APPENDIX F

MAP PROJECTION
COORDINATE SYSTEMS

F.1 INTRODUCTION

Most local surveyors are well served by using map projections such as the
state plane coordinate system. These two-dimensional grid systems allow sur-
veyors to perform accurate computations over large regions of land using
plane surveying computations. They are the basis for the adjustments dis-
cussed in Chapters 14 through 16.

Map projections provide a one-to-one mathematical relationship with
points on the ellipsoid and those on the mapping surface. There are an infinite
number of map projections. Most map projections are defined by a series of
mathematical transformations used to convert a point’s geodetic coordinates
of latitude, ¢, and longitude, A, to xy grid coordinates. Some map projections
preserve the shape of objects (conformal); others, areas, directions, or dis-
tances of lines. However, since Earth is ellipsoidal in shape and a mapping
surface is a plane, all map projections introduce some form of distortion to
observations. For example, distances and areas are distorted in a conformal
map projection.

To reduce the size of these distortions, the developable surface is often
made secant to the ellipsoid and the width of the mapping zone is limited in
distance. For instance, when the National Geodetic Survey originally designed
the state plane coordinate system during the 1930s, the zone widths were
limited to 158 miles so that precision between the ellipsoid distance and the
grid distance was no worse than 1:10,000. Since most surveys at that time
were only accurate to a precision of 1:5000, this was an acceptable limit.
However, with today’s modern instruments, observations must be reduced
properly if survey accuracy is to be preserved in a map projection system.
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All map projections are based on the ellipsoid selected, such as the Geo-
detic Reference System of 1980 (GRS 80), and defining zone parameters.
Typically, the zone parameters define the grid origin (b, \,); the secant lines
of the projection, also known as standard parallels, or scale factor, k,, at the
central meridian, A,; and the offset distances (E,, N,) from the grid origin.
Once defined, each map projection has a series of zone constants that are
computed using the defining zone parameters. These zone constants are com-
puted only once for each projection. Once the zone constants are computed,
the direct and inverse problems can be carried out for any point in the system.
The direct problem takes the geodetic coordinates of a point and transforms
them into grid coordinates, and the inverse problem takes the grid coordinates
of a point and transforms them into geodetic coordinates.

The two primary map projection systems used in the United States are the
Lambert Conformal Conic for states that have a long east—west extent and
the Transverse Mercator for states that have a long north—south extent. Both
map projections are conformal; that is, they preserve angles in infinitesimally
small regions about a point. This property is advantageous to surveyors since
angles are minimally distorted when using a conformal projection. On the
other hand, as shown in Figure F.1, horizontal distances observed must be
reduced to the mapping surface to eliminate the distortions of the projection.
However, if these reductions are performed properly, the resulting plane com-
putations are as accurate as geodetic computations such as those shown in
Chapter 23. In this appendix we look at the mathematics of the Lambert
Conformal Conic and Transverse Mercator map projections and demonstrate
proper methods in reducing observations before an adjustment.

F2 MATHEMATICS OF THE LAMBERT CONFORMAL
CONIC MAP PROJECTION

The Lambert Conformal Conic map projection was introduced by Johann
Lambert in 1772. As its name implies, this map projection uses a cone as its
developable surface. The projection is conformal, so angles are preserved but
distances are distorted. A Lambert Conformal Conic map projection is defined
by two ellipsoidal parameters,' grid origin (b, \); latitude of the north stan-
dard parallel, ¢,, and south standard parallel,” ¢g; false easting, E,; and false
northing, N,

'Typically, an ellipsoid is defined by the length of its semimajor axis, a, and its flattening factor,
f. The first eccentricity is computed as e = V2f — f2. The GRS 80 ellipsoid has defining
parameters of @ = 6,378,137.0 m and f = 1/298.2572221008.

2The standard parallels are the latitudes of the north and south secant lines for the cone on the
ellipsoid.
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Figure F.1 Reduction of distance to a mapping surface.

F.2.1 Zone Constants

A set of three functions is used repeatedly in computations of the Lambert
Conformal Conic map projection:

W(d) = V1 — €2 sin® ¢ (F.1)
cos &
= —— 2
M) = (F.2)
1 —sindf1 + esind)\°
) = \/1 + sin d)(l — e sin cb) (F-3)

Using Equations (F.1) through (F.3), the remaining zone constants are de-
fined as

wy = W(ds) (F.4)
wy = Wiby) (F.5)
m, = M(dbs) (F.6)
m, = M(by) (F.7)
ty = T(dy) (F.8)

t, = T(ds) (F.9)
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t, = T(dy) (F.10)
n = sin ¢, = o — Inm, (F.11)
" Int,—Int, '
F="4 (F.12)
nt'
R, = aFt} = radius of the projection (F.13)

F.2.2 Direct Problem

The direct problem takes the geodetic coordinates of latitude, ¢, and longi-
tude, \, of a point and transforms them into xy grid coordinates. Often, the y
coordinate is called the point’s northing, N, and the x coordinate its easting,
E. Thus, given the geodetic coordinates of a point, the northing, y, easting,
x, scale factor, k, and convergence angle, vy, of the point are computed as

t = T(db) (F.14)
m = M(d) (F.15)
R = aflt" (F.16)

v = (N — Ayn (where western longitude is considered negative) (F.17)

E=Rsiny + E, (F.18)

N=R,—Rcosy + N, (F.19)
R

k= (F.20)
am

F.2.3 Inverse Problem

The inverse problem takes a point’s northing and easting coordinates and
computes its latitude, longitude, scale factor, and convergence angle. For the
Lambert Conformal Conic map projection, the equations for the inverse prob-
lem are
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E' = E - E, (F.21)
N =R,— (N—-N,) (F.22)
R = VE'? + N? (F.23)
R 1/n
= <a_F> (F.24)
El
= tan ! — F.25
Y=t (F.25)
x = 90° — tan" 't (F.26)
1 — esin ¢\?
= ° _ -1 _—_—
é =90 2 tan [t( [+ sin > ] (F.27)

Repeat Equation (F.27) using x for ¢ in the first iteration. Iterate until the
change in ¢ is insignificant; that is, the change should be less than 0.000005".

AN=—+N (F.28)
n
mt"

k = (F.29)
mt’

where m and t are defined in Equations (F.14) and (F.15) using ¢ from Equa-
tion (F.27).

F.3 MATHEMATICS OF THE TRANSVERSE MERCATOR

The Transverse Mercator map projection uses a cylinder as its developable
surface. It preserves scale in a north—south direction and thus is good for
regions with a long north—south extent. This projection was proposed by
Johann Lambert, but the mathematics for an ellipsoid were not solved until
the early twentieth century. In many countries, this projection is also known
as the Gauss—Kriiger map projection. The most famous Transverse Mercator
map projection is the Universal Transverse Mercator (UTM) developed by
the National Geospatial-Information Agency to provide a worldwide mapping
system from 80° south latitude to 80° north latitude. This map projection is
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defined by two ellipsoidal parameters,® grid origin (b,,\,), scale factor, k,, at
the central meridian, \,, false easting, E,, and false northing, N,.

There are 60 zones in the Universal Transverse Mercator map projection,
each nominally 6° wide. Each zone overlaps its neighboring zones by 30'.
The central meridian, \,, for each zone is assigned a false easting, E,, of
500,000 m. The false northing, N,, is 0.000 m in the northern hemisphere
and 10,000,000.000 m in the southern hemisphere. The scale factor at the
central meridian, k,, is 0.9996, which yields a distance precision of 1:2500.
The central meridians (\,) for each zone start at 177° west longitude and with
a few exceptions, proceeds easterly by 6° for each subsequent zone. The grid
origins are at 0° and A,

F.3.1 Zone Constants

The Transverse Mercator map projection use the following defining functions:

C(d) = €' cos’d (F.30)
T(d) = tan b (F.31)
> 3e*  5e° 3¢ 3e*  45e°)\ .
=alll1-=—-= - — o — (= + ==+
M) “[(1 4 64 256>¢ ( § 32 1024) sin 2¢
15¢*  45e°\ . 35¢%\ .
+ (256 + 1024> sin 4 — (3072) sin 6¢] (F.32)

where e is the first eccentricity of the ellipse as defined in Equation (17.5)
and e’ is defined as

b =a(l = f) (F.33)
C Vaa - 1 - ¢
e = — =
b e?
my = M(d,) (F.34)

3The Universal Transverse Mercator (UTM) uses the WGS 84 ellipsoid, defined in Chapter 17.
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F.3.2 Direct Problem

The equations in the Transverse Mercator for the direct problem are

m = M(d) (F.35)
t = T(d) (F.36)
¢ = C(d) (F.37)

A =(\ — )\ cos & where western longitudes are negative (F.38)

3

E:kORN[A+(1—r+c)%

5
+ (5= 18t + £2 + T2¢ — 58¢?) %] + E, (F.39)
A A
N = O{m—m0+RNtan¢[7+(5—t+9c+4c2)ﬂ
A6
+ (61 = 58t + 12 + 600c — 300¢") ]} + N, (F.40)

where R, is the radius in the prime vertical as defined by N in Equation
(17.6).

1 + 3¢ + 2¢2 2 — tan® ¢
c, = 3 cy = 15 (F.41)
v = A tan ¢[1 + A%(c, + c,A%)]
A? A4
k:ko[l tA+ o5+ (G —dr+ 42+ 13¢* — ZSe’Z)ﬁ
2 A6
+ (61 — + 2 _
(61 — 148¢ + 16¢°) 720] (F.42)

F.3.3 Inverse Problem

The equations in the Transverse Mercator for the inverse problem are
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E =E - E, (F.43)

N =N - N, (F.44)

_lovi-e F.45)

“TIIVI- e .

N’

m=my + — (F.46)
ko

X = n (F.47)

a(l — e?/4 — 3e*/64 — 566/256>

The foot-point latitude is
3e, 273\ . 21ez  55¢%\ .
=x+ = - 2x + — 4
by = X (2 32 )X T e T 3z ) X

151e7 .
+
96 sin 6y

1097¢*
512

+ sin 8y (F.48)

Using the foot-point latitude and functions defined in Section F.3.1 and
Equation (23.16) yields

¢, = C(dy) (F.49)

1, = T(dy) (F.50)
a

Ny = V1 — e?sin’ &, 51

M, = —a4 - ) (F.52)

(1 — e*sin® b,)*"?

D = F.53
Nk (F.53)
D? D?
B=7—(5 + 3¢, + 10c, —4c%—9e’)§
D6
+ (61 + 90r, + 298¢, + 45422 — 252¢' — 3¢)) ——  (F.54)

720



590 MAP PROJECTION COORDINATE SYSTEMS

N, tan ¢,

b =b, -~ —B (F.55)

D — (1 = 2t, + ¢,) (D?/6)
+ _ + _ 2 + 12 + 2 5
A= + (5 — 2¢, + 28¢, — 3¢ + 8e 24t7) (D?/120) (F.56)
COS ¢

Note that Equations (F.41) and (F.42) can be used to compute the conver-
gence angle vy and scale factor k for the point.

F.4 REDUCTION OF OBSERVATIONS

Most often, the grid coordinates of a point are known prior to the survey and
all that is needed is to reduce the observations to the mapping surface. The
basic principle to bear in mind is that grid computations should only be
performed with grid observations. Since the two map projections discussed
previously are conformal, observed distances must be reduced to the mapping
surface. Similarly, geodetic and astronomical directions must be converted to
their grid equivalents.

As discussed in this section, conformality implies that the angles will be
only slightly distorted. As will be shown, the arc-to-chord correction is ap-
plied directions and angles when the sight distances are long. For example,
in the state plane coordinate system, this correction should be considered for
angles whose sight distances are greater than 8 km. In this section, proper
reduction of distance, direction, and angle observations is discussed.

F.4.1 Reduction of Distances

As shown in Figure F.1, an observed horizontal distance must be reduced to
the mapping surface. This reduction usually involves using the grid factor.
The grid factor is the product of the elevation factor, which reduces the ob-
served distance to the ellipsoid, and a scale factor (k), which reduces the
ellipsoidal distance to the mapping surface.

There are several procedures for reducing an observed distance to the el-
lipsoid, the most precise being a geodetic reduction. However, surveyed
lengths typically contain only five or six significant figures. Thus, less strict
methods can be applied to these short lengths. The elevation factor is com-
puted as

R R
= e - e F.5
= T H N R+ (F57)
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In Equation (F.57), R, is the radius of the Earth, H the orthometric height,
N the geoidal height, and /& the geodetic height. All of these parameters are
determined at the observation station. The relationship between the geodetic
height, &, and orthometric height, H, is

h=H+ N (F.58)

In Equation (F.57), the radius in the azimuth of the line should be used
for R,. Again since surveyors observe short distances typically, an average
radius of the Earth of 6,371,000 m can be used in computing EF. These
approximations are demonstrated in Example F.1.

In a map projection system, the scale factor computed using Equation
(F20), (E29), or (F42) is for a point. Generally, the scale factor changes
continuously along the length of the line. Thus, a weighted mean using two
endpoints of the line (k, and k,) and midpoint (k,) is a logical choice for
computing a single scale factor for a line. It can be computed as

ok + 4k, + k
avg 6

k (F.59)

However, as with the elevation factor, this type of precision is seldom needed
for the typical survey. Thus, the mean of the two endpoint scale factors is
generally of sufficient accuracy for most surveys. In fact, it is not uncommon
to use a single mean scale factor for an entire project.

The grid factor, GF, for the line is a product of the elevation factor, EF,
and a scale factor, k,,,, and is computed as

avg’
GF = k,,, X EF (F.60)

Thus, a reduced grid distance, L, 18 the product of the horizontal distance,
L, and the grid factor, GF, and is computed as

L

eria = Ly, X GF (F.61)
Example F.1 A distance of 536.07 ft is observed from station 1. The scale
factors at observing, midpoint, and sighted stations are 0.9999587785,
0.9999587556, and 0.9999587328, respectively. The orthometric height at ob-
serving station is 1236.45 ft. Its geoidal height is —30.12 m and the radius
in the azimuth is 6,366,977.077 m. Determine the length of the line on the
mapping surface.
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SOLUTION  This solution will compare the grid factor computed using dif-
ferent radii in Equation (F.57) and different scale factors in Equation (F.60).
Using the more precise methods, the grid factor is computed as follows. The
orthometric height of the observing station in meters is

12
= . X = .
H = 1236.45 ft 3037 376.871 m

Using the radius in the azimuth of the line and Equation (F.57), the elevation
factor, EF, is

6,366,977.077

= 6.366.977.077 + 376871 —30.12 00044

EF

From Equation (F.59), the scale factor for the lines is

~0.9999587785 + 4(0.9999587556) + 0.9999587328

From Equation (F.60), the grid factor for the line is
GF = 0.999945542 X 0.999958756 = 0.99990430
Finally, the grid distance for this line is
Lgiq = 0.99990430 X 536.07 ft = 536.02 ft

Doing the problem again, this time with the mean radius of the Earth and the
average of the two endpoint scale factors, yields

6,371,000 -
EF = 6.371.000 + 376.871 — 30.12 0.999945577
0. 587785 + 0. 587328
ave R 3 999587328 _ ) 999958756

GF = 0.999945577 X 0.999958756 = 0.99990433

L = 0.99990433 X 536.07 ft = 536.02 ft
Note that using the approximate radius of the Earth and the average scale
factor for the endpoints of the line resulted in the same solution as the more
precise computations. This is because the length of the distance observed has
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only five significant figures. The elevation factor computed using the mean
radius of the Earth agreed with the radius in the azimuth to seven decimal
places. This is also true of the scale factors, which agreed to nine significant
figures. Thus, the grid factor was the same to seven decimal places and was
well beyond the accuracy needed to convert a length with only five significant
figures. This demonstrates why a common grid factor can often be used for
an entire project that covers a small region.

F.4.2 Reduction of Geodetic Azimuths

Figure F.2 depicts the differences between geodetic azimuths, 7, and grid
azimuths, ¢. Since grid north (GN) at a point is parallel to the central meridian,
the convergence angle, vy, is the largest correction between the two geodetic
and grid azimuths. Additionally, there is a small correction to convert the arc
on an ellipsoid to its equivalent chord on the mapping surface. This is known
as the arc-to-chord correction, 8. The relationship between the geodetic azi-
muth and grid azimuth can be derived from Figure F.2 as

T=t+~vy—3 (F.62)

As shown in Figure F.2, this equation works whether the line is east or west
of the central meridian. For the Lambert Conformal Conic map projection,
the arc-to-chord correction is computed as

d = 0.5(sin ¢; — sin dg)(N, — ;) (F.63)
An analysis of Equation (F.63) shows that the worst cases for & are for lines

in the northern or southern extent of a map projection. Rearranging Equation
(F.63) yields a change in longitude as

Central Meridian

Figure F.2 Relationship of geodetic azimuth (7), grid azimuth (¢), convergence angle
(y), and arc-to-chord correction (d).
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2%

N, — N, = AN = — -
> sin &5 — sin ¢,

(F.64)

As an example, assume that ¢, is 42°30’. Further assume that the project is
in the Pennsylvania North Zone, which has a sin ¢, of 0.661539733812. If &
is to be kept below 0.5”, the maximum line in arc-seconds of longitude can
be

B 2(0.5")
 sin 42°30" — 0.661539733812

AN =171.2"

At latitude 42°30’, this corresponds to a line of length of about 5334 ft, or
1.6 km. Few surveyors in northeastern Pennsylvania could find a line of this
length to observe. Thus, the arc-to-chord correction is generally ignored in
reductions, and Equation (F.62) can be simplified as

T=1+vy (F.65)



