. The CD++Builder must be installed to view its features (please refer to
Appendix A — Installation and Technical notes).

If you start Eclipse, you will have access to the tools provided by CD++Builder. You will see a window like
the following:

4= CD++Builder - Eclipse Platform =]
File Edit Mavigate Search Project Run | Window Help
Jﬁ}- | H@dﬂ\zﬁl‘ Mew Window |
ﬁ (o .. Il Cpcn P el
EI!@ v X
— 7= Showe isw
Q@ | = = Hide Editars
Lock the Tolbars
Customize Perspective. ..
Save Perspective As... % Henrie
Reset Perspective
Close Perspective Other...
Close Al Perspectives
Keyboard Shorkouts »
Switch to Editor... Cerl+Shift+
Preferences
B2 Outiine b4
An outline is not available,
g CO+Consoletisw x
-
¥
CD++Consoleview J Tasks

Figure 1. CD++Builder main window.

To open the CD++Builder perspective, select windows -> Open perspective -> Other.... The following panel
will appear.

£ Select Perzspective

BeiL/Ce+ Development |
@ CD++Builder Perspective
[_CLI 'S Repozitory Explaring
% Debug

?{)& InstallAUpdate

%’Java

SfJava Browsing

T:JJava Type Hierarchy

<= Plug-in Development

EE Resource (default]

o]

Figure 2. Perspective panel

Cancel |

Figure 2 displays all perspectives available within Eclipse. To activate the plug-in select CD++Builder
Perspective and click ok. When this option is selected, CD++Builder is activated, as in the following figure.

Navigator panel
CD++ tools Buttons

Editor panel

der Perspective - D awlogGui.java - Eclipge Platform
Bun ‘window Help

Skurce FRefactor Maffigate Seach Project

#
RBe|afgz|a-]s]|ce-o-f &4
|
Rr v x || J]Bubbl. | ﬂSimuG...l J] Strea... [@Dl... b4 l ﬂiimuﬁ... | J] verbo... | J|Rur 4 »
| pt 2]
* Crested on Nowv 26, 2003
H | 7 =
EE DREW.E = * To change the template for this generated file go
drawlog.t—' ¥ Windowsgt;Preferencessgt;Javasgt; Code Generation&c

w

notes by
autput package CDEuilder.buttons:
nartic nale
b import Java.io.BufferedReader:
o= - import Jjava.io.File:
o= Dutline # import Java.io.Inputltcream:
lﬂz e \@\E o import java.io. Input3tcreamBeader:

CDBuilder, _l;l
import dec: L4

DirawlogiEn

b4
o parer
o fitle: —
o mode N >

ED++EonsoIeViNTasks | Conzols | Properties
%

N

Y
Task list / console panel

|
[
Outline panel

Figure 3. CD++Builder.

¢ Navigator Panel: allows user to view the current projects and their contents.

¢ Editor panel: allows user to view the contents of a selected file. It is programmed to open the default
editor for that particular file.

¢ Task list/Console panel: a section to write down planned tasks for particular project. The task view also
shows the errors encountered when compiling the project. The console will display any errors encountered

while running a CD++ function and output from CD++ tools.
¢ Outline panel: outlines the functions and objects in a selected class file. This portion is only implemented
for C++ files.

The CD++ tool set has a variety of components to execute DEVS models and to analyze simulation results.

Our main perspective, called CD++Builder, integrates the major as buttons located in the top toolbar. There are

currently four buttons available:

e =% Build: This button automatically creates a makefile for a specific project and runs the make command
to compile the source code for the models. The result is an executable to run a simulation.

. @ Simulation: This button activates the CD++ simulator. This executable represents a project-specific
simulation program that will simulate what you are modeling.

e [+ Drawlog: This button generates a (.)drw file for easier visualization of the execution of a Cell-DEVS
model in a text file.

e “ CD++Modeler: This button loads the CD++ Modeler program, a graphical tool for designing and
executing DEVS and Cell-DEVS models. In this application you can design atomic and coupled models as
well as animate the simulation results.

In this section, we will illustrate how to use the toolkit by executing two previously existing models. The first
one, called life, is a Cell-DEVS version of the “Life” Game. The second example is called ATM, which is a
DEVS model representing an ATM machine. These example (and other existing models) can be downloaded
from http://www.sce.carleton.ca/faculty/wainer/wbgraf. The model examples are located at the left of the web
frame. To download an example, click on the link indicated by: “Download model and sample”. All the
examples are compressed in zip files. Download the two samples into a local directory.

The first step to start a simulation is to create a new project. Open Eclipse and make sure that the CD++Builder
perspective is open as explained earlier. Click on the “File” tab, select “New”, and click on “Project...”. This
will bring up a new project wizard panel, which is shown in the following figure. Select the “Other”, and on
the left side of the project wizard panel, select “CD++Builder Project Wizard”. Click “Next” to start the
creation of a CD++Builder project.

4= New Project

Select
CD++ Builder

7l
Lo Cer @EBH— Builder Project Wizard

= Simple
- Examples

“ Back I L I Fini A1 | (e | cBock [T] fon | ceneel |

Figure 4. (a) New project wizard panel; (b) CD++Builder Project Wizard; (c) Navigator.

At this stage, the CD++Builder Project Wizard will be opened and the author name will be asked, as showed in
Figure 4 (a). Enter the project author's name and click Next. The wizard will ask for the project name. Enter
1life and click on Finish. The newly created project can be seen in navigator view, as illustrated in Figure 4

(c).

After having created a new project, the next step is to add the 11 fe example model to the project. Select the
project on the navigator view and right click on it. On the menu, select “Import...”. This will open the panel
shown in figure 6.

Hew b

Select
gl:l Int_D M Wind Import rezsources from a Zip or Jar file on the local file system I\g
PEn IN MNew window
C'I'F"f' Select an import zource;
ﬁ Existing Project inta "Work space
E Paste ¥, Extemal Features
@‘ External Flug-inz and Fragments
® Delete (23, File spstern
Maowve %‘Team Project Set
Rename
Exg Import. ..
£y Export...
é.'ﬁi" Refresh
Close Project
Team r
Compare \ith k
Replace With r

Restore From Local Histary, ..

Properties SEEET | Mest > I Eiriish Cancel

Figure 5. Import panel windows.

Since the Life example model is compressed in a Zip file, select Zip file and click Next. Another panel will
open asking to enter the name of the zip file to be imported. To locate the zip file click on the Browse... button
located on the top right of the panel, open the 1ife. zip model and click Finish.

£ Import E3
Zip file T
Source must not be empty. _]-é
|

From zip file: || j Browse |

Filteriipes | Selestsl [Teselertibl|

Inta folder: |I\fe Browse... I

™ Ovenwrits sxisting resources without warming

< Back | HERts | Eirishy I Cancel

Figure 6. Import panel windows.

Figure 8 shows the navigator view, where you will see the new life example model that was added to the
project. We will now simulate this model. The first step is to select any file from the folder by clicking on the
life file (THIS STEP IS REQUIRED; as there are different folder for different projects, we must pick the

one we want to run). Then click on the simulation button & and the following panel will open.

= Simulate Project

Coupled model file name(.ma)

I Browse

Ewent file namel.ev]

AN

T Mavigatar v x B | Erawise
i utput file name
o & a fil
EQ Jife: v I Browse
E"EPEE”C' Lag file namel log)
& | DEMO.BAT
5] DRew.BAT ol s
----- drawlog.exe Simulation stop time
:::li'w o (T R [[
&:’f} LIF-E il.ﬁ. Advanced users Only. Enter desired paramters
e pal L}
- README. TKT Comments
.simu.ehe u I
----- project
..... Motz tat Save as.batl Load.batl

Broceed | Lloze | el I

Figure 7. (a) Navigator view; (b) Simulation panel.

There are different ways to run a model, which will be discussed later. Here, we will use a previously defined
script. To do so, we must click on the “Load .bat” button, and open the file demo.bat (included in the
life.zip you originally downloaded). This will fill the panel with the necessary parameters to run the
simulation. Click on Proceed. At this stage, the console view will show all the details of the simulation
(Figure 8). To see the log file created from this simulation, double click on 1ife.log from the navigator
view. This will open a editor view showing the content of the log file.

ZheclipseiworkspacetatLifeCld =simu.exe -mi'LIFE.ma’ -o'LIFE, out' 4'LIFE. log' ~
FE'00:00:00; 000"
-CD+: A Tool ko Implement n-Dimensional Cell-DEYS models

ersion 2,0-F.45 December-1999

Daniel Rodriguez, Gabriel Wainer, Amir Barylko, Jorge Bewvaglonian
Departamento de Computacion, Facultad de Ciencias Exactas v Maturales,
IUniversidad de Buenos Aires, Argentina,

Loading models From LIFE.ma

Loading events From

essage log: LIFE.log

Cwkpuk o LIFE, ouk

Tolerance set to: 1e-08

“onfiguration ko show real numbers: Width = 12 - Precision =5 e

CD++ConsoleWiew | Tasks | Console

Figure 8. CD++ Console View

If you open the *.log file created by the simulator, you are able to view the simulation results, as in the
following figure.

sl

File Edit Mavigate Search Project Run Window Help

|F-HE 8| e o|%-||2]|we--

2 5. Mavigatar - X Xl
@ | " =§= Mensaje * / 00:00:00:100 / life(0Z) para life(d,11) (174) ;I
5 e Mensaje * / 00:00:00:100 / life(0Z) para life(d,12) (175)
Mensaje * / 00:00:00:100 / life(0Z) para life(9,5) (183)
--:ifli[E)REv;'lrbat Mensaje * / 00:00:00:100 / life(0Z) para life(9,6) (189)
! Mensaje * / 00:00:00:100 / life(0Z) para life(9,7) (190}
__g;z";;:ca‘d“ Mensaje * / 00:00:00:100 / life(0Z) para life(d,s) (191)
> . Mensaje * / 00:00:00:100 / life(0Z) para life(9,9) (19Z2)
::::;ﬂienﬁg Mensaje * / 00:00:00:100 / life(DZ) para life(9, 10) (133)
s Mensaje * / 00:00:00:100 / life(0Z) para life(9,11) (194)
fFe pal Mensaje * / 00:00:00:100 / life(DZ) para life(10,7) (210
-praject Mensaje * / 00:00:00:100 / life(0Z) para life(10,9) (212}
B g:f:;;'éx;rﬂﬂ Mensaje * / 00:00:00:100 / 1ife(02) para life(11,7) [230)
= o Mensaje * / 00:00:00:100 / life(0Z) para life(11,8) (231)
Mensaje * / 00:00:00:100 / life(0Z) para life(ll,9) (232)
Mensaje * / 00:00:00:100 / life(0Z) para life(12,8) (251)
Mensaje ¥ / 00:00:00:100 / life(4,8)(21) / out / 1.,00000 para life(02)
Mensaje D / 00:00:00:100 f life(4,8)(91) / ... para life(02) ey
Mensaje ¥ / 00:00:00:100 / life(5,7)(110) / out / 0.00000 para life(02)
Mensaje D / 00:00:00:100 / life(5,7)(110) / ... para life(02)
Mensaje ¥ / 00:00:00:100 / life(5,8)(111) / out / 0.00000 para life(02)
:E Outline b3 Mensaje D / 00:00:00:100 f life(5,8)(111) / .. para life(0Z)
BT e e E R, Mensaje ¥ / 00:00:00:100 / life(5,9)(112) / out / 0.00000 para life(02)
Mensaje D / 00:00:00:100 / life(5,9)(112) / ... para life(02)
Mensaje ¥ / 00:00:00:100 / life(6,7)(130) / out / 1.00000 para life(02)
Mensaje D / 00:00:00:100 / life(6,7)(130) / ... para life(02)
Mensaje ¥ / 00:00:00:100 / life(6,9)(132) / out / 1.00000 para life(02)
Mensaje D / 00:00:00:100 / life(6,9)(132) / ... para life(02)
Henlsaje T / 00:00:00:100 / life(7,5)(148) / out / 0.00000 para life(02)
Mensaje D / 00:00:00:100 / life(7,5)(148) / ... para life(02) -
i o
E CO-+Consoletiew x
-
-
CD-+Consoleview |Tasks
‘Writable Insert: 851 : 4

Figure 9. CD++ log outputs.

To view the state of a Cell-DEVS model, we can use the Drawlog tool, that permits viewing the outputs in a

=
==

simpler way. To use this feature, click on the Drawlog button Z~. The following panel will open:

Coupled model file name|.ma)

|| Browze |

Log file namef.log)

I Browse |

Output file name [drw)

I Browse |

Cellular model to represzent

| H
Starting time:

e o

“width for numerical value

|
Mumber of digits after the decimal
|
Slice ta draw when using 30 models
il

V¥ Danet print the zero value

Save az batl Load .batl
i Drawlag | Llose | el I
Figure 10. Drawlog panel

Here, we will also use a previously defined script. Click on the “Load .bat” button, and open the file
draw.bat (included in the life.zip you originally downloaded). This will fill the panel with the
necessary parameters to run the drawlog. Click on drawlog. The CD++ console view will once again show the
state of the drawlog creation. Once the conversion finishes, a text file will be created and opened illustrating
the state of the simulation, as in the following figure.

£ CD++Builder - life.drw - Eclipse Platform L =] x|

Flle Edt Mavigate Search Project Run Window Help

E LR T LRI
FE = x|
@ &S E | L %g}:- Line : 840 - Time: 00:00:00:000 =
EE=1 01234567890123456769
[FeDRW bat DT ____________________ T
LIFE.BAT
; 1] 1
¥ @ Farm_life.doc 2| |
life:.drw 3| |
X lfeLOG.log 4 |
\!faMA.ma 5| 111 |
life.pal sl |
project
7 G
- [E] notes2.bxt Ei: L1111 :
“[£] README_life TXT ol PR |
10| |
11} 111 |
12| | a
13| |
14| |
15| |
16| |
o=
@ Cutling * 17l |
A outline is not avallable. 181 |
19| |
o +

Line : 1086 - Time: 00:00:00:100

012345678901234567589

oo +

ol |

1l |

2] |

31 |

| 1 |

51 |

4] 15 |

71 11 11 |

5| T B |

=l 11 11 |
10] 155 | =

" .
] _>l_I

Writable Insert [ti2z

Figure 11. *.drw file

To simulate our second example create a new project following the previous steps and name it ATM. Once the
project is created, import the example to the project. Since the ATM model is a DEVS model, it needs to be
compiled before simulating it. To compile the project, click on one of the files in the project within navigator
view (in order to pick the project we want to compile) and press the Build button =is. A new panel, shown in
figure 12, will appear asking the user if they would like to run in verbose mode (a mode that provides detailed

info of the compiling project during compilation).

Progress Information
£~ Verboze Mode? [x] @ Building Project

fould o like tarun in verbogze mode’? [TTTLIIR LTI LTI

| generating project dependencies. ..

[Don't ask me again

Figure 12. (a) Verbose mode panel (b) Progress dialog

Once you have selected the mode, compilation will start. A progress dialog will appear showing the progress.

Also, the console view will show detail of the compilation and will inform you if the compilation was
successful. If there are errors, you can see them on the console, as showed in the following figure. Once the

compilation is successful, we can start simulating the project.

£~ CD++Builder - Balanceverifier.cpp - Eclipse Platform ;Iilﬂ
File Edt Mavigate Search Project Run ‘Window Help
oY - | B o [R-]| 2% e - R
ﬁ 65, Navigatar + % || [€Balanceverifier.cpp X l
(< 2 % & ;I =
@ o S o | 3 B R e T T e —
B AM = * Function MName: internalFunction
Bl atm s B L e T T e)
-) Makefil Model &Balanceverifier::internalFunction(const Internallessage &)
- [F] DEMOATM.BAT .
@ Balancewverifier .cpp passivate () :
@ CardReader.cpp - *t.hi:; .
= @ cashdispenser.cpp " ’
e @ pinverifier.cpp
(€] register.cpp S S
3 UsexTrterface.cop * Function Name: outputFunction
3 TR i R AN AT TR AR AR AR AR A R AN AN AN AR A R AN AT AT A AR AR TR TAAAAARRB AR ATAGT S
- @ Balanceverifier.b Model &£Balanceverifier::outputFunction| const InternalMessadge &msg)
- [€] Cardreader.h ¢
- [€] cashdispenser.h if | balance OF == 1 |
(€] pinverifier.h [x} send Output(msg.time(), amnt out, amnt] :
- [€] UserInkerface.h p: =
) ATMMA :
E ifi -
- - sendOutput | msg.time (), get amnt out, H
=] Balanceverifisr.o _I a0 i I o 4 1)
2% outline 12 x|a ¥
Tthis:
math.h return *this;
stelib.h }
randlib.h Ty Ty
Balanceverifier.h Balanceverifier::~Balanceverifier () -
message.h ¢ 8 =
distrih delete dist;
mainsimu.h '
strutil.h | it
Balanceverifier 1 :Balanceverific : 2
Balanceverifier i iexternalFunc o
FRW X
Balanceverifier internalFunct I I |
Balanceverifier :outputFunct L (M 1 F?!F!Er L
Balanceverifier :~Balanceveril | @: *send' undeclared {first use this funckion) EBalanceverifiercpp ATMfatm line 95
a9 confused by earlier errors, bailing out EBalanceverifier .cpp ATMjatm line 102
4| | b | | Tasks | CO++Consoleyiew

2 lkems: O tasks, 2 errors, 0 warnings, O infos

Figure 13. Error display.

To simulate the project, we can follow the same steps previously mentioned (except for the use of the drawlog,

which only applies to Cell-DEVS models).

Further instruction and information about simulating a model are explained in section <>.

2 Model definition: Atomic models

This section describes the mechanism to defines and incorporate new atomic models into CD++. These models
can be used to interact directly with other models or to be part of a DEVS coupled model. Atomic models are
added to the tool at compile time, and if a new atomic models need to be defined; they must be coded in C++

and incorporated into CD++ model hierarchy.

2.1 Creating new atomic models using CD++Builder

Eclipse provides a set of tools and plug-ins which facilitate the creation of a model. This section will provides

useful features that Eclipse delivers to create of a new atomic model.

2.1.1 Opening an existing project

To open an existing project into your workspace, one will have to import it by using the import wizard, which
is illustrated in Figure 14. This wizard is opened by selecting File on the top window bar in Eclipse and then
clicking on import. Then select the Existing Project into Workspace option and click on the next button. The
next screen should prompt you to select the folder in which the existing project is located. Once you have

selected where the project is, you may click on the finish button to import the project. This project will now be
in your workspace/navigator for you to edit or view.

£~ Import g‘

Select ~
Import resaurces from a Zio or Jar file on the local file systemn m

Select an import source:

ﬁ Existing Project into Workspace
U5, External Features

1@;Extemal Plug-ins and Fragrmerts
3, File system

ETeam Project Set

Yo e |

Next = | | Cancel |

Figure 14. Import wizard panel & Navigator view respectively

2.1.2 Creating a new project

To create a new project, click on the File tab, select new, and then click on project. This will bring up a new
project wizard panel, where you can create different types of projects, as shown in the following figure.

£~ New Project E
Select P

CD++ Builder ﬁ

ED Builder Project izard
““ ++ Dullder Frojec 12arn

Jug-in Development
imple
[#- Examples

< Bach I Mest > I Eitiiety | Cancel

Figure 15. New project wizard panel

The left side of the panel shows the different types of project that can be created, while the right side shows the
different project wizards corresponding to each type of project selected on the left side.

The CD++Builder Project Wizard is located on the “Other” section. After selecting the project, a new panel
will ask for the author's and the project's names. Once these are filled, select finish to finalize the creation of
the project or click next to make references to existing projects inside your workspace. In this way, you can
include models already defined for other projects in the newly created one.

When the project has been created, we are able to access a notes file and a project file. The notes file is a
simple text file that you can store short notes about your project. The project file is a file which acts as an
identification file for the project.

The new project and its files are now available in the navigator view. The following figure illustrated the
creation of a new project named “Clock”.

E Mavigator

| =

pioject
notes. bt

Figure 16. New project shown in the navigator view

2.1.3 Creating and editing files

To create a new atomic or coupled model, we need to created and edit a new file. To create a file, go to File ->
New -> File. This will bring us to a new file wizard, which will request information about the type and location
of the file as illustrated in the figure below:

#= Hew File E
File

: sy
Create a new file resournce.

Enter or zelect the parent folder:

Im_l,lF'roiec:t

&

------ 1= myProject

File name: I

Advanced »» |

Fitiehy I Cancel |

Figure 17. New file wizard panel

Highlight the project of where you want the file created and then enter the name in the bottom panel. Before
you click on finish you must enter the extension of the file you are creating. For example if you are creating a
C++ file that does DEVS modeling, you must end the file in “.cpp”. As soon as you select finish, the file is
created and already opened in the editor panel. Figure 18 illustrates the creation of a new file called newFile.

Eclipse has a “smart editing” functionality that will open the appropriate editor in the editor panel. When you
select any file in your project for viewing or editing, it opens it in the editor panel to the affiliated editor. C++
files will be opened in CDT (Eclipse' C++ Editor), text files will be opened in a basic text editor etc. If you edit
a file you can simply hit the save button in the top left corner, if you feel you made a mistake, you can close the
file and select “no” to not save it at all.

In Figure 18, the file that we just created, newFile, is shown in the navigator view and it is also opened for
editing.

£~ CD ++Builder Perspective - new file - Eclipze Platform

File Edit Mavigate Search Project Bun 'window Help
IE-BEE[3-%-&- AL || a-- I’
i Mavigator = x| (M= R X l
| Z
B [F

%’ E-1=F new Project
B _project

1 rew file
notes. bt

4 o
|Wlitable ||nsert |'I 1

Figure 18. CD++Builder with text editor opened.
2.1.4 Adding Files to projects

Files can be added to a project in multiple ways. One option is to drag and drop files from any window outside
of eclipse into your project (located in the navigator), which automatically copies that file into the project.

Another method is to use the importing function. Select File and then click import. This will bring up the
importing panel shown in Figure 19.

= Import
File system
Source must nat be empty. E’
A

Fram directary: || j Browse. .. |

Eiter Tipes:. | Selectall eselect Al
Inta folder: Ilifez'LifeD\d Browse. .. |
Options:

™ Dvenwrite existing resources without warning
" Create complete folder stucture

@ Create selected folders only

< Back | TlEwts | Eirishy I Cancel
Figure 19. File System Import Panel

Here, select file system and then click next. The panel shown in Figure 20 will appear. On this screen you must
specify the directory of the files you want to add by pressing the Browse button that is located at the top of the
panel. Then by checking off the files you want to import, Eclipse will copy them into your project folder.

One can also import files in the form of a zip file. On the Import Wizard panel, select “Zip File” and specify

the zip file.

£~ Import ll
Zip file
“
Import the contents of a Zip file from the local file system. _l-%
=4

ATMEY =
=4 § HAE am.ma
[atamic [€] Balancaverifier. cop

[Balanceverifier

[€] Balanceverifier.h
[resulks

@ CardReader.cpp
g E:;:Ei;iirser [¢] CerdReader.h
> Plwverifier @ cashdispenser.cpp
= Userlnterface [€] cashdispenser.h
& coupled MFIocemoati.eat
Makefile b
@ pinverifier . cpp
[€] pinverifier.h LI
—r

Filter Tvpes... | Select Al Deselect Al |

Into Folder: I ATM/atm Browse... |

|_ Overwrite existing resources without warning

< Back. | [dext = | Finish I Cancel

Figure 20. File System Import Panel

2.1.5 Using the Navigator

The Navigator (the panel on the left side), is a component that enables you to view multiple projects and their
indexes of all the files in each project. The format for viewing these files are in tree-fashion as shown in figure
25. You can open the index of each project and view the files or folders in them. Opening a folder inside the
project will expand that section to show its contents. You can move or copy files from project to project by

using the drag and drop option or the import wizard option.

The navigator can also close projects down that you may not want to view or use, but keeps a closed folder in
case you may want to reopen it again. To close a folder, right click on the project you want to close, and select

close project.

e Mavigator - X

ERES

-l atm
=1z life

:
life. drer
life.log
2 LIFE.Ma,

-1z new Project

Figure 21. Navigator view

The navigator can also filter specific file types. To do this click on the arrow pointing downwards button in the
navigator and select filters. You can select which file types you want to filter out by checking off its' box. After
selecting Ok, you will notice the navigator will show files that you have not checked.

2.1.6 Using the task list

The task list (on the bottom section of the CD++Builder perspective) is used to help organize any notes,
reminders or directions you have on your project. You can use it to leave notes on any files' line of code or
even a reminder for a task you want to do later. It is weaved together with any of the editors supported in
Eclipse to place task markers on any line of code. This can be done by opening any file and right clicking on
the far left bar of the editor panel and selecting add task. Here you can enter the description of the task and its
priority level. When you click on Ok , you can see on the task list that your task has been added. Double
clicking on this task will automatically open up the file and bring you to the line of code.

it ::: v ¥
W Description Resouce | n Folder | Lozation
@. i \C|ESS Balan CB\."ETIFIEI'I hasno merber n Balan CE"\"ETI a-ltm T line 36
(%] ro matching furction for call to Balanc... | Balancewen.. | atm line 62
=41 create dialog box at this line Balanceveri.. | atm ling &8

Figure 22. Task list view

To add a generic task that is may not be code based, right click on the task list and select new task. This will
prompt you with the similar panel as above asking you for the description and priority.

Another useful feature of the task list is to show errors that have occurred from the compilation of the C++
files using the Build button. The errors are shown in the task lists and by double clicking on one of them will
automatically open up the file and take you to the line of code where the error is.

2.1.7 Using the Outliner

The outline is used for C++ files. When you have opened a C++ file and it is the active part in the editor. The
outliner outlines all the variables, functions and dependencies of that particular class. This can be used for
quick referencing by double clicking on a function or variable it will bring you immediately to its location in
the source code.

= outiine 1% x
farn.h

message.h

rnainsirnu.h

fern::fern(const strings)

farn: initFunction () ; Models:

famnz:lst @ int

farnzax ¢ int

farn:ertIn ; int

fern: iexternalFunctioniconst ExternalMessages:) | Maodels:
fern:internaFunction(const InternalMessages:) ;| Models:
forn; ;outputFUnction {const Internalies 15 Model

Figure 23. Outline view of fsm.h

eoorPPFPOOEEE

2.2 Defining Atomic models in CD++

We will now show how to make use of the features mentioned previously by building an atomic model from
scratch. These files can be created in CD++Builder as explained in section <> or a standard text editor. The

example model to be created is a queue which is a device of temporary storage that uses a FIFO (First in First
out) mechanism. The source code of this model comes included with the CD++ toolkit. When you download
the original zip files, you will find the queue.cpp and queue.h files containing the models discussed in this
section. In CD++Builder, you will find it in the
...\eclipse\plugins\CD++Builder_1.1.0\internal folder.

2.2.1 Adding new models

These are the steps to add a new atomic model:
a) Write a class derived from Atomic overloading the following methods:

e initFunction: Before calling this method, the sigma value is infinite and the state is
passive.

e externalFunction: Called when an external event arrives in one of the model’s output
ports.

e internalFunction: Before calling this method, the sigma value is zero because the
interval to the internal transition has expired.

e outputFunction: Called when an internal event arrives, before calling the internal
transition function.

e className: the class name.

b) Modify register.cpp, adding to the method Simulator::registerNewAtomics() the new atomic model, in
the Queue example, we can see:

SingleModelAdm: : Instance () .registerAtomic(NewAtomicFunction<Queue> (), "Queue")

2.2.2 Interacting with the Simulator

In each of the former methods you have to use some primitives to interact with the simulator in order to
accomplish the common atomic model operations.

These primitives are:

¢ holdIn(state, time): The model changes its state into state by time time and when this
interval expires a change of state has to occur. The state could be: active passive.

e passivate(): The model change its state to passive and it will only be activated when
an external event arrives.

¢ sendOutput(time, port, value): It sends an output message.

¢ nextChange(): It informs the time remaining before the next change of state (sigma).
¢ lastChange(): It informs the time of the last change of state.

e state(): It informs the model’s state.

e getParameter(modelName, parameterName): It gets the parameter parameterName
value.

Since Model is an abstract base class, it defines the interface for message exchange, Aromic and Coupled
classes are the only ones which can receive and send messages. The derived classes are responsible for
overloading the initialization, internal transition, external transition and output methods.

The Atomic derived classes should not send any kind of message, except for the output values informed
through the sendOuput method. The Atomic class is responsible for sending the Y and D messages to their
parents using the sigma and state values.

2.2.3 An example: a model of a queue

Our model of a queue will hold any type of user defined value. The queue will have three input ports and one
output port. Values to be stored will be received through the input port /n and will later be sent through the port
Out. The input ports start-stop and next will serve to regulate the flow of values through the output port. Figure
24 shows the structure of our model of a queue.

auT i)
-~

ST4RT - STOP
QUEUE i

HEXT

Figure 24. Structure of a Queue

Initially, the queue is empty. When the first value is received through the input port In, it will be stored in the
queue and forwarded through the output port Out after a time as defined by the user parameter
preparationTime. If a value is received and the queue is not empty, then it will be stored, but it will not be
forwarded immediately. Instead, it will be sent through the output port Out only after a message is received
through the port next.

A message received through the input port start-stop will temporarily disable the queue. If the queue is
disabled, it will only respond to new events received through the input port /n. Any value received will be
stored, but no output will be ever sent until the queue is enabled again by sending an event to the start-stop
port.

After this brief description, we are ready to begin writing our model. Create a new project. Once the project is
created, create a new .cpp file. For more information refer the previous topic. First, we need to define a class to
store the state of the queue. The queue will have two state variables: a list of elements and a boolean to store
the enabled/disabled status. Figure 3.10, lists the Queue state class declaration and definition.

The first step when implementing a new atomic model is to define a class derived from Afomic overloading
the methods for transition handling. These methods are not public since only the class Afomic can invoke
them. Atomic is an abstract class that declares a model’s API and defines some service functions the user can
use to write her model. The class atomic provides a set of services and requires a set of functions to be
redefined. The services are functions that allow the model to tell the simulator the current state and duration.

The following example shows the variable’s definitions referring to the queue’s ports and the time it takes to
prepare the value before sending it through the out port. It also shows the definition of the list of values to hold
the input data (ElementList) and the time remaining when the model is interrupted by a flow control signal
(timeLeft).

class Queue : public Atomic ({
public:
Queue(); // Default constructor
virtual string className () const ;

protected:
Model &initFunction();
Model &externalFunction(const ExternalMessage &);

Model &internalFunction(const InternalMessage &);
Model &outputFunction(const InternalMessage &);

private:
const Port ∈
const Port &stop;
const Port &done;
Port &out;
Time preparationTime;

typedef list<Value> ElementList ;
ElementList elements ;

Time timeleft;

}; // class Queue

Figure 25. Queue.h: model definition.

The constructor creates the input and output ports and sets the variable preparationTime. The parameter
preparation must be specified in the configuration file.

Queue :Queue ()
: preparationTime(O, 0, 10, 0)
, in(this—->addInputPort("in"))
, stop(this—->addInputPort("stop"))
, done(this->addInputPort("done"))
out (this—>addOutputPort("out")) {
thls->descr1ptlon("Queue")

string time(Simulator: :Instance () .getParameter (
this—>description(), "preparation")) ;

if(time !'= "")
preparationTime = time ;

Figure 26. Queue.cpp: model constructor.

The initialization function erases the queued data list. The following state change will take place when an
external event arrives, which is why sigma remains constant. If you wish to modify the next state change use
the holdIn method. The getParameter method queries the coupled model file (*.ma file, described in the
following section) and identifies the “preparation” parameter. The value of the parameter (a string), is
converted into the initial preparation time.

Model &Queue: :initFunction () {
elements.remove (elements.begin(), elements.end()) ;
return *this;

Figure 27. Queue.cpp: model initialization function.

The Queue class has three input ports through which it can receive external events. An event that arrives in the
in port represents a new input value, which has to be queued. If it is the only one in the queue it has to be
prepared to be sent.An event that arrives in the port done indicates that the last element sent has been received
and therefore it has to be erased from the queue. If there were more elements to be sent the first value in the
queue should be prepared to be released. An event that arrives in the port stop indicates that the flow should be
stopped or restarted. If the queue was in active state and the message value is not zero the queue will execute a
working pause, here the time remaining to process the next state change is calculated (end of preparation time)
and then the queue changes its state to passive calling the passsivate method. If the queue was in passive state

and the message value is zero then the queue restarts the work setting the next state change to the remaining
processing time.

Model &Queue: :externalFunction(const ExternalMessage &msg) {

if(msg.port() == in) {
elements.push back(msg.value()) ;
if(elements.size() == 1)
this->holdIn(active, preparationTime);
}
if(msg.port() == done) {
elements.pop_front () ;
if(!'elements.empty())
this->holdIn(active, preparationTime);
}
if(msg.port() == stop)
if(this->state() == active && msg.value())
{

timeLeft = msg.time() - this->lastChange();
this—>passivate();
}
else
if(this->state() == passive && !msg.value())
this->holdIn(active, timeleft);

return *this;

Figure 28. Queue.cpp: external transition function.

When the preparation time interval expires this method is invoked and the first value in the queue has to be
sent through the output port.

Model &Queue: :outputFunction(const InternalMessage &msg) {
this—>sendOutput (msg.time (), out, elements.front()) ;
return *this ;

Figure 29. Queue.cpp: output function.

When the preparation time interval expires and after calling the output function this method is invoked. Here
there is nothing to do, except wait for the acknowledge in the done port.

Model &Queue: :internalFunction(const InternalMessage &) {
this—->passivate();
return *this ;

Figure 30. Queue.cpp: internal transition function.

A new atomic model is created as a new class that inherits from the class Atomic. To tell CD++ that a new
atomic definition has been added, the model must be registered in the method
MainSimulator.registerNewAtomics(). This method is located in the register.cpp, which is shown in the next
figure:

void MainSimulator: :registerNewAtomics () {
SingleModelAdm: : Instance () .registerAtomic(NewAtomicFunction<Queue> () ,
"Queue")
SingleModelAdm: : Instance () .registerAtomic(NewAtomicFunction<Generator> () ,
"Generator") ;
SingleModelAdm: : Instance () . registerAtomic(NewAtomicFunction<CPU>() , "CPU"

)

SingleModelAdm: : Instance () .registerAtomic (NewAtomicFunction<Transducer> ()
, "Transducer") ;

SingleModelAdm: : Instance () .registerAtomic (NewAtomicFunction<Trafico>() ,
"Trafico") ;

}

Figure 31. Content of register.cpp

2.24 Creating new atomic models for parallel simulation

A new atomic model is created as a new class that inherits from Afomic. To tell CD++ that a new atomic
definition has been added, the model must be registered in the ParallelMainSimulator.registerNewAtomics()
function. In addition, for an atomic model to support the TimeWarp protocol, a model’s state has to be defined
as a separate class that is derived from AtomicState. The current state is available through the function
getCurrentState() which returns a pointer to the model state. States are managed by the Warped kernel, and are
only valid through a simulation cycle. There is no guarantee a pointer returned during a simulation cycle will
still be valid during the next one. In addition, the states are not created until the initFunction is called, so no
state initialization code should be placed in the class constructor.

¢ virtual Model &initFunction():

This method is invoked by the simulator at the beginning the simulation and after the model state has
been initialized. All initialization should take place when this method is call. An active model should
usually set the time for the next transition using the holdIn function. The holdIn function will be further
explained later in this section.

¢ virtual Model &externalFunction (const MessageBag &)

virtual Model &externalFunction(const ExternalMessage &): These methods are invoked when
one or more external events arrive from a port of the model. It corresponds to the ., function of the
DEVS formalism. The simulator calls the first function, the one that receives a message bag. By default,
this function will iterate through all the messages in the bag and call the second one. This is provided
for backward compatibility. If the modeler would like to have more control on the model’s behavior
when multiple simultaneous events are received, it is recommended the first function is overridden. If
the model’s behavior is simple enough for simultaneous events to be handled sequentially, then it will
be enough to redefine the second function.

The interface for the MessageBag class is shown below.

class MessageBag {
public:

MessageBag () ; //Default Constructor

~MessageBag () ;

MessageBag &add(const BasicPortMessage*);

bool portHasMsgs (const string& portName) const;

const MessageList& msgsOnPort (const string& portName)
const;

int size () const

}i

MessageBag& eraseAll(); ‘

const VTime& time () const; \

Figure 32. MessageBag class

virtual Model &internalFunction(const InternalMessage &): This method corresponds to the
0, function of the DEVS formalism.

virtual Model &outputFunction(const CollectMessage &): This function is called before &;,. It
should send all the output event. Each output event is sent using the function sendOutput
defined below.

virtual Model &confluentFunction (const InternalMessage &, const MessageBag &): It
corresponds to the 8., function of the DEVS formalism. By default, it is set to:

{

Model &Atomic::confluentFunction (const InternalMessage &intMsg,
const MessageBag &extMsgs)

//Default behavior for confluent function:
//Proceed with the internal transition and the with the external
internalFunction(intMsg);

//Set the elapsed time to O
lastChange (intMsg.time ());

//Call the external function
externalFunction(extMsgs);

return *this;

Figure 33. confluentFunction method

virtual string className(): Returns the name of the atomic class.
The following methods can invoke certain predefined primitives allow to interactuar with the
abstract simulator:

holdIn(state, time): indicates to the simulator that the model should stay in the same state during a
time, and after that it will generate an internal transition.

passivate():indicates to the simulator that the model enters in passive mode and that it will only be
reactivated when an external event arrives.

sendOutput(time, port, value): sends an output message through the port.

nextChange(): this method allows to obtain the remaining time for its next state change (sigma).

lastChange(): this method allows to obtain the time in that the last state change took place.

state(): this method obtain the actual phase of the model.

getParameter(modelName, parameterName): this method allows to access to the parameters that
configure the class. In figure 3.1, shows the model name between the clauses and the

different parameter names which range from “value/” to “valuen”.

virtual Port &addInputPort(const string &)

virtual Port &addOutputPort(const string &): These methods add the input and output
port of the model respectively.

¢ ModelState* getCurrentState(): This method get the current state of the model.

o virtual int valueSize() const: Returns the size of the class. It should be set to:
return sizeof (className) ;

e virtual string asString(): Returns a string that is used in the log file to log the value sent or
received.

¢ virtual BasicMsgValue * clone(): Returns a pointer to a new copy of the message value. The
function that receives the pointer will own it and afterwards delete it.

¢ BasicMsgValue(const BasicMsgValue&): Copy constructor.
The state of a model is made of all those variables that can change during a simulation cycle. The basic state
variables required by an atomic model are defined in the AfomicState class. A user can create a new class to

define the state variables required by his model.

The AtomicState class declaration is shown below.

class AtomicState : public ModelState {
public:

enum State

{
active,
passive

State st;

AtomicState() {};
virtual ~AtomicState(){};

AtomicState& operator=(AtomicState& thisState); //Assignment
void copyState (BasicState *);
int getSize() const;

}i

Figure 34. The AtomicState class.

To access the current state this function ;
ModelState* getCurrentState ()
should be used. The pointer that is returned can be casted to the proper type.

An assignment operator and a copy constructor need to be provided for Warped to work properly. In addition,
the method getSize should be overridden to return the size of the class.The set of services provided by the class
atomic as well as the methods required to be redefined can be seen in section 3.1.1.

The user can define a new class for the output values. To define a new structure for output values, a new class
that derives from BasicMsgValue has to be created. A class for sending and receiving real values is already
provided.

There is only restriction that applies: no pointers can be defined as part of the class. This is because message
values are sent across a network when parallel simulation is used and pointers will be just copied as pointers.
The data they are pointing to will not be copied.

class BasicMsgValue {

public:
BasicMsgValue() ;
virtual ~BasicMsgValue();
virtual int valueSize() const;
virtual string asString() const;
virtual BasicMsgValue* clone() const;

BasicMsgValue (const BasicMsgValueé&);
};

class RealMsgValue : public BasicMsgValue {
public:

RealMsgValue() ;

RealMsgValue (const Value& val);

Value v;

int valueSize() const;

string asString() const ;
BasicMsgValue* clone() const;
RealMsgValue (const RealMsgValueé&);

};

Figure 35. The BasicMsgValue and RealMsgValue classes
The user needs to define the following functions:

e virtual int valueSize() const;
Returns the size of the class. It should be set to:
return sizeof (className) ;

e virtual string asString();
Returns a string that is used in the log file to log the value sent or received.

¢ virtual BasicMsgValue * clone();
Returns a pointer to a new copy of the message value. The function that receives the pointer will own it
and afterwards delete it.

¢ BasicMsgValue(const BasicMsgValue&)
A copy constructor is required.

Once the state class has been defined, we are ready to implement the model itself. The Queue class declaration
is shown in Figure 3.11.

class QueueState : public AtomicState {

public:
typedef list<BasicMsgValue *> ElementList ;
ElementList elements ;

bool enabled;

QueueState () {};
virtual ~QueueState(){};

QueueState& operator=(QueueState& thisState) {
(AtomicState &)*this = (AtomicState &) thisState;

ElementList: :const_iterator cursor;

for (cursor = thisState.elements.begin();
cursor != thisState.elements.end(); cursor++)

elements.push_back(cursor->clone());

return *this;

}
void copyState (QueueState *){ *this = *((QueueState *) rhs);}

int getSize() const { return sizeof (QueueState);}

};

Figure 36. QueueState class

The Queue model overloads the initialization methods, internal function, external transition and output
function. In addition, its shortcut functions to access the elements of the current state.

class Queue : public Atomic{

public:

Queue (const string &name = "Queue");

virtual string className() const { return "Queue" ;}
protected:

Model &initFunction();

Model &externalFunction(const MsgBag &);

Model &internalFunction(const InternalMessage &);
Model &outputFunction(const CollectMessage &);

ModelState* allocateState()
{ return new QueueState;}

private:
Port &in, &done, &out;

VTime preparationTime;

QueueState: :ElementList& elements () { return
((QueueState*) getCurrentState ()) —->elements; }

bool enabled() const({ return ((QueueState*)getCurrentState())->enabled;
}

void enabled (bool val) { ((QueueState*)getCurrentState ()) —->enabled = val;
}

}; // class Queue
Figure 37. The Queue class declaration

The initFunction has to set the initial state for the queue, as shown in Figure 3.12. The elements of the list will
be erased and the enabled will be set to true.

Model &Queue: :initFunction ()

{
enabled(true);
return *this;

Figure 38. initFunction for the Queue model

The externaFunction will be activated every time one or more events are received. For the queue model, this

function will have to insert into the queue all values received through port In, schedule an output if a value is
received through the port next and enabled or disable the queue if an event is received through port start-stop,
as detailed in Figure 3.13. It is important to notice that it is the modeler’s responsibility to set which message
will have the highest priority when more than one is received. For our queue model, it can be seen from Figure
3.13 that the start-stop messages will have higher precedence than the done and in messages.

Model &Queue: :externalFunction(const MsgBag & bag)
{
if (portHasMsgs(“start-stop”))
{
enabled ('enabled());
if ('enabled())
passivate();
}
if (enabled() && portHasMsgs(“done”))
{
elements () .pop_front () ;
holdIn(AtomicState::active, preparationTime);
}
if (portHasMsgs(“in”)
{
MessageList: :const_iterator cursor;
cursor = bag.msgOnPort(“in”) .begin();
for (; cursor != bag.msgsOnPort(“in”) .end() ; cursor++)
elements () .push_back(cursor.value());
//If the queue was empty, schedule the next transition
if (enabled() && elements.size()==msgsOnPort (“in”) .size())
holdIn(AtomicState::active, preparationTime);
}
}

Figure 39. External transition function for the queue model

The output function is called before an internal transition. In our queue model, the output function should send
the first value in the list through the output port. The internal transition function will passivate the model which
will wait for an external event to take place.

Model &Queue: :outputFunction(const CollectMessage &msg)

{
sendOutput (msg.time (), out, elements.front());
return *this;
}
Model &Queue::internalFunction(const InternalMessage &)
{
passivate() ;
return *this;
}

Figure 40. Methods for the Output Function and the Internal Transition of the Queue

The sendOutput function will delete the pointer it receives, so all memory previously allocated to store the
queue values will be reclaimed. If we wanted to use the queue for a network model, the queue would store TP
packets. Then an IP packet class derived from BasicMsgValue should be defined.

3 Coupled models

After defining the atomic models for a given application, they can be combined into a multicomponent model.
Coupled models are defined using a specification language specially defined with this purpose. The language
was built following the formal definitions for DEVS coupled models. Therefore, each of the components
defined formally for DEVS coupled models can be included. Optionally, configuration values for the atomic
models can be included.

The [top] model always defines the coupled model at the top level. As showed in the formal specifications
presented earlier, four properties must be configured: components, output ports, input ports and links between
models. The following syntax is used:

¢ Components:
components : model_namel[@atomicclass1] model_name [@atomicclass2] ...
Lists the component models that make the coupled model. If this clause is not specified, an error
will occur. A coupled model might have atomic models or other coupled model as components.
For atomic components, an instance name and a class name must be specified. This allows a
coupled model to use more than one instance of an atomic class. For coupled models, only the
model name must be given. This model name must be defined as another group in the same file.
¢ Qut:
out : portnamel portname? ...
Enumerates the model’s output ports. This clause is optional because a model may not have
output ports.
e In:
in : portnamel portname?2 ...
Enumerates the input ports. This clause is also optional because a couple model is not required to
have input ports.
e Link:
link : source_port[@model] destination_port[@model]
Defines the links between the components and between the components and the coupled model
itself. If name of the model is omitted it is assumed that the port belongs to the coupled model
being defined.

A model definition is shown below.

[top]

components : transducer@Transducer generator@Generator Consumer
Out : out

Link : out@generator arrived@transducer

Link : out@generator in@Consumer

Link : out@Consumer solved@transducer

Link : out@transducer out

[Consumer]

components : queue@Queue processor@Processor
in : in

out : out

Link : in in@queue

Link : out@queue in@processor

Link : out@processor done(@queue

Link : out@processor out

Figure 41. Example for the definition of a DEVS coupled model

CD++Builder allows the user to easily import and export maml files. .maml files are a representation of
coupling files in XML format. Exporting a “.ma” file into maml format is done automatically every time you
save your “.ma” file. The saving feature writes a maml file with the same name as the ma file in maml format.
This is automatically added to your project.

Importing maml files can be simplistic as well. When you have a maml file in your project, right clicking it and
selecting convert to ma, will create a coupling file implementation of the maml file. This coupling file is
written and created in your project and should appear in the projects' contents

As it was mentioned above, atomic models must be coded. In addition, an atomic model might have user
defined parameters that must be specified within the .ma file. If this is the case, the parameters are specified in
a group with the model’s name (the model’s name as defined in the components clause, not the atomic class
name).

‘[model_name] ‘
‘var_namel : valuel ‘

var_namen : valuen
Figure 42. User defined values for atomic models

The parameter names are defined by the model’s author and must be documented. Each instance of an atomic
model can be configured independently of other instances of the same kind.

The next example shows two instances of the atomic class Processor with different values for the user defined
parameters.

[top]

components : Queuel@queue Processorl@processor Processor2@processor
[processor]

distribution : exponential

mean : 10

[processor?2]
distribution : poisson
mean : 50

[queue]
preparation : 0:0:0:0
Figure 43. Example of setting parameters to DEVS atomic models

4 Cell-DEVS models

The tool includes a specification language allowing the description of Cell-DEVS models. These definitions are
based on the formal specifications defined earlier, and can be completed by considering a few parameters: size,
influencees, neighborhood and borders. These are used to generate the complete cell space. The behavior of the
local computing function is defined using a set of rules with the form: VALUE DELAY { CONDITION }.
These indicate that when the CONDITION is satisfied, the state of the cell changes to the designated VALUE,
and it is DELAYed for the specified time. If the condition is false, the next rule in the list is evaluated until a
rule is satisfied or there are no more rules. In the latter case, an error is raised, indicating that the model

specification is incomplete. The existence of two or more rules with same condition but with different state
value or delay is also detected, avoiding the creation of ambiguous models. In these situations, the simulation is

aborted.

In CD++, Cell DEVS models are a special case of coupled models. Then, when defining a cellular model, all
the coupled model parameters are available. In addition there exist some parameters that are of cellular models.
These parameters define the dimensions of the cell space, the type delay, the default initial values and the local

transition rules.

These parameters are:

o type : [CELL | FLAT]

. width :

Defines the abstract simulator to be used. If cell is specified, there will be one DEVS
processor for each cell. Instead, if flat is specified, one flat coordinator will be used. CD++
currently supports the cell option only.

integer

Defines the width of the cellular space. As it is the case with height, the width parameter is
provided for backward compatibility and implies that a 2-dimensional cellular space will be
used. For an n-dimensional cell space the dim parameter should be used. width and height
can not be used together with dim. If such a situation exists, an error will be reported.

o height : integer

Defines the height of the cellular space model. The same restrictions that were given for
width apply. For 1 dimension models, height should be set to 1.

. dim : (X, Xy, ..., X,)

. In:
. Out :
. Link :

Defines the dimensions of the cellular space. All the x; values must be integers.
Dim can not be used together with any of the width and height parameters.
The vector that defines the dimension of the cellular model must have two or more elements.
For a one-dimensional cellular model, the following form should be used; (xo, 1).
When referencing a cell, all references must satisfy:
(Yos Y1s s Yn) 0<yi<x Vi=0,.,n with y; an integer value

Defines the input ports for a cellular model.
Defines the output ports the cellular model.

Defines the components coupling. For a coupled cell model, the components are cells. To

define the couplings, cell references must be used for the model name. A cell reference is of the form:

CoupleCellName(x,Xa,...,X,)
Valid link definitions are of the form:

Link : outputPort inputPort@cellName (x1,X,...,X,)
Link : outputPort@cellName (x;,X5,...,X,) inputPort
Link : outputPort@cellName (x;,Xy,...,X,)inputPort @cellName(X,Xy,...,Xp)

o Border : [WRAPPED | NOWRAPPED |

o Delay :

Defines the type of border for the cellular space. By default, NOWRAPPED is used. If a
nonwrapped border is used, a reference to a cell outside the cellular space will return the
undefined value (?).

[TRANSPORT | INERTIAL]
Specifies the delay type used for all cells of the model. By default the value TRANSPORT is
assumed.

DefaultDelayTime : integer
Defines the default delay (in milliseconds) for inputs received from external DEVS models.
If a portInTransition is specified, then this parameter will be ignored for that cell.

Neighbors : cellName (x; ;, X3 j,..., Xy 1)... cellIName (X7, X215+ s Xnm)
Defines the neighborhood for all the cells of the model. Each cell (x,,, x,;...,x,;) represents a
displacement from the centre cell (0,0,...., 0)

A neighborhood can be defined with any valid list of cells and is not restricted to adjacent
cells.

It is possible to use more than one neighbors sentence to define the neighborhood.

Initialvalue : [Real | ?]
Defines the default initial value for each cell. The symbol ? represents the undefined value.
There are several ways of defining the initial values for each cell. The parameter initialvalue
has the least precedence. If another parameter defines a new value for the cell, then that value
will be used.

InitialRowValue : row; value;...value;qy

Defines the initial value for all the cells in row i.

Precondition:

0 < row; < Height (where Height is the second element of the dimension defined
with Dim, or the value defined with Height).

Can only be used for bidimensional models. For n-dimensional models the
initialCellsValue or initialMapValue parameters are preferred.

This clause is used for backward compatibility. All values are single digit values in the set
{2,0,1,2,3,4,5,6,7, 8, 9}. The first digit will define the value for the first cell in the row,
the second for second cell and so on. No spaces are allowed between digits.

InitialRow : row; value, ... value,;qn

Same as initialrowvalue, but values can now be any member of the set ® U {?}. Each
value in the list must be separated by a blank space from the next one.

InitialCellsValue : fileName

Defines the filename for the file that contains a list of initial value for cells in the model.
Section 6.1 defines the format for these files. initialcellsvalue can be used with any size of
cellular models and will have more precedence that initialrow and initialrowvalue.

InitialMapValue : fileName

Defines the filename for the file that contains a map of values that will be used as the initial
state for a cellular model. Section 6.2 defines the format for these files.

LocalTransition : transitionFunctionName

Defines the name of the group that contains the rules for the default local computing
function.

PortInTransition : portName @ cellName (x;, x3,...,Xxn)
TransitionFunctionName

It allows to define an alternative local transition for external events. By default, if this
parameter is not used, when an external event is received by a cell its value will be the future
value of the cell with a delay as set by the defaultDelayTime clause.

Section 12.3 illustrates the use of the portInTransition clause.

Zone : transitionFunctionName { range,[..range,] }
A zone defines a region of the cellular space that will use a different local computing
function. A zone is defined giving as a set of single cells or cell ranges. A single cell is
defined as (Xi,Xy,...,X,), and a range as (X,Xy,...,Xp)-.(Y1,¥2,¥n)- All cells and cell ranges must
be separated by a blank space. As an example,

zone : pothole { (10,10).. (13, 13) (1,3) }

tells CD++ that the local transition rule pothole will be used for the cells in the range
(10,10)..(13,13) and the single cell (1,3). The zone clause will override the transition defined
by the localtransition clause.

The following figure illustrated the .ma file of the life game:

[top]
components : life

[life]

type : cell

width : 20

height : 20

delay : transport

defauultDelayTime : 100

border : wrapped

neighbors : life(-1,-1) life(-1,0) life(-1,1)
neighbors : life(0,-1) 1life(0,0) l1life(0,1)
neighbors : life(1-1) life(1,0) life(1,1)

initialvalue : 0

initialvalue : 5 00000001110000000000
initialvalue : 7 00000100100100000000
initialvalue : 8 00000101110100000000
initialvalue : 9 00000100100100000000
initialvalue : 11 00000001110000000000

localtransition : life-rule

[l1ife-rule]

rule : 1 100 { (0,0)
rule : 1 100 { (0,0)
rule : 0 100 { t }

1 and trueCount

51}
0 and trueCount 31}

Figure 44. Example for the definition of a Cell-DEVS life model

S Supporting files

5.1

Defining initial cell values using a .val file

Within the definition of a cellular model, the InitialCellValue parameter defines a file name with the initial
values for the cells. This is a plain text file. Each line of the file defines a value for a different cell. The format
of this file is shown in Figure 6.1.

value_ 1

‘ (x01x11 o0 'Ixn)

‘ (YOIYII oo 'IYn)

value m

Figure 45. Format of the file used to define the initial values of a cellular model

The extension .VAL is normally used for this kind of files. The file is processed in sequential order, so if there
are two values defined for the same cell, the latest one will be used.

The dimension of the tuple should match the dimensions of the cellular space.

For the definition of the initial values of a cellular model, a single file should be used, which can not contain
initial values for other cellular models.

It is not necessary to define an initial value for each cell. If no value is defined in this file, then the value
defined by the parameter InitialValue will be used. Figure 6.2 shows a short fragment of a .val file for a
cellular space of 4 dimensions.

(0,0,0,0) = ?
(1,0,0,0) = 25
(0,0,1,0) = -21
(0,1,2,2) = 28

(1, 4, 1,2) = 17
(1, 3, 2,1) = 15.44
(0,2,1,1) = -11.5
(1,1,1,1) = 12.33
(1,4,1,0) = 33
(1,4,0,1) = 0.14

Figure 46. Example of a file for the definition of the initial values for a Cellular Model

5.2 Defining initial cell values using a .map file

If the InitialMapValue parameter is used, then the initial values for a cellular model are specified in a .map file.
This file contains a map of cell values, as shown in Figure 6.3:

‘ value_1 ‘

value_m

Figure 47. .map file format

Each value of the .map file will be assigned to a cell starting with the origin cell (0,0...,0). For a three-

dimensional cellular model of size (2, 3, 2), the values will be assigned in the following order:
(0,0,0) ¢0,0,1) (0,1,0), (0,1,1) (0,2,0) (0,2,1) (1,2,0) (1,2,1)

If there are not enough values in the file for all the cells in the model, the simulation will be aborted. If instead

there are more values than cells, the remaining values will be ignored.

The toMap tool creates a .map file from a .val file.

5.3 External events file

External events are defined in a plain text file with one event per line. Each line will be of the format:
HH:MM:SS:MS PORT VALUE
Where:
HH:MM:SS:MS
Port

is the time when the event will occur.
is the name of the port from which the event will arrive.

Value is the numerical value for the event. Can be a real number or the
undefined value (?).

Example:

00:00:10:00 in 1
00:00:15:00 done 1.5
00:00:30:00 in .271
00:00:31:00 in -4.5
00:00:33:10 inPort ?

Figure 48. File with external events

5.4 Partition file

A partition file is required for parallel simulation. For each atomic model, the partition file defines the machine
that will host its associated simulator. For coupled models, CD++ will decide where the coordinators will be
running.

A partition file, usually referred as a .par file, has lines with the following format:
MachineNumber : modelNamel modelName2 cell(x,y) cell(x,Vy)..(x2, y2)

A line starts with a machine number (machine numbers start at 0) followed by a space, a colon and a list of
names separated by spaces. Different lines may start with the same machine number.The list of names
following a machine number is the list of atomic instances that will be hosted by that machine. For cellular
models, a single cell may be specified or a range of cells may be given. A cell range is described with name of
the coupled cell model followed by the first cell in the range, two dots, and the last cell in the range.

As an example, consider the following partial definition of a model:

[top]

components : superficie generadorCalor@Generator generadorFrio@Generator
link : out@generadorCalor inputCalor@superficie

link : out@generadorFrio inputFrio@superficie

[superficie]
type : cell
width : 100
height : 100
delay : transport

defaultDelayTime : 100

border : wrapped

neighbors : superficie(-1,-1) superficie(-1,0) superficie(-1,1)
neighbors : superficie(0,-1) superficie(0,0) superficie(0,1)
neighbors : superficie(l,-1) superficie(l,0) superficie(l,1)

initialvalue : 24
in : inputCalor inputFrio
Figure 49. Partial definition of the heat diffusion model

If we wanted to run this model in a cluster of nine machines, then the following is a valid partition:

generadorCalor generadorFrio ‘
superficie(0,0) .. (32, 32)

superficie(0,33) .. (32, 65)

superficie (0, 66) .. (32,99) ‘

wWNRFR OO

superficie(33,0) .. (65, 32)

: superficie(33,33)..(65,65)
: superficie(33,66)..(65,99)
: superficie(66,0)..(99,32)
: superficie(66,33)..(99,65)
‘ : superficie(66,66)..(99,99) ‘
Figure 50. Valid partition for the heat diffusion model over 9 machines
A valid partition must specify one and only one location for each atomic and each cell. If more than one
machine or no machine is specified for a model, then an error will be raised and the simulation will be aborted.

00 JdJo Ul

6 Output Files
6.1 OQutput events

If the command line option —o is given, all the output events generated by the simulator are written to the
specified file. There will be one event per line, and lines will have the following format:
HH:MM:SS:MS PORT VALUE

Following is a small example of an output file.

00:00:02:00 out 1.000
00:00:03:50 outPort ?

| |
‘ 00:00:01:00 out 0.000 ‘
‘ 00:00:07:31 outPort 5.143 ‘
| |

Figure 51. Example of an Output file

6.2 Format of the Log File

A log file keeps a record of all the messages sent between DEVS processors. A log is created when the -1
command line argument is used. If no log modifiers are specified, all received messages are logged. Otherwise,
only those messages set by the log modifiers will be logged.

When a filename for the log is given, there will be one file per DEVS processor and one file with the list of all
the names of the files that have been created. This latter file will be named with the name given after the -1
parameter. All other files will be named with the name after the —1 parameter followed by the DEVS processor
id.

Each line of the file shows the number of the LP that received the message, the message type, the time of the
event, the sender and the receiver. In addition, messages of type X or Y will include the port through which the
message was received and the value received. For messages of type D, the remaining type for the next
transition will be shown. A “..." for this field will indicate infinity.

The numbers between brackets show the ID of the DEVS processor and are provided for debugging purposes
only.

As an example, the log files for the following model will be shown.

~ [top]

components : superficie generadorCalor@Generator generadorFrio@Generator

link : out@generadorCalor inputCalor@superficie

link : out@generadorFrio inputFrio@superficie

[superficie]

type cell
width : 5
height : 5

Figure 52. Partial definition of the heat diffusion model

When running this model with the —lcalor.log parameter, the following are the contents of calor.log.

[logfiles]

ParallelRoot
top
superficie
superficie (0,0)
superficie(0,1)
superficie (0, 2)
superficie (0, 3)
superficie (0, 4)
superficie(1,0)
superficie(1,1)
superficie (1, 2)
superficie (1, 3)
superficie (1, 4)
superficie(2,0)
superficie(2,1)
superficie (2, 2)
superficie (2, 3)
superficie (2, 4)
superficie(3,0)
superficie(3,1)
superficie(3,2)
superficie (3, 3)
superficie (3, 4)
superficie(4,0)
superficie(4,1)
superficie (4, 2)
superficie (4, 3)
superficie (4, 4)
generadorcalor
generadorfrio

calor.log00

calor.log29
calor.log01
calor.
calor.
calor.
calor.
calor.
calor
calor.
calor.
calor.
calor.
calor.
calor
calor.
calor.
calor.
calor.
calor.
calor.
calor
calor.
calor.
calor.
calor.
calor.
calor

log02
log03
log04
log05
log06
.1log07
log08
log09
logl0
logll
logl2
.logl3
logl4
logl5s
loglé6
logl?7
logls8
logl?9
.1log20
log21l
log22
log23
log24
log25
.log26

: calor.log27
calor.log28

Figure 53. Calor.log

This is a list of the models and their corresponding files. If more than one file is created (as is the case of
coupled models with more than one coordinator), all of them are listed. The log messages received by the
coordinator superficie will be logged into the file calor.log01, which is shown next.

0 I / 00:00:00:
0D/ 00:00:00:
0D/ 00:00:00:
0D/ 00:00:00:
0D/ 00:00:00:
0D/ 00:00:00:
0D/ 00:00:00:
0D/ 00:00:00:
0D/ 00:00:00:
0D/ 00:00:00:
0D/ 00:00:00:
0D/ 00:00:00:
0D/ 00:00:00:
0D/ 00:00:00:
0D/ 00:00:00:

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

NN N N N N NN N NSNS

top(29) para superficie(01)

superficie(0,0) (02)
superficie(0,1) (03)
superficie(0,2) (04)
superficie (0, 3) (05)
superficie (0, 4) (06)
superficie(1,0) (07)
superficie(1,1) (08)
superficie(1,2) (09)
superficie(1, 3) (10)
superficie(1,4) (11)
superficie(2,0) (12)
superficie(2,1) (13)
superficie(2,2) (14)
superficie (2, 3) (15)

NN N N N NN NN NNNNNN

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

000
000
000
000
000
000
000
000
000
000
000
000
000
000

para
para
para
para
para
para
para
para
para
para
para
para
para
para

superficie (01)
superficie (01)
superficie (01)
superficie (01)
superficie (01)
superficie (01)
superficie (01)
superficie (01)
superficie (01)
superficie (01)
superficie (01)
superficie (01)
superficie (01)
superficie (01)

00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000
00:00:00:000

superficie(2,4) (16)
superficie(3,0) (17)
superficie(3,1) (18)
superficie(3,2) (19)
superficie (3, 3) (20)
superficie(3,4) (21)
superficie (4,0) (22)
superficie(4,1) (23)
superficie (4, 2) (24)

00:00:00:000 para superficie (01)
00:00:00:000 para superficie(01)
00:00:00:000 para superficie(01)
00:00:00:000 para superficie(01)
00:00:00:000 para superficie(01)
00:00:00:000 para superficie(01)
00:00:00:000 para superficie(01)
00:00:00:000 para superficie(01)
00:00:00:000 para superficie(01)
superficie (4, 3) (25) 00:00:00:000 para superficie(01)
superficie (4, 4) (26) 00:00:00:000 para superficie(01)
top(29) para superficie(01)

superficie (0, 0) (02) out / 24.00 para superficie(01)
superficie(0,0) (02) 00:00:00:000 para superficie(01)
superficie(0,1) (03) out / 24.00 para superficie(01)
superficie(0,1) (03) 00:00:00:000 para superficie(01)
superficie(0,2) (04) out / 24.00 para superficie(01)
superficie(0,2) (04) 00:00:00:000 para superficie(01)
superficie (0, 3) (05) out / 24.00 para superficie(01)
superficie (0, 3) (05) 00:00:00:000 para superficie(01)
superficie (0, 4) (06) out / 24.00 para superficie(01)
superficie (0, 4) (06) 00:00:00:000 para superficie(01)

NN N NN NN NN NN

O 0000000000000 O0OO0OOO0OO0OOOOO
OKUOUKUOUOKUOUOKUOUOK®PUOUODUOUODUOUODUODUODUODUODUOD
A e e e e S S
A e e e S S O N

NN NN NN

o

X / 00:00:00:000 / top(29) / inputcalor / 1.00 para superficie(01)
0 X / 00:00:00:000 / top(29) / inputfrio / 1.00 para superficie(01)
0 * / 00:00:00:000 / top(29) para superficie(01)

Figure 54. Fragment of calor.log01

6.3 Partition Debug Info

The partition debug info file lists all the DEVS processors that are taking part of the simulation, their IDs and
they machine they are running in. This file is useful to were the coordinators for coupled models are placed.
One partition debug info file is created by each LP. The files will be named with the text after the command
line —D argument followed by the LP number.

Figure 7.6 shows a fragment of a partition debug file generated when running the model described in Figure
7.2 with the partition shown next.

0 : generadorCalor generadorFrio
0 : superficie(0,0)..(2,4)
1 : superficie(3,0)..(4,4)

Figure 55. Partition for the heat diffusion model of Figure 7.2

Model: ParallelRoot
Machines:
Machine: 0 ProcId: 0 < master >

Model: top
Machines:
Machine: 0 ProcId: 30 < master >

Model: superficie
Machines:
Machine: 0 ProcId: 1 < master >
Machine: 1 ProcId: 2 < local >

Model: superficie (0,0)
Machines:

Machine: 0 ProcId: 3 < master >

Model: superficie(3,0)
Machines:
Machine: 1 ProclId: 18 < local > < master >

Model: superficie(3,1)
Machines:
Machine: 1 ProclId: 19 < local > < master >

Model: superficie(3,2)
Machines:
Machine: 1 ProcId: 20 < local > < master >

Setting up the logical process
Total objects: 31
Local objects: 11
Total machines: 2

About to create the LP

LP has been created. Now registering processors.
Registering processor superficie (2)
Registering processor superficie(3,0) (18)
Registering processor superficie(3,1) (19)
Registering processor superficie(3,2) (20)
Registering processor superficie(3, 3) (21)
Registering processor superficie(3,4) (22)
Registering processor superficie(4,0) (23)
Registering processor superficie(4,1) (24)
Registering processor superficie(4,2) (25)
Registering processor superficie(4,3) (26)
Registering processor superficie(4,4) (27)

Current processors:

Processor Id: 2 Description: superficie
Model Id: 2 superficie(02)
Parent Id: 30

Processor Id: 27 Description: superficie (4, 4)

Model Id: 27 superficie(4,4) (27)

Parent Id: 2
All objects have been registered!
Initializing Object superficie(2): OK
Initializing Object superficie(3,0) (18): OK
Initializing Object superficie(3,1) (19): OK
Initializing Object superficie(3,2) (20): OK
Initializing Object superficie(3,3) (21): OK
Initializing Object superficie(3,4) (22): OK
Initializing Object superficie(4,0) (23): OK
Initializing Object superficie(4,1) (24): OK
Initializing Object superficie(4,2) (25): OK
Initializing Object superficie(4,3) (26): OK
Initializing Object superficie(4,4) (27): OK
After Initialize....OK

Figure 56. Partition debug information file calor.pardeb01 (LP 1)

6.4 Output generated by the Parser Debug Mode
When the simulator is invoked with the option —p, the debug mode for the parser is activated. In debug mode,
the parser will write the parse tree as it reads the rules. All tokens that are successfully processed are shown

and if there is a syntax error, the place were the error was detected is specified.

Figure 7.7 shows the output generated for the Game Life model as implemented in section 12.1.

kkkkkkk BUFFER *****xk*%

1 100 { (0,0) = 1 and (truecount = 3 or truecount = 4) } 1 100 { (0,0) =0
and truecount = 3 } 0 100 { t } 0 100 { t }
Number 1 analyzed
Number 100 analyzed
Number 0 analyzed
Number 0 analyzed
OP_REL parsed (=)

Number 1 analyzed

AND parsed

COUNT parsed (truecount)
OP_REL parsed (=)

Number 3 analyzed

OR parsed

COUNT parsed (truecount)
OP_REL parsed (=)

Number 4 analyzed
Number 1 analyzed
Number 100 analyzed
Number 0 analyzed
Number 0 analyzed
OP_REL parsed (=)

Number 0 analyzed

AND parsed

COUNT parsed (truecount)
OP_REL parsed (=)
Number 3 analyzed
Number 0 analyzed
Number 100 analyzed
BOOL parsed (t)

Number 0 analyzed
Number 100 analyzed
BOOL parsed (t)

Figure 57. Output generated in the Parser Debug Mode for the Game of Life

6.5 Rule evaluation debugging
Using the —v command line argument, a debug mode for cell rules evaluation is enabled. This will cause the
simulator to log all intermediate values for each rule as it is evaluated.

Figure 7.8 shows a fragment of the output generated for the Game of the Life model of section 12.1. Line
numbers have been added to make the following explanations clear.

The first two lines indicate the beginning of a new evaluation. Line 2 begins the evaluation of the first rule for
the first cell. Each evaluated argument is listed with the partial result for the expression. Line 2 shows the
evaluation of the cell reference (0,0), which turned out to be 0. In line 3, the integer constant 1 is evaluated,
which is later compared to 0, evaluating to 0 (false). BinaryOp indicates that a binary operation is being
performed. The operator name will be included between brackets, as well as the value of each of the operands.

Line 13 shows the final result for the condition of the rule, which was false in this case.

00 +

14

23

26

29 +

15 Evaluate:
16 Evaluate:
17 Evaluate:
18 Evaluate:
19 Evaluate:
20 Evaluate:
21 Evaluate:
22 Evaluate:

24 Evaluate:
25 Evaluate:

27 Evaluate:
28 Evaluate:

01 New Evaluation:
02 Evaluate:
03 Evaluate:
04 Evaluate:
05 Evaluate:
06 Evaluate:
07 Evaluate:
08 Evaluate:
09 Evaluate:
10 Evaluate:
11 Evaluate:
12 Evaluate:
13 Evaluate:

Cell Reference(0,0) = 0
Constant = 1

BinaryOp (0, 1)
CountNode (1) =
Constant = 3

BinaryOp (1, 3)
CountNode (1) =
Constant = 4

BinaryOp (1, 4)
BinaryOp (0, 0)
BinaryOp (0, 0)
Rule = False

(=) 0

[y

(=) 0

[y

(=) 0
(or) O
(and) O

]
o

Cell Reference(0,0)
Constant = 0

BinaryOp (0, 0)
CountNode (1) =
Constant = 3

BinaryOp (1, 3)
BinaryOp (1, 0)
Rule = False

(=) 1

[y

(=) 0
(and) O

Constant = 1

Rule = True
Constant = 100
Constant = 0

+

30

31

32

33 oo
34 +

48

51 +

49 Evaluate:
50 Evaluate:

35 New Evaluation:
36 Evaluate:
37 Evaluate:
38 Evaluate:
39 Evaluate:
40 Evaluate:
41 Evaluate:
42 Evaluate:
43 Evaluate:
44 Evaluate:
45 Evaluate:
46 Evaluate:
47 Evaluate:

Cell Reference(0,0) =1
Constant =1
BinaryOp (1, 1)
CountNode (1) =
Constant = 3
BinaryOp (4, 3)
CountNode (1) =
Constant = 4
BinaryOp (4, 4)
BinaryOp (0, 1)
BinaryOp (1, 1)
Rule = True

(=) 1

»

(=) 0

»

(=) 1
(or) 1
(and) 1

Constant 100
Constant = 1

+

52
53
54

Figure 58. Fragment of the output generated by the debug mode for the Evaluation or Rules

8 Model simulation

8.1 Simulation through the console

In this section you will be guided on running a simulation using the command line. Once again the existing
model, called 1ife will be used. The life example can be downloaded at
http://www.sce.carleton.ca/faculty/wainer/wbgraf as mentioned in section 1. To start the simulation, unzipped
the life example to a folder. Copy the simulator file, simu.exe, into the folder, where the life example was
unzipped. Run the batch file (demo.bat) to simulate the model. This batch file will execute simu.exe with
the defined parameters.

To simulate the life model manually (without batch file) type the following command in the command line:
simu —-mlife.ma -t00:01:00:000 -1life.log

Once the simulation is finished, a log file is created and can be viewed. Further information about simulating

through the command line will be explained in section 8.1

Note: The 1ife model example simulated in this section is a Cell-DEVS model. If a DEVS model is to be
simulated, the model must be compiled first. This will be explained in more detail in section 8.1.

To configure the execution of the simulator, the following parameters are valid:

—h: shows this help:

simu [—-ehlmotdpvbfrsqw]

: events file (default: none)

show this help

message log file (default: /dev/null)

model file (default : model.ma)

output (default: /dev/null)

stop time (default: Infinity)

set tolerance used to compare real numbers

print extra info when the parsing occurs (only for cells models)
evaluate debug mode (only for cells models)

bypass the preprocessor (macros are ignored)

flat debug mode (only for flat cells models)

debug cell rules mode (only for cells models)

show the virtual time when the simulation ends (on stderr)

use quantum to calculate cells values

sets the width and precision (with form xx-yy) to show numbers

£ QuRRmMOSTOAFtO B HDO

—e: External events filename. If this parameter is omitted, the simulator will not use external
events. The format used to describe the external events is showed in the section 6.3.

—I: Log filename. This file is used to store the messages received and emitted by each model
within the simulation. If this parameter is omitted, the simulator will not generate activity log. If
you wish to get the log on standard output, you should write -1). The format used by the log is
described in the section 7.2.

—m: Model description filename. This parameter indicates the name of the file that contains the
description of all models to simulate. If this parameter is omitted, the simulator will try to load
the models from the model.ma file.

—o: output filename. This parameter indicates the name of the file that will be used to store the output
generated by the simulator. If this parameter is omitted, the simulator will not generate any
output. If you wish to get the results on standard output, simply write —0. The format of this

-b:

B

-r:

=S

output is showed in the section 7.1.

: Sets the maximum time to simulate. If this parameter is omitted, the simulator will stop only

when it will not have more events (internal or external). The format used to set the time is
HH:MM:SS:MS, where:

HH: hours

MM: minutes (0 to 59)

SS: seconds (0 to 59)

MS: thousandth of second (0 to 999)

: Defines the tolerance used to compare real numbers. The value passed with the —d parameter will

be used as the new tolerance value. By default, the value used is 107-8.

: Shows additional information on parsing the cell model’s rules. The parameter must be

accompanied with the filename that will be used to store the detail. This mode is useful when a
syntax error occurs on complex rules.
The format used to store the output is showed in the section 7.4.

: Enable the debug mode on the evaluation of all cell model’s rules. For each rule to be

evaluated it will be showed the results of the evaluation of each function and operator that they
compose it. In addition, this mode evaluates the rules in complete form, that is, it doesn’t use the
rule’s optimization. The parameter must be accompanied with the filename that will be used to
store the rule’s evaluation. The format of the output generated when this mode is enabled is
showed in the section 7.5.

Bypass the preprocessor. When this parameter is set, the macros will be ignored.

Enable the debug mode on flat cell models. This allows to show the state of a flat-coupled
model on each time change. When you used flat models, the simulation process does not send
messages between the atomic cells that compound it, and then, the log will not store these
messages. When you run the DrawLog, it will be unable to show the state of the model at each
time. The parameter must be accompanied with the filename that will be used to store the states.
If you wish to show the results on the standard output, simply write —f.

Enable the debug mode that validates the rules used to define the behaviour of the cells

models. When this mode is enabled, the simulator checks for the existence of multiple valid rules
at runtime. If this condition is true, the simulation will be aborted. This mode is available only in
standalone mode. There are special cases to consider: if you are using a stochastic model (i.e. the
model uses random numbers generators) must happen that multiple rules will be valid, or than
none of them will be. In both cases, the simulator will notify this situation to the user, showing a
warning message on standard output, but the simulation will not be aborted. For the former case,
the first valid rule will be considered. For the second case, the cell will have an undefined value
(?), and the delay time will be the default delay time specified for the model. If this parameter is
not used when the simulator is invoked, the mode is disabled and only will be considered the first
valid rule.

Show the simulation’s end time on stdErr.

Allows to use a quantum value. This permit to quantify the value returned by the local
computing function evaluated on each cell of the model. Thus, all the values will be rounded to

the near maximum multiple of the quantum value minor than the original value. This mechanism
decreases the number of messages transmitted in the simulation, but the results of the simulation
will not be exact. For example, if the quantum value is 0.01 and the value returned by the local
computing function is 0.2371, the state of the cell will be 0.23. The value used as quantum must
be declared next to the parameter—q, for example: to set the quantum value as 0.01 the parameter
must be —q0.001. If the quantum value is O or the parameter —q is not used, the use of the
quantum will be disabled, and the value returned by the local computing function will be directly
the value of the cell.

: Allows to set the wide and precision of the real values displayed on the outputs (log file,

external events file, evaluation results file, etc). By default, the wide is 12 characters and the
precision is of five digits. Thus, of the 12 characters of wide, 5 will be for the precision, 1 for the
decimal point, and the rest will be used for the integer part that will include a character for the
sign if the value is negative. To set new values for the wide and precision, the —w parameter must
be used, followed of the number of characters for the wide, a hyphen, and the number of
characters for the decimal part. For example to use a wide of 10 characters and 3 for the decimal
digits, you must write —-w10-3.

Any numerical value that must be showed by the simulator will be formatted using these

values, and it will be rounded if necessary. Thus, if a cell has the value 7.0007 and the

parameter —w10-3 is declared on the invocation of the simulator, the value showed for the cell
on all outputs will be 7.001, but the internal value stored will not be affected.

The drawlog command is another simulation tool provided by CD++. It is use to view the state of a

cellular model after every simulation cycle as the simulation advances. Please refer to section 9 for more
detailed information about the drawlog command.

8.2

Simulation through Eclipse

CD++Builder plugin offers many tools to simulate/view CD++ models. This section describes how to use
CD++Builder to create a model from a smulator. In order to use CD++Builder, you must use the CD++Builder
perspective. This can be done by selectin “Window” on the top menu bar, selecting “Open Perspective” and
then clicking on “Other”. The following perspective screen will pop up where you can select the CD++Builder
Perspective

#- Select Perspective B3

@ CD++B ilder Perspective
l:h L5 Repository Exploring

ﬁ Debug

f%) Inztall /U pdate
%’Java

gfdava Browsing
TgJ.Java Type Hierarchy
== Plug-in Development
E‘h Rezource [default)

(1] I Canhicel

Figure 59. Perspective selection panel

The CD++ tool set provided by the CD++Builder plugin are the following.
8.2.1 Compiling a new model

To compile a CD++ m, select any file in the project you want to compile and click on the “Build” button

The project must contain DEVS models only. This button will automatically create a makefile for you that is
unique fc=igour project and then it runs the make command on the makefile. This takes all the cpp file from the
project and compiles it. It then creates the simu executable that is necessary run the simulation button. Before
the compilation takes place, the build tool will ask if you want to run this tool in verbose mode.

£ Yerbose Mode?

‘wiould pou like to run in verboze mode?

™ Don't ask me again

Figure 60. Verbose Mode Message
This means that it will list out all the directions and messages the tool outputs when it is compiling.

8.2.2 Simulating a model B
To simulate a project, you can click on the simu button & .This will bring up a panel (shown in figure 8.3)

where you can specify your parameters for running a simulation.

= Simulate Project

Fleaze enter the ma file [.mal]

|| Browse
Fleaze enter the events file [.ewv]
I I Hrose
Fleaze enter the autput file
v I Browse
Fleaze enter the log file [log)
W | Browse
Fleaze enter a stop time

@ [[0 oo

For Advanced users Onlyl Please enter dezsired paramters

r
Cormrients

u

Ny

Save az bat | Load bat |

Procesd LCloze | Kl I

Figure 61. Simulation panel

You can enable each of the parameters by checking its respective box next to its name. Some parameters such
as .ma, .ev, .out and .log, require a file input. If you know the name of your file that is in your project, you can
type them in. If you would like to choose from a list of files, you can select the “browse” button which will

present you with a list of all the file types.

The last three parameters are the stop time, advanced settings and comments. The stop time is separated into 4
different type, hour, minute, second and millisecond. To enter a particular type of the stop time, you can simply
enter the time or you can use the up/down arrow from the keyboard to set the desired time. This time indicates
when you want the simulation to stop.

The advanced parameter box is used for users who want to run less-common parameters in the simulation.
Finally, the comments section is used to enter fascinating comments about the current selection of parameters.
This portion is generally used for saving your settings to a file or saving your settings to a batch file.

When you save settings to a file/batch, you will have to specify the name of the file you want to save it to.
When you load settings from a file/batch, you will specify its location. By clicking proceed, the simulation will
start and send all the information to the bottom component of the panel. Clicking on the output text and
moving up and down with the up and down keys, will let you review the simulation and it's results. If your
coupling file and/or events file is non existent or corrupted, the program will send an error pop up window to
tell you. (Note — you must be in the current project of the project you want to simulate.)

8.2.3 Creating drawlog file for models

4= Drawlog | X] |

Pleaze enter the ma file [.ma)

|| Browse

Please enter the log fle [loa]

I Browse

Pleaze enter the drawlog output file [.drw)

I Browsze
Fleaze chooze the cellular model o represent

Pleaze enter the starting time
o 8 o il
Pleaze enter the width

v
Pleaze enter the number of digitz after the decimal
v
llze &z 30 Models
|

¥ Do not print the zem value

JEEE

Save az bat | Load .bat I

Drrawlog Cloze | el I

Figure 62. Drawlog panel

The DrawLog utility is used to view the state of a cellular model after each simulation cycle as the simulation
advances. Using the log as input, drawlog parses the Y messages to update the state of each cell in the model.
When a simulation cycle finishes, the state of the whole model is printed.

To start the drawlog tool, you can click on the drawlog button - This will bring up a panel (shown in figure

8.4) where you can specify your parameters for running the drawlog just like the simulation button.

You can enable each of the parameters by checking its respective box next to its name. Parameters such as .ma,
Jog and the output file .drw, are required inputs. If you know the name of these files that are in your project,
you can type them in. If you would like to choose from a list of files, you can select the “browse” button which
will present you with a list of all the file types.

Once a .ma file is selected, a drop down menu will be available from the cellular model text field allowing the
user to choose the desired model to be drawn. The other parameters that can be entered are the stop time, the
width and precision used to represent numeric value, the number of slice shown when representing a 3D model
and the choice to print the zero value.

The stop time is also separated into 4 different type, hour, minute, second and millisecond. To enter a particular
type of the stop time, you can simply enter the time or you can use the up/down arrow from the keyboard to set
the desired time. This time indicates when you want the simulation to stop.

Similar to the SIMU button, an user has the choice to save the settings used in the drawlog to a batch file.
When you save settings to a file/batch, you will have to specify the name of the file you want to save it to.
When you load settings from a file/batch, you will specify its location. By clicking proceed, the simulation will
start and send all the information to the bottom component of the panel. Clicking on the output text and
moving up and down with the up and down keys, will let you review the simulation and it's results. If your
coupling file and/or events file is non existent or corrupted, the program will send an error pop up window to
tell you. (Note — you must be in the current project of the project you want to run the draw log.)

8.2.4 CD Modeler

To launch the CD Modeler, click on the CD Modeler button “* . The CD Modeler is a GUI, which is used for
creating atomic models and coupled models for the ND-C++ tool. The basic function of the GUI includes:
create atomic model, create coupled model, retrieve parent class of the coupled model, and run external DOS-
style command. The GUI also includes a simple text editor.This GUI is shown in figure 8.5. For more
information about the CD Modeler please refer to the user manual in Appendix E (DRAFT VERSION).

L, CD++ Modeler

File Edit Execute Animate Help

5[] @] 8 Jrore e]] 1]

EI--T] Foaot Made || Atomic | Cu:uupledl
|—l States
|—l Likk=

Ports
— % Yarg

IR I 3

Sirmulator Stadts

Figure 63. CD Modeler panel

6.6 Parallel simulator

To run CD++, type the following command:

./mpirun -np n ./cd++ [-ehlmotdvbfrspqw]
Here n indicates the number of machines that will be required. It is important this is the same number of
machines specified in the partition file or the simulation will not work.

Usage:

./cd++ [-ehlLmotdpPDvbfrsqw]
e: events file (default: none)
h: show this help
1: logs all messages to a log file (default: /dev/null)
L[I*@XYDS]: log modifiers (logs only the specified messages)
: model file (default : model.ma)
output (default: /dev/null)
stop time (default: Infinity)
set tolerance used to compare real numbers
print extra info when the parsing occurs (only for cells models)
partition details file (default: /dev/null)
parallel partition file (will run parallel simulation)
evaluate debug mode (only for cells models)
bypass the preprocessor (macros are ignored)
flat debug mode (only for flat cells models)

Hh b <4 YO p.rrgs

debug cell rules mode (only for cells models)

show the virtual time when the simulation ends (on stderr)
use quantum to compute cell values

use dynamic quantum (strategy 1) to compute cells values

use dynamic quantum (strategy 2) to compute cells values

sets the width and precision (with form xx-yy) to show numbers ‘

Figure 64. CD++ command line options

T KK Q0K

The command line options allowed are:

—efilename: External events filename. If this parameter is omitted, the simulator will not use external
events. The format for external event files is described in section 6.3

—Ifilename: Log filename. When this parameter is specified, all messages received by each DEVS
processor will be logged. If filename is omitted (only -1 is specified) all log activity will be sent to
the standard output. But if a filename is given, one log file will be created for each DEVS processor.
The file filename will list all models and the name of the corresponding logfiles. These file will be
named filename.XXX where XXX is a number. When this option is used and no addition log
modifiers are defined, all received messages are logged.

The log file format is described in the section 7.2

-L[I*@XYDS]: allows to define which messages will be logged. This option is useful to reduce the log
overhead. The following messages are supported:

Initialization messages
(*,t) Internal messages.
(@,t) Collect messages
(q,t) External messages
(y,t) Output messages
(done,t) Done messages
All sent messages

LOLNO FT

When using drawlog, only Y messages are required. Use the —L'Y option to reduce execution time.

—mfilename: Model filename. This parameter indicates the name of the file that contains the model
definition. If this parameter is omitted, the simulator will try to load the models from the model.ma
file.

-Pfilename: Partition definition filename. A partition file is used to specify the machine where each
atomic model will run on. Only the location of the atomic models needs to be specified. CD++ will
then determine where the coordinators should be placed.

This file is only required for parallel simulation. If standalone simulation is used, this setting will be
ignored.

The format for a partition file is described in section 6.4.

—ofilename: output filename. This parameter indicates the name of the file that will be used to store the
output generated by the simulator. If this parameter is omitted, the simulator will not generate any
output. If you wish to get the results on standard output, simply write —o.

The format for the generated output is described in section 7.1.

—Dfilename: debug filename for partition debug information. When this option is used, one file for each
LP will be created. This file will list all the identification of all DEVS processors running on it.

—t: Sets the simulation finishing time. If this parameter is omitted, the simulator will stop only when
there are no more events (internal or external) to process. The format used to set the time is
HH:MM:SS:MS, where:

HH: hours
MM: minutes (0 to 59)
SS: seconds (0 to 59)

—d:

MS: thousandths of second (0 to 999)

Defines the tolerance used to compare real numbers. The value passed with the —d parameter will be
used as the new tolerance value.
By default, the value used is 107,

—pfilename: Shows additional information when parsing a cell’s local transition rules. The parameter

must be accompanied with the name of the file that will be used to store the detail. This mode is
useful when a syntax error occurs on complex rules.
The format used to store the output is showed in the section 7.4.

—vfilename: Enables verbose evaluation of the local transition rules. For each rule that is evaluated, the

-r:

=S

result of each function and operator will be showed. In addition, this mode will cause complete
evaluation of the rules, i.e. it doesn’t use rule optimization. The parameter must be accompanied
with the filename that will be used to store the evaluation results.

The format of the output generated when this mode is enabled is described in section 7.5.

: Bypass the preprocessor. When this parameter is set, the macros will be ignored.

Enables the rule checking mode. When this mode is enabled, the simulator checks for the existence
of multiple valid rules at runtime. If this condition is true, the simulation will be aborted. This mode
is available in standalone mode.

There are a few special cases to consider: if a stochastic model is used (i.e. a model that uses random
numbers generators) it might either happen that multiple rules are be valid or that none of them is. In
any case, the simulator will notify this situation to the user, showing a warning message on standard
output, but the simulation will not be aborted. For the first case, the first valid rule will be
considered. For the second case, the cell will have an undefined value (?), and the delay time will be
the default delay time specified for the model.

If this parameter is not used when the simulator is invoked, the mode is disabled and only will be
considered the first valid rule.

Show the simulation’s finishing time on stderr.

—qvalue: Sets the value for the quantum.

The value used as quantum must be declared next to the parameter—q, for example: to set the
quantum value as 0.01 the parameter must be —q0.001.

If the quantum value is O or the parameter —q is not used, the use of the quantum will be disabled,
and the value returned by the local computing function will be directly the value of the cell.

—-w: Allows to set the wide and precision of the real values displayed on the outputs (log file, external

events file, evaluation results file, etc).

By default, the wide is 12 characters and the precision is of five digits. Thus, of the 12 characters of
wide, 5 will be for the precision, 1 for the decimal point, and the rest will be used for the integer part
that will include a character for the sign if the value is negative.

To set new values for the wide and precision, the —w parameter must be used, followed of the
number of characters for the wide, a hyphen, and the number of characters for the decimal part. For
example to use a wide of 10 characters and 3 for the decimal digits, you must write —-w10-3.

Any numerical value that must be showed by the simulator will be formatted using these values, and
it will be rounded if necessary. Thus, if a cell has the value 7.0007 and the parameter —w10-3 is
declared on the invocation of the simulator, the value showed for the cell on all outputs will be
7.001, but the internal value stored will not be affected.

7 Utility programs
7.1 Drawlog

The DrawLog utility is used to view the state of a cellular model after each simulation cycle as the
simulation advances. Using the log as input, drawlog parses the Y messages to update the state of each cell in
the model. When a simulation cycle finishes, the state of the whole model is printed.

Drawlog can read the log from a file or from the standard input. Its command line parameters are shown next:

drawlog -[?hmtclwpO]

where:

Show this message

Show this message

Specify file containing the model (.ma)

Initial time

Specify the coupled model to draw

Log file containing the output generated by SIMU
Width (in characters) used to represent numeric values
Precision used to represent numeric values (in characters)
Don't print the zero value

Only cell values on a specified slice in 3D models

Mo sS85

Figure 65. Help shown by DrawLog
—?: similar to —h.
—-m: Specifies the filename that contains the definition of the models. This parameter is required

—t: Starting time. Sets the time for the first state output. If not specified, 00:00:00:000 will be
used.

—c: Name of the cellular model to represent. This parameter is obligatory required because a .ma
file may define more than one cellular model.

-I: Name of the log file. If this parameter is omitted, Drawlog will take the data of the standard
input.

—w: Allows to define the print width, in characters, for numeric values. This width will include
the decimal point and sign. For example, —w7 defines a fixed size for each value of 7

positions. Small numbers will be padded with spaces.

By default, Drawlog uses a width of 10 characters. For correct results a width that is bigger
than the precision (defined with the parameter —p) + 3 is recommended.

—p: Defines the number of digits to be displayed after the decimal point. If a value of 0 is used,
then all the real values will be truncated to integer values. This parameter is generally used in
combination with the option —w.

As an example, consider using the command line arguments —w6 —p2. This will set the

By default, DrawLog assumes 3 characters for the precision.

—0: When this option is specified, a value of 0 zero will no be shown.

-f: Draws a 3D model as a 2D model. Only the specified plane will be drawn. To draw plane 0, -
fO should be used.

Figure 9.2 shows two different ways of starting drawlog. The first uses a log file as input. The second one,
instead, takes its input from the standard input.

drawlog —-mlife.ma -clife -llife.log —-w7 -p2 -0
or

pcd —mlife.ma -1- | drawlog -mlife.ma -clife -w7 -p2 -0

Figure 66. Examples for the invocation to DrawLog

When parallel simulation is used, the standard input can not be directly used by drawlog because log messages
may arrive out of order. Therefore, it is necessary to sort the messages first. A utility called logbuffer
(described next) has been written for that purpose.

The output format of DrawLog will depend on the number of dimensions of the cellular model.

¢ Output for bidimensional cellular models.
¢ Output for three—dimensional cellular models.
e Output for cellular models with 4 or more dimensions.

7.1.1 Bidimensional cellular models
A 2 dimensions model will be displayed as a matrix of values. Figure 9.3 shows a fragment of the output
generated by DrawLog for a two-dimensional model of size (10, 10). The number width has been set to 5 and
the precision to 1.

Line : 238 - Time: 00:00:00:000

0 1 2 3 4 5 6 7 8 9
0] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
1| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
2| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]|
3| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]|
4| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
5| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]|
6] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
7| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
8| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
9| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]

Line : 358 — Time: 00:00:01:000

0 1 2 3 4 5 6 7 8 9
0] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
1| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
2| 24.0 24.0 35.8 24.0 24.0 24.0 24.0 24.0 -6.3 24.0]|
3| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]|
4| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
5| 24.0 24.0 24.0 24.0 24.0 39.5 24.0 24.0 24.0 24.0]|
6| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
7| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
8| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 -4.0 24.0]
9| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]

Figure 67. Fragment of the output generated for a bidimensional cellular model

7.1.2 Three dimensional models
For three dimensional models, a matrix representation will be used. Each matrix is one plane of the cell space.
The first plane shown will correspond to (x,y,0), the second one to (X,y,1), and so on.

Figure 9.4 shows the output of Drawlog when used to draw a cellular space of size (5,5,4) with a number width
of 1, a precision of 0 and zero values not displayed.

Line : 247 - Time: 00:00:00:000

01234 01234 01234 01234
0|1 | 0l | 0|1 | ol |
111 | 1j11 1| 1| 111] 1] 11|
21 | 2| 11| 2| 1 11| 2| 1|
3| | 31 1 | 3| 1| 31 1|
4] 11| 4] 11| 411 1| 4] 1|

dbmmee + e + dbmmee + T +

Line : 557 - Time: 00:00:00:100

01234 01234 01234 01234
e + e + e + e +
0] | 011 11| 0|1 11| O| 11|
1| | 1| | 1|1 | 1| 1|
2| | 211 1] 2|1 | 2] 11
3 1] 3] 11 | 3|1 11| 3|1 1]
4] | 4] | 4] | 4] |
e + e + e + e +

Line : 829 - Time: 00:00:00:200

01234 01234 01234 01234
+——— + +———— + +——— + +———— +
0] | 0] | 0|1 1] 0] |
1] 1] 1] 1] 1] 11| 1] 1]
2] | 2] | 2|1 1] 2] |
31 | 31 | 3|11 1| 31 |
4] | 4] 1] 411 11| 4] 1]
- + +———— + +——— + +———— +

Figure 68. Fragment of the output generated for a three—dimensional cellular model

7.1.3 Cellular models of more than 3 dimensions
For models of 4 or more dimensions, the matrix representation will not be used. Instead, the values for each
cell will be listed. The options defined with —p, -w and —0 will be ignored.

Figure 9.5 shows a fragment of the output generated by DrawLog for a model of size (2, 10, 3, 4).

Line : 506 — Time: 00:00:00:000
(0,0,0,0) =2

(0,0,0,1) =0

(0,0,0,2) =9

(0,0,0,3) =0

(0,0,1,0) = 21

(1,9,1,0) =0

(1,9,1,1) = 4.333

(1,9,1,2) =0

(1,9,1,3)
(1,9,2,0)
(1,9,2,1)
(1,9,2,2)
(1,9,2,3)

O J O o

Line : 789 - Time: 00:00:00:100
(0,0,0,0) =0

(0,0,0,1) 0

(0,0,0,2) = 13.33

(0,0,0,3) =0

(0,0,1,0) = 5.75

[
o
o

(1,9,1,0) =
(1,9,1,1)
(1,9,1,2) =
(1,9,1,3)
(1,9,2,0)
(1,9,2,1)
(1,9,2,2)
(1,9,2,3) =

.14

N
(8]

[}
OuUUOoOOKRrRONO®

Figure 69. Fragment of the output generated for a model with dimension 4

7.2 Random Initial States — MakeRand

MakeRand is a tool to create a .val file with a random initial state for a cellular model.

Usage:

makerand -[?hmcs]

where:

Show this message

Show this message

Specify file containig the model (.ma)

Specify the Cell model within the .ma file

Specify the value set
s0 = Use the values 0 & 1 (Uniform Distribution)
sl-n = Use the value 1 for n cells & 0 for the rest
s2-n = Makes random states for the Pinball Model
s3—-n = Random states for the Gas Dispersion Model

(7 I o T - = RN

Figure 70. MakeRand command line options

—?: similar to —h.

—m: Specifies the filename for the model definition file (.ma)

—c: Name of the cellular model. This parameter is required because the size of the model needs to
be known.

—s: Specifies the type of initial state to be created:

—s0: For each cell of the model, a value will be chosen randomly belonging to the set {0, 1} with
the same probability for each value.

—sl-n: Indicates that the model initially will have n cells with value 1 (distributed randomly
according to an uniform distribution) and the rest of the cells will have the value 0. If n is
bigger to the quantity of cells of the model, then an error will occur and the initial state

will not be generated.

For example, if we have a 40x40 cellular and we want 75% of the cells (1200 cells) to
have an initial value of 1, and the remaining cells an initial value of 0, then —s1-1200
should be used.

—s2-n: Generates a random initial state for the Pinball model. For this model a value between 1
and 8 will be randomly generated and randomly place inside the cellular space. In
addition, n cells will be randomly chosen to represent the walls. The rest of the them will
have an initial value of 0.

—s3-n: Creates an initial state for the gas dispersion model with n particles.

The output will be created in a .val file with the same name as the model file.

7.3 Converting .VAL files to Map of Values — ToMap

The tool ToMap allows to creates a .map (section 6.2) file from a .val file (section 6.1).

Usage:

toMap —[?hmci]

where:

Show this message

Show this message

Specify file containig the model (.ma)
Specify the Cell model within the .ma file
Specify the input .VAL file

H Q38 B

Figure 71. Command line arguments for toMap
—?: same as —h. Shows the command line help.
—-m: Specifies the filename (.ma file) with the model definition.
—c: Name of the cellular model.

—i: Specifies the name of the .val file that contains the list of values that it will be used for the
creation of the .map file.

ToMap uses all values in the .val file to create a map of values. If the .val file does not specify a value for every
cell, then the default value, as specified by the InitialValue parameter, will be used.

The output file will have the same name as the .ma file but the extension .map will be used instead.
7.4 Error Calculation

The program ERRORQ accept a DRAWLOG output and generates a new output (on standard output —must be
redirected to a file--) with six columns. The DRAWLOG output must be wit the lines and times titles
(parameters —f or —e). Other way, comparison is not possible, because a different offset on each file can occur.
These columns are:

0) Counter of times simulations.

1) Time of the block-simulation in comparison

2) (1-s/q)/n = Error introduced on the indicated time. Not summarized (only the error generated on
this time).

3) sum[(1-s/q)]/n= The same as 2 but accumulated until current time.

4) (s-q)/n= The same as 2 but with a different formula. Not summarized (only the error generated on
this time).

5) sum[s-q]/n= The same as 4 but accumulated until current time.

74.1 Columns showed

Column 0

Line Counter

Column 1
Simulation Time
Column 2
(1-s/q) / n =% (1-s{/q)/n (for O<=i <=n = number of cells)
s; = Value of cell i on the output without quantum.
qi = Value of cell i on the output with quantum.
n = number of cells

This value is set to 0 after each block-time.

Column 3
(is the same as 2 but accumulated)
sum[(1-s/q)l/m =2 [2 (1-si/qy)];/n (for O<=i <=n = number of cells, O<=j<=current time)
s; = Value of cell i on the output without quantum.
qi = Value of cell i on the output with quantum.
n = number of cells
Column 4
(s-q) /n =2 (si-qy)/n (for O<=i <=n = number of cells)
s; = Value of cell i on the output without quantum.
q; = Value of cell i on the output with quantum.
n = number of cells

This value is set to 0 after each block-time.

Column 5

(is the same as 4 but accumulated)
sum[(s-q)1/n = X [X (s-qi)]j/n (for 0<=i <=n = number of cells, O<=j<=current time)
s; = Value of cell i on the output without quantum.
q; = Value of cell i on the output with quantum.
n = number of cells
When the error is accumulated, means the error accumulated until time indicated in column 1.
The program ERRORQ receives two arguments:
1) The name of the original draw output file (original means without quantum)
2) The name of the draw output file obtained with quantum

Both files must be generated with DrawLog without the option —f, because the time is neaded to synchronize
the files and calculate the error. For example:

errorq outputl.drw outputqq.drw

will show you:

Archivo original: sing.drw quantificado:conq.drw
Dimension detectada del modelo: 5 x 5
Descripcion de Columnas
0) Contador de bloques comparados
1) Tiempo de simulaicon del bloque en comparacion
2) (1-s/q)/n= Error '/' introducido en el bloque time. Sin acumular.
3) sum[(1-s/q)]/n= Error '/' acumulado hasta time.
4) (s—q)/n= Error '-' introducido en el bloque time. Sin acumular.
5) sum[s—-q]/n= Error '-' acumulado hasta el bloque time.
0,1,2,3,4,5
t,time, (1-s/q) /25, sum[(1-s/q)1/25, (s—-q) /25, sum[(s—q)]/25
0,00:00:00:000,0,0,0,0
1,00:00:00:230,0,0,0,0
2,00:00:00:325,0,0,0,0
3,00:00:00:355,0.00289157,0.00289157,0.24,0.24
4,00:00:00:595,0.0446277,0.0475192,0.459642,0.699642
5,00:00:00:680,0.0580914,0.105611,0.868588,1.56823
6,00:00:00:710,0.056741,0.162352,0.981349,2.54958
7,00:00:00:945,0.115058,0.27741,3.8915,6.44108
8,00:00:00:995,0.0714215,0.348831,1.33647,7.77755
9,00:00:01:030,0.0944933,0.443325,1.65318,9.43073
10,00:00:01:060,0.105529,0.548853,2.00511,11.4358
11,00:00:01:095,0.161452,0.710305,2.69788,14.1337

if you do (for example, in MSWindows):
Errorq outputl.drw outputqq.drw > error.csv

This will generate a comma separated value (because the program shows the columns separated with commas)
file and can be opened with Excel or a similar application.

7.5 GrafCell

The program GRAFCELL accept a DRAWLOG output and show you a graphic on the screen with all the cells
and the function graphic for each one on a Grid.

The program GRAFCELL receives five or six arguments (depending of the use)
(On the next description, x means the values for x edges and y the values for y edges of the plane graphic)
3) The name of the DRAWLOG output file.

4) The minimum value for x (most times is 0 —cero—because of the starting time of a simulation is
cero).

5) The minimum value for y. This is the minimum value that a cell can reach on the simulation.

6) The maximum value for X. This is the maximum time of the simulation, converted to milliseconds, but
however, not all simulation times are showed on the drawlog, so you will nead to adjust this
parameter trying with different ones until the correct scale of the grid is showed.

7) The maximum value for y. This is the maximum value that a cell can reach on the simulation.

8) <Optional> -t With “-t” argument, GrafCell will show the current time of the simulation when
drawing. The time will be converted to milliseconds and divided by the default cell delay, but
however, not all times simulations are showed on drawlog, so a better adjustment will be necessary.

If the drawlog file does not include the titles and times, a counter will be showed. WARNING: Woth
this option, the drawing can be VERY SLOW, depending on the model size.

NOTE: Arguments 2, 3,4 and 5 are only to adjust the scale of the grid. You can try different

ones to have a nicer view.

GrafCell output.log 0 -16.6 35000 94.3

This will show you the graphics on a newer window screen. The number of cells will be automatically detected
by GrafCell.

RESTRICTIONS: GrafCell will work propertly only with nxm (and only with n=m) outputs (with

drawlog outputs of one slide (parameter —f or —e).

To graph an output of a simulation with quantum, is better to use a DRAWLOG output generated with —f
option, because —f option shows outputs for all time simulations, and that produces a better graphic. However,
this is a suggestion and the improvement depends on the model.

7.6 Message counter

The program CONTART accept a simu LOG and gives you the number of messages used on that simulation.
The program CONTART receives one two arguments (depending of the use)

The name of the SIMU LOG file

<optional> The Time until you want to count messages.
contart output.log

This will show you:

Archivo a contar mensajes: output.log

Cantidad de mensajes en output.log hasta 00:02:00:000 (EOF) —> 264878
#*=72290

#X=48000

#Y=24290

#D=120294

#I1=4

This means that in the log output.log, until EOF (because the title “hasta 00:02:00:000(EOF) means that end of
file was reached) there are a total of 264878 messages and this is the detail:

72290 messages of type “*”
48000 messages of type “X”
24290 messages of type “Y”
120294 messages of type “D”
4 messages of type “I”

If you use the second argument, the program will count messages until the indicated time is reached or EOF
(the first that occurs).

With the same log as Examplel, we can do:
contart output.log 00:01:10:250

And this will show you:

Archivo a contar mensajes: output.log

Hasta: 00:01:10:250

Cantidad de mensajes en output.log hasta 00:01:10:250 -> 155011
#*=42301

#X=28100

#Y=14201

#D=70405

#I1=4

This means that in the log output.log, until 00:01:10:250 simulation time (because the second parameter is in
use “hasta 00:01:10:250”) there are a total of 155011 messages and the detailed messages. If you use, for this
example,

contart output.log 00:03:00:000

You will get the same results as in Examplel, because EOF will be reached before the 3 minutes indicated on
the 2™ parameter, and you will see the title EOF as in examplel.

This is useful when you have to compare logs of simulations ended at different simulation-time.

7.7 Bitmap Translator

For Cell DEVS, we can initialize cells by two ways: either initializing directly in ma file or in value file (val
file). In many cases, initial data can be available in the form of image, and the goal of this utility is to convert
image data into value file. Also we can use multiple images to initialize different planes in z-direction in case
of 3D cell DEVS models.

The scope of this utility is standard 24-bit bitmap images. If image data is available in other forms, we can first
convert that into 24-bitmap using any standard Image Viewer tool.

The tool bmptoval allows to convert bitmap image data into value file. The possible parameters are

Welcome to Bitmap Translator: Version 1.0

bmptoval —[?hmcblupv]

Where:

Show usage help

Show usage help
Specify file containing the model (.ma)

Specify the coupled model having dimension of model
Bitmap file to be translated (.bmp)
Initial value for normalization

Maximum value for normalization

Specify precision of index

Specify Value file name

<" eronB8 5w

-h: show the above help

-2 same as h

-m: Specifies the file name that contains the definition of coupled model. This parameter is
mandatory.

-c: Name of the cellular model to represent. This parameter is mandatory because the file specified

with —m can contains the description of many models. Only cellular models are allowed.

-b: Name of the bitmap image file. This parameter can be repeated for multiple ~ bitmap image files.
This parameter is mandatory.

-1 Initial value for normalization. This is mandatory. User can convert color index to normalized
scale and this parameter represents lower index for that scale range.

-u: Upper value for normalization. This is mandatory. User can convert color index to normalized
scale and this parameter represents maximum index for that scale range.
-p: This is optional parameter to define the precision, in integers, of the normalized color index in

the value file. Bitmap Translator assumes precision of 4 by default. his parameter should be more than 0.

Using one image file
./bmptoval -mEdge.ma -cEdge -bImagel.bmp -10 -ul00 -p3

Using multiple image files

./bmptoval -mEdge.ma -cEdge -bImagel.bmp -bImage2.bmp -10 -ul00 -p3

Note: Multiple images should be used only for 3D CELL DEVS and size of 3" dimension should not be less
than number of images.

7.8 LTRANS (Lattice Translator)

Ltrans is a tool that implements the two functions mentioned before. This implementation only works in 2D
models and only using nearest neighborhood. The last restriction is a necessary condition so that LTRANS
works correctly. CD++ has a specification language to define the cells behavior based on rules and a
neighborhood definition, LTRANS translates hexagonal or triangular rules to square CD++ compatible rules.
LTRANS receives a set of rules based on a hexagonal or triangular geometry and translates it in rules based on
square geometry to be included in a model to be simulated with CD++.

To run Ltrans, type:
ltrans [-hmotp]
where
h: show the help
m: model file (default : modelH.ma)
o: model translated file (default: model.ma)
t: mapping type (default: Hexagonal)
p: parser debug filename

The command line options allowed are:

-mfilename : Model file. This parameter indicates the name of the file that contains the
Rules to be translated. If this parameter is omitted, the simulator will try to load the rules
from the modelH.ma file.

-ofilename : Model Translated file. This parameter indicates the name of the file that contains the
translated Rules. If this parameter is omitted, the simulator will try to save the rules to the model.ma
file.

-t/hexagonal/triangular] : Mapping type. This parameter indicates the type of mapping hezagonal to
square or triangular to square.

—pfilename: Shows additional information when parsing a cell’s local transition rules. The
parameter must be accompanied with the name of the file that will be used to store the
detail. This mode is useful when a syntax error occurs on complex rules.

A model file is used to define the rules to be translated. This file consists in a set of rules based on hexagonal o
triangular geometry. The language used to modeling cell’s behavior in a hexagonal or triangular geometry is
the same that is used in CD++ but the only difference is the way that a neighbor is referenced. In CD++ a cell
(belonging a 2D space) is referenced using a tuple (x,y) where x (row) and y (col) are relative position of a
cells. As Ltrans only support nearest neighbors, was necessary define nearest neighbors for hexagonal and
triangular geometry. Figure 5 shows the way to define nearest neighbors in each geometry. For both geometries
each nearest neighbor is referencied using [n] where n is the number assigned to each nearest neighbor.

@@ -1,-1) | (-1,0) (-1,1)
@@@ (0,-1) (0,0) 0,1) VAV A
T[] W JATA
()]

() (b) (©

Figure 72. (a) nearest neighbors used for hexagonal geometry. (b) nearest neighbors used for square
geometry (used in CD++). (c) and (d) nearest neighbors used for triangular geometry, note that there are two

different kind of nearest neighbor and depends on the orientation of the cell

The cellular space in a Cell-DEVS model is named grid or lattice. This lattice is a homogeneous and regular set
of cells with an specific geometry. CD++ only allows square geometry, but there are others kind of geometries
that could be used to modeling different phenomena. These are:

e Triangular: The advantage of this type of geometry is that every cell has a limited number of nearby
neighbors (three) which in some models is very necessary. On the other hand, the disadvantages are the
difficulty of representation and visualization.

e Hexagonal: The advantage of this type of geometry is the higher isotropy, that means that the simulations
are more natural and in some cases it is absolutely necessary to simulate certain phenomena. The
disadvantage is that it is very difficult to represent and to visualize.

Bearing in mind these advantages and disadvantages of every geometry a translator was developed to be used
in conjunction with CD++, using two geometries translation functions [Wei97] for 2D lattice.

Different kind of functions can be writing but at the time of visualization’s results the interpretation could be
not easy. The main idea is to use a function that shifts alternate rows in opposite directions, as shown in Figure
1. That function maintains the boundary conditions in the square lattice. The visualization is very simple,
ignoring the factor that introduces the shift of every second row, a cell in hexagonal space can be found in the
square lattice (see colors).

9

Figure 73. Shift mapping of the hexagonal lattice to the square lattice.

Let (x,y) the position of a cell, where x represent the row and y represent the column (remenber that the
function only can be applied in 2D space). The neighborhood relation is transformed defferently depending on
whether the row index x is even or odd, as shown in Figure 2.

A

—Em”‘%l:zc
S ar
PINEN

odd x

F|Z[C
D

Figure 74. Neighborhood relation in hexagonal to square mapping function

The mapping of the triangular lattice to the square lattice is similar to the shift mapping for the hexagonal
lattice. In the triangular case, every second cell has a different orientation. The mapping function is shown in
Figure 3. Each row of triangles is mapped to one row of square depending on the parity of x+y.

wy > T

Figure 75. Visualization mapping of the triangular lattice to the square lattice.

The nearest neighborhood mapping is shown in Figure 4

Odd v+x

/A
AVA Even v+x A
% clzf

Figure 76. Nearest neighbors in the triangular mapping.

This translated file consists in the set of rules that can be simulated with CD++. Before to simulate the model,
it must be completed with the other parameters that define a Cell-DEVS model (space dimention, type of
border, default delay, etc.). Note: the neighborhood definition added must be the nearest neighbors as is show
in figure 5b.

The Life Game was presented in Scientific American by the well known mathematician Martin Gardner. In this
game, living cells will live or die. The rules for life evolution are as follows:

e An active cell will remain in this state if it has two or three active neighbors.

* Aninactive cell will pass to active state if it has two active neighbors exactly.

¢ In any other case, the cell will die

The rules that define the Cell’s behavior mentioned above in a hexagonal geometry is as follows:

rule: 1 100 { [O] 1 and (truecount = 3 or truecount = 4) }
rule: 1 100 { [O] 0 and truecount = 2 }
‘ rule: 0 100 { t } ‘

Figure 77. File lifegame.rules

Then we use LTRANS to translate the rules in a hexagonal space geometry as follow:

|C:> ltrans -mlifegame.rules -thexagonal -olifegame.rules.HtoS

After applied LTRANS we obtain the following result:

rule: 1 100 { (((0,0) =1) and ((if((truecount - (if((-1,1) =1,1,0)) -
(if((1,1) =1,1,0))) <0, 0, (truecount - (if((-1,1) = 1,1,0)) - (if((1,1)
1,1,0)))) = 3) or (if((truecount - (if((-1,1) = 1,1,0)) - (if((1,1) =
,1,0))) <0, 0, (truecount - (if((-1,1) =1,1,0)) - (if((1,1) =1,1,0)))) ‘
4))) and even(cellpos(1l)) } ‘

n e

rule: 1 100 { (((0,0) =1) and ((if((truecount - (if((-1,-1) = 1,1,0))
- (if((1,-1) =1,1,0))) < 0,0, (truecount - (if((-1,-1) = 1,1,0)) - (if((1,-
1) =1,1,0)))) = 3) or (if((truecount - (if((-1,-1) = 1,1,0)) - (if((1,-1)

1,1,0))) < 0,0, (truecount - (if((-1,-1) =1,1,0)) - (if((1,-1) = 1,1,0))))
4))) and odd(cellpos(1l)) }

rule: 1 100 { (((0,0) = 0) and (if((truecount - (if((-1,1) = 1,1,0)) -
(if((1,1) =1,1,0))) <0, 0, (truecount - (if((-1,1) = 1,1,0)) - (if((1,1)
=1,1,0)))) =2)) and even(cellpos(l)) }

rule: 1 100 { (((0,0) = 0) and (if((truecount - (if((-1,-1) = 1,1,0)) -
(if((1,-1) =1,1,0))) < 0,0, (truecount - (if((-1,-1) = 1,1,0)) - (if((1,-1)
=1,1,0)))) =2)) and odd(cellpos(l)) }

rule: 0 100 { t and even(cellpos(1l)) }

rule: 0 100 { t and odd(cellpos(1l)) }

Figure 78. File lifegame.rules.HtoS

Finally using the LTRANS result we construct the final model to be simulated in CD++.

[top]

components : life

[1ife]

type : cell

width : 20

height : 20

delay : transport

border : wrapped

neighbors : life(-1,-1) life(-1,0) life(-1,1)

neighbors : life(0,-1) 1life(0,0) 1life(0,1)

neighbors : life(l,-1) life(1,0) life(1,1)

initialvalue : 0

initialrowvalue : 1 00010001111000000000

initialrowvalue : 2 00110111100010111100

initialrowvalue : 3 00110000011110000010

initialrowvalue : 4 00101111000111100011

initialrowvalue : 10 01111000111100011110

initialrowvalue : 11 00010001111000000000

localtransition : life-rule

[life-rule]

rule: 1 100 { (((0,0) =1) and ((if((truecount - (if((-1,1) =1,1,0)) -
(if((1,1) =1,1,0))) <0, 0, (truecount - (if((-1,1) = 1,1,0)) - (if((1,1)
=1,1,0)))) =3) or (if((truecount - (if((-1,1) =1,1,0)) - (if((1,1) =
1,1,0))) <0, 0, (truecount - (if((-1,1) =1,1,0)) - (if((1,1) =1,1,0))))
=4))) and even(cellpos(l)) }

rule: 1 100 { (((0,0) =1) and ((if((truecount - (if((-1,-1) = 1,1,0))
- (if((1,-1) =1,1,0))) < 0,0, (truecount - (if((-1,-1) =1,1,0)) - (if((1,-
1) =1,1,0)))) = 3) or (if((truecount - (if((-1,-1) = 1,1,0)) - (if((1,-1)
=1,1,0))) < 0,0, (truecount - (if((-1,-1) =1,1,0)) - (if((1,-1) =1,1,0))))
=4))) and odd(cellpos(l)) }

rule: 1 100 { (((0,0) = 0) and (if((truecount - (if((-1,1) =1,1,0)) -
(if((1,1) =1,1,0))) <0, 0, (truecount - (if((-1,1) = 1,1,0)) - (if((1,1)
=1,1,0)))) =2)) and even(cellpos(l)) }

rule : 1 100 { (((0,0) = 0) and (if((truecount - (if((-1,-1) =1,1,0)) -
(if((1,-1) =1,1,0))) < 0,0, (truecount - (if((-1,-1) = 1,1,0)) - (if((1,-1)
=1,1,0)))) =2)) and odd(cellpos(l)) }

rule: 0 100 { t and even(cellpos(1l)) }

rule: 0 100 { t and odd(cellpos(1l)) }

Figure 79. Model file used as CD++ imput

7.9 Parlog

Parlog is a utility used to asses the parallelism of a running model. It uses the model log as input and counts
the number of (*,t) messages received by each LP during a simulation cycle. After a simulation cycle has been
completed, a list with the number of messages received by each LP will be printed.

Parlog reads the log from the standard input. LogBuffer should be used for correct results.
Usage:

PARLOG: An utility to determine the level of parallelism
usage: parlog -[?hmP]

where:
? Show this message
h Show this message
P Partition file name

Figure 80. Parlog command line options
-h : Displays help.
-? :Displays help.
-P: Specifies the partition file name. This paramter is required because parlog needs to
know how many LPs are being used.

Figure 9.7 shows the output generated by parlog with a model running in for machines.

Time/LP 0 1 2 3
00:00:00:000 629 626 626 626
00:00:10:000 5 0 2 3
00:00:11:000 12 3 12 14
00:00:12:000 31 7 32 35
00:00:13:000 60 13 62 66
00:00:14:000 99 21 102 107
00:00:15:000 148 31 152 158
00:00:16:000 207 43 212 219
00:00:17:000 276 57 282 290
00:00:18:000 351 73 358 367
00:00:19:000 428 91 436 446
00:00:20:000 509 131 495 486
00:00:21:000 543 192 531 522
00:00:22:000 575 254 563 554
00:00:23:000 603 317 591 582
00:00:24:000 625 376 614 606
00:00:25:000 627 450 625 626

Figure 81. Parlog output for a 4 machines partition.

7.10 Logbuffer

Logbuffer is a utility that buffers log messages received through the standard input, sorts them according to
their time, and outputs them to the standard output. It should be used when running drawlog or parlog piped
with the simulator.

To run logbuffer use,

logbuffer [-b]
-bn Sets the size of the buffer. The default size is 200.

Both drawlog and parlog require that, for correct results to be obtained, that log messages be processed in the
order determined by their timestamps. When parallel simulation is run and the log is sent to the standard
output, there is no guarantee that messages will be displayed in the same order that they were generated.

Therefore, a sorted buffer is needed.

Logbuffer has an internal buffer of a used defined size, which is always kept sorted. When the simulation is
started, this buffer is empty. Every new message that arrives is buffered, and no output is sent till the buffer is
full. Once it is full, every new message that arrives causes a new message to be sent to the standard output.
When the simulation finishes, all buffered messages are sent.

(¥2).(x2). (@.3)

(@.3).(*2).(x.2)

>

T.OGRITFFER

>

Figure 82. Logbuffer receives a message with timestamp 3 and then two messages with timestamp 2.
Logbuffer sorts and sent in the correct order.

Logbuffer can only guarantee correct results for misplaced messages that occur within a distance smaller than

the size of the buffer.

./logbuffer -b5000 |

./logbuffer -b5000 |

>./mpirun -np 4 ./pcd -mcalor.ma -Pcalor.pard4d -t00:01:00:000 -1 |
./drawlog -mcalor.ma -csuperficie -w6-p2 > calor.drw

> ./mpirun -np 4 ./pcd -mcalor.ma -Pcalor.par4 -t00:01:00:000 -1 |
./parlog -Pcalor.pard > calor.p

Figure 83. Running pcd with logbuffer.

7.11 Tools in CD++Builder

Most of the tools presented in this section are available to use in CD++Builder. Select the Cell-DEVS

perspective from the Perspectives menu.

4 CELL-DEYS - Eclipse Platform

SEIETE

File Edit Mavigate Search Project Run | Window Help
J i |J Eay " Eﬁ | | Tew Window
= =
= | & naviga v x
e = Shiow Wiew 3
@ | B Hide Editars
) BT ATM = Lack the Toalbars
= o
_____ Makefile Cuskomize Perspective. .,

--[F] DEMOATM.BAT

@ Balanceverifier.cpp
@ CardReader.cpp
@ cashdispenser.cpp
Q pirveerifier. cpp

@ reqgister.cpp

@ UserInterface.cpp |
E] ATM.EW

[€] Balanceserifier.h
[€] Cardreader.h

[€] cashdispenser.h
[€] pirrverifier b

Save Perspective As..,
Resel Perspective
Close Perspective
Close All Perspectives

E@ C/C++ Development

{% CD++Euilder

CELL-DEYS

Resource

Other...

Keyboard Shortouts

Switch ko Editar... Chrl4+-ShifE4+-4

Preferences

Figure 84. Cell-DEVS perspective

The toolbar contains buttons activating the different utilities presented in this section.

| B B | om 4 we [e RO | EE O |

Figure 85. Cell-DEVS toolbar.

8 Appendix A - Installation and Technical notes

8.1 Installing CD++Builder

You will need three main programs to run this plugin in windows...
a) Java JRE - Java JRE (Java runtime environment) will enable you to run java based applications such as
Eclipse.

b) Eclipse - Eclipse is an software development workbench. It provides a plugin based framework that makes it
easier to create and utilize software tools. CD++ Builder is a plugin which will be incorporated in Eclipse
as a plugin.

¢) Cygwin - Cygwin is a Unix emulator for Windows. Since the CD++ toolkit was originally developed in the
Linux/Unix platform it needs a Unix emulator to run some it's binaries (not needed if running CD++
under Linux/Unix)..

Installing Java

1) go to http://java.sun.com/j2se/1.4.2/download.html

2) Download the windows version of J2SE 1.4.2. You will see 2 types of Java SDK and JRE. Scroll down to
the second set of downloads which is indicated by the heading “J2SE V1.4.2_05 JRE includes the jvm
Technology”. Click on the link indicating Java SE 1.4.2 that is JRE. It should bring you to a page where
you can right click and save the installer.

3) Run the installer. It will scan your computer to check if what you already have installed Java. Upon
completion, you will be asked to accept a user’s agreement. Clicking on “next” should bring you to a

screen asking you to associate java to your web browsers (you can choose either depenting on your needs).
By clicking next once again, the installation will begin.

Installing Eclipse (only if you have installed Java)

1) Go to http://www.eclipse.org/downloads/index.php.

2) Here you will get a list of Eclipse versions. Download one of the 2.X versions (CD++Builder is only
compatible with Eclipse 2.X). Click on the link which is the latest version of Eclipse 2.X. If you need
further information, check http://www.eclipse.org/downloads/index.php.

3) In the next page, select the Windows platform you use, and download the file (a zip file). It is highly
recommended that you just unzip eclipse to the “C:\eclipse”.

If Eclipse or the project you are working on has spaces in the directory names then it may malfunction.

4) Go to the “C:\eclipse” folder, and double click on “eclipse.exe”, which will load Eclipse for the first
time and complete the installation. Include a shortcut in your desktop and your Start Menu, to easily
access the application.

Installing Cygwin

1) Download the Cygwin setup file from
http://www.sce.carleton.ca/faculty/wainer/wbgraf/distrib/cygwin.zip

and unzip it (Note: use ONLY this version of cygwin; we cannot guarantee that the tools will

work with other versions). We suppose you will unzip it on “c:\cygwin”. Go to that folder, and click on
“setup.exe”. The folowing window will appear:

Cypwin Setup ﬁ|

l - Cyowin Met Release Setup Program

Setup.exe vession 2.125.210
Copruight 2000, 2001 Red Hat Inc.

hitpc/ fzources.redhat. comdcygwin/

Cancel

For information about Cygwin is visit hitp://www.cygwin.com

2) Click next and select install from local directory

X

Cypwin Setup

E (" Install from Inbenet

" Download from Inteinet

Hext -> | Cancel [

2) If you are installing this for other accounts to use as well click on install for ALL and press next. The
next window will show the location of where it is installing from. You should point to the folder
where you unzipped the pack (in our example, “C:\cygwin”).

Cypwin Setup ﬁ|

T

Select install icot deectory
|C: fepguir

Defak Test File Type: & DOS & Ui
Install For: @& gl JustMe

¢~ Back Hext - | Cancel

4) Look for “Devel” under the Category column. Some of the tools under this category must be installed
(underlined in red in the following figure). To install a particular tool click on the word “skip” under the
New column, untill it changes to the tool’s version to be installed.

5)

6)

7)

8)

Cygwin S5etup ﬁ|

C Select packages to install {~ Prew @ Curri™ Exp M Categary
Cateqory Current e E Package £
Liewvel

&¥ Skip nia autoconf: Wrapper scrptz for autoconf-devel and autoconf-z

& Skip nijia autoconf-devel Development werzion of the automatic confi

& Skip i autocaonf-stable: Stable wersion of the automatic configure zc

&¥ Skip nia autornake; Wrapper scripts for automak.e-devel and automak

& Skip nja automak.e-devel: Developrient verzion of a toal far generatir

&* Skip i autormake-stable: Stable wersion of a taol far generating GRL

& 20071100241 nia binutilz: The GMNU azsembler, linker and binary utilities

& Skip njia bizon: A parser generatar that iz compatible with YACT

&¥ Skip nia byacc: The Berkeley LALR parser generator

&¥ Skip nija compface: Conversion utilitities for face graphics

& Skip njia ctags: A C programming language indexing and/for cross-refe

&¥ Skip nia cve Concurent Yersion System

&¥ Skip nijia dejagnu; Framework, for running test suites on software tools

& Skip nja flew: & Fast lexical analyzer generator

&¥ 29535 nia gcc: C. C++, Fortran compilers

& Skip nijia gdb: The GMU Debugger

& 0.10.38-3 i M GMU Internationalization runtirme lbrary

& 010404 nia M GMU Intemationalization runtime library

& Skip nja libtool: wirapper zcriptz for libtool-devel and libtaol-ztable

&¥ Skip njia libtool-dervel: & shared library generation tool

&¥ Skip nia ibtool-ztable; & shared library generation tool

& Skip nja libwrnl2: Libwrnl iz the =ML C library developped for the Grom

&¥ Skip nia libslt: Libxslt iz the =5LT C lbrary developped for the Gnome

& 37315 nija make: The GHU wersion of the 'make’ utility

& Skip njia Wgw-runtime: MinE'w Runtime LY
< >

& = click to chooze action, [p] = previous wersion, [#] = experimental

Cancel

Click on “next” to begin installation. When this is done, the installation tool will ask you to create
shortcuts on the desktop and startup menu.

Set “c:\cygwin\bin” to your path. This can be done going to Control panel->system. Click on the
“Advance” tab. Then depending on your version of windows there should be a section on environment
variables. Here you can find the Path variable (usually under system variables) and add “c:\cygwin\bin;”
to it.

You may need to logout and re-login for the change occur.
Create a folder “C:\trmp” (do not confuse with c:\temp), and give read/write access to it.

Define cygwin’s working directory in the drive where eclipse is installed on. To insure that this path has
been set correctly, open a cygwin shell window (double-click on cygwin’s icon on your desktop or startup
menu). Assuming eclipse is installed on the C: drive, if you type in 'pwd', the output should be
”/cygdrive/c” (i.e., the c: drive if eclipse was installed on this drive). If the path appears, for
instance, as ”/cygdrive/m” (or some other drive), you must modify the “home” environment
variable.

To set the path to the c: drive please go to the “C:\cygwin\etc” folder. Within this folder you will find a

file called “profile”. Open it with an editor. Below this line:
USER=""1id -un""
you must type the following (there should not be any spaces in the first line):
HOME="/cygdrive/c”
Export HOME
Then, save the file. Now, every time a cygwin shell is opened the working directory will be set to the C

drive. To check if the change has been made close all cygwin windows and open a new one. Type “pwd”,
this time it should return ” /cygdrive/c”

Installing the Plugin (only if you have installed the three items above)
1. Download the Plugin from:

http://www.sce.carleton.ca/faculty/wainer/wbgraf/distrib/CD++BuilderV1.2.zip

2. The plugin zip file contains a folder (called “plugins”) with has five plugins. If you go to
“c:\eclipse”, you will find a folder called “plugins”. Unzip the file and extract the plugions onto the
Eclipse plugins folder (“c:\eclipse\plugins”), overwriting all of the existing files.

3= plugins.zip - WinRAR

=1ES

ARAWEH WD /

Fle Commands Tools Favorites Optiohs Help

Add Exfract To Test Wiy Delete Fircl Wizard Info WirlsScan C

m |§ plugins. zipiplugins - ZIP archive, unpacked size 19,064,652 bytes v ‘
Marmme Size: Packed Type Modified CRC32
[y

[Foldet

[(org.edipse.cdt_1.1.0 Folder 4/30/2004 12023 PM
[Corg.edipse.cdt.ui_1.1.0 Folder 4/30/2004 12:23 PM
E,Drg.eclipse.cdt.launch_l.1.D Folder 4130/2004 12:23 PM
E,Drg.eclipse.cdt.core_l.1.D Folder 4130/2004 12:23 PM
[CS)CO++Builder _1,1.0 Folder 4f30/2004 12023 PM
=L Total 5 folders

3. If you open eclipse, the new tools should be available. If you go to the Windows->Open Perspective menu,
and choose “CD++Builder” as a perspective, you will a window like this one.

Search Project Run | Window Help

|J Epy .4 |§ﬁ | | Mew Window

=l=]x|

22 Outline

An outling is not available,

Show View
Hide Editors
Lock the Toolbars

Customize Perspective, ..

Save Perspective 4s...
Reset Perspective
Close Perspective
Close All Perspectives

CiC++ Development

i“)+-+Buider

CELL-DEVS

B Resource

Other...

kevboard Shortcuts

Switch ko Editar, ..

Chrl+-Shift+4

Preferences

ﬂ CD+-+Consoleview

CD++Consoletiew | Tasks

4. Download and run the examples explained in the first section of the User Manual. If you have problems,

reinstall the tools.

Known Bugs

- Coupling Syntax Editor is case sensitive

- coupling editor provides coloring for only general keywords

- Folder Names with space (* ”’) “sometimes” corrupts your current project (if this happens, rename

your folders)

8.2 Command line installation

If you are planning to run the toolkit from the command line, the instructions are simple:

1. If you are using a Windows environment, refer to section 2.1, and download and install Cygwin
2. If you are using Linux, step 1 is not required.

3. Download CD++ toolkit from the toolkit website:

http://www.sce.carleton.ca/faculty/wainer/wbgraf/distrib/CD++BuilderV1.2.zip

CD++ toolkit files comes packed into a zip file (you will find different versions in the website). After having
downloaded the toolkit, proceed to unzip the files to a directory. To execute a model, download it from
http://www.sce.carleton.ca/faculty/wainer/wbgraf and unzip it in the same directory than the one where you
included the toolkit. If it is a Cell-DEVS models, you just need to run the script (*.bat file) containing the
execution commands for the model. If it is a DEVS model, you have to modify the Makefile (as explained in
Section <> of the User Manual), and recompile the tool.

8.3 Installation for parallel simulation

Parallel CD++ was developed to run in UNIX and Windows NT environments that support the MPI library. It
has been successfully tested in clusters of Linux machines running on Pentium processors. It supports both,
parallel and standalone simulation.
The standalone version can also be compiled to run under Windows systems.
The CD++ distribution includes the following utilities:

¢ Drawlog: draws the evolution of a cellular model.

¢ Parlog: Counts the number of (*,t) messages received by each LP during each simulation cycle.

¢ Logbuffer: required by drawlog and parlog when parallel simulation is used. Sorts the log messages that
are sent to standard output to ensure they are processed in the correct order.

e ToMap: creates the initial state cell map file from a .ma file.
e MakeRand: generates a random initial state cell map file.

The latest version of CD++ is distributed as a .tar.gz file and to install and compile CD++ the following
utilities will be required:

¢ makedepend: current version released with X11R6 (part of X-windows software)

¢ GNU Make makefile utility (part of GNU software)

e g++: the GNU C++ compiler and accompanying libc, version 2.7.0 or later (part of GNU software)
e an implementation of MPI (e.g. MPICH) (for parallel simulation)

e GNU bison

e GNU flex

For parallel simulation, an implementation of MPI is required. If MPI is already installed in your system, find
out if its includes and lib directories have been already added to the corresponding environment variables.
Otherwise, take note of these directories because they will be required later on.

If MPI is not installed on your system, then it is recommended you install MPICH version 1.2.0, which can be
downloaded from http://www.mcs.anl.gov/home/lusk/mpich/index.html. You can then install MPICH in a
shared location (special permissions will be required) or in your home directory. Basic installation instructions
will be provided.

The installation instructions here presented are based on personal experience installing in on Linux machines.
If in doubt, please, check the mpich installation instructions found in install.ps in the /doc directory.

1. Uncompress the distribution files
gunzip -c¢ mpich.tar.gz | tar xovf
2. Run
./configure

This script will try to set the optimum parameters for compilation on your system. If mpich will be installed in
a shared location, then run (on your preferred location)
./configure -prefix= /usr/local/mpich-1.2.0.

3. Compile mpich by running
make >& make.log
This might take several minutes to an hour, depending on your system.

4. Edit the util/machines/machines.LINUX file and set the list of available machines in the cluster.

5. (Optional) Install mpich on a shared location
make install

If the default settings have not been changed, MPICH will use rsh to run the remote programs. For rsh to work
properly, please check

1. Machine names are properly resolved, either using a DNS or the /etc/hosts file.

2. The inet services must be enabled in all the machines.

3. If you want to be able to run rsh without being prompted for a password, you will have to create a .rhosts file
with the names of the machines in the cluster. The .rhost file must not have any group permissions enabled.
Run chmod 600 .rhosts.

4. If the filesystem is not shared between all of the machines in the cluster, then a copy of CD++ and any
model files will be required on each machine.

To install CD++, gunzip and untar the distribution file. On most Linux machines the command
gunzip -c¢ pcd-3.x.x.tar.gz | tar xovf
will just do this.

The following directory structure will be created

CD++

S — warped
R — TimeWarp
[NoTime
S — Sequential
o common

I models
SR net

S — airport

You must then edit Makefile.common and set the desired compilation options:

1. Set the source code location. If running parallel simulation, you will also need to indicate the location of
the MPI include and lib files.

#CD++ Makefile.common

#
#CD++ Directory Details
export MAINDIR=/USERDEFINEDPATH/CD++

#
#MPI Directory Details

export MPIDIR=/USERDEFINEDPATH/mpich-1.2.0
export LDFLAGS +=-LS$ (MPIDIR)/lib/

export INCLUDES_CPP += -I$(MPIDIR)/include
#

Figure 86. Makefile.common — Setting the source location

Specify whether parallel or stand alone simulation will be used. For stand alone simulation, the NoTime
simulation kernel must be used. For parallel simulation, you can choose from the TimeWarp and NoTime
kernel. If not sure, the NoTime kernel is recommended.

#If running parallel simulation, uncomment the following lines
export DEFINES_CPP += -DMPI

export LIBMPI = -lmpich
#

#

#WARPED CONFIGURATION

#

#Warped Directory Details

#For the TimeWarp kernel uncomment the following
#export DEFINES_CPP += -DKERNEL_TIMEWARP

#export TWDIR=$ (MAINDIR) /warped/TimeWarp/src
fexport PLIBS += —-1TW —-1m -1nsl $(LIBMPI)
#export TWLIB = 1libTW.a

#For the NoTimeKernel, uncomment the following
export DEFINES_CPP += —-DKERNEL_NOTIME

export TWDIR=$ (MAINDIR) /warped/NoTime/src
export PLIBS += -1NoTime -1lm -lnsl $(LIBMPI)
export TWLIB = libNoTime.a

#

Figure 87. Makefile.common — Choosing the Warped kernel

2. Decide which atomic models will be included by removing the necessary comments.

FHAFE R A R R R R R R R R R R R 1
#MODELS

#Let's define here which models we would like to include in our distribution

#Basic models

EXAMPLESOBJS=queue.o0 main.o generat.o cpu.o transduc.o distri.o com.o linpack.o
register.o

#Uncomment these lines to include the airport models
#DEFINES_CPP += —-DDEVS_AIRPORT

#INCLUDES_CPP += -I./models/airport

#LDFLAGS += -L./models/airport

#LIBS += —lairport

#Uncomment these lines to include the net models

#DEFINES_CPP += -DDEVS_NET

#INCLUDES_CPP += -I./models/net

#LDFLAGS += -L./models/net

#LIBS += -lnet

FHEHHE A AR R R R R R R

Figure 88. Makefile.common — Model selection

After you have edited Makefile.common, you are ready to build CD++. To build CD++ and all the
accompanying utilities, issue the following commands:

make depend
make

If you change any settings in Makefile.common you will need to rebuild CD++ again. To do this,

make clean
make

9 Appendix B - Local transition functions for Cell-DEVS models.

Local transition functions for cellular models are defined as groups in the .ma file. They are not tied to a
particular model, so they can be used for more than one cellular model at the same time. A local transition is
made of a set of rules of the form:

rule : result delay { condition }

A rule is composed of three elements: a condition, a delay and a result. To calculate the new value for a cell’s
state, the simulator takes each rule (in the order in that they were defined) and evaluates the condition clause. If
the condition evaluates to true, then the result and delay clause are evaluated. The result will be the new cell
state and will be sent as an output after the obtained delay. Whether the previous sate values will be still sent as
outputs or not will depend on the delay type of the cells. Inertial delay cells will preempt any scheduled
outputs. On the other hand, transport delay cells will keep them.

Rules whose condition clause evaluates to false are skipped. If all the rules are evaluated without one having a
true condition, then the simulation will be aborted. If there is more than one rule with a condition that evaluates
to true, the first one will be the one that determines the new cell’s state. If the delay clause of a cell evaluates to
undefined, then the simulation will be automatically cancelled.

9.1 A grammar for writing the rules

The BNF for the grammar used for the rules is shown in Figure 11.1. Words written in bold lowercase
represent terminals symbols, while those written in uppercase represent non terminals.

RULELIST = RULE | RULE RULELIST

RULE = RESULT RESULT { BOOLEXP }

RESULT = CONSTANT | { REALEXP }

BOOLEXP = BOOL | (BOOLEXP) | REALRELEXP | not BOOLEXP
| BOOLEXP OP_BOOL BOOLEXP

OP_BOOL =and | or | xor | imp | eqv

REALRELEXP = REALEXP OP_REL REALEXP | COND_REAL_FUNC (REALEXP)

REALEXP = IDREF | (REALEXP) | REALEXP OPER REALEXP

IDREF = CELLREF | CONSTANT | FUNCTION | portValue (PORTNAME)

| send(PORINAME, REALEXP) | cellPos (REALEXP)
CONSTANT = INT | REAL | CONSTFUNC | ?
FUNCTION = UNARY_FUNC (REALEXP) | WITHOUT_PARAM_ FUNC

| BINARY_FUNC (REALEXP, REALEXP)
| 4if (BOOLEXP, REALEXP, REALEXP)
| ifu(BOOLEXP, REALEXP, REALEXP, REALEXP)

CELLREF = (INT, INT REST_TUPLE

REST_TUPLE = , INT REST_TUPLE |)

BOOL =t | £ | 2

OP_REL = I= | = | > | < | >= | <=
OPER =+ | = | * | /

INT = [SIGN] DIGIT {DIGIT}

REAL = INT | [SIGN] {DIGIT}.DIGIT {DIGIT}
SIGN = + | =

DIGIT =011 2| 3| 4|5]| 6| 7] 8] 09
PORTNAME = thisPort | STRING

STRING = LETTER {LETTER}

LETTER =a| bl ecl|]... 2z | A| B|]C|...| 2
CONSTFUNC =pi | e | inf | grav | accel | light | planck | avogadro |

faraday | rydberg | euler gamma | bohr radius | boltzmann |
bohr_magneton | golden | catalan | amu | electron_charge |
ideal_gas | stefan_boltzmann | proton _mass | electron_mass |

neutron_mass | pem
WITHOUT_PARAM FUNC = truecount | falsecount | undefcount | time | random |

randomSign
UNARY_FUNC abs | acos | acosh | asin | asinh | atan | atanh | cos | sec
sech | exp | cosh | fact | fractional | 1n | log | round | cotan

|
| cosec | cosech | sign | sin | sinh | statecount | sqgrt | tan | tanh
| trunc | truncUpper | poisson | exponential | randInt | chi | asec

| acotan | asech | acosech | nextPrime | radToDeg | degToRad

| nth_prime | acotanh | CtoF | CtoK | KtoC | KtoF | FtoC | FtoK

BINARY_ FUNC comb | logn | max | min | power | remainder | root | beta | gamma
lcm | gcd | normal | £ | uniform | binomial | rectToPolar_r

rectToPolar angle | polarToRect_x | hip | polarToRect_y

COND_REAIL_FUNC = even | odd | isInt | isPrime | isUndefined

Figure 11.1: Grammar used for the definition of a cell’s local transition
Basically, a rule is made of three expressions: a result expression, a delay expression and a boolean expression.

The result expression should evaluate to any real value. The delay expression should also evaluate to any real
value that will be truncated to the smallest integer.

9.2 Precedence Order and Associativity of Operators

The precedence order indicates which operation will be solved first. For example if we have:

C+B*A
where * and + are the sum and multiplication operations for real numbers, and A, B and C are real constants,
then since * has higher precedence than +, B * A will be evaluated first. The sum will be evaluate in a second
step. The result will be equivalent to solve C + (B * A).
The associativity indicates which of two operations of same precedence will be evaluated first. Operators are

either left associative or right associative. The logical operators AND and OR are left associative, so the in the
expression

C and B or D
will be solved as (C and B) or D

Clauses that are not associative cannot be combined simultaneously without another operator of different
precedence.

The table of precedence and associativities for the rule specification language follows:

Order Code Associativity
Lower
Precendence ()

Figure 89. Precedence Order and Associativity used in CD++

9|3 Functions and Constants allowed by the language

9!.1 Boolean Values
Boolean values in CD++ use trivalent logic.

The trivalent logic use the values T or 1 to represent to the value TRUE, F or 0 to represent the FALSE, and ?

to represent to the UNDEFINED.

9.3.1.1 Boolean Operators

AND | T | F | ?

Operator AND
The behavior of the operator AND is defined with the following table of truth:

Figure 90. operator AND truthtable

Operator OR

OR T|F | ?

T T|T| T

F T|F | ?

The behavior of the operator OR is defined with the following table of truth:

Figure 91. Operator OR truthtable

Operator NOT
NOT
T F
F T

The behavior of the operator NOT is defined with the following table of truth:

Figure 92. Behavior of the boolean operator NOT

Operator XOR
The behavior of the operator XOR is defined with the following table of truth:

XOR | T|F | ?

T F|T]| ?

F T|F | ?

Figure 93. Operator XOR truthtable

Operator IMP

IMP T|F | ?

T T|F /| ?

F T|T]|T

IMP represents the logic implication, and its behavior is defined with the following table of truth:
Figure 94. Operator IMP truthtable

EQVv | T|F | ?

Operator EQV
EQYV represents the equivalence between trivalent logic values, and its behavior is defined with the following
table of truth:

Figure 95. Operator EQV truthtable

9.3.2 Functions and Operations on Real Numbers

9.3.2.1 Relational Operators

The relational operators work on real numbers' and return a boolean value pertaining to the previously defined
trivalent logic. The language used by CD++ allows the use of the operators ==, =, >, <, >=, <= whose
behavior is described next.

As opposed to the traditional definition of these operators, the introduction of an undefined value makes the
definition of a total order impossible because the value ? is not comparable with any existing real number.

Operator =
The operator = is used to test for equality of two real numbers.

" From here, when referring to the term “Real Number” a value in the set R U { ? } will be meant.

= ? Real Number

¥ T ?

Real Number ? = of real number

Figure 96. Behavior of the Relational Operator =

Operator !=
The operator != is used to test if two real numbers are not equal. Its behavior is defined as follows:
I= 3 Real Number
3 F ?
Real Number ? # of real number

Figure 97. Behavior of the Relational Operator !=

Operator >
The operator > is used to test if a real number is greater than another real number. Its behavior is defined as

> ? Real Number
? F ?
Real Number ? > of real number

follows:
Figure 98. Behavior of the Relational Operator >

Operator <
The operator < is used to test if a real number is less then another real number. Its behavior is defined as

< ? Real Number
? F ?
Real Number ? < of real number

follows:
Figure 99. Behavior of the Relational Operator <
Operator <=

<= ? Real Number

¥ T ?

Real Number ? < of real number

The operator <= is used to test if a real number is less or equal to another real number. Its behavior is defined
as follows:
Figure 100. Behavior of the Relational Operator <=

Operator >=

>= ? Real Number
? T ?
Real Number ? > of real number

The operator >= is used to test if a real number is greater or equal to another real number. Its behavior is
defined as follows:
Figure 101. Behavior of the Relational Operator >=

9.3.2.2 Arithmetic Operators

The traditional arithmetic operators are available. If any of the operands is undefined, then the result of the
operation will be undefined. This is also valid for functions. If any of a function arguments is undefined, the
result of evaluating the function will also be undefined.

The available operators are:

opl + op2 returns the sum of the operators.

opl —op2 returns the difference between the operators.
opl / op2 returns the value of the opl divided by op2.
anl * AnD ratnirne tha nraduct af tha anaratare

Division by zero will result to the undefined value.
Figure 102. Arithmetic Operators

9.3.2.3 Functions on Real Numbers

Functions to Verify Properties of Real Numbers
The functions in this section allow to check for special properties of real numbers, such as parity, primality,

etc.

Function Even

Signature:
Description:

Examples:

Function Odd

Signature:
Description:

Examples:

Function isInt
Signature:

Description:
Examples:

Function isPrime

Signature:
Description:
Examples:

Function isUndefined

Signature:
Description:
Examples:

Mathematical Functions

even : Real — Bool
Returns True if the value is integer and even. If the value is undefined returns
Undefined. In any other case it returns False.

even(?)=F
even(3.14) =F
even(3) =F
even(2) =T

odd : Real — Bool
Returns True if the value is integer and odd. If the value is undefined returns
Undefined. In any other case it returns False.

odd(?) =F
0dd(3.14) =F
0dd(3) =T
odd(2) =F

isInt : Real — Bool
Returns True if the value is integer and not undefined. Any other case returns False.
isInt(?) =F
isInt(3.14) =F
isInt(3) =T

isPrime : Real — Bool
Returns True if the value is a prime number. Any other case returns False.
isPrime(?) =F
isPrime(3.14) = F
isPrime(6) = F
isPrime(5) =T

isUndefined : Real — Bool
Returns True if the value is undefined, else returns False.
isUndefined(?) =T

isUndefined(4) = F

This section describes commonly used mathematical functions.

Trigonometric Functions

Function tan

Signature:
Description:

tan : Real a — Real
Returns the tangent of a measured in radians.

For the values near to 7/2 radians, returns the constant INF.
If a is undefined then return undefined.

Examples: tan(PI/2) = INF
tan(?) = ?
tan(PI) =0
Function sin
Signature: sin : Real a — Real
Description: Returns the sine of @ measured in radians.

If a has the value ? then returns ?.

Function cos

Signature: cos : Real a — Real
Description: Returns the cosine of @ measured in radians.

If a has the value? the returns?.

Function sec

Signature: sec : Real a — Real
Description: Returns the secant of @ measured in radians.

If a has the value? then returns?.

If the angle is of the form 7/2 + x.7, with x an integer number, then returns
the constant INF.

Function cotan

Signature: cotan : Real a — Real
Description: Calculates the cotangent of a.
If a has the value? Then returns 2.
If a is zero or multiple of &, then returns INF.

Function cosec

Signature: cosec : Real a — Real
Description: Calculates the cosecant of a.
If a has the value ?, then returns?.
If a is zero or multiple of , then returns INF.

Function atan

Signature: atan : Real a — Real
Description: Returns the arc tangent of @ measured in radians, which is defined as the value b

such tan(b) = a.
If a has the value? Then returns?.

Function asin

Signature: asin : Real a — Real
Description: Returns the arc sine of a measured in radians, which is defined as the value b such
sin(b) = a.

If a has the value? or if a ¢ [-1, 1], then returns ?.

Function acos

Signature: acos : Real a — Real
Description: Returns the arc cosine of a measured in radians, which is defined as the value b such
cos(b) =a.

If a has the value? or if a ¢ [-1, 1], then returns 2.

Function asec

Signature:

Description:

Function acotan
Signature:

Description:

Function sinh
Signature:

Description:

Function cosh
Signature:

Description:

Function tanh
Signature:

Description:

Function sech
Signature:

Description:

Function cosech
Signature:

Description:

Function atanh
Signature:

Description:

Function asinh
Signature:

Description:

Function acosh
Signature:

asec : Real a — Real
Returns the arc secant of a measured in radians, which is defined as the value b such
sec(b) = a.

If a is undefined (?) or if lal < 1, then returns ?.

acotan : Real a — Real
Returns the arc cotangent of a measured in radians, which is defined as the value b
such cotan(b) = a.

If ais undefined (?), then returns ?.

sinh : Real a — Real
Returns the hyperbolic sine of @ measured in radians.
If a has the value ?, then returns ?.

cosh : Real a — Real
Returns the hyperbolic cosine of a measured in radians, which is defined as cosh(x)
= +e /2.

If a has the value ?, then returns ?.

tanh : Real a — Real
Returns the hyperbolic tangent of a measured in radians, which is defined as sinh(a)
/ cosh(a).

If a has the value?, then returns ?.

sech : Real a — Real

Returns the hyperbolic secant of a measured in radians, which is defined as
1/ cosh(a)
If a has the value ?, then returns ?.

cosech : Real a — Real
Returns the hyperbolic cosecant of a measured in radians.
If a has the value ?, then returns ?.

atanh : Real a — Real
Returns the hyperbolic arc tangent of a measured in radians, which is defined as the
value b such tanh(b) = a.

If a has the value ?, or if its absolute value is greater than 1 (i.e., a & [-1,
1]), then returns 2.

asinh : Real a — Real
Returns the hyperbolic arc sine of @ measured in radians, which is defined as the
value b such sinh(b) = a.

If a has the value ?, then returns ?.

acosh : Real a — Real

Description: Returns the hyperbolic arc cosine of a measured in radians, which is defined as the
value b such cosh(b) = a.
If a has the value ? or is less than 1, then returns ?.

Function asech

Signature: asech : Real a — Real
Description: Returns the hyperbolic arc secant of a measured in radians, which is defined as the

value b such sech(b) = a.
If a is undefined, then return ?. If it is zero, then returns the constant INF.

Function acosech

Signature: acosech : Real a — Real
Description: Returns the hyperbolic arc cosec of a measured in radians, which is defined as the

value b such cosech(b) = a.
If a is undefined, then returns ?. If it is zero, then returns the constant INF.

Function acotanh

Signature: acotanh : Real a — Real
Description: Returns the hyperbolic arc cotangent of a measured in radians, which is defined as

the value b such cotanh(b) = a.
If a is undefined, then returns ?. If is 1 then returns the constant /NF.

Function hip
Signature: hip : Real cI X Real c2 — Real
Description: Calculates the hypotenuse of the triangle composed by the side
cl and c2. If ¢! or c2 are undefined or negatives, then returns ?.

Functions to calculate Roots, Powers and Logarithms.
Function sqrt
Signature: sqrt : Real a — Real
Description: Returns the square root of a.
If a is undefined or negative, then returns ?.

Examples : sqrt(4) =2
sqrt(2) = 1.41421
sqrt(0) =0
sqrt(-2) = ?
sqre(?) =?
Note: sqrt(x) is equivalent to root(x, 2) Vx
Function exp
Signature: exp : Real x — Real

Description: Returns the value of e*.

If x is undefined, then return ?.
Examples: exp(?) =7

exp(-2) = 0.135335

exp(l) =2.71828

exp(0) =1

Function In
Signature: In : Real a — Real
Description: Returns the natural logarithm of a.
If a is undefined or is less or equal than zero, then returns ?.
Examples: In(-2)=7?
In(0) =?
In(1)=0

Note:

Function log
Signature:

Description:

Examples:

Note:

Function logn
Signature:

Description:

Notes:

Function power
Signature:

Description:

Function root

Signature:
Description:

Examples:

Note:

In(?)=7?
In(x) is equivalent to logn(x, ¢) Vx

log : Real a — Real
Returns the logarithm in base 10 of a.

If a is undefined or less or equal to zero, then returns ?.
log(3) =0.477121

log(-2)="?
log(?) =7
log(0) ="?

log(x) is equivalent to logn(x, 10) Vx

logn : Real a x Real n — Real
Returns the logarithm in base » of the value a.

If a or n are undefined, negatives or zero, then returns ?.
logn(x, e) is equivalent to In(x) Vx

logn(x, 10) is equivalent to log(x) Vx

power : Real a x Real b — Real
Returns a’.
If a or b are undefined or b is not an integer, then returns ?.

root : Real a X Real n — Real
Returns the n-root of a.

If a or n are undefined, then returns ?. Also, returns this value if a is
negative or 7 is zero.

root(27,3) =3

root(8,2)=3
root(4,2) =2
root(2,7)="?
root(3,0.5) =9
root(-2,2)="?
root(0,4) =0
root(1,3) =1

root(4, 3) = 1.5874
root(x, 2) is equivalent to sqrt(x) Vx

Functions to calculate GCD, LCM and the Rest of the Numeric Division

Function LCM

Signature:
Description:

lem : Real a x Real b — Real
Returns the Less Common Multiplier between a and b.

If a or b are undefined or non—integers, then returns ?.

Function GCD

Signature:
Description:

The value returned is always integer.

ged : Real a x Real b — Real
Calculates the Greater Common Divisor betweeen a and b.
If a or b are undefined or non—integers, then returns ?.

The value returned is always integer.

Function remainder

Signature: remainder : Real a x Real b — Real
Description: Calculates the remaindert of the divisién between a and b. The returned value is: a —

n * b, where n is the quotient a/b rounded as an integer.

If a or b are undefined, then returns ?.
Examples: remainder(12, 3) =0

remainder(14, 3) =2

remainder(4, 2) =0

remainder(0, y) =0 Vy#?

remainder(x, 0) = x Vv x

remainder(1.25, 0.3) = 0.05

remainder(1.25, 0.25) =0

remainder(?, 3) = ?

remainder(5, 7) = ?

Functions to Convert Real Values to Integers Values
This section presents functions available to convert real values to integers using the rounding and truncation

techniques as detailed.

Function round

Signature: round : Real a — Real
Description: Rounds the value a to the nearest integer.
If a is undefined ?, then returns ?.
Examples: round(4) =4
round(?) =7?

round(4.1) =4
round(4.7) =5
round(-3.6) =4

Function trunc

Signature: trunc: Real x — Real

Description: Returns the greater integer number less or equal than x.
If x is undefined, then returns ?.

Examples: trunc(4) =4
trunc(?) = ?

trunc(4.1) =4
trunc(4.7) =4

Function truncUpper

Signature: truncUpper: Real x — Real

Description: Returns the smallest integer number greater or equal than x.
If xis undefined, then returns ?.

Examples: truncUpper(4) = 4

truncUpper(?) = ?
truncUpper(4.1) =5
truncUpper(4.7) =5

Function fractional
Signature: fractional : Real a — Real
Description: Returns the fractional part of a, including the sign.
If a is undefined then returns ?.
Examples: fractional(4.15) = 0.15

fractional(?) = ?
fractional(-3.6) = -0.6

Functions to manipulate the Sign of numerical values
Function abs
Signature: abs : Real a — Real
Description: Returns the absolute value of a.
If a is undefined then returns ?.

Examples: abs(4.15) =4.15
abs(?)=7?
abs(-3.6) = 3.6
abs(0) =0

Function sign
Signature: sign : Real a — Real
Description: Returns the sign of a in the following form:
If a > O then returns 1.
If a < 0 then returns —1.
If a = 0 then returns 0.
If a = ? then returns ?.

Function randomSign
See the section of Probability Functions.

Functions to manipulate Prime numbers
This functions are used to test for primality. Although they are available, they are quite complex and
can require a lot of time to solve.

Function isPrime
See the section of Functions to Verify Properties of Real Numbers.

Function nextPrime

Signature: nextPrime : Real r — Real
Description: Returns the next prime number greater than r.

If r is undefined then returns ?.
If an overflow occur when calculating the next prime number, the constant
INF is returned.

Function nth_Prime

Signature: nth_Prime : Real n — Real
Description: Returns the ™ prime number, considering as the first prime number the value 2.

If n is undefined or non—integer then returns ?.
If an overflow occur when calculating the next prime number, the constant
INF is returned.

Functions to calculate Minimum and Maximums
Function min

Signature: min : Real a X Real b — Real
Description: Return the minimum between a and b.

If a or b are undefined then returns ?.

Function max

Signature: max : Real a X Real b — Real
Description: Returns the maximum between a and b.

If a or b are undefined then returns ?.

Conditional Functions
The functions described in this section return a real value that depends on the evaluation of a specified logical

condition.

Function if
Signature:

Description:

Examples:

Function ifu

Signature:
Description:

Examples:

Probabilistic Functions
Function randomSign

Signature:
Description:

Function random

Signature:
Description:

Note:

Function chi

Signature:
Description:

Function beta

Signature:
Description:

Function exponential

Signature:
Description:

if : Bool ¢ x Real 7 x Real f — Real
If the condition c is evaluated to TRUE, then returns the evaluation of ¢, else returns
the evaluation of f.
The values of ¢ and f can even come from the evaluation of any expression that
returns a real value, including another if sentence.
If you wish to return the value 1.5 when the natural logarithm of the cell (0, 0) is
zero or negative, or 2 in another case. In this case, it will be written:

if(In((0,0))=00r(0,0)<0,1.5,2)
If you wants to return the value of the cells (1, 1) + (2, 2) when the cell (0, 0) isn’t
zero; or the square root of (3, 3) in another case, it will be written:

if ((0,0) =0, (1, 1)+ (2, 2), sqrt(3, 3))

It can also be used for the treatment of a numeric overflow. For example, if
the factorial of the cell (0, 1) produces an overflows, then return —1, else return the
obtained result. In this case, it will be written:

if (fact((0, 1)) = INF, -1, fact((0, 1)))

ifu : Bool ¢ x Real 7 x Real f x Real u — Real
If the condition c is evaluated to TRUE, then returns the evaluation of ¢. If it

evaluates to FALSE, returns the evaluation of f. Else (i.e. is undefined), returns the
evaluation of u.
If you wish to return the value of the cell (0, 0) if its value is distinct than zero and
undefined, 1 if the value of the cell is 0, and 7 if the cell has the undefined value. In
this case, it will be invoked:

ifu((0, 0) !=0, (0,0), 1, PI')

randomSign : — Real
Randomly returns a numerical value that represents a sign (+1 or —1), with equal
probability for both values.

random : — Real
Returns a random real value pertaining to the interval (0, 1), with uniform
distribution.

random is equivalent to uniform(0,1).

chi : Real df — Real

Returns a random real number with Chi-Squared distribution with df degree of
freedom.

If df is undefined, negative or zero, then returns 2.

beta : Real a X Real b — Real

Returns a random real number with Beta distribution, with parameters a and b.

If a or b are undefined or less than 10’37, then returns ?.

exponential : Real av — Real
Returns a random real number with Exponential distribution, with average av.
If av is undefined or negative, then returns ?.

Function f

Signature:
Description:

Function gamma

Signature:
Description:

Function normal

Signature:
Description:

Function uniform

Signature:
Description:

Note:

Function binomial

Signature:
Description:

Function poisson

Signature:
Description:

Function randInt

Signature:
Description:

Note:

f: Real dfn x Real dfd — Real

Returns a random real number with F distribution, with dfn degree of freedom for de
numerator, and dfd for the denominator.

If dfn or dfd are undefined, negatives or zero, then return ?.

gamma : Real a x Real b — Real
Returns a random real number with Gamma distribution with parameters
If a or b are undefined, negatives or zero, then returns 2.

(a, b).

normal : Real (1 x Real 6 — Real

Returns a random real number with Normal distribution (¢, 0), where u is the
average, and ois the standard error.

If 4 or oare undefined, or o is negative, returns ?.

uniform : Real a x Real b — Real
Returns a random real number with uniform distribution, pertaining to the interval
(a, b).
If a or b are undefined, or a > b, then returns ?.
uniform(0, 1) is equivalent to the function random.

binomial : Real n x Real p — Real

Returns a random number with Binomial distribution, where # is the number of
attempts, and p is the success probability of an event.

If n or p are undefined, » is not integer or negative, or p not pertain to the interval [0,
1], then return ?.

The returned number is always an integer.

poisson : Real n — Real

Return a random number with Poisson distribution, with average n.
If n is undefined or negative, then returns ?.

The returned number is always an integer.

randInt : Real n — Real
Returns an integer random number contained in the interval [0, n], with uniform
distribution.
If n is undefined, then returns ?.
randInt(n) is equivalent to round(uniform(0, n))

Functions to calculate Factorials and Combinatorial

Function fact

Signature:
Description:

Examples:

fact : Real a — Real
Returns the factorial of a.
If a is undefined, negative or non—integer, then return ?.
If an overflow occur when calculating the next prime number, the constant
INF is returned.
fact(3)=6
fact(0) =1

Function comb
Signature:

Description:

fact(5) =120
fact(13) = 1.93205e+09
fact(43) = INF

comb : Real a X Real b — Real

a.
Returns the combinatory Z

If a or b are undefined, negatives or zero, or non—integers, then returns ?. This value
is also returned if a < b.

If an overflow occur when calculating the next prime number, the constant
INF is returned.

9.3.2.4 Functions for the Cells and his Neighborhood
This section details the functions that allow to count the quantity of cells belonging to the neighborhood whose
state has certain value, as also the function cellPos that allows to project an element of the tupla that references

to the cell.

Function stateCount

Signature:

Description:
equal to a.

Function trueCount

Signature:
Description:

Function falseCount

Signature:
Description:

Function undefCount

Signature:

Description:
undefined (?).

Function cellPos

Signature:
Description:

Examples:

stateCount : Real a — Real
Returns the quantity of neighbors of the cell whose state is

trueCount : — Real
Returns the quantity of neighbors of the cell whose state is 1.

This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

falseCount : — Real
Returns the quantity of neighbors of the cell whose state is 0.

This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

undefCount : — Real
Returns the quantity of neighbors of the cell whose state is

This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

cellPos : Real i — Real
Returns the i position inside the tupla that references to the cell. That is to say,
given the cell (Xo,Xj,...,Xy), then cellPos(1) = X;.

If the value of i is not integer, then it will be automatically truncated.

If i ¢ [0, n+1), where n is the dimension of the model, it will produce an
error that will abort the simulation.

The value returned always will be an integer.
Given the cell (4, 3, 10, 2):
cellPos(0) =4

cellPos(3.99) = cellPos(3) =2

cellPos(1.5) = cellPos(1) =3
cellPos(—1) y cellPos(4) will generate an error.

9.3.2.5 Functions to Get the Simulation Time
Function Time

Signature: time : — Real
Description: Returns the time of the simulation at the moment in that the rule this being

evaluated, expressed in milliseconds.

9.3.2.6 Functions to Convert Values between different units
Functions to Convert Degrees to Radians
Function radToDeg

Signature: radToDeg : Real r — Real
Description: Converts the value r from radians to degrees.

If r is undefined then returns ?.

Function degToRad
Signature: degToRad : Real r — Real
Description: Converts the value r from degrees to radians.

If r is undefined then returns ?.

Functions to Convert Rectangular to Polar Coordinates
Function rectToPolar_r

Signature: rectToPolar_r : Real x x Real y — Real
Description: Converts the Cartesian coodinate (x, y) to the polar form (r, 6), and returns r.

If x or y are undefined then return ?.

Function rectToPolar_angle

Signature: rectToPolar_angle : Real x x Real y — Real
Description: Converts the Cartesian coordinate (x, y) to the polar form (r, 6), and returns 6.

If x or y are undefined then return ?.

Function polarToRect_x

Signature: polarToRect_x : Real r x Real & — Real
Description: Converts the polar coordinate (7,) to the Cartesian form (x, y), and returns x.

If ror @are undefined, or r is negative, then returns ?.

Function polarToRect_y
Signature: polarToRect_y : Real x Real & — Real
Description: Converts the polar coordinate (7, 6) to the Cartesian form (x, y), and returns y.

If ror @are undefined, or r is negative, then returns ?.

Functions to Covert Temperatures between different units
Function CtoF

Signature: CtoF : Real — Real
Description: Converts a value expressed in Centigrade degrees to Fahrenheit
degrees.

If the value is undefined then returns ?.

Function CtoK

Signature: CtoK : Real — Real
Description: Converts a value expressed in Centigrade degrees to Kelvin

degrees.

Function KtoC

Signature:

Description:
degrees.

Function KtoF

Signature:

Description:
degrees.

Function FtoC

Signature:

Description:
degrees.

Function FtoK

Signature:

Description:
degrees.

If the value is undefined then returns ?.

KtoC : Real — Real
Converts a value expressed in Kelvin degrees to Centigrade

If the value is undefined then returns ?.

KtoF : Real — Real
Converts a value expressed in Kelvin degrees to Fahrenheit

If the value is undefined then returns ?.

FtoC : Real — Real
Converts a value expressed in Fahrenheit degrees to Centigrade

If the value is undefined then returns ?.

FtoK : Real — Real
Converts a value expressed in Fahrenheit degrees to Kelvin

If the value is undefined then returns ?.

Functions to manipulate the Values on the Input and Output Ports

Function portValue

Signature:
Description:

portValue : String p — Real

Returns the last value arrived through the input port p of the cell of the cell being
evaluated. This function will only be available for PortInTransition rules (see
section12.3) . Other uses will generate an error.

If no message has arrived through port p before portValue is evaluated, an undefined
value (?) will be returned. Otherwise, the last value received through the port will be

returned.

When the string “thisPort” is used as the port name, the value received through the
port associated with the current PortInTransition will be returned. For example:

The following model has two different PortInTransitions

PortInTransition: portA@cell (0,0) functionA
PortInTransition: portB@cell(1l,1) functionB
[functionA]

rule: 10 100 { portValue (portA) > 10 }
rule: 0 100 {t}

[functionB]

rule: 10 100 { portValue (portB) > 10 }
rule: 0 100 {t}

Figure 103. Example of use of the function portValue

If we wanted to avoid repeating the same transition twice, we could either give the
two ports the same name or use thisPort as shown next:

PortInTransition: portA@cell (0,0) functionA
PortInTransition: portB@cell(1l,1) functionA
[functionA]

rule: 10 100 { portValue (thisPort) > 10 }
rule: 0 100 {t}

Figure 104. Example of use of the function portValue with thisPort
Section 12.3 shows an example where the portInTransition clause is used.

Function send

Signature: send : String p x Real x — 0
Description: Sends the value x through the output port p.

If the output port p has not been defined, an error will be raised and the
simulation will be aborted. This function is usually used to send values to other
DEVS models.

send always returns 0. This makes it possible to include the function send
in the result section of a rule without modifying the actual results.

{ (0,0) + send(portl, 15 *1og(10)) } 100 { (0,0) > 10 }

Note: Send is a function of the language that can be used in any expression, as for
example, in the definition of a condition. However, this is not recommended because
for every condition that is evaluated that includes the function send, a value will be
sent. Instead, send should be used in the expression for the delay or the value of the
cell.

9.3.3 Predefined Constants
The following constants frequently used in the domains of the physics and the chemistry are available.

Constant Pi

Returns 3.14159265358979323846, which represent the value of T, the relation between the
circumference and the radius of the circle.

Constant e
Returns 2.7182818284590452353, which represent the value of the base of the natural logarithms.

Constant INF
This constant represents to the infinite value, although in fact it returns the maximum value valid for a
Double number (in processors Intel 80x86, this number is 1.79769 x 10308).
Note that if, for example, we make x + INF — INF, where x is any real value, we will get 0 as a result,
because the operator + is associative to left, for that will be solved:

(x + INF) — INF = INF - INF = 0.

Note: When being generated a numeric overflows taken place by any operation, it is returned INF or —
INF. For example: power(12333333, 78134577) = INF.

Constant electron_mass
Returns the mass of an electron, which is 9.1093898 x 10728 grams.

Constant proton_mass
Returns the mass of a proton, which is 1.6726231 x 10 >* grams.

Constant neutron_mass
Returns the mass of a neutron, which is 1.6749286 x 10 >* grams.

Constant Catalan

k (Hk -2
Returns the Catalan’s constant, which is defined as z =D".(2" +D , that is approximately
k=0

0.9159655941772.

Constant Rydberg
Returns the Rydberg’s constant, which is defined as 10.973.731,534 / m.

Constant grav
Returns the gravitational constant, defined as 6,67259 x 10" m?/ (kg . sz)

Constant bohr_radius
Returns the Bohr’s radius, defined as 0,529177249 x 10" m.

Constant bohr_magneton
Returns the value of the Bohr’s magneton, defined as 9,2740154 x 10 joule / tesla.

Constant Boltzmann
Returns the value of the Boltzmann’s constant, defined as 1,380658 x 10 joule / °K.

Constant accel
Returns the standard acceleration constant, defined as 9,80665 m / sec’.

Constant light
Returns the constant that represents the light speed in a vacuum, defined as 299.792.458 m / sec.

Constant electron_charge
Returns the value of the electron charge, defined as 1,60217733 x 10" coulomb.

Constant Planck
Returns the Planck’s constant, defined as 6,6260755 x 10 joule . sec.

Constant Avogadro
Returns the Avogadro’s number, defined as 6,0221367 x 10% mols.

Constant amu
Returns the Atomic Mass Unit, defined as 1,6605402 x 107 kg.

Constant pem
Returns the ratio between the proton and electron mass, defined as 1836,152701.

Constant ideal_gas
Returns the constant of the ideal gas, defined as 22,41410 litres / mols.

Constant Faraday
Returns the Faraday’s constant, defined as 96485,309 coulomb / mol.

Constant Stefan_boltzmann
Returns the Stefan-Boltzmann’s constant, defined as 5,67051 x 10™ Watt / (m2 . °K4)

Constant golden

1+5

Returns the Golden Ratio, defined as

Constant euler_gamma
Returns the value of the Euler’s Gamma, defined as 0.5772156649015.

9.4 Techniques to Avoid the Repetition of Rules

This section describes different techniques that allow to avoid repeating rules. This helps to make models more
readable.

9.4.1 Clause Else
When the clause portInTransition is used (see section12.3), it is possible to use the clause else to give an

alternative rule in case that none of the rules evaluates to true.

Figure 11.19 shows a short example where the Else clause is used. The default local transition for the cells in
this model is default_rule. In addition, cell (13,13) defines a special funcion to be used when an external event
arrives through port /n. If none of the conditions for the rules that make this functions is satisfied, then the else
clause sets default_rule as the function to be evaluated.

[demoModel]
type: cell

link: in inQ@demoModel (13,13)
localTransition: default_rule
portInTransition: in@demoModel (13,13) another rule

[default_rule]
rule:

rule:
[another rule]

rule: 1 1000 { portValue(thisPort) = 0 }

else: default_rule

Figure 105. Example of the Else clause

The Else clause can point to any valid transition function. Care must be taken to avoid circular references, as in
the example shown next.

[another rulel]

rule: 1 1000 { portValue (thisPort) = 0 }
rule: 1.5 1000 { (0,0) =5 }

rule: 3 1500 { (1,1) + (0,0) >=1 }
else: another rule2

[another rule2]
rule: 1 1000 { (0,0) + portValue(thisPort) > 3 }

‘ else: another rulel
Figure 106. A circular reference produced by a bad use of the clause Else

CD++ will detect the special case shown in Figure 11.21, where the else clause references the same function
being defined.

[another rule]
rule:

rule:

else: another_rule

Figure 107. Example of a circular reference detected by the simulator
94.2 11.4.2 Preprocessor — Using Macros
CD++ has a preprocessor that will expand macros. If macros are not used, the preprocessor can be disabled

using the command line argument —b to speed up model parsing.

Macros are usually defined in separate files that are included in the main .ma file be means of the preprocessor
#include directive, which is of the form

#include(fileName)

where fileName is the name of the file that contains the definition of the macros. This file should be in the same
directory where the main .ma file is.

More than one #include directive is allowed in the main .ma file, but no included files can have themselves the
#include directive.

To define a macro, the directives #BeginMacro and #EndMacro are used.

A macro definition has the form:

#BeginMacro (macroName)
...definition of the macro...

#EndMacro

Figure 108. Definition of a macro

Macros can contain any valid text in any number of lines. The only restriction that applies is that they can not
be used in the same file they are defined.

To expand a macro, the #Macro directive should be used in the place were the macro shoudl be expanded. A
#macro directive is of the form

#Macro(macroName)

An included file can contain any number of macro definitions. Any text in these files that is outside the macro
definitions is ignored. If a required macro is not found, an error will be reported.

An #include directive can be placed at any line of the .ma file, as long as the macros therein defined are used
after the #include.

A macro can not make use of another macro.

Within a .ma file, the preprocessor allows comments. Comments begin with a % . All text between the % and
the end of the line is ignored.

% Here begins the rules
Rule : 1 100 { truecount > 1 or (0,0,1) = 2 } % Validate the existence
% of another individual.

Figure 109. A .ma file with comments
Section 12.5 shows a model where macros are used.

For special considerations regarding files created by the preprocessor, please see Appendix C.

10 Appendix C - Examples

10.1

The ¢ Life Game”
The Life Game was presented in Scientific American by the well known mathematician Martin Gardner.
In this game, living cells will live or die. The rules for life evolution are as follows:

. An active cell will remain in this state if it has two or three active neighbors.
. An inactive cell will pass to active state if it has two active neighbors exactly.
° In any other case, the cell will die

The implementation of this model in CD++ is as follows:

[top]
components : life

[1life]

type : cell

width : 20

height : 20

delay : transport

border : wrapped

neighbors : life(-1,-1) life(-1,0) life(-1,1)
neighbors : life(0,-1) 1life(0,0) 1life(0,1)
neighbors : life(l,-1) life(1,0) 1life(1,1)
initialvalue : 0

initialrowvalue 1 00010001111000000000
initialrowvalue 2 00110111100010111100
initialrowvalue 3 00110000011110000010
initialrowvalue 4 00101111000111100011

initialrowvalue : 10 01111000111100011110
initialrowvalue : 11 00010001111000000000
localtransition : life-rule

[life-rule]

rule : 1 100 { (0,0)
rule : 1 100 { (0,0)
rule : 0 100 { t }

1l and (truecount = 3 or truecount = 4) }
0 and truecount = 2 }

Figure 110. Implementation of the Game of Life

10.2 A bouncing object

The following is the specification of a model that represents an object in movement that bounces against the
borders of a room. This example is ideal to illustrate the use of a non toroidal cellular automata, where the cells
of the border have different behavior to the rest of the cells.

For the representation of the problem, 5 different values are used for the states of each cell, these values are:

0 = represents an empty cell.

1 = represents the object moving toward the south east.

2 = represents the object moving toward the north east.

3 = represents the object moving toward the south west.
4 = represents the object moving toward the north west.

The specification of the model is:

[top]

components rebound

[rebound]

type cell

width 20

height 15

delay : transport

defaultDelayTime 100

border nowrapped

neighbors rebound (-1, -1) rebound (-1, 1)
neighbors rebound (0, 0)
neighbors rebound (1, -1) rebound (1, 1)
initialvalue 0

initialrowvalue 13 00000000000000000010
localtransition : move-rule

zone : cornerUL-rule { (0,0) }

zone cornerUR-rule { (0,19) }

zZone cornerDL-rule { (14,0) }

zone cornerDR-rule { (14,19) }

zZone top-rule { (0,1)..(0,18) }

zone : bottom-rule { (14,1)..(14,18) }
zone left-rule { (1,0)..(13,0) }
zZone right-rule { (1,19)..(13,19) }
[move-rule]

rule 1100 { (-1,-1) =1 }

rule 2 100 { (1,-1) = 2 }

rule 3 100 { (-1,1) = 3 }

rule 4 100 { (1,1) = 4 }

rule : 0 100 { t }

[top—rule]

rule 3100 { (1,1) = 4 }

rule 1100 { (1,-1) = 2 }

rule 0 100 { t }

[bottom-rule]

rule 4 100 { (-1,1) = 3 }

rule 2 100 { (-1,-1) =1 }

rule 0 100 { t }

[left-rule]

rule 1100 { (-1,1) = 3 }

rule 2 100 { (1,1) = 4 }

rule 0 100 { t }

[right-rule]

rule 3100 { (-1,-1) =1}

rule 4 100 { (1,-1) = 2 }

rule 0 100 { t }

[cornerUL-rule]
rule : 1 100 { (1,1) = 4 }
rule : 0 100 { t }

[cornerUR-rule]
rule : 3 100 { (1,-1)
rule : 0 100 { t }

2}

[cornerDL-rule]
rule : 2 100 { (-1,1) = 3 }
rule : 0 100 { t }

[cornerUR-rule]
rule : 4 100 { (-1,-1) =1 }
rule : 0 100 { t }

Figure 111. Implementation of the Rebound of an Object

10.3 Classification of raw materials

The aim of this example is to show the use of special behavior that can be given to a cell when an external
event arrives through an input port. We have a model that represents the packing and classification of certain
raw material that contains 30% of carbon approximately. The model is made of a machine that loads 100 grams
fractions of that substance in a carrying band. One a fraction reaches the end of the band, it is processed by a
packager that takes these fractions until a kilogram is obtained. Then, the packed substance is classified. If each

packet contains 30 * 1 % of carbon, it is classified as of first quality; otherwise, it will be of second quality.
The model uses the atomic model Generator that generates values (in this case always the value 1) each x

seconds (where x has and Exponential distribution with average 3). These values are passed to the carry band,
represented by a cellular mode. At the end of the band, another cellular model makes the packaging and

—>] —>

1* Quality

>

an

Packing &

Classification

selection.

Figure 112. Coupling structure for the Classification of Substances

The following is the specification of the model:

[top]

components : genSubstances@Generator queue packing
out : outFirstQuality outSecondQuality

link : out@genSunstances in@queue

link : out@queue in@packing

link : outl@packing outFirstQuality

link : out2@packing outSecondQuality

[genSubstances]
distribution : exponential

mean : 3

initial : 1

increment : 0

[queue]

type : cell

width : 6

height : 1

delay : transport
defaultDelayTime : 1

border : nowrapped

neighbors : queue(0,-1) queue(0,0) queue(0,1)
initialvalue : O

in : in

out : out

link : in in@queue (0,0)

link : out@queue(0,5) out

localtransition : queue-rule

portInTransition : in@queue(0,0) setSubstance

[queue—-rule]

rule : 0 1{ (0,0) !'=0 and (0,1) = 0 }

rule : { (0,-1) } 1 { (0,0) =0 and (0,-1) !'= 0 and not isUndefined((0,-1))
}

rule : 0 3000 { (0,0) !'= 0 and isUndefined((0,1)) 1}

rule : { (0,0) } 1{t}

[setSubstance]
rule : { 30 + normal(0,2) } 1000 { t }

[packing]

type : cell

width : 2

height : 2

delay : transport

defaultDelayTime : 1000

border : nowrapped

neighbors : packing(-1,-1) packing(-1,0) packing(-1,1)
neighbors : packing(0,-1) packing(0,0) packing(0,1)
neighbors : packing(l,-1) packing(1,0) packing(1,1)
in : in

out : outl out2

initialvalue : 0

initialrowvalue : O 00

initialrowvalue : 1 00

link : in in@ packing(0,0)

link : in in@ packing(1,0)

link : out@ packing(0,1) outl

link : out@ packing(l,1) out2

localtransition : packing-rule

portInTransition : in@packing(0,0) add-rule
portInTransition : in@packing(1l,0) incQuantity-rule

[packing—rule]

rule : 0 1000 { isUndefined((1,0)) and isUndefined((0,-1)) and (0,0) = 10
}

rule : 0 1000 { isUndefined((-1,0)) and isUndefined((0,-1)) and (1,0) = 10
}

rule : { (0,-1) / (1,-1) } 1000 { isUndefined((-1,0)) and
isUndefined((0,1))
and (1,-1) = 10 and abs((0,-1) / (1,-1) - 30) <=1
}
rule : { (-1,-1) / (0,-1) } 1000 { isUndefined((1,0)) and isUndefined((0,1))
and (0,-1) = 10 and abs((-1,-1) / (0,-1) - 30) > 1
}
rule : { (0,0) } 1000 { t }
[add-rule]
rule { portValue (thisPort) + (0,0) } 1000 { portValue(thisPort) != 0 }
rule : { (0,0) } 1000 { t }

[incQuantity-rule]
rule {1+ (0,0) } 1000 { portValue (thisPort)
rule : { (0,0) } 1000 { t }

'=0 }

Figure 113. Implementation of the Model to Classify Substances

The cellular model queue that represents the carry band makes use of the portInTranstition clause. As it was
mentioned earlier, this clause is used to set the rule that will be evaluated when an external event is received by
the cell through the specified port. This clause is then used again in the definition of the model Packing set the
behavior of the cells upon the reception of a raw material from the carry band.

10.4 Life Game - 3D

The next example is an adaptation of the Game of the Life to a three dimensional space.

Figure 12.5 shows the model definition and Figure 12.6 lists the contents of file “3d-life.val” that contains the
initial values for the cell.

[top]

components 3d-life

[3d-1life]

type cell

dim : (7,7,3)

delay : transport

defaultDelayTime 100

border : wrapped

neighbors : 3d-life(-1,-1,-1) 3d-life(-1,0,-1) 3d-life(-1,1,-1)
neighbors 3d-1ife(0,-1,-1) 3d-1ife(0,0,-1) 3d-l1life(0,1,-1)
neighbors 3d-1life(1,-1,-1) 3d-1ife(1,0,-1) 3d-life(1,1,-1)
neighbors 3d-1life(-1,-1,0) 3d-life(-1,0,0) 3d-life(-1,1,0)
neighbors 3d-1ife(0,-1,0) 3d-1ife (0, 0,0) 3d-1ife (0,1, 0)
neighbors 3d-1life(1,-1,0) 3d-1ife(1,0,0) 3d-1ife(1,1,0)
neighbors 3d-1life(-1,-1,1) 3d-life(-1,0,1) 3d-life(-1,1,1)
neighbors 3d-1ife(0,-1,1) 3d-1ife(0,0,1) 3d-1ife(0,1,1)
neighbors : 3d-life(1,-1,1) 3d-1life(1,0,1) 3d-life(1,1,1)
initialvalue : 0

initialCellsValue 3d-life.val

localtransition 3d-1life-rule

[3d-1life-rule]

rule 1 100 { (0,0,0) = 1 and (truecount = 8 or truecount = 10) }
rule 1100 { (0,0,0) = 0 and truecount >= 10 }

rule 0 100 { t }

Figure 114. Implementation of the Game of Life — 3D

(0,0,0) 1 (2,4,1) 1 (5,1,2) 1
(0,0,2) =1 (2,4,2) =1 (5,2,0) =1
(1,0,0) 1 (2,5,0) 1 (5,2,2) 1
(1,0,1) =1 (2,6,1) =1 (5,3,0) =1
(1,1,1) =1 (3,2,1) =1 (5,3,1) =1
(1,2,0) 1 (3,5,1) 1 (5,5,1) 1
(1,2,2) =1 (3,5,2) =1 (5,5,2) =1
(1,3,2) =1 (3,6,1) =1 (5,6,0) =1
(1,4,2) =1 (3,6,2) =1 (6,0,0) =1
(1,5,0) =1 (4,1,2) =1 (6,1,1) =1
(1,5,1) =1 (4,2,0) =1 (6,1,2) =1
(1,6,0) =1 (4,2,1) =1 (6,3,0) =1
(1,6,1) =1 (4,4,1) = 1 (6,3,2) =1
(2,1,2) =1 (4,5,0) =1 (6,4,2) =1
(2,1,0) =1 (4,5,2) =1 (6,5,1) =1
(2,3,1) =1 (4,6,0) =1 (6,6,0) =1
(2,3,2) =1 (4,6,2) =1 (6,6,2) =1

Figure 115. Initial values for the cells of the Game of Life — 3D

10.5 Use of Macros

The following example shows how macros can be used to write a new version of the Game of the Life for a 4
dimensional space. Macros can be defined in external files that are included in the main .ma file. More than
one macro definition is may be included per file, but no macro can make use of an existing macro. A macro is
defined between the #BeginMacro and a #EndMacro directives. All other text is ignored. The next figures
show the contents of the four files that are used to completely define the new model.

#include (1life.inc)
#include (1life-1.1inc)

[top]
components : life

[life]

type : cell

dim : (2,10,3,4)
delay : transport

defaultDelayTime : 100

border : wrapped

neighbors : life(-1,-1,0,0) l1life(-1,0,0,0) life(-1,1,0,0)
neighbors : 1life(0,-8,0,0) life(0,-1,0,0) 1life(0,0,0,0) 1life(0,1,0,0)
neighbors : life(1,-1,0,0) 1life(1,0,0,0) 1life(1,1,0,0)
initialvalue : 0

initialCellsValue : 1life.val

localtransition : life-rule

[life-rule]
% Comment: Here starts the definition of rules

rule : 1 100 { #macro(Heat) or #macro(Rain) }

rule : O 100 { (0,0,0,0) = ? OR (0,0,0,0) = 2 }

#macro (rulel) % Another comment: A macro is invoked

rule : 1 100 { (0,0,0,0) = (1,0,0,0) AND (0,0,0,0) > 1 }

#imacro (rule2)

Figure 116. Implementation of the Game of Life with 4 dimensions and using macros

)

(0,0,0,0)

(1,0,0,0) = 25
(0,0,1,0) = 21
(0,1,2,2) = 28

(1, 4, 1,2) = 17
(1, 3, 2,1) = 15.44

Figure 117. File life.val that contains the initial values for the Game of Life in 4D

This is a comment: The macro Rule3 assigns the value 0 if the cell’s value
is 3, and 4 if the cell’s value is negative.

#BeginMacro (rule3)

rule : 0 100 { (0,0,0,0) =
rule : 4 100 { (0,0,0,0) <
#EndMacro

3}
0}

#BeginMacro (rulel)
rule : 0 100 { (0,0,0,0) + (1,0,0,0) + (1,1,0,0) + (0,-8,0,0) = 11 }
#EndMacro

#BeginMacro (Heat)
(0,0,0,0) > 30
#EndMacro

Figure 118. File life.inc that contains some macros used in the Game of Life 4D

#BeginMacro (Rule2)

rule : 0 100 { (0,0,0,0) = 7 }
rule : { (0,0,0,0) + 2 } 100 { t }
#EndMacro

#BeginMacro (Rain)
(0,-8,0,0) > 25
#EndMacro

Figure 119. File life—1.inc that contains the remaining macros for the Game of Life 4D

11 Appendix D- The preprocessor and temporary files.

When the preprocessor is used to resolve macros (by default the preprocessor is enabled), it will create a
temporary file for the model with all macros expanded and all the comments erased. This temporary file is then
passed to the simulator for its interpretation. If the use of the preprocessor with the parameter -b is disabled
and macros are used, the model will not be processed correctly.

The name of the temporary file is the value returned by the instruction tmpnam of the GCC. The directory
where the temporary files are located will be selected according to the following criteria:

1. When CD++ is compiled, the name of directory defined by P_tmpdir <stdio.h> will be used, unless this
is the root directory.

In Linux this variable usually has the value: “/TMP”, while in the version of the GCC 2.8.1 for
Windows-32 bits, this variable references to the root directory of the disk unit that is in use.

2. If P_tmpdir points to the root directory, then the name defined by the environment variable TEMP will
be used.

3. If no TEMP variable is defined, then the value of the environment variable TMP will be used.

4. Finally, if the TMP is neither defined, the current directory will be used.

12 Appendix E - User Manual Of the CD++Modeler Tool [EIRSIN

This Graphical User Interface (GUI) can be used to create atomic and coupled models for the CD++ tool. The
basic functions of the GUI include creating atomic model and coupled model, exporting the models to different
formats and animating the simulations. The GUI also includes a simple text editor to modify Cell-DEVS
models directly and the RUN options to execute de simulation with the cd++ and generate the draw
information with the drawlog. The GUI is coded in Java, which enable it to run on various environments. The
following sections explore the functions of the GUI with examples.

The manual describes in detail how to use the GUI for DEVS model input and the visualization of the results
of the Cell-DEVS models, Atomic-DEVS models and Coupled-DEVS models. This GUI is developed with
JDK 1.4.1, so it is platform portable and can be run on various environment such as Eclipse, JBuilder with
JDK1.4.1.

To run the GUI, decompress the cdModeler.zip file under Windows environments. All the source code, class
files and some example files will be in the directory cdModeler.

To use this tool, you should
Install a JDK 1.4.1 or above.
Set upo your JAVA_HOME enviroment variable pointing to your JDK directory.

Modity your PATH enviroment and add %JAVA_HOME%bin;

Note : to modify the enviroment variables go to Control Panel -> System -> Enviroment Variables

In cdModeler directory, double click the bat file run.bat to start the program.

The program will start and show a Dialog like the following

-l

File Edit Execute Animate Help

J Dl@lﬁ B |internal externallﬂ“:i”

E-__IRoct Node | Atomic | coupled |

States
& Links
Ports
® Vars

Simulator Starts

12.1 Open File Directory

Every time an Open Dialog is displayed, the application remembers the last acceded directory. This is very
useful. Also, the application has an input dialog to set the current directory

Usually you should set the directory, which is used most frequently, as the default directory. Such as, you can
use the directory where the result files reside as the default directory, so you can directly get to this directory
every time you want to select a result file for visualization.

To set the home directory, select "Home Directory” item in “File” menu of this GUI, a dialog like the
following is shown.

EEE Default Directory

Default Directary IC Adewst

Get | Set | Cancel |

To change this directory, you can use one of the following two methods:
¢ Input the new directory name in the text field or and press “Set” button.

e Click “Get” button, a file load dialog will open, then you get into the directory, which you want
to set as the default directory.Click “Load” button, this directory will appear in the text field,
and press “Set” button.

Then the GUI will use this new directory as the default directory, and its name will be saved to a file. Every
time the GUI start up, it will read this file and set the default directory in this file.

12.2 Create DEVS Models

The design space is used for the user to define the model. Before creating the model, the user should select
proper design space for the corresponding atomic model or coupled model by click on the tabs, which is
indicated as “design space selector” in Fig 1. The information space helps the user to know the details of the
model created on the design space.

12.2.1 Create Atomic Model

The following section describes the basic steps that are needed to create an atomic model.

Select “Atomic” Tab from the Interface.

Select “File | New” from the main menu of the Interface.

Click right button of the mouse on the design space and a pop up menu will be shown. Fig 3 shows the result.
=13l

File Edit Execute Animate Help

J Dl@lﬁlﬂmsﬂemallﬂhﬁu

EH__| Root Mode | | Atomic | Coupmdl

—® States
—® Links
—® Ports

® vars

Declare variable...
Add part
Delete part

Simulator Starts

12.2.1.1 Setting Model Title

Click the “Model Title” item. A “Set Title” dialog will be shown.
Complete the model name in the blank area and click the “Set” button.

12.2.1.2 Adding Units

Double click with the left mouse button on the design space. A unit will be drawn with blue color. Double
click the left mouse button on the unit, and the unit will be selected with red color. Double click with the left
mouse button on the selected unit, and the unit will be unselected (turns to be blue again).

=0l x|

&ED++ Modeler 1

File Edit Execute Animate Help
J 0 | g”'l B | B | nternal ex‘temall .l :"&ll

EI_| Root Mode Atomic I Coupladl
L] States
@ Links
@ Ports
i ' “ars

neil nitD 00:00:00.00

opened C:NachoWSUhsamples\GUNascensor GAM

Click the right mouse button on the unit, and a popup menu will be shown with various functions associated
with this unit.

& cD++ Modeler B] S
File Edit Execute Animate Help

J [| i"‘l BB finternal externall @|| = |

EHZ- Root Node: atomic | coupled |

L@ vars

nei Int0 00:00:00:00
|

opened CiNacholGUsamplesiGUlazcensor GAM

Select “Set Initial” to set this Unit as the initial unit of the model. Setting other unit as initial, deselects the
previous one

Select the “property” item, and a “state properties” dialog will be shown as in Fig 5. Here you can Fill the
dialog with the state ID and Time to Leave.

To delete units, select the unit by double click on it, the color of the selected unit will become red. Then press
the “Delete” button on the keyboard or select “Edit | Delete” from the main menu. All the selected units will be
deleted.

When an unit is deleted, all the links connected to it will also be deleted.

12.2.1.3 Adding Ports

Click the right mouse button on the canvas and bring the popup menu. Select “Add port” item and an “Add
Port” dialog will be shown. Fill the dialog, select proper properties for the port, click OK button. Repeat the
procedure and add all of the necessary ports to the model.

=10l x|

&ED++ Modeler
File Edit Execute Animate Help

J 0 | ﬁ,”'l BB |internal extemall !I ﬁll
=1 Roct Mode: Stomic I Coupled |
[#-_] States

@ Links
ool Portz
L@ Vars

neilinntl 00:00:00:00

Model title, ..

Declare variable, ..

Delete part

Selecting “Delete Port” the application shows a List of all the created ports and the user can select one to delete
it.

12.2.1.4 Adding Links

After creating all of the necessary Units and Ports according to the steps described in the above, we can draw
links between Units, which represent the transition functions and attach them to Ports. The links in the atomic
model are divided into two category: internal and external, which represent internal transition and external
transition. Before we draw a link, the user should selected desirable link type by clicking “internal” or
“external” button on the toolbar of the Interface.

To draw a link between two units, press the left button on one unit, hold the button and drag the mouse to
another unit, release the button. A link with pre-selected type will be drawn. Fig 8 shows the result.

LIl

File Edit Execute Animate Help

J 0 | D”‘l B%| B |irternal externall !I |:i||
=] Root Node atomic | coupled |
E-[] States

newLinitd 00:00:00:00

opened CiMachoGUksamplesiGUNascensor GAM

After drawing the links, we need connect the link with the port. To do this, right-click over the link and select
“Add port & value” option from the popup menu. Select the port from the dialog, fill the value and click the
OK button.

& ndd port & value x|

port

-z
value I

K Cancel

To delete links, select the link by double click on it, the color of the selected links will become red. Then press
the “Delete” button on the keyboard or select “Edit | Delete” from the main menu. All the selected links will be
deleted.

12.2.1.5 Saving and exporting

Whenever the user wants, the model can be saved to disk. To save the model, select “File | Save” or “File |
Save As” as in any other application. The file will be saved as a .gam file.

After finishing drawing the model, we need to export the model to be a standard “.cdd” file that can used by
the CD++ tools. To export the model, we select “File | Export” or “File | Save and Export” from the main
menu, a file save dialog will be shown, select a directory and give the file a name. The file name must use
“.cdd” as its extension.

12.2.2 Create Coupled Models

The basic steps to create a coupled model are as same as creating an atomic model. In the following section, we
will only highlight the special procedures of the coupled model.

The coupled model needs to be created on the coupled model work place, which can be selected by click on the
“Coupled” tab above of the work place.

12.2.2.1 Distribution

The Coupled Models editor of CD++Modeler application is composed by a central panel, 3 lateral panels and
an upper button bar

IR

Fle Edit Execute Animate Help

0| @] 8 [riera osora] @ | |22l

=[] Coupled Model Atomic. Coupledt |

‘opened CDocuments and SetingsYcidreMis documertosiasciascensor2 GO

On the central panel appear the objects of the Coupled Model. It can be added Input Ports, Atomic Models,
Coupled Models and Links between them.

On the first lateral panel they can be seen the objects to add for the definition of this model. It is divided in
Ports (input and output), predefined Coupled Models and predefined Atomic Models.

On the second lateral panel they can be seen the objects that form the Coupled Model that is being defined.
Units of the added Atomic or Coupled Models, Links between defined Models or Ports and Ports of the added
Ports.
On the third lateral panel a description of the element selected on the second lateral panel.
The button bar has the following buttons:

e New, Creates a new Coupled Model

e Open, Opens a previously saved Coupled Model.

e Save, It saves this Coupled Model

Help, It brings the help

e Internal, Not used in Coupled Models
¢ External, Not used in Coupled Models

¢ Add new Atomic Model Unit, It adds a new Atomic Model to the Coupled Model
under definition

e Add new Coupled Model Unit, It adds a new Coupled Model to the Coupled
Model under definition

12.2.2.2 Adding Atomic Units

To add a new Atomic Model click on the "Add new Atomic Model Unit" button of the tool bar. Models are
created in the left upper corner of the Modeling Panel. They are automatically created with a name. In this case
newAtomicModel2.

Fle Edt Execute Animate Help

D|@|ﬁ|ﬂ|m&ma‘|2”@|

=) Coupled odel | atormic_Coupledt [Add nen Atemic Model Unit

E-_JPorts negeAtomichiodel2
H * Inin
> =
3

a
(=) Coupledt Model l

Units
s Links

Zports imm |

Simulator Starts

A new Atomic Model is automatically generated with a name. This unit represents an atomic model not
defined yet. To edit the unit, click the right button of the mouse to see the contextual menu. This menu has the
following options:

e Properties

e Select Image

e Explode

e Reload

Properties allows to change unit name
Select image allows the choice of an icon for the unit.

Explode allows to explode the unit for its definition.

Reload allows to reload the unit if its definition has been modified.

12.2.2.3 Adding Coupled Models

To add a new Coupled Model click on the "Add new Coupled Model Unit" button of the tool bar.

Models are created in the left upper corner of the Modelling Panel. They are automatically created with a name.
In this case newCoupledModel3.

File Edt Execte Animate Help

5[] 8 e o] 0]

L] Coupled Model Storie Coupled |

=-1Ponts plediodeld
HE In
HE O

ormic

El+__] Coupled Mocel
B unts
® newdtomicModel2

{e® newCoupledModel3 o0
o # Links

B Parts

oo In: Port neytomichiodel2
L8 out Portl

Simulator Starts

A new Coupled Model Unit is automatically generated with a name. This unit represents a Coupled Model not
defined yet. To edit the unit, click the right button of the mouse to see the contextual menu. This menu has the
following options:

e Properties allows to change unit name

e Select image allows the choice of an icon for the unit.

e Explode allows to explode the unit for its definition.

e Reload allows to reload the unit if its definition has been modified.
12.2.2.4 Adding Ports

In Coupled Models two types of ports can be created: Input Ports and Output Ports. They are characterized by
their graphics.

To add a Port, select the port in the lateral superior Panel and double click over the Modelling Panel

Fle Edt Executz Animate Help

HE R g|| “ |

= Coupledt Model | atomic._Counled |
B Ports
.

S
L] o
ol Atomic
- Coupled

o
= __] Coupled Mode! '

® Units
® Liks

Cpars gl

Ports are automatically created with a name. In this case, Port0 is an input Port and Portl is an output Port.
In this case Port0 is an input port and Portl is an output port.
The Port’s name can be changed either from the port contextual menu at the Modelling Panel or from the

Units Tree. Another option is to double click on the Units Tree. The Cd++ Modeler opens the following
window to select the port identifier.

& Port Properties ﬂ

Port ID IF':::rtEll

(8] | Cancel |

From the contextual menu, an image for the ports can also be selected.

Selected image replaces default image.

LI
File Edit Execute Animate Help

Dlﬁl Elﬁlmexiema\ 2‘||ﬁ|

-] Coupled Mol Atonic Coupled |
B Ports

i ot out
1L 1 Mocels

+ atomic
* Coupled

=] Coupled Model
i@ Lnis

® Out Fort!

Port Ib: Portladf
Port In/out: In
Port Type: Integer

Simulator Starts

Hmico||| & 2B @ % 2 & 5 || Qcwor.. | Bloebug .| gymwoso. | &vanoot [[Eor.. Bycipuc.. | Elavess. | (R AE B2 o7s3pm,

& D+ + Modeler

=lelx|

File Edit Exscute Animate Help

O | ﬁ‘,l E‘l B Imema\ external !” BI
(] Coupled Model Atomic Coupled |
E-1ports
Pl i
R o ot
= Models

1o somic 3t
f® Coupled ﬁ
1] Coupled Model
o Units

Lo Links
E-1Ports

[Forivact
S# Out: Portt

Fortt

Fort ID: Portdadf
Port In/out: In
Port Type: Integer

Simulator Starts

12.2.2.5 Adding Links

To add a Link click on the origin of it and drag until the destiny of the new Link. The Link will be created only
if both, origin and destiny are valid. In this case a Link was created from Port0 to newAtomicModel2.

& D+ + Modeler

: =]
Fle Edt Executs Anmate Help

0| | 6| B [rramar oo @ 2]

E1__] Coupled Madel Atomic Coupled |
= JForts

ewcouplediiodsls
S i
I Models

Lo omic
f# Coupled

)} Coupled Model l

= Units
% newatorichodei2
newCoupledhoded o
E-CLirks
L et o0
E-CaPorts newatomichiodel2
Lo port
Lt OutiPortt

Simulstor Starts

To create a Self Link from a Model to itself, click on the model of origin, drag well away and back to the
Model and release the mouse button. CD++Modeler will ask if a Self Link must be created.

& (D ++ Modeler

I
Fie Edt Execute Animate Help

J 0 | |j*| ﬁl B l\ntems\ external !” \il
] Coupled Mode! Atomic Coupled |
=-_1Ports
e
Rt Ot
= Madels
@ Sfomic
e # Coupled

jFleciiodel3

Port1

=] Coupled Mode!
=[] Units
@ mewAtamichiode!2
L # newCouplethodsla o0
=-[_ILlinks
@ (Port) = ()
-) Ports newatonichlodsi2
©® I Portd
e Out Portt

Simulator Starts

& Warning ME_
Create zelf link’

Cancel |

x|

§& CD-+ Modeler -1& %]

Fle Edt Executz Animate Help

e g|| o
= Coupled orle! stomic Coupled |
B Ports

-8 Inn
e pleciiadel
L] Models
- Aomic
- Coupled

= __] Coupled Mode! '

B Units
- ® newAtomichiodel2

L-® newCouplechodei3 a0

=] Links
e (Porin) > ()
00 negatomicliode
& pors
- InPorin
e ot Portt

Sirulator Starts

12.2.2.6 Importing Models

A Coupled Model is composed by Atomic Models and/or Coupled ones. These can be imported from
predifined models from three diferent inputs:

e Predifined Coupled Models .ma

e Predifined Atomic Models .cdd

e Basic atomic models from register.cpp file
Having a Coupled Model like the following

Boorosler WE

File Edit Execute Animate Help

J 0 | i”'l B | B |internal Extemall & | =1 |
-] Coupled Mode! atomic. Coupled |
| Parts

2

: -4 Oub Out

=] Modieis cton sensofpiso
-# Atoric

Coupled

& Coupled Model
;l Units
" Links
- _| Ports

opened CiNachozUhsamplesiEUascensor2 GCM

predefined models can be imported using File -> Import option
This opens an Open File dialog that allows the user to import a .cpp .cdd or .ma file

x|
Buzcar er: Ia Gl ;I ﬁl

ascenzar COD

ascensar? MA,
cortrolado COD

Mambre de archiva: I [mpart |
Archivos e tipo: Ima and cod and opp files. LI Cancelar |

In this case, a coupled model definition file (.ma) was selected and imported. The imported model appears in
the models Tree under the 'coupled' folder. When a Coupled Model Unit based on this imported model is
added, it appears with the predifined input and output ports. This Unit cannot be modified

Boo-roieer il

File Edt Execute Animate Help

J Dl@lﬁ ﬂ interal ex‘tarnall!l“ﬁll

Atomic Coupled |

B+ Models

@ Atomic

= J Coupled
e

ENsoppis

= ascensor@@nul
=] Coupled Model

| Units

- ascensor

-4 cortrolado

= |

: In: hoton

3 L@ [N SERSOMRIE0
+ _| Links
- _| Potts

ca
Class: Top d
ClassPath: Mo Classpath =
ExportClassPath: C:\Nachc

I

opened CiNachowGUlsamplesiGUlascensor2 GCM

Next, an Atomic Model definition file (.cdd) was selected and imported. The imported model appears in the
models Tree under the 'atomic' folder. When an Atomic Model Unit based on this imported model is added, it
appears with the predifined input and output ports. This Unit cannot be modified

Booreroser -loix]

File Edit Execute Animate Help
J Dlg”'l B | B |internal externall .|| :":ll

B[] Coupled Model Atomic Coupled |
B[] Ports
<@ InIn

-4 Out Out

E|_| Modsls ensofpiso

|»

E|_| Coupled Maodel
E|_| Units

L ascensor
- @ controlado

@ In: parada
@ I sensarpiso

op
;l i k.‘ RubtioRer ﬁ controlaco? Dgicontrolaco
inks ‘

"1 Forts

3 K

Class: controlado
ClazsPath: No Classpath =

xportClassPath: C:YyNachc
v
4)I

opened C:\NachoWGUsamplestiGUascensor2 GCM
Next, a register.cpp file was selected and imported. All the models defined in the field appears in the models
Tree under the 'atomic’ folder. When an Atomic Model Unit based on one of these imported models is added, it
appears without any predifined input or output ports since the register.cpp dont has this information.

Each imported model could be modified right clicking on it to add the ports. This Unit cannot be modified
=10l |

% CD++ Modeler
File Edt Execute Animate Help

J & | ﬁl B | B Jinternal ex‘tar’nall!” .-1||
3 -
E -: |Sn in 2] | atomic CDUpIedI
I T
B[Models

Eensoppiso

= ;lUn'rts
-8 gscensor

- @ controlado
;| Top3

| controladot 4

ﬁop
cortroladel dg@controlado
d Tl'i liducel 15 Transducer

Class: Transducer
ClasszPath: No Classpath =
ExportClassPath: No Expor

4 I »

opened CiNachowGUlsamplesiGUlascensor2 GCM

-

12.2.2.7 Exploding Models

A Coupled Model is composed by Atomic Models and/or Coupled ones.

These can be added from the predefined models list or as new models from the tools bar.
In both cases, added models may be inspected in order to be defined or modified.

To explode a model, right click on it and choose "Explode" option.

sl
TR
| B[@] 8 frene cvoma| |22
& commen womer atomic Coupled |
CPorts.
o
© oou
-] Models
o o

Simulstor Starts

HRico | @ B B L @3 || e o | e | @a | e [[Be [RYZGBE oospm
This action opens a new model editor to edit present exploded model and hides the original one.

If the model being exploded is an Atomic Model, it will be opened an Atomic Models editor;
if it is a Coupled Model an editor for Coupled Models will be opened.
Models so defined or edited work exactly the same as any other model except that they do not

allow to choose model type under definition.
ol
File Edit Execute Animate Help
i3 | g”;l El B Immal external !” \2”
-] Coupled Macel Coupled |
2] Pors

i
Led Ot Out
(=] Mackls
® storic
@ Coupled

EI-L_] Coupled Model
Lnts
® Links
e ports

Simulator Starts
B @2 M % 2 G E || G| Bo | R | @] 8|S RW %GBS osmpm
I5l]

File Edt Execure Animate Help

Dlg"lﬁ ‘ﬂ'\mema\ scenal| @] \2”
E] Coupled Model Coupled

B Ports
L]

@ Out Ol
B Models:

- ® Aloric

Le# Coupled

newatomicliodel!

negatomichiodsl

- Coupled Modle!
E-Cunts
] new Atomichiodei
1 news Atoricktoel!
B Links
o (port2) » (Pot3)
e (Port2) > ()

@ pont2
Loe Ot Portd

(port2) -» (portl)

foi| B BB EOD oo w0 @5 BT ROGIEE mwn
When exploded model is already defined the editor must be closed to return to the original model.

In this, it can be seen that ports defined in model explosion are accesible. See tree at left.
P N LBl

File Edt Execute Animate Help

0| 5|] B Jrama oxera| @[

1] Coupled Model Atorric. Coupled
B-Cports
e ®oin
® Out out
- Models
* Atonic
* Coupledt

E1-L_] Coupled Model plediiode!
neiimmmmludem

+ Oul: Ports
@ Links
Lo® Ports

mit Name: newCowpledfiodell
Class: SimpleQueue

ClassPath: C:)GUIYsimpleQueve.GCH
[ExportClassPath: C:)GUIYSiupleQuene.lh

Simuaior Starts

o | 2B B L SE || mc B e @ e B [REZIBE mmen

Once defined internal models, Links can be added towards ports defined in them.
(X

Fle Edi Erecute Animate Help

0O | B'“vl [=4N:] I\mema\ external gll \2”

=] Coupled Madel Atomic. Coupled
= Jports
.
& out ot
= Modeks

® Aoric
L@ Coupled

= 1 Couptect ogel
= Jurits
B newatomichiodeld
@ 0 porta
® inForg
Out: Portc
) newCoupledhadelt
® in:Fort2

* ou: Pors
SRl i
® (Poricy = (Port2)
@ (Pors) > (Port2)
® (Port3) - (Poris)

® I Ports

Simulstor Sterts

Hrico|| S B L2 GEH || So B |2e @@ [Be. [ROEESEEE mopn

If after definition of Links, a model is exploded for modification, system automatically disengages
Links from model ports because unpredictable changes may happen.

~iaix

Flo Edt Execute Animate Help

B e

[coumeatian stomic Coupled

«
o oot
-] Models
* atoric
o Capied
Port3

51 Coupled Moge!

(1 newAtomichodel0
& htpord, pleciodelt
® in ports orts

* out Forc negatonictiodeld
55 newCouplechiodelt A
* poz .
o o rars
SRSl E
® (Pon) > Prt2) B

® (Ports) > (Port2)
® (Port3) > (Port3)
B pots
® out ports
® inpons

Simulstor Starts

Smco | LM B2 S ® || G B | 2| @ $0f[Ee RYZE BRI wson

aaaaaaaaaaaa

Smco | GBS S ® || G B 2| @ 80 f[Ee [REZEE DL e

12.3 Visualization of DEVS models

This section will describe how to visualize the result files of Cell-Atomic models, Cell-DEVS models and
DEVD Coupled models.

Model type selection

Select the “Animate” from the main menu, a pull-down menu for model type selection will be shown as the
following Fig. 12

CellAnimate
AtormicAnimate

CoupledAnimate

Figure 12

From this pull-down menu, Atomic-DEVS model, Cell-DEVS model and Coupled-DEVS model can be
specified.

Atomic-DEVS model

Every DEVS model includes at least one atomic model. Usually a coupled DEVS model includes many atomic
models. After the simulation finishes, a log file will be generated. The log file records all the messages sent
between DEVS components, that is, all the messages sent and received by all the atomic models have also been
saved in the log file. Therefore, with this log file all the values in the messages sent and received by a specific
atomic model can be extracted and visualized.

To visualize the values messages sent and received by a specific atomic model, you can use the following
steps:

Select “AtomicAnimate” item in the pull-down menu in Fig. 12.

An animate Dialog box will open, as the following Fig. 13

] . o
E;_;gj atomic animate

Value |

Select your options

QK Cancel

Figure 13

Select parameter “Log file”, a file load dialog will shown, a 1og file can be loaded. Some help and description
information is also shown in the text area.

Click “OK” button after selecting the 1og file. Then the graphic display of the output of this atomic model will
be shown as the following Fig. 14.

Ega:\t-:-mi-: Animate
i v; Reset ! Back ! Mgt !
zero e =
. Output
[[
00:00:00:010 00:00:00:042 00:00:00:020 O0:00:00:030 00:00:00:032 00:00:p0:040 00:00:00:042 00:00:00:050 00:00:00:050
-
| | Bl

3 Dt o/ Tima 1 Valiia

Figure 14
(*) means there is an internal transition at this time.

With the “Next” button and “Back” button, you can get to the graphic display of the output of a specific atomic
model at any time until the end of the result.

With the “Reset” button, you can get to the beginning of the display at any time.

With selection list on the top, you can select any model at any time for visualization, such as, you want to
change to twenty model, as the following Fig. 15.

o) - -
E'E"g.)\t-:-ml ¢ Animate

Zaro . Input ‘_:_
. Output

|
00:00:00:070 000000072 00:00:00:080 000000052 00:00:00:090 00:00:00:100 00:00:00:110 00:00:00:112 00:00:00:120

| |

Figure 15

Fig. 15 shows the output of the zero model in the following times by clicking the “Next” button in Fig. 14.
And it shows that you want to change to see the t wenty model. After you select the t wenty model, its
output will be displayed, as in following Fig.16.

:‘g_;i)\t-:-mi-: Animate
Reseti Elacki Nexti
twenty B -
. Qutput
9
00:00:00:010 00:00:00:020 00:00:00:022 00:00:00:020 00:00:00:032 00:00:00:040 00:00:00:050 00:00:00:060 00:00:00:062 O
< | o

Figure 16

12.4 Coupled-DEVS Model

Sometimes, it is useful to display the graph of the model, and the output values near the corresponding output
port at the same time. To do this, you can use the following steps.
Select “Coupled Animate” item in the pull-down menu in Fig. 12.

A coupled animate Dialog box will open, as the Fig. 27.

Select each parameter with the “parameters” list, and input or select their value respectively. Some help
information will shown in the text area accordingly.

All the parameters are as follows:
Log File: the file used to record all the messages sent between DEVS components.
Coupled Model definition: the graph file (gui file) of the model.

Delay between displays: The delay between the continuous displays. It can be used to control the speed of the
visualization.

oupled animate

Yalue i

Select pour options

ke Cancel

Click “OK” button, when all the parameters have been specified.

Figure 27

The operations are all the same as those described for Cell-DEVS Model in section 3.2.

The following Fig. 28 is an example:

Egi Conpled Animate

Resume

throughput

aut-=in ut->throug hput

ved

out->5g

0100000 cpuusage

ratori@ Generator

pTransducer

] | 5

Figure 28
The visualization graph displays the model graph and the output value of all the output ports at the same time.

The four buttons are the same as those described for Cell-DEVS Model in section 3.2.

Warning Messages

If an input is wrong, some of the graphical outputs will not be able to run properly. When these situations
occur, warning message is displayed.

For each dialog box of each model, if user forget to input some necessary parameter value and press a "Ok"
button, warning message like the following Figure 29 will show:

f22 warning

& Right now the execution starts wrong! Please check all input of parameters and try again!

Figure 29

If this happens, just close the warning window and go back to the dialog window, check and input the
parameters values which you have forgotten, and try again.

Note if this warning appears you need to input the missing parameters again.

If inputting filename is needed in the dialog box, and you input the wrong file name or path, a warning will
appear:

f=2 warning

& Cant open the log file specified. Please check file name and path and try again!

Figure 30
Also you need only to re-input the correct file name or path, and don't worry about other values you have
already input. In the dialog box of each model, at any time, you could copy / paste the text by selecting the
texts and using Ctrl-c to copy and ctrl-v to paste. The size of each dialog box can be enlarged by putting the
mouse on the border and drag.
In order to load model, log files and multiple subcomponents, the following GUI components are added:

12.5 Visualizing Cell-DEVS models

Z Cell-DEYS animation

Logd Made]

Figure 120 Add Model button and Available List

Add Model button is used to load *.drw, *.ma and *.log files. After these files are loaded, the corresponding
model names will be shown as a list in the Available list.

When click “Add Model” button, the following dialog appears. With this dialog, you can choose a model
(.ma), drw or any other type file. If the file extension is drw, CDModeler treats the file as a DRW file,
otherwise, CDModeler tries to load the file as a model file, if failed, then consider it as a DRW file.

. Choose a CD+-+ DRW or Model File x|
g [Tt =] Eek
output] sy
output2 vy

TiER . fire: e Ll
S{EE, |co++ DR or INI Files LI M

Figure 121 Open Ini/Drw file dialog box

When CDModeler parses the file and think it is a legal mode file (include [top]\n components : ...), it
automatically opens the following dialog to let user indicate which log file he/she wants to open for getting
data.

x

TR Jiite Jog il
TCEade, ICD++ LOG Files | M

Figure 122 Open Log file dialog box

After that, the new model(s) are added to the end of Available Models list. You can add as many models as you
want. To remove one from available models list, select it and press “Delete” key. The names of models have
following format. Note there may have 0, 1 or more cell models defined in one model file.

File Type Name in Available model list Examples

DRW file <drw_filename> output, traffic

Model file <cell_modelname>@<log_filename> life @life, segmentla@traffic,
nnnnnn + 1 (AN b £Fi

segment1b@traffic

< Cell-DEYS animation

Modify Palette |
ISquare - I

¥ Showe 20 Only

;aliable \ Selected

Load Model |

= FF L]

¥ Showe “alues

Delay |1D Apply |
1
: & &
@ [o [|
Time IDD:DD:DD:DDD
REemoyve Grid |

Figure 123 Add Multiple Models From Different Sources

12.5.1 Load Model button and Selected list

Even through you have a list of available models; they really have not been loaded in memory for display. To
make a model visible, you have to double-click it in available list to append it to the end of “Selected Models”
list, then press the “Load Model” button. To remove one from them selected list, double-click it or press delete

key after choose it.

The display sequence of selected models is in the order of their names in selected list. At any time after you
have made changes to the selected list, press load model button to re-display the new selected models. In case
of the selected list is empty, the load model button is automatically disabled.

When all selected models have been loaded, CDModeler tries to load PAL file according to the name of the

first entry in selected list as following. If such pal file does not exist or values are not defined in PAL file,

CDModel now use white (previous use BLACK) as default.

Model name

Searched PAL file

<modelnames <modelname>.pal

<modelname>@<log_filename> <log_filename>.pal

Currently, CDModeler does not allow loading both time-unsupported and time-supported models at same time.
An error message is generated when that happens.

Model Type Model Generated from

Time-unsupported model Drawlog with —f argument

Time-supported model Drawlog without —f argument
Load directly from log file

. Cell-DEYS animation x|

Modify Palette |
ISquare il l

¥ Showe 20 Oniby

Avaliable Selected

autput 4 liteaite

Add Moclel | Load Model |

= | B |

¥ Show Values

Delay |1 i Apaly |
| | f | |

] 0 1B |
Time IDD:DD:DD:DDD

Remove Grid |

Figure 124 Load Model button and Selected List

12.5.2 The “Show 2D Only” checkbox

This checkbox is used to tell CDModeler how 3-dimensions models are displayed. For a 3-dimension model, if
this checkbox is selected, only cells in its first plane are displayed, i.e. only cells with coordinates (x, y, 0) are
displayed. Otherwise, all planes are displayed from left to right, i.e. in sequence of (x, y, 0), (x, y, 1), (X, y, 2)
... etc.

For models loaded directly form log file, this checkbox also affect for N-Dimension model. If this checkbox is
checked, only (x, y, 0,0, ...0) plane is displayed. Otherwise, from left to right, the sequence of displayed planes
is (x,v,0,0,...0), (x,y, 1,0, ...0), ... (x,y,D2,0, ...0), (x,y,0, 1,...0) ... (x, y, D2, D3, ...DN).

For 2-dimension only modes, the state of this checkbox is ignored.

12.5.3 Display simulation result for one model

Users can use extended CD++ Modeler to load *.ma and *.log files and show the simulation result directly.

Step 1. In the Cell-DEVS animation dialog box, click on the Add Model button, the Open Ini/Drw file dialog
box appears.

Step 2. In the Open Ini/Drw file dialog box, travel to where the desired *.ma file is placed. In this example, we
choose life.ma.

Step 3. The Open Log file dialog box automatically appears. Choose life.log and click on Open button.

Step 4. The model life @life appears in the Available list. Double-click on the model, the model will be
selected and listed in the Selected list.

Step 5. Click on the Load Model button, the result is shown in Figure 125.

Cell-DE¥S animation x|

Mty Paistts | 100000100010 1000100000 1010001000 000000 1.0
1.000100.0000000100000 101010001000 00001000
ISquare vI

1.0 004100000410 1000 79000000010 100000000.0 1000
L DD 101010 1000000000 1010100010000010100000
dvaliakle Selected 1D 1.010100000000000007100000711000 1010001010

Il

(=@l iD.D 0010 1000 000000000000 000000100000100010

0.0 0010 0041000100000 10 100000000000 100000 1.0

;D.D 00000000 1000000010000000Q00000010100000

Aled Mocke! | Lo Mozl |1D 1000 000000 1010001000 70100000 1000000000
1D 00100000 00000000000070100000000071.00000

> i u 0000000000 10000000000000000000 1010101010

:1.0 0010 1000001000 100000 7000000000 1000001.0
?D.D 10000000 00001900000000000O00101010000000
Delay IF Apply | ;D.D 00 1.0 1.0 1.0 1.0 1.000 00 1.0 1.0 0.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0
| 001010 000040000019000 17000000071.000000000O00

' ' ' ' 0.0 0.0 1.0 000000 0000000000 1010001010 0000 0000
| 0 LI 1D 10000000 0000190000000001000001000000000
e IM 1000000000 0000000000O00101000001000000000
0.0 0.0000000000000001000101.000000000000000

Remoave Grid | 10 100010000000 10 101000 1010 101010 1000 0.0 1.0

Figure 125 Life Simulation

[V Showe Walues

12.5.4 Display simulation results for multiple models

12.5.5 1. Multiple Models from one Ini file and log file

Step 1. Following the step 1-3 described in Section Display simulation result for one model, load traffic model
and its log file (available in our assignment 2).

Step 2. By double-clicking on the models, select the models you want to see. Please choose segmentla,
crossingla, light_controllerl , segment2a, crossing2a, light_controller2;then clock on the Load Model button
to load the selected models, as shown in Figure 126.

£. Cell-DE¥S animation x|

Madify Palette | 0.0 1.000.100.0 .D.D 1.000.101.000.100.0 1.000.100.0 .J.D 0.0 .].D 0o
m pooopoOoOQROODOODOOODOOOODOOOQOOOOODOODOOODOODD
quare ¥
000000 OoO00OODO0O00O00CO0O00 0000000000 00000000
[¥ Show 20 Only

0.300.0
0.0 0.000

Avalizble Selected
Iigl‘ut_-::.:-ntr‘-:-ll&tu segment] sy =
crossingt st |
= ol @t
light_contraller
=RomEnt PR
R

Al Model | Load Made| |

0.0 0.0 0.0 0.0 .u_n 0.0 .D.D 0.0 0.0 1.000.100.0 .J.D 0.0 .10 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
00 0.0 0.0 0.0 00 0.0 0000 00 0.0 0.0 0.0 00 0.0 00 00 00 0.0 0.0 0.0
50 50 50 50 50 50 50 50 50 560 50 50 50 50 60 60 50 50 6050
.D.SDEI.EI

0.0 0.0 0.0

|| |

¥ Show values

Delay |1IZI Apply |
1

T BT

Tirne I 00:00:04::300
Remave Grid |

Figure 126 Traffic Model: Multiple Sub-models

12.5.6 2. Multiple Models from Multiple Time-Supported DRW Files

Step 1. In the Cell-DEVS animation dialog box, click on the Add Model button, the Open Ini/Drw file dialog
box appears.

Step 2. In the Open Ini/Drw file dialog box, travel to where the desired *.drw files are placed. Open the *.drw
file we want.

Step 3. Repeat Step1-2, load segemntla.drw, crossingla.drw, segment2a.drw, crossing2a.drw.

Step 4. Select all the models by double-clicking. Click on the Load Model button. The result is shown in
Figure 127.

4 Cell-DE¥S animation

TMadity Paistte | 1.0 1.000.100.0 .D.U 1.000.10:1.000.100.0 1.000.100.0 .].U 0.0 .].U 0.0
Im poooooOoOOOOOOQOOOOODOOODOODODNDOODOODDODOOODODODDOO
0000000000 00OQ0OO0ODOOOODDODNDOODOODOOOO0OOO0O0DOO

@srewoly 505050505050 5050 5050 50 5050 5050 50 5050 5050

Avaliable Selected

segmert]a

crossingla
segment2a

= crossing2a ...
Add Model | Load Model | .u_n 0.0 0.0 .D.El 0.0 .EI.D 0.0 0.0 1.000.100.0 .].D 0.0 .j_u 0.0

poooooooO0O0DOODOODOODOODODDODODDODDDODODD0OO00D0ODD
0000000000 000000000000 D00O0000O00O00O0000O00O00

0.300.0

Detay 10 Apay | 00 0000
| oo ol

T ke
« | 10 Ihl

< Time IDD:DD:D4:SDD >

Remave Grid

|| N

[+ Show “alues

Figure 127 Traffic: from Multiple DRW Files

12.5.7 3. Multiple Models from Multiple Time-Unsupported DRW Files

Step 1. In the Cell-DEVS animation dialog box, click on the Add Model button, the Open Ini/Drw file dialog
box appears.

Step 2. In the Open Ini/Drw file dialog box, travel to where the desired *.drw files are placed. Open the *.drw
file we want.

Step 3. Repeats Step1-2, load outputl.drw, output2.drw and output3.drw.

Step 4. Select all the models by double-clicking. Click on the Load Model button. The result is shown inFigure

128.

£ Cell-DEYS animation

hdowlity Palette |
ISquare = I

[Shaowy 20 Only

? 00 00
25.00.0 0.0

Auvalizhle Selected

outputl output

oLt outpLt2
outpLts

Al hodel |

21.00.0 0.0
13.411.50.0

1100 28.02.0

> r] m

¥ Show values

Dela\;lT Apply |

——
-l I 0 > |
Tirme IDD:DD:DD:DDD

Remave Grid

0.0 0.0 0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0 0.0
0.0 0.0
0.0 0.0
17.00.0
0.0 0.0
0.0 0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

Figure 128 Life3D: from Multiple Time-Unsupported DRW Files

12.5.8 4. Multiple Models from DRW Files and Log Files

This can be used to validate the newly-added functionality.

Step 1. Load segmentla.drw file.

Step 2. Load traffic.ma, traffic.log files.

Step 4. Choose segementla, crossingla, segmentla@traffic and crossingla@traffic models by double-clicking

on them. Load the models by clicking on the Load Model button.

L Cell-DE¥S animation

ISquare X I

[V Showe 20 Only

Modify Paletts | B0.0 1000 1080800 1000 1,000,101 0001000 10 0.0 S080.2000 .Jznmu

0.0 0.0000000000000000000000C0O00O00AO00O00O00O000O00O
1.0 10101010 101010 1010 1.0 1.0 10 1.01.0 1.0 1.0 1.0 1.0 1.0

Ayvaliable Selected

light_controfler ;I seamertla .
crossingla

segrmert] st
croszingl st «
4 | | »

Add hMadel | Load Madel

10 .D.El
0.0 0.0 0.0

bnaolkol
50 5050
0.0 0.0 1.EIEI]:I.1D.D.1D]II.D 1.000.101.000.100.0 1.0 0.0 .ZI.2EID.D .ZI.2DD.EI

|| |

[+ Show Values

Delay |1IZ| Apply |

Tirne I 00:00:05::500
Remove Grid |

00 00000000000000O0000D00Q000000O00O00O00O00O000C0
1.0 10101010 101010 1010 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

I=IIIIIIIIIIIIIIIIII
0. 0.0

0.0 0.0 00
bolhol
50 50 50

Figure 129 Traffic Models: from DRW and LOG Files

Here, we can clearly see the bug of drawlog program: at this time, the (0,0) cell of both segmentla and

crossingla models send value 2 and 1 out through in_space port, but these values are considered as value of (0,

0) cells. The lower two models loaded from log file are displayed correctly.

12.5.9 5. Show 2D /3D Models

Step 1. In the Cell-DEVS animation dialog box, click on the Add Model button, the Open Ini/Drw file dialog

box appears.

Step 2. In the Open Ini/Drw file dialog box, travel to where the desired *.drw files are placed. Open the *.drw

file we want.

Step 3. Repeats Step1-2, load life @life and segmentla.drw.

Step 4. Select all the models by double-clicking. Click on the Load Model button. The result is shown in

Figure 130.

4. Cell-DEYS animation

todify Palette |
ISquare - I

[Show 20 Only

¢ 00000000D0000D00D00O00
25.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 -EI.D 00100000 1000000010
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0000 0000 00 0.000 0000

Avaliable Selected
lifeElife lifeElife
segmertla
Al bodel | Load hadel |
> [|

¥ Show “alugs

Delay |1IZ| Apply |
1

Tirne I 00:00:00:000
Remave Grid |

Figure 130 Show 2D model in 2D mode

Step 5. Deselect the “Show 2D Only” checkbox, The result is shown in Figure 131.

Cell-DEYS animation

hdowlity Palette |
ISquare b I

x|
To00000000000000 0000 21.00000000000000000000.0 23.0.3.0 000000000000
26.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.411.50.0 0.0 17.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1000100000 1.0001.00.0 .EI.EI 0.01.0000010000.0001.0
0.0 0.0 000000000000 000.000000.000000000000.00.0

o
Avalisble Selected
lifeElife lifeE@life
segmentla

Add Model | Load hadel |

> | oo | m |

[¥ Show Yalues

Delay |1 0 Apply |
1

Titme I 00:00:00.000
Remove Grid |

Figure 131 Show 3D Model with 3D mode

