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Abstract
Cell DEVS could be used to model many environmental and so-
cial issues. With more and more online geographic information,
the simulation results from some specific Cell DEVS models have
the opportunities to be visualized geographically . In this paper, a
framework based on Google Earth is proposed to visualize the Cell
DEVS simulation results. An land use and land cover Google Earth
visualization prototype is implemented to validate this framework.
It supports two dimensional and three dimensional Cell DEVS sim-
ulation visualization and is flexible and easy to make new configu-
rations. With this tool, more realistic simulation display will accel-
erate the corresponding research domains. Additionally, due to the
limiting rendering capabilities of Google Earth, a cell merging al-
gorithm is implemented to reduce the rendering elements. Simula-
tions results show that this algorithm can work efficiently and make
Google Earth simulation run more smoothly. Finally, it is pointed
that the scale of the simulation is bounded the size of rendering
elements available in Google Earth.

Categories and Subject Descriptors I.6.7 [Simulation and Mod-
eling]: Simulation Supporting Systems—Environments; H.5.1
[Information Interfaces and Presentation]: Multimedia Informa-
tion Systems—Animations

General Terms Algorithms, Design

Keywords Google Earth, GIS (Geographical Information Sys-
tem), Cell DEVS

1. Introduction
Geovisualization has been found many applications in real world
situations, especially related to geographic environment, such as
wild land firefighting, forestry, archaeology, environmental studies,
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urban planning. While a variety of software, known as Geographic
Information System (GIS) could visualize, analyze, interpret and
understand georeferenced information by allowing different oper-
ations with maps. GIS and Geovisualization could provide a di-
rectly way for spatial data changes analysis by allowing for more
interactive maps compared to traditional, static maps, including the
ability to explore different layers of the map, to zoom in or out,
and to change the visual appearance of the map. Many GIS has al-
ready contained embedded simulation capabilities, however, it just
supports several specific modeling and simulation focused on sev-
eral kinds of geographic information. On the other hand, simulators
running separated from GIS tools could provide precise simulation
results but they have no connections to georeferenced environment.
Therefore, sophisticated and intuitive interfaces for visualizing up-
dated geographic information is in need.

2. Background
DEVS[1] is a discrete-event formalism that allows a hierarchical
and modular description of the models, which describes behavioral
(atomic) or structural (coupled) models. Cell-DEVS[2] formalism
extended DEVS allowing modeling systems represented as exe-
cutable cell spaces by defining each cell as a DEVS atomic model
and the space as a DEVS coupled model. CD++[3] is an open
source environment for executing DEVS and Cell-DEVS models.
Originally, CD++ produces a text file (.log file) as the simulation re-
sult for analysis, we need to retrieve the text message line by line to
get the state transitions and port messages. A visualization tool is in
need to understand directly the behavior of DEVS and Cell-DEVS.
CD++ Modeler could both show 2D and 3D simulation results in a
comparable natural way, however, sometimes we need a more ex-
tensive interpretation and construction to see what is exactly hap-
pening during the simulation. Recently, CD++ was provided with
facilities for 2D or 3D visualization using Virtual Reality Model-
ing Language(VRML), Autodesk Maya[4], Open Graphics Library
(OGL)[5], and Blender[6]. [4] shows how advanced DEVS mod-
els could be visualized using an advanced generic visualization en-
vironment like Maya. DEVSView, as an Open GL-based toolkit,
provides a GUI and a text format for the creation of visual models
which translates CD++ log file into animations. DEVSView[7] uses
these visual models to represent the simulation process, while users
could set up the rules, to trigger state changes and control the ani-
mations. MAPS[8] is a graphical modeling and visualization toolkit
exclusively designed for simulation of urban traffic.



All of these graphical modeling and visualization toolkits in
CD++ are applicable to general DEVS and Cell-DEVS models ex-
cept that MAPS only focuses on urban traffic Model and Simula-
tion. However, in terms of wide application of GIS, we need a spe-
cific visualization tool for analysis and interpretation of the Cell-
DEVS models containing geographic information. This project fo-
cuses on how to build up a visualization of CD++ models sensitive
to geoinformation.

3. Model defined
3.1 The overview of the geographic visualization framework
GIS has been found many applications in real world problem, such
as Defense and Intelligence, Health and Human Services, Trans-
portation, Natural Resources and Utilities and Communications. A
geographic dataset always include a comprehensive collection of
vector, or raster, or imagery data covering some parts on earth.
For vector dataset, it often includes hydrography maps, geolog-
ical maps, soils, administrative boundaries and others; for raster
dataset, it often includes elevation, slope, aspect, landuse and ge-
ology; for imagery dataset, it often includes 1 m resolution or-
thophoto, several LANDSAT-TM5/7 scenes and a MODIS daily
LAND Surface Temperature(LST) time series[9]. Any of the above
geo-information could be applied to CD++ modeling and simula-
tion for analysis.

The modeling and simulation of problems sensitive to geo-
information in Cell-DEVS always interprets one specific area as
a cell and the whole region as the cell space. To integrate GIS
and Cell-DEVS modeling, we need to map the geo-information
from real world geo-ordinates to cell space ordinates, separates the
whole region into cells and store as the initial file (.val file) for
CD++. Then, running CD++ will produce a log file(.log file) as the
simulation results. Lastly, we need to analyze the text line by line to
get simulation process and map it back to real world geo-ordinates,
and visualize in Google Earth.

We developed a framework(Figure 1 on page 2) to integrate
Cell DEVS models sensitive to real world geo-information with
a powerful Geospatial Visualization System (GVS) based on [10],
and the following will demonstrate how to prove the usefulness of
this proposed structure by taking land use change as an example in
this project. Firstly, geographic information of a specific area will
be retrieved from GRASS GIS based on GDAL then the defined
geo-information sensitive Cell-DEVS model will read this initial
information. M&S in CD++ generates log file. To visualize the
M&S process, we feed the log file to Google Earth.

GIS  Dataset Preparation

Modeling and Simulation in 
CD++

Visualization in Google Earth

Figure 1. The structure of the geographic visualization framework

3.2 GIS Dataset Preparation
GRASS is one of the most popular GIS and could handle with
raster, topological vector, image processing and graphic data.
GRASS GIS use Geospatial Data Abstraction Library (GDAL)[11]
for raster/vector import and export. Geographic information could
be read from raster maps based on the data model of GDAL, such
as coordinate system, affine geotransform and raster band stored
information. We choose a sample raster dataset named North Car-
olina (NC, USA) in GeoTIFF format provided by GRASS.

NC dataset covers parts of North Carolina (NC), USA , prepared
from public data sources provided by the North Carolina state
and local government agencies and Global Land Cover Facility
(GLCF). This dataset offers raster, vector, LiDAR and satellite
data. We choose this dataset in raster format for the purpose of
retrieving information from the dot matrix data structure. And we
chose GeoTIFF[12] as the standard file format, as it is supported
by most GIS, including GRASS, for both the input and output
purposes. The raster map set in GeoTIFF format includes elevation,
slope, aspect, watershed basins, geology, and landuse, while this
paper focuses on landuse changes.

Figure 2. The architecture of data retrieval and Cell-DEVS simu-
lation

The dataset chosen contains the geographic information in a
specific area and GRASS GIS serves as GUI to display all the
information in this dataset. We need to retrieve information from
GRASS GIS (either via an API or import/export files) to commu-
nicate with the simulator (CD++), while GDAL presents a single
abstract data model to the calling application for all supported for-
mats. The abstract data model includes dataset, Coordinate System,
Affine GeoTransform, GCPs, Metadata, Subdatasets Domain, Im-
age_Structure Domain RPC Domain, XML Domains, Raster Band,
Color Table and Overviews. Georeferencing information could be
properly read from GRASS by taking advantage of this data model
of GDAL.

As showed in Figure2 , in order to model and simulate in
CD++, firstly we need to retrieve initial information from GRASS
GIS based on GDAL. "DatasetReader" will read the dataset geo-
information in GeoTITFF format and output it as .val file. Then,
with the defined transition rules showing interaction between land
use and population, this Cell-DEVS model will show land use
changes and do predictions by generating .log file as the simulation
result. With CD++Modeler, we have a directly way to visualize the
S&M process.Raster dataset defined in GDAL consists of several
raster bands which contain some information in common. One
raster band contains the map size and GDAL data type, which could
be Byte, Float32 or Int32. Block is a preferred and efficient access
chunk size in GDAL data model. Also, the raster band contains a
color table consisting of a zero or more color entries. To associate



a color with a raster pixel, the pixel is used as a subscript into the
color table. And we need to check the color interpretation table to
get the specific meaning of that color in this band. Below shows the
steps to retrieve data from a raster dataset.

For given “landuse.tiff” dataset:

• For each raster band in this dataset:

Get this raster band information: Xsize, Ysize, BlockSize.

• For each block in this band:

Get block information: valid block size, stored block data;

Read block data and output each pixel data in this block.

The “landuse.tiff” file in the whole map set will be used for geo-
graphic information retrieval, and land use will be the first layer in
our model. This raster dataset contains only one raster band, while
the width and height in pixels are separately 179,165 for this raster
band, and it could be divided into four blocks.

Reading the block data of the raster band of “landuse.tiff”, we
could get the color value of each pixel. Then we compared the color
entries with interpretation table, found that only seven landuse
types of 24 types exist in this raster dataset. It is shown below.

Landuse color entry Value Landuse type
1 High Intensity Developed
2 Low Intensity Developed
4 Managed Herbaceous Cover
7 Evergreen Shrubland
15 Southern Yellow Pine
18 Mixed Hardwoods/Conifers
20 Water Bodies

Table 1. The land use types exist in the “landuse.tiff” raster dataset

The whole raster band size is 179 ×165, while limited by the
CD++ tool computation capability, we choose one small area in the
data map, the resized area is only 8 x 63, which contains six of
these seven land use types in the whole dataset.

With this specifically chosen area, we retrieve its pixel color
value as the initial landuse type after compared to color interpreta-
tion table, and store it as initial information file (.val file) for CD++
modeling. “landuse.val” contains information for land use types at
the beginning.

Figure 3. The ” landuse” map (left) and the selected area for
simulation

3.3 Land Use and Land Cover Cell Model in CD++
Changes to land use has been popular in urban planning, engineer-
ing, geography, urban economics, and related fields. Some other

networks, such as transportation, population, soil distribution, can
exert a strong influence on land use pattern changes; also, new pat-
terns have influence on the developments of such networks.

To forecast land use changes, several methods have been de-
veloped. The simplest types of models are Markovian models such
as Markovian chain models, which treats land use changes as a
stochastic process. A changing probability, which is almost con-
stant retrieved from large amount of history recorded data, ex-
ists between two land use types always. With Markovian models,
we could reach a distribution of land uses by forwarding to a fu-
ture time. This kind of models can hardly incorporate other geo-
information networks except some special methods are adopted,
such as incorporating artificial neural network into Markovian
models [13]. However, it makes the process too complex.

Another method drawing much attention is cellular and agent-
based models in simulating land use changes. Cellular automata
models emphasize neighbor effects and dynamic interactions be-
tween agents, while other models are often coupled into this land
use simulation model by adding other simulation layers.

In order to simulate interaction between land use types and pop-
ulation, we chose cellular automata method while adding popula-
tion information to land use information, instead of adopting the
Markovian chain models.

Model formalism: The following box contains the formal spec-
ification for the Cell-DEVS Population model.

CD =< X,Y, I, S, θ,N, d, δint, δext, τ,D >

X = ∅, Y = ∅
S = {1, 2, 4, 7, 15, 18, 20}

N = neighborhood = {
(−1,−1, 0), (−1, 0, 0), (−1, 1, 0),

(0,−1, 0), (0, 0, 0), (0, 1, 0),
(1,−1, 0), (1, 0, 0), (1, 1, 0),

(−1,−1, 1), (−1, 0, 1), (−1, 1, 1),
(0,−1, 1), (0, 0, 1), (0, 1, 1),
(1,−1, 1), (1, 0, 1), (1, 1, 1)}

d = 100ms

τ : N → S

For the first layer:

S = 1 if (0, 0, 0) = 2 and more than 1 neighbor state is 1;

S = 7 if (0, 0, 0) = 4 and more than 2 neighbor state is 7;

S = 2 if (0, 0, 0) = 7 and more than 2 neighbor state is 2;

S = 2 if (0, 0, 0) = 20 and more than 3 neighbor state is 2;

S = (0, 0, 0) for others

For the second layer:

S = (0, 0, 0) remain unchaged

4. The design of Google Earth visualization
Google Earth[14] is a powerful GVS supporting KML elements
(place, marks, images, polygons, 3D models, textual descriptions,
etc.) to manage three-dimensional geographic data. For the ease



of use of Google Earth, visualization based on it could enhance
the communication of results to non-technical users and provide
instantaneous access to a database of information layers.

4.1 A brief introduction to KML
Google Earth uses KML to display geographic data. Based on
the XML standard, KML uses the tags and its attributes to de-
script the geography information. With an script language with
regular expresions match in-built features, it is easy to manipu-
late the KML files. In our implementation, we use perl as our
script lanuages for Google Earth Visualization. In our Imple-
mentation, we use an subset of the elements defined in KML,
including <Document>,<Style>, <Folder>,<Placemark>,
<Polygon> and <Timestamp>.

The following program code is cut from our implementation. It
has the main features and basic structures as more more complex
KML output in our visualization. Line 1 is an XML header. Line 2
is an KML namespace declaration. Line 3 states the beginning the
<Document> and Line 39 concludes the the <Document>.We use
<Document> as our Cell DEVS simulation unit shown in Google
Earth. Line 6 states an Style, which descripts an polygon style.
We could define different colors for differenct cell states. Every
style may have its state name as its style name. In this design,
we use an cell state configure file called cell.style to descript
the cell state style we want. Line 12 begins an <Folder> element,
which stands for a layer in our Cell DEVS model. Line 38 conclude
the <Folder> element. If the model has more than one layer,
<Folder> and </Folder> pairs will be iterated the same times
as the number of the layers in the sepecific models. It could use
layer number as its name. The <Folder> element contains lots of
<Placemark> elements. In this design, a <Placemark> element
depicts a cell region, which could be an squre or irregular polygon.
In this simple example, it contains an <Polygon> element for
an square. It should be noted that the first coordiate is the same
as the last one in KML <Polygon> element specification. The
<tessellate>1</tessellate> guarentees that the geography
will be tessellated on the ground and gives a better animation effect.
In addition, the <Placemark> element contains the <Timestamp>
element. It give the <Placemark> bobing-up time.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
2 <kml xmlns=" h t t p : / /www. o p e n g i s . n e t / kml / 2 . 2 ">
3 <Document>
4 <name> v i s u a l i z a t i o n < / name>
5
6 < S t y l e i d =" C e l l S t a t e ">
7 < P o l y S t y l e >
8 < c o l o r > a a b b g g r r < / c o l o r >
9 < / P o l y S t y l e >

10 < / S t y l e >
11
12 < F o l d e r i d =" # i d l a y e r ">
13 <name># i d l a y e r < / name>
14
15 < Placemark >
16 <name> c e l l name< / name>
17 < s t y l e U r l ># C e l l S t a t e < / s t y l e U r l >
18
19 <Polygon >
20 < t e s s e l l a t e >1< / t e s s e l l a t e >
21 < o u t e r B o u n d a r y I s >
22 < L i n e a r R i n g >
23 < c o o r d i n a t e s >
24 −78.7707183652255 ,35.809591457038 ,0
25 −78.770717636844 ,35 .8098483367093 ,0
26 −78.7704022759328 ,35.8098477429906 ,0

27 −78.7704030053161 ,35.8095908633212 ,0
28 −78.7707183652255 ,35.809591457038 ,0
29 < / c o o r d i n a t e s >
30 < / L i n e a r R i n g >
31 < / o u t e r B o u n d a r y I s >
32 < / Polygon >
33
34 <TimeStamp>
35 <when>2010−01−01 T00 :00 :00 . 0 0 0 < / when>
36 < / TimeStamp>
37
38 < / F o l d e r >
39 < / Document>
40 < / kml>

Severl important notes should be made clear here. Firstly, the re-
lationship between the cell region and an placemark containing an
polygon. Figure 4depicts an two dimensional cell space with three
kinds of states. In this case, we could use 16 placemarks to repre-
sent every cell respectively. Because every placemark has only one
style and we could draw an more complex polygon shown in 5, it is
possible to use four placemarks to depict the sates of the cell space
at that time. Actually, the <Polygon> supports inner ring. There-
fore, in Figure 5, we could merge the two externel placemarks. But
it is hard to implement this optimization in design, which will be
explained in 4.4. Secondly, at timestamp, the correspoding place-
mark will appear on Google Earth. It will keep its appearance until
1) the end of the simulation and 2) part of the region will be covered
by the appearance of another placeamrk at a later stamptime , which
is explained in Figure 6. Therefore, when an cell state changes, we
just put that placemark with the correspoding style at that specific
time. It will stay in that style until next change occur. Finally, the
maximum uncompressed KML file size is limited to 10MB cur-
rently. Google says that this limitation will be changed at any time.
It is certaint that if we passed too many elements into KML file,
Google Earth wouldn’t work. Therefore, it is important to reduce
the number of Google Earth elements when the KML is generated.
This will be explained clearly in 4.4.
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Figure 4. An two dimensioanl cell space with three kinds of sates

4.2 The Goegraphy Coodination System Conversion
For validation our visualization framework, we implement a land
cover and land use model. The landuse96_28m.tif form grass,
an opensouce online GIS dateset, is used to retrieve the geography
information. The Figure7 is a subset of this file. Every color in this
file stands for an kind of land cover. Thus, a pixal with a specific
color stands for a square of land with corresponding use. When the
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Figure 5. An possible palcemark configuration for Figure 4

Time

Figure 6. An placemark is covered by the later apearance of an-
other placemark with a different style

land use information is retrieved and fed into the CD++ simulation
tool as the initial value file. The geography information of each
cell should be kept in a separate file. In our implementation, the
geography information is stored in a file called geo.info . With
this information, the geography visualization could be achieved.

We could use the command gdalinfo from gdal to check the
geography information, which is shown in the Figure 7. This file
use Lambert Conformal Conic geography project system, which is
defined by two ellipsoidal parameter, semimajor a and flattening
factor f ; the latitudes of the north and south standard parallel,
φNand φS ; the latitude of the origin, λ0;the central meridian φ0;
the false easting and northing positions E0, Nbin XY coordinate
plane. Also, this plane size is fixed by the coordinates of upper left,
lower left, upper right, lower right. We could see that every pixel
stands for an area of square. But Google Earth uses an different
kind of geography reference system called World Geodetic System
1984(WGS84). WGS84 uses longitude and latitude pair (φ, λ) to
define the unique position on the earth. So when we visualize
the simulation results on Google Earth, the geography information
corresponding the initial value file stored in geo.info has to be
converted to longitude and latitude pairs (φ, λ) for each cell.

In our implementation, each cell has four coners. For eveyr
corner, an position (E,N) is corresponding to that corner. Thus,
each cell use four positions to descript its geography information.
In Figure 8, there is an two dimensioanl cell space, in which every
red circle stands for an position. In order to visualize the results,
geography references conversion is mandatory. In our case, we
need covert from Lambert Conformal Conic to World Geodetic
System 1984(WGS84).For every position (E,N) on the plane, we

Figure 7. The geography information from landuse96_28m.tif

need the corresponding (φ, λ) . The formulation could be found in
[15] and is rewritten as follows.

W (φ) =
√

(1− e2 sin2(φ))

M(φ) =
cos(φ)

W (φ)

T (φ) =

√
1− sinφ

1 + sinφ
(
1 + e sinφ

1− e sinφ )
e

w1 =W (φS)

w2 =W (φN )

m1 =M(φS)

m2 =M(φN )

t0 = T (φ0)

t1 =M(φS)

t2 =M(φN )

n = sinφo =
lnm1 − lnm2

ln t1 − ln t2

F =
m1

ntn1

Rb = aFtn0

E
′
= E − E0

N
′
= Rb − (N −Nb)

R =
√
E′2 +N ′2



t = (
R

aF
)1/n

γ = tan−1 E
′

N ′

χ = 90◦ − tan−1 t

φ = 90◦ − 2 tan−1[(
1− e sinφ
1 + e sinφ

)e]
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Figure 8. The plance ordinate sytem of the cell model

For other GIS datasets, different geography reference systems
could be used. If the Cell DEVS model used data sources with
another kind geography coordinates, the corresponding conversion
script should be written. In the future, more geography reference
conversion scripts will be integrated into this framework.

4.3 The overview structure of the visualization procedure
The Google Earth visualization procedure consists of two phases,
the preparation phase and the generation phase. The preparation
phase has the following stages:

1. Collecting gepgraphy information (φ, λ) for each cell;

2. Gathering the state style information for display on Google
Earth;

3. Collecting the cell model information from MA file;

4. Analyzing the CD++ log file and fething the events information.

For the preparation, every cell will have four postions to describe
where it shows on Google Earth. Intuitively, every cell stands for
a region. In our assumption, it represents an square. You can also
define your own geometry for this cell, but you have to provide your
own coordinates. For now, we only store four positoins to depict the
region, thus the region is limited to a rectangular. In Google Earth,
different colors are used to annoate to different states. As times
go, the changing color means the changing state. You could define
your own state style in the configuration file cell.style, which
is shown in the following code, in which 7 state styles are defined.
You need provide the keyword style, the style index, the RGB hex
code, its name for every style. Also, you have to check whether
the number of state styles you defined is more than the states you
defined. Otherwise, the script will output an error.

s t y l e 1 63B8FF P o p u l a t i o n 3

s t y l e 2 B0171F P o p u l a t i o n 1
s t y l e 3 FF3E96 P o p u l a t i o n 2
s t y l e 4 00008B P o p u l a t i o n 4
s t y l e 5 008B45 F o r e s t
s t y l e 6 FFF68F NonFores t
s t y l e 7 8B8970 Urban

The CD++ log file is analyzed and it is easy to fetch the state
change information using the regular expression. Figure 9show the
format of the matched message. The message always begin with
Mensaje Y followed by the timing and cell position information.
And a new state value is after the /out/ substring. After analysis,
the information that the new state value and its timing will be
retrieved.

The generation stage will has the following stages:

1. Generating the KML header;

2. Writing the KML body;

3. concluding the KML.

In the KML header, the state style defined in cell.style will be
rewritten as polygon style used to dye the polygon in each place-
mark. In the design of how to write the KML body, two versions
is implemented. The basic version is simple and direct. Firstly, for
each cell, an <Placemark> element with its corresponding state
will be created. A <timestamp> with the initial time will be con-
figured for it. Then, in the following time, from the first event to
the end of the simulation, an <Placemark> element with its cor-
responding new state and its <timestamp> will be inserted. An
<Placemark> element with a later <timestamp> will cover an
couterpart with an early <timestamp>, if they have the same re-
gion fully or partially. In the implementation, it is should be noted
that the time granularity of CD++ tool and Google Earth is dif-
ferent. The time interval has to be enlarged hundreds or thousands
times in order to show in Google Earth.

The improved version is based on the observation shown in Fig-
ure 5. It is possible to use an single placemark to represent several
cells with the same property to reduce the Google Earth elements.
In the improved one, an every timepoint, two additional stages, that
is merge_cell and generate_graph, are taken before the tags
are inserted. According to the merging rules, merge_cell will
merge the cell with the same state and generate new polygons.
generate_graph will generate the corresponding coordinates de-
picting the boundary. Thus, in the improved version, more complex
polygons are inserted. The alogrithm specifics will be talked about
in the next subsection.

4.4 The cell merging algorithm
The cell merging algorithm is divided into two phases : merge_cell
and generate_graph.In the merge_cell stage, different merging
rules will define different mreged polygons. The <Polygon> sup-
ports both inner and outer boundary. But it is not easy to utilize this
property to reduce the number of elements drastically. Figure 10
descript such a dilemma. If the merging rules supports including an
different cell state inside. It is possible that two cell with different
state will be inside. In this case, there are two cells with state 1
surrounding by cells with state 0. According to the rules, all the
cells with state 0 will be merged together. But the difficulty is that
this geometry is not supported by KML. Therefore, it is important
to know what the geometry properties are, given certain merging
rules. Another diffculty is that if the merged geometry is too com-
plex, it is hard to retrive the coordinate information. Therefore, an
moderate merging rules will be beneficial to our implementation.

For each merged geometry, a fake state is assigend to this
geometry. Also, a table will be created to map the fake state to real
state defined in cell. The algorithm will scan from left to right and



Mensaje Y   / 00:00:00:100 /   urbangrowth(4,4,1)(172)   / out /      3.00000  para urbangrowth(02)

Message Time Cell PositionCell Position
New
State

Figure 9. The matched message format in the CD++ log file

from up to down. According to the rules, each cell will be merged
into the existing geometries or incur an new geometry. The merging
rules is shown in 1.

0

1

Figure 10. An difficult situation for cell merging

The merged geometry has several properties under these rules.
It is easy to prove that the the merged geometry has no inner ring
definately and its left edge is always straight, which makes it easy to
retrieve geography information from each cell. Figure 11is a typical
example in this implementation. generate_graph will generate
the necessary coordinates for this geometry. The algorithm will
scan from top to down, get the right most column element position.
Then, in the second pass, it will compare the column number with
the underlying one. If they are not equal, two coordinate pairs
are needed to be inserted to annotate this change. Otherwise, it
will insert nothing. By the end of the second pass, the geograpy
information of the right boundary of the merged geometry will be
generated. Because it has a straight left edge, it is easy to insert the
corresponding coordinates.

5. Simulation Results
5.1 Simulation Results in CD++
Figures 13 and 14 below shows simulation results in CD++ modeler
and the colors of the defined pallette represents the same land use
type as in the dataset color table.

Seen from the initial state and final state for landuse layer, state
transitions happen almost from 4 to 7, from 7 to 2, just as what
defined in our model. To relate the landuse changes in cell space
with real geo-system, we need to feed our simulation results to
GVS.

5.2 Google Earth Simulation Result
Google Earth version 7.0.1 is used to validate our idea. In the
basic version, 1787 geometries are needed. After using the cell
merging algorithm, 1157 geometries are needed. The number of
geometry reduction depends on the change pattern. If the cell states
are randam, this cell merging algorithm couldn’t make significant

Figure 11. The merged geometry in Google Earth visualization

Figure 12. The defined palette for landuse model

improvements. Figure 13,16,17shows the layer 0 Google Earth
Visualization, while Figure 18,19shows the layer 1 Google Earth
Visualization.

6. Conclusions
We develop a framework to integrate GIS, CD++ modeling and
simulation, and visualization in Google Earth in this project. To



Algorithm 1 The merging rules used in thi prototype

# r u l e 1
i f ( $co lumn_count ==0 and $row_count ==0){

c r e a t e an new merged geomet ry ;
}
# r u l e 2
i f ( $row_count ==0 and $column_count ! = 0 ) {

i f ( t h e c u r r e n t c e l l has t h e same s t a t e a s i t s l e f t one ) {
merged i n t o i t s l e f t geomet ry ; }

e l s e {
c r e a t e an new merged geomet ry ; }

}
# r u l e 3
i f ( $co lumn_count ==0 and $row_count ! = 0 ) {

i f ( t h e c u r r e n t c e l l has t h e same s t a t e a s i t s uppe r one ) {
merged i n t o i t s l e f t geomet ry ; }

e l s e {
c r e a t e an new merged geomet ry ; }

}

i f ( $co lumn_count !=0 and $row_count ! = 0 ) {
# r u l e 4

i f ( t h e c u r r e n t c e l l has t h e same s t a t e a s i t s uppe r and l e f t n e i g h b o u r and
i t s l e f t and uppe r n e i g h b o u r has t h e same f a k e s t a t e s ) {

merged i n t o i t s l e f t geomet ry ; }
# r u l e 5

e l s i f ( t h e c u r r e n t c e l l has t h e same s t a t e a s i t s uppe r and l e f t n e i g h b o u r and
i t s l e f t and uppe r n e i g h b o u r has t h e d i f f e r e n t f a k e s t a t e s ) {

merged i n t o i t s l e f t geomet ry ; }
# r u l e 6

e l s i f ( t h e c u r r e n t c e l l has t h e d i f f e r e n t s t a t e from i t s uppe r and l e f t n e i g h b o u r ) {
c r e a t e an new merged geomet ry ; }

# r u l e 7
e l s i f ( Only i t s l e f t n e i g h b o u r has t h e same s t a t e ) {

merged i n t o i t s l e f t geomet ry ; }
# r u l e 8

e l s i f ( t h e l e f t n e i g h b o u r has d i f f e r e n t s t a t e from t h e c u r r e n t c e l l and
t h e c u r r e n t c e l l has t h e same s t a t e a s i t s uppe r n e i g h b o u r ) {

c r e a t e an new merged geomet ry ; }
}

Figure 13. Initial state for landuse layer

prove the usefulness of this integration, we choose the topic lan-
duse. Actually, this framework should work well in other applica-
tions, such as natural resources, transportation, utilities. What we
need to do is retrieve the information from a corresponding dataset,
then model and simulate in CD++, and visualize in GVS. GRASS
is chosen as GIS in our project, but not the must, other GIS also
should work well with this integration only if corresponding op-
erations supported by it. Also, Google Earth serves as a powerful
GVS, but not the must, some other kinds of GVS should work well,
such as Bing Maps only if corresponding transforming relationship
is found.

In the future, two or more Cell DEVS models will be supported
in this visualization framework to see the coupled effects among

Cell DEVS. We also could use more complex geometry in Google
Earth to further the reduction in Google Earth, which will expand
the simulation space for this framework. Finally, we could integrate
more Cell DEVS models to validate the general usability of this
framework.
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Figure 14. Final state for landuse layer

Figure 15. The initial state distribution on layer 0 in Google Earth Visualization

Figure 16. The middle state distribution on layer 0 in Google Earth Visualization
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